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Abstract

In this work, at Chapiter I, a mathematical model for fully saturated elastic clay soil
with a very low and settlement dependent permeability has been developed. The model
was solved by the finite element method employing repeated fixed point techniques in
order to obtain the results in displacement and pore water pressure. The model is
consistent with the three-dimensional theory of Biot, where the applied loads can be
dependent on time. The pore fluid may be selected as a compressible or incompressible
one.

Later, at Chapter II, the user manual of solexx is given. This program simulates
the consolidation phenomenon of a soil, whose solid squeleton has an elastic behaviour,
under different hypothesis.

Simulation du probléme de consolidation

d’un sol saturé

Résumé

Dans le Chapitre I de ce document on développe un modele mathématique pour
décrire les déplacements d’un sol élastique saturé, avec une perméabilité qui est fonction
du degré de tassement. On a résolu le modele numérique en employant une méthode
de point fixe et en discrétisant avec des éléments finis conformes, pour obtenir les

“déplacements et la pression interstitielle. Le modéle concorde avec celui de Biot. Les

forces appliquées peuvent étre fonction du temps et ’eau interstitielle peut avoir un
comportement incompressible ou compressible.

Dans le Chapitre II on donne un guide d’utilisation du module solcxx. Ce pro-
gramme simule le phénomeéne de la consolidation d’un sol élastique sous différentes
hypotheses.
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1= Im lom

The first analysis of consolidation in porous media is atttributed to Karl Terzaghi’.
His unidimensional consolidation theory relies on a set of suppositions, justified by
practical results. In particular, Terzaghi suppose that there are only vertical strains

which are directly related to the pore pressure dissipation.
In the one dimensional consolidation theory, pore pressure dissipation is given by
the following law:

caz_p_a_p (@)
"0z ot

where c, is the consolidation coefficient and p the pore overpressure.

The edometric tests and the consolidation of a thin claylayer of negligible thickness
as opposed to the dimensions of the load surface can be explained easily by means of
the one dimensional theory, but these are practically the only ones. However, this

theory has the advantage that it gives a very simple analytical solutions.

The Rendulic® theory, currently named the pseudo three dimensional consoli-
dation theory, relies on the mistaken hypothesis that the octahedral mean stress o,
is constant in the domain and time independent; the equation 1 is changed to:

. @
C"V"'az

In three dimensional analysis, taking into account the hypothesis of small strains,
elastic squeleton, fully saturated soil with a incompressible water and fluid flow

) S[3]

behaviour following Darcy’s” Law, the consolidation is controlled by the static

equilibrium equation together with the differential equation initially given by Biot¥:
op 00, 3)

where ¢, is the consolidation coefficient. The three dimensional theory explains some
consolidation attributes, such as the Mandel®-Cryer’® effect, which is given by a pore

pressure increment when the consolidation starts.

Consolidation theory summary
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o NModel

For the governing equations of the porous medium, a continuum approach has
been adopted”, where each phase present in the system is assumed to fill up the entire

porous medium domain, forming a overlapping continuum®.
Let’s consider a soil that occupies a volume Q and whose boundary is divided into:

- A part in which the displacements are known and another over which the exterior

loads (changing with time) are applied.

- Another two parts, equal or different, in which conditions are placed on the flow or

on the existing interstitial pressure.

Elastic conditions Hydraulic conditions

FIGURE 1 Divisions of the boundary.
In agreement with this proposal our problem will consist of determining the
evolution in pressure and displacement of the soil.

In order to analyse the consolidation of a saturated elastic soil with a fluid,

compressible or not, the following equations are employed:
- Equations relating to the soil squeleton

* Elastic behaviour ( effective stresses and strains relationship)
¢ Small Strains

- Equations relating to the fluid

*  Fluid flow behaviour following Darcy’s law
* Mass flow for solid and fluid phases

* Hydraulic boundary conditions (prescribed pressure and flows)

- Equations relating to the soil

Consolidation theory summary
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* Dynamic equilibrium
* Principle of effective stresses
* Boundary conditions (prescribed loads and displacements)

All the above equations are explained below.

A.- Soil leton related ation

a) Elastic behaviour

In linear elasticity, the solid squeleton behaviour law is written as a linear
relationship between the stress tension 6, and the strain tensor &.
8, =Ee or o, = Ef; €y 4)

using the Euler notation, where E is the squeleton elasticity tensor.

b) Small strains

This hypothesis allows the squeleton strain € and the displacement vector ¥

to be related by means of a linear relationship (first order approximation):

1[81;, au,) 1 (5)

==l —4+—|== +
€ =3\ 55 T ox, | =2 e T )

B.- Pore fluid related equations

a) Darcy’s law

This law, experimentally achieved, linearly relates the flow velocity across a
porous medium (seepage velocity v,) and the hydraulic head A:

where  is the soil permeability tensor, and the hydraulic head is given as:

P @)

being p the pore fluid overpressure, Z, the height above piezometric level of the
soil element and v, the specific weight of the pore fluid.

Consolidation theory summary
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b) Pore fluid continuity equation

The continuity equation is obtained from the mass conservation law, and
declares that, for a control volume, the mass incremént velocity in its interior is
exactly equal to the net mass flow through this control volume. In the case of the
flow across a porous medium, the continuity equation is written , given in

macroscopic variable terms, as:

o(nS (8)

onSP) | viov )=

n being the soil porosity, S the saturation degree, p the fluid density, and v, the

seepage velocity. According to whether the fluid is incompressible or not, this

equation changes to:

e .~ nop_ 9)
W, +€,)=0 or W,+ev(u)+Kw =

¢) Hydraulic boundary conditions

The hydraulic conditions imposed on the boundary domain Q may have an
effect on the hydraulic head value or on the flow velocity; i.e.:

{ h=h, inT% (10)
-v,n+gh=q inI?

C.- Equations relating to the soil regarded as single phase

a) Dynamic equilibrium
The equilibrium equation, relating the total tension ¢ with the body forces F,

are declared as a displacement vector function:

ou (11)

V~0+F=p3—t;

being p the soil density and « its particle displacements.

Consolidation theory summary
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b) Effective stress principle

It is assumed that a pure (external and internal) fluid pressure p causes only
a uniform volumetric strain by compressing the grains of the soil and the major
deformation of the porous skeleton is governed by the effective stress o,. This is
defined as follows, with the sign convention that tension is positive,
o=0,-Ip or

(12)

where ¢ is the total stress and I is equal to unity for the normal stress components
and zero for the shear stress components. Equation (12) can be obtained by pure
statics which allows the total stress vector to be split into convenient superim-

posable parts. Equation (12) is also known as the effective stress principle first

formulated by Terzaghi, and is considered as the basic equation of Soil Mechanics.

FIGURE 2
Total and effective stresses in a
porous medium

¢) Boundary conditions

The boundary conditions may be imposed, on the one hand, on the displace-
ments and, on the other, on the stresses, making clear that both conditions can
not be simultaneously imposed at the same point. Therefore, the boundary

conditions are written as:

{ u=u, inT (13)
o in I

Consolidation theory summary
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3. Diffferential Formulation

Let Q be a bounded open subset of R, (m= 2, 3) simply connected and let {I, I}

and {I'§,I'7} be two disjointed subsets of 9Q, the consolidation problem is written as:

Find a pair ¥ and p so that

[ pi-V.5,=F-V.(p)
.1

€y(u)= 2 (e, +u,,)
o,=F¢

< and - — -
©,—-pD-n=f
u=1u,
Ul =Ug
2y =V,

4o gt omal i)

+V-(pv,)=0

ol ©

5
o ©

in

ol

in
on I

on I'f
in Q

Given a soil occupying a region Q, where Q is a bounded open connected subset of

R"™, m= 2,3, with a Lipschitz continuous boundary, such as that shown in figure 1 (see

section 2.- Physical Model).

We define the spéce

W@ ={w; weH'@" wi=0]

which represents the vector of displacement in each instant of each one of the points
of the body and where I is a subset of the boundary of Q with a strictly positive

measurement. The space W is equipped with the product norm:

w=W,...,w,) = |w |,,0=L>:fl L (w,.)’dg] VYw e [H'(Q)"

Let’s define for each w € [H'(Q)]" the operators:

as:

o, [H'Q)]" - [L Q)

Consolidation theory summary
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0,;(w)=0,(w)=E; e,(w) 1<i,j,k,l<m
e,.j(w)=%(w,-_j+wj,,-) | 1<i,j<m

which play the role of stress tensor and strain tensor in each point of the soil and where
the coefficients E; are functions ofa pointin the domain Q, that represent the properties
of the soil, verifying’™:

E/=E}=E} Eje L7(Q) (symmetry)
and
Jae REVX € RV™/X, =X, = NEX, 20lX P . (ellipticity)
We suppose that forces of volume dependent on time act on the soil:
F=[F,...F,) € H'[0,T;L Q)"
and some surface forces, which are also dependent on time:;
f=Uy-.. £ € H{0,T;17212)"] where It=3Q-T}
Similarly for hydraulic behaviour of the soil we define
v={v veH'@; v =0}

which represents the set of functions with pore hydraulic heads in each moment of
each of the points of the body, being I a subset of 9Q with a strictly positive
measurement. In this space we can define the norm:

:
IVl o= UanVde]

Also we define the tensor which represents the relative permeability k; which is a
function point in the domain Q and verifies™?

k,'j = kj.‘ kij € L°(Q) (symmetry)
and

Joe REVY e R" =YK, 2a|Y 5. (ellipticity)

Consolidation theory summary
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We suppose that in the soil there exists a flow through the boundary I} given by
the function
g € H'[0,T;H™ ()]

The study of the phenomenon of consolidation can in reality begin from any state
of initial equilibrium for which the deformation of the soil and the distribution of pore
pressures (or hydraulic heads) are known. In the case of non-homogeneous conditions,
the increase in the deformation and the excess of pore pressure in all the times is

calculated from the initial state, which is taking as a reference point.

Next we carried out the homogenization of the essential boundary conditions
introducing a new change of variables. In this way, considering as unknown the
increase in value of the displacements and the hydraulic heads in respect of the initial

values”/*? the problem is expressed as™
Find a pair (4, 4) so that, (u,h) € Z(Q) and 4 € L*[0,T;W’(Q)] verifying

[ wiori,aq+ [ e,0)-Ef ) d+| [ 00)- 0,40 |- [ e,00)p a2=
fo) Q 0 v Q
=f w,F, dQ+f w,f. dl‘+f w,.p,u‘,‘ dQ+
Q l'; Q

+J e,-j(w)-Eg'-eu(u,)dQ—f e;wh,h dQ Vwe Wcs.te (0,T)
Q Q

(14)
yor p p _ _ ey
K 3 dQ+f Vv k- V(ijdﬂ+frsvg[yw]d1' = fqu dQ Lveﬁ(u)dﬂ
+Uﬂvv K-V dmfmvgh, dr+fnveﬁ(a,)dn] Vwe Weste (O.T)
u@,x)=0; u@0,x)=v;; p@0,x)=0 Vxe Q
where:
Q) = [H'[0, T;LAQ)"] ALY 0, T;W(Q)]] x [H'[0, T:LAQ) NL[0, T;V(Q)]]
p(x),Y.(x)e L7(Q); p(x)Y.(x)>0 Vxe Q gix)e L°IT%);, gkx)20 Vxel¥

and G,, u,, b, represent the initial stresses of the soil and the known boundary values

of the displacements and the hydraulic heads in excess of the initial values.

Consolidation theory summary
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8- The Computer Model

In this section, the stages of implementation of a consolidation problem are out-
lined. We shall begin with a complete description of the process for the elastic case
and later deal with the hydraulic case.

After the rewriting of the equilibrium equation, we will obtain the matrices of
stiffness and second elemental members, as well as the coupling matrices in both cases.
Next, the assembly process will be developed, and finally the problem of consolidation

will be strictly implemented.

The exposition is carried out without the loss of generality with m=3.

A.- Rewriting in the matrix form

We represent in the three-dimensional case

i) The strain tensor in the form™?:

\
(€ (1 00000 0 0 O
€n 0 00O01O0O0O0TO0
=7) 0000 O0O0OO0OTO
—3 —3 A 1 —3
E(w) %, w)=[Al {Dw} with [A] 010100000
2e,, 0000071000
Kze“) 0 0100010 0
, [ow, ow, Oow, Ow, Ow, Ow, Ow, Ow, Ow,
and Dwy'=|32 == == =2 =2 = =2 = =2
X, Ox, Ox3 Ox;, OX, OX; OX; OX; Ox,
ii) The stress tensor, through the elastic behaviour law
o(w)=Eg(w)
being (in the isotropic case)
(. )
Ou (A+2u A A 0 0 0)
On A A+24 A 0 0 O
_| % _ . | A A A+2u 0 0 O
o=| . |FIENA {Dw} with E=| O 0 > n o0
o, 0 0 0 0 po
o) L o 0 0 0 0 p

where A, | are Lamé’s parameters®.

iii) The initial stress tensor o,

Consolidation theory summary
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o:)=(0'°“ Cop, Oo33 Gopy  Toy 0031)=[s]‘

iv) The volumetric strain

€
gw)=¢g,(W)+e,(w)+e,w)=1 1 1 0 0 0) 2823 (w)=[D] [A] {Dw}
12
2¢,
\2E31)
v) The flow velocity
(ah\
ox,
by e k)l
kVh = k12 kzz kfzs a_xz = [k] {Dh}
by oy k)| o)
\5;3)

In agreement with the above, we can write:

[ twrotarag,+ [ “DWYIAI (E1 (A (Du}ag, = [ 0wy isiae, +
nd n‘ ﬂd

+ [ EHO [ O (1 [ On I b,

Vwe W,c.s.te (0,T) (15)
Jo YR a0 [ DV A D140, + [ s thrar= [ (hadr-

—f“ {v} D] [A] [E] {Du}dQ, We Vieste 0,T)

a) Interpolation

We suppose that each element T'contains nynodes and we carry out a Lagrange
interpolation of degree m, so that the function of displacement in the element T

can be expressed as:

Consolidation theory summary



.13. MODULEF

T
ula;)
T

)) ula,)

uar)

*r
u,-|r(x)=i§lp.-"'(x)u,-(a.-’)=(p1"' @) px) ... pox j=1,2,3

where

i) a; is the vector position of the node i of the element 7.

ii) u; 1(x) represents the jth component of the solution of the approximate dis-
placement problem, restricted to the element 7" in the point x.

iii) p,"(x) represent the polynomial of local interpolation of degree m in the node
i of the element T.

That is, representing in a matrix form each one of the strain components
u; 7 00) =[P (o) {u]}

and the strain vector

Uy P"x) 0 0o \(u
Wp=|wlx)={ 0 P& o0 |&|=0P™1{u"}
U 0 0 P)\ul

Similarly, we can express the partial differentials of the components of the strain
function

() (%f %r )
ox, ox, ox, = ox
du; opr  dps Opm |, 7 Ty T
—7 == F2 T Y =[DP b | =
%, (x) x o o {u;} =1 ) {u;} j=123
\axsjlr \ax:; ax; o aX3 y
then
(3u,)
ox;
y PN (O o
{Duy=|ox,| W=| [©@ P& [0 ||« |=DP™{u"}
[0 [0 [DP™ () )\ !
Ous
Gy

Consolidation theory summary
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Proceeding in a similar way for the hydraulic head function, we get

{h} x)=[P™ {n"}

(~ m - m)
(oh) ol pf Oy
ox, ox, ox, = ox
oh dp;’ dp; Py | 7 mT T
— =|.2 2 —ZIi{h’} =[DP h
o, (x) % % om {r}=I =N {nr'}
k x3)|T Kax:; aX3 o a.x:;}

In this way, the initial equations (15) are rewritten

) U'{w’}‘[ﬁ”’lp[?"’l {aT} dx +f‘{w’}‘[ﬁ’"’]'w [E] [A] [DP™] {u’}dx) =
Te Sd T T

-3 ( [y {F}d”f,-,r

TeS,

W P {f}dI‘)+

nTs

+ 3 ( f ‘{w"}'[DP™)[A] [S)dx *L'{WT}'[FT]'[A]'[D] [P""”]'{vwh’}dx)

TeS,

Vwe R
(16)

3 U‘{vT}‘lP""l BV oM (T dx +f‘{v’}'[DP“’] (K] [DP™ {h’"}dx)+
Te S, T Kw T
+ 3 U ‘P g} P™) {h’}dr)=
Te3, aan{;
= X (f ‘P {q}d[‘—f‘{v’}‘{p”} [D] [A] [DP 'T] {u}dxj
Te S\YoTnr} T

Yve R)7
where dT is the edge or face of the element T.

If we now denote

Consolidation theory summary
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M = [P0
(K71 = [ 'DPVIA E) (M) (DP e

o= [P Fa [ P e [(DP TN s
T 37"'\1‘0 T

N = fr’[DP"’]'[A]'[D] [P™]dx
Ty _ | ¢rpmT f& mT-
[M,]—fT[P ][Kw][l’ Jdx

(KT = J' ‘(IDP™] [K] [DP""]dx+f 'P™] {g} [P™]dT
T oy

=] w*1iqrar
aTN

We can write the expression (16) in a compact form:
2 (W M) ™} T} KT (™)) = I (WHBIH IV AT Yw e (R)T

Z (O M AT F VY KT {BTY) = Z (OB v INT {u"}) e (R)”

b) Assembly

Let [B,"] and [B,,T] be boolean matrices that relate local degrees of freedom in
the element T and the global ones:

{u"} = [B]] {u*} [BN] e R° ¢ W e®™
{r"} = [B]] {h%} [B]] e X" {h®} e R

being n the number of nodes per element and n, the total number of nodes; and

where
('} ="{u @), u@)), (@), ... w(a, ), 4@, ), u(a, )}
{h*} ="'{h(a),h(a),....h(a, )}

According to this, we can rewrite (16)

Consolidation theory summary
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'{w‘}( %, '[B]1(M](B, ]){u‘} +{W‘}(

‘B KT [B.T]){u‘} =

=‘{w‘}(7§3‘[8.’] [b.’])+‘{w}( ‘(BI1INT (B 1){ hE Ywfe R

Te3, (17)
‘{v‘}( 3 ‘[B][M;] (B ]){h‘} +{v }(T ’ ‘BNIK]] (B ]){
='{v‘}( 2 B, b ])+{v‘} (r : '[B 1'INT [B] ]) {4} wvée R

If we denote by
[Mf] = I (BT} (M7 (BT} elastic mass global matrix

TeS,
K8 = X ‘[BN1[K7 (BT} elastic stiffness global matrix

TeS,
b= X ‘B[] elastic second member global matrix

Te
N = I ‘BN (M7 [B:] coupling global matrix

Te$,
M= X (B} (M]](B]] hydraulic mass global matrix

Te$S
[KpT] =3 '[B‘T] [K:] (87 hydraulic stiffness global matrix

Te3,
[pr] = ¥ [BIBIBI hydraulic second member global matrix

Te$
we can write the consolidation problem in a discrete form:
‘[we} [ME] () +{w*} (KE] {uf} = {w?} [A] +{w'} IN] {Y,h*} VwPe R ™
‘{ve} IM]) {A%} +{v%} K2 {r*} ='{v%} [b,T] +{v¥}'[N? {uf} e e R
M?f] € RN K8 e RN (bf] € xR (18)
[Mf e R™™; (K% e R>™; (b8 € R™;
[N’] 9‘3 A XA,
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Since (18) must be satisfied for every w® and v¢, the problem is reduced to

solve the system of coupled differential equations

(M2 {i®} + K] {u®} =[bf] + [NF {7,h%} 9
[ME] {h*} + K8 {n®} = [b] +[N?] {u*}

which together with the boundary conditions in 0Q2 will provide the solution to the

problem.

Once the displacement vectors and the globai hydraulic heads are known, it
is possible to calculate the stress and elemental flows as

o(u) = [E] [A] {Du} = [E] [A) [DP™] {u"} = [E} [A) [DP™] [BT} {u*} = [6"] [BT) {u®}
¢0(h) = (k] {Dh} = (k] [DP™] {h"} = [k] [DP™} [B]] {h*} = [®"] [B]] {h*}
being

[6"] = [E] [A] [DP™] Stress elemental matrix
[®"] = [k] [DP™] Flow elemental matrix

B.- Temporal discretization

There exist many ways of solving the coupling equations system (19) which give
rise to the model. We are going to resolve the problem after a discretization in time
through a multi-step method, that is

/T , M, | . . ,
;oa‘,M,u"' = }_:op;sz(b:"+wah""—K,u"')

s/ ; i g, ; nei uu-i__un—i-l nei
“:\:oa,M,h = Eo[ip T+ N————-K,h

)
using fixed point techniques, such as
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. L ) |

ﬂg{ ; i un-n_un-i-l i iM hu—i}
+..=1 Bp bp +N 5 _Kph oM, (20)

@M, +B'8K ), = B&D]+v,Nh}, )+

M, . . . .
+ 2 {F3Mm " +y Nn" " —Ku}*")-oa'M,u" "}
i=1
where now the subscript & indicates the iteration in the nth step of time, and the

solution (u2,A%) is considered to have been reached when

Nug_y—udl _<o) , Ih"—h) _<o(h)

In this way, the generalization of the model is made easier in cases in which
there exist no linearities . However, owing to the sensibility of A to variations of u,
it is convenient to smoothen the solution in hydraulic heads by using a parameter
8. Such a parameter depends on the size of the increments of time, and also on the
permeability and the geometry of the mesh. After this, the discrete model is

expressed as:

0 0 » 0 u,, —-u
(a,M, +B,0K)h" = f; b:+N—8_ +

—i_ a-i-1

Mp | . . " , , .
+ _;l.{B;E(b;'f FNE—— K,h"") AR }

6h" + (1 - O)h} (21)

L]
hlzn

(aoMc + ﬁoszxc)u: +1 Bosz(b: + Yth: + l) +

]

M, . . . . )
+ 2P+ Nh* " —Ku} ) -’ M u" 1}
i=1

The proof of convergence and the error estimation can be seen in former jobs”?.

C.- Implementation

On the one hand, the following date are taken for granted:

- M, and M,: mass matrices of the elastic and the hydraulic problem, stored in profile

(skyline) form.
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- K, and K, : stiffness matrices of the elastic and hydraulic problem respectively, also

stored in the profile form.
- Two vectors of initial conditions of displacements and pressures.

- Two second member vectors, one arising from the elastic problem, and the other

from the hydraulic problem.
On the other hand, once the time increment § has been chosen, the method
coefficients o y B are provided.

In order to obtain the solution of the problem in the time T it is necessary to
solve the equation (19) in each time step from the first instant. It is therefore
interesting to change this into a more accessible method from the point of view of

effective computing.

Initially A%, u° and u’ are known, which allows us to determine A’. Once the
problem of calculating the values of supplementary steps (which are necessary to
start the method) is solved, the process will be defined. If we denote by:

B, =8B, i=12,...,nq,

X'=b,+y,Nh', Y=Mu', Z=Ku' i=1,2,...

the system (19) is written as

(GM, +B8K )h" = B25[ :+N""—”%"—]+

nq ; i uu-x_uu—i-l i ; nei
+i§{ﬂ,,5(b, +N———8—-—-K,,h )—a,,M,,h }

n
hk+l

Oh” + (1 - O)h;

@M, +B K, = BH+ (B -2 -y )

As M, and K, are constants, we can write A = oM, + B”K, which is equally a constant

(given that & is fixed), and the system takes the form:

il . . . X .
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To determine u” it is necessary to know J” and the factorised matrix of Cholesky
A='LL, in order to apply forward elimination and back substitution to the system.
As A is a constant, it is only necessary to factorize once. At the same time, the
determining of J" requires knowing X' for i from 0 up to nq, and Y’ and Z for i from
I up to nq. However, the previous time step is known X for i from I up to ng+1, and
also Y and Z' for i from 2 up to ng+1, and it is therefore only necessary to calculate
X°,Y'and Z'. Given thatu™’ is known from the previous step, Y” and Z* are calculated
in the following way:

l_agzl
Zl =M‘ul—l y Yl =_J—’_
B

In this way it isn’t necessary to store the mass matrix M, for the calculation of Y?,

avoiding also the multiplication of a matrix for a vector in each step of time.

a) Flow Chart

It is necessary to point out that the scheme adopted for the numerical resol-
ution, based on convergent iterative techniques, is especially adequate for its
implementation in Modulef. Thus, the implemented modules are written
according to the standards of the Modulef Club”?, i.e., they are divided in two
parts:

- A first part where the initiation and addressing of the arrays are performed.

- The second part, used by the former, consists of the main algorithm by using the
subroutines and libraries of the Modulef Club.

Figure 3 shows the flowchart for the algorithm, when a compressible fluid or
avariable permeability are taken. The calculation of the mass or stiffnes matrices
for the hydraulic case and their mixed factorisation may be made in each time

step.
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a,B : coetticlents
h, : initial values
to,4,4t : nitial, fina! and time Increment
€,,8p : convergence limits
0: relaxation parameter
M, K: matrix profiles
b: sec. member indep. time
8.D. MiL, FORC, MAIL, COOR
Maxite: max. number of iterations
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Calculationof Y ', Z 'and storage
— Calculationof F' G !
Addressing of arrays
naZ
t= tor 2dt
Calculation of the
Initial supplementary values
NO

Calculation and factoritation of A’

Creation of elemental matrices

In the hydraulic case
Assembly and factoritation of Kp

[
.c =hn-1
uol su™!

ol k=t I

Calculationof h"
Correction h" w 6h " (1- 9h |

kuke1 CalculationofJ "
Solution Au f=d "

-1
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NO
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I, - ulil <o,
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YES

Calculationof 2"y "
Storage

Actual results
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FIGURE 3
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1. IImy m

The solcxx program simulates the consolidation phenomenon of a soil, whose solid
squeleton has an elastic behaviour, under differents types of flow and saturation. Such
module has been programmed under the Club Modulef norms, for which a knowledge

of its use, at least superficial, is required.

The manual is divided into four differents parts. In the first part, after an
introduction, it is showed an tree diagram of modules joined in the analytical work.
Next, it is presented the modules dependent of the nature of the simulation, and which,
on changing the case, could become necessary to modify. Some of them come from the
Modulef library, but it has been necessary to add some more, for the control of the

time outputs and the variation of density with the pressure.

In the second one, the input data file is defined for the solcxx module. The
characterin brackets after each instruction refer to the type of data and/or theirlength,
since they are read with a free format. At the same time, the data appear separated
in four blocks. The first block are given by the general parameters (titles, common
data structures, etc). Nexts ones gives the necessary parameters in the hydraulic and
elastic cases respectively. Finally, there gives the control parameters, which define

the interval of study and the control parameters of the algorithm convergence.

In the third part, it is defined the input data file for the dacoxx module, which
carries out the formats exchange. This permits the graphic representation of the time

evolution of the differents nodes.

In the last part, it is showed some numerical test.

A.- The algorithms
The algorithm adopted for the numerical resolution is based on a convergent

iterative techniques. The coefficients of the time discretization are given by means
of the evcoef module (See F.- Subroutines and functions required).
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B.- Limits and Failures

* Two dimensional domains are considered
*  Currently, only elements TRIA 2P1D and QUAD 2Q1D are implemented.
* In the event that the grid elements of hydraulic and elastic formulation are

different, it is necessary that the numeration of the nodes of both meshes coincide.
The possible failures of the algorithm are the following:
Non convergence, that is, after a MAXITE number of iterations a stable solution

is not reached yet. In such case, the program stops and the user has to change the
data and try again. The algorithm convergence can be achieved of many ways:

- Refining the mesh
- Decreasing the relaxation parameter

- Increasing the time step
- Increasing the MAXITE value

- Libraries Modulef to be declared

The next libraries are needed:

util utsd cosd ela2 elas
evol ther nop2 nopo poba
ppal resb resd resr trac

D.- Auxiliary Files
The file of number NFCOOR, containing the input S.D. COOR.
Two files of number NFMAIL?, containing the input S.D. MAIL for each problem

(hydraulic or elastic ones).

One or two files of number NFMUAM?, containing the input S.D. MUA of mass,

it is necessary, for each problem (hydraulic or elastic ones).

Two files of number NFMUAK?, containing the input S.D. MUA of stiffness for

each problem.

Two files of number NFBDCL?, containing the input S.D. BDCL for each

problem.
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One or two files of number NFBCTE?, containing the input S.D. B of second

member constants, it is necessary, for each problem.

Two files of number NFBS?, containing the output S.D. B for each problem.

E,- f the pr am

A new arrangement is associated with the S.D. B (tableau associé), described
by:

Name= time, Type= Real, Length= ltime (time numbers in which a graphics
solution is desired).

The vector B4 of the each S.D. B contain the solution, stored a arrangement

with the nodal pressure or nodal displacements of the mesh nodes at the selected

times.

F.- Subroutines and functions required

Various defined subroutines exist for the user depending on the problem to be
dealt with. They affect the processes such as the construction of elemental matrices,
the temporal behaviour of the loads and the number of times in which it is desired

to obtain a solution.

FORCE y MILIEU

Modules of creation of elemental arrangements associated with the elements
employed when the permeability matrix is settlement depending’.

COTTIM and TPLOTT

Modules of creation of the time arrangement. It generates a time arrangement

which stores the times in which it is desirable to obtain results. The selection of
such times is carried out by using the module ¢plott.

1) See Modulef Manual N*14
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REAL FUNCTION tplott(tinic,dt,t)

c Calculate de next time in which a solution is desired
c

tinic : initial time
c dt : time increment
c t : current time

t0 = t

IF (t .LT. (tinic+1.8*dt)) THEN

hinc = dt
ELSE

hinc = hinc + dt
END IF
IF (hinc .LT. dt) hinc = dt
tplott = t0 + hinc
RETURN
END

In the above example, as time passes, the graphic results become more distant.
TIMEDE and TIMECH

In all cases it is supposed that the second members given from the discretization
by the finite element method have separable componentsin¢and x. Thisis applicable
inmost ofthe cases and permit dealing with cyclical or Heaviside loads. The functions
timede and timech provide the time dependent loads for the elastic and hydraulic
problem respectively. These names are not fixed, since they pass as external
functions from the main program solcxx. Below an example is given in which, in
order to simulate more realistic conditions, the load will be applied linearly to a
value of time, and then it will be assumed to be constant.

REAL FUNCTION timede (t,dt)

c Calculate the time dependent load factor.
c Simulate a linear applied load between two times
c t: current time
c dt: time increment
t0 = 0.0000E+00
tl = 0.1000E+05

IF (¢t .LT. t0) THEN
timede = 0.0
ELSE IF (t .LT. tl) THEN
timede = (t - t0) /(t1-t0)
ELSE
timede = 1.0
END IF
IF (hinc .LT. dt) hinc = dt
tplott = t0 + hinc
RETURN
END
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EVCOEF

This subroutine determines the coefficients that define the employed multistep
method. It serves simultaneously to give the coefficients of the hydraulic problem
(MF=0 or MF=1) and the elastic problem (MF>1)

PEAGUA

A function that, in the case of compressible fluid, relates the hydraulic head to
the fluid density. Its only parameter is the increment of hydraulic head from one
taken as reference. The default relation chosen is given by De Wiest?,

[¥]
Yo = Yo€

REAL FUNCTION peagua (h)

c Calculate the specific weight of the fluid
REAL gamma0, Kw

gamma0 = 0.1000E+05

Kw = 0.2000E+10

peagua = gamma0 * exp (h*gamma(0/Kw)
RETURN

END

G.- Modules structural relationship

Here we present a structural relation between the differents modules employed
in a form which expedite future enlargements.

The tree diagram in figure four shows the subprograms employed in the case of

incompressible pore fluid and constant permeability

2) See Modulef Manual N° 63
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DIAGRAM TREE
I ey B vy i
CONTINUITY EQUILBRIUM
&
| ootin ooefin | Impef oconut2 Impdes | [ eodeco ovcoel |
[oosts_}——{ oo g
coaTO cowro

'

FIGURE 4

On the left we can see the subroutines employed in the resolution of the conti-

nuity equation, whose job is:

cosfin

coerro
cofilt
cosfil

conutl

copres

pshvdu

impsfi

conut2

Initiation and addressing of arrangements, solution relaxation and

iterations control
Local error control between two iterations.
Solution filter in order to avoid the passing of non-valid values.

Resolution of the system in each iteration and, where necessary, gen-

eration of the starting solutions in order to begin the multistep method.

Creation of the second member of the system from the forces and sol-

utions in previous times.

Global arrangement generation for the coupling term, and assembling
the elemental arrangement.

Elemental coupling matrix for the differents elements.
Back-up disc for the results and user information.

Arrangement displacement in order to prepare the next time step.

On the right of the tree diagram we find the subroutines employed in the

equilibrium equation resolution, whose job is:
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evcoef

codecl

codesp

psepdw

impdes

.37 MODULEF

Initiation and addressing of arrangements, combination of the mass and

stiffness matrices, factorisation and iteration control
Definition of the multistep method coefficients.

Resolution of the system in each iteration and, or where necessary,
generation of the starting solutions in order to begin the multistep
method.

Global arrangement generation for the coupling term, and assembling

the elemental arrangement.
Elemental coupling matrix for the differents elements.

Back-up disc for the results and user information.

On employing the compressible fluid model, but maintaining the constant

permeability, a time dependent term in the continuity equation appears. The tree

diagram in this case is shown in figure 5. The equilibrium equation doesn’t undergo

any modifications

CONTINUITY
—X
evcoef cosfco Impsfe
cosfcl conut2

copres

FIGURE 5

The job of each subroutine is now:

cosfco

g:osfcl

impsfc

Initiation and addressing of arrangements, combination of the mass and

Vstiffness matrices, factorisation, solution relaxation and iteration control

Resolution of the system in each iteration and, or where necessary,
generation of the starting solutions in order to begin the multistep
method.

Back-up disc for the results and user information.
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On employing the model of settlement dependent permeability, it is necessary
to generate the elemental matrices in each time step and assembly them. Depending
on whether the fluid is incompressible or not, we will obtain the tree diagrams of
figures 6 or 7 respectively.

CONTINUITY CONTINUITY
® ®
1o =] [m]
cosfit
o (=]

force.f

where:

cospvl
and

cospv2

FIGURE 6

1

milieu.f

2.- Imput File Imstructioms
A.- General Parameters

Instruction 1.1[1A72]

FIGURE 7

carries the calling up to the library module (thelas) for the generation
of the elemental matrices after the preparation and assembly, for the

cases of incompressible and compressible fluid respectively

Notes
(1)

Columns

1-72

Variable Description

TITLE

Title of the problem and comments

Notes

(1) The title of the problem is written between quotation marks in the first line, and is

employed in all data structure (S.D.) or data arrangement generated by the programme.

In the absence of a title, a line with at least one blank space must be left.
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Instruction 1.2[1A72]

Notes Columns Variable Description

(1) 1-72 NFCOOR File that contains the S.D. COOR.
Notes

(1) The data structure COOR? contains the coordinates of the points and of the nodes of
ameshing. This S.D. is the only one for both problems. Therefore, in the event that
the grid elements of hydraulic and elastic formulation are different, it is necessary that

the numeration of the nodes of both meshes coincide.

B.- Parameters of the Hydraulic Problem
Instruction 2.1[1A72]

Notes Columns Variable Description
(1) 1-72 NFMAIL File which contains the S.D. MAIL.
Notes

1) The data structure MAIL describes the topology of the elements of a mesh that cover
a mono, Bi or three dimensional domain. It equally contains the numbers associated
with subdomains and with borders. Such numbers allow us to characterise the physical

and/or geometric properties of the different materials.

Instruction 2.2 [110]

Notes Columns Variable Description
(1) 1-10 FLOW Type of the hydraulic problem
Notes

(1D Integer number between 0 and 5.
Itdefines the problem of flow across a porous medium associated with the phenomenon
of consolidation.
FLOW=0 Fully saturated soil with incompressible fluid.
FLOW=1 Fully saturated soil with compressible fluid.

3) See Modulef Manual N*2
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FLOW=2 Fully saturated soil with incompressible fluid (and having a variable
permeability). The permeability of the soil depends on the settlement produced, being
less the filtration according to the decrease in the void ratio of the porous medium.
FLOW=3 Fully saturated soil with compressible fluid and variable permeability.
The permeability of the soil depends on the settlement produced too.

FLOW=4 Unsaturated soil with incompressible fluid.

FLOW=5 Unsaturated soil with compressible fluid.

Instruction 2.3 [110]

Notes Columns Variable Description

(1) 1-10 IEPOBA Existence of the base polynomials
Notes

) Positive integer or zero.

The direct access file (POBA) is utilized in certain finite elements in order to store
the values of the base polynomials (shape functions) and of their derivatives in the
points of numerical integration. The existence or not of base polynomials is given,
for each element, in its technique record card®. ‘
IEPOBA=0, Base polynomials aren’t necessary.
TEPOBA=#0, Base polynomials are necessary.

If generation of elemental matrices don’t exist (FLOW=0 or FLOW=1) the

POBA file isn’t necessary, and therefore we can proceed to instruction 2.5.

Instruction 2.4 [1A72]

Notes Columns Variable Description
(1) 1-72 POBA Name of the direct access file which contains

the base polynomials.

Notes
(1) The file poba is found in the symd library. The path to find it is given by the function

kinfo. In its current installation it is found in /usr/modulef stal/s/symd/poba.

If the fluid is compressible (FLOW=1,3 or 5) the instruction 2.6 is carried out.

4) See Modulef Manuals N? 100 and 101.
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Instruction 2.5 [E12.5]
Only in the case that the fluid is incompressible (FLOW=0,2 or 4).

Notes Columns Variable Description
(1) 1-12 PESPWA Specific weight of the water
Notes

(1) Positive real.
Relates the variation of pore pressure that appears in the equilibrium equation of the
elastic problem with the variation of hydraulic head that solves the problem of flow.
When the fluid is incompressible then p = y,h.

When the fluid is compressible, a function is employed, called peagua( SEE F.-
Subroutines and functions required) and passed as an external function by the main
program solcxx, which determines the specific weight as a function of the hydraulic

head in the fluid. The default De Wiest'’? relation has been considered.

Ky

%)
p=Y,(h)h with y, = yoe[ where K|, is the water bulk modulus

Inst_ruction 2.6 [1A72]

Only in the case of compressible fluid (FLOW=1,3 or 5).

Notes Columns Variable Description
(1) 1-72 NFMUAM File that contain the §.D. MUA
Notes

(1) The data structure MUA stores the coefficients coming from the discretization of the
problem by the finite element method in profile (skyline) form. In this case is the

mass matrix, obtained to discretize the term with the pressure derivative.

If the permeability isn’t variable (FLOW=1 or 2), skip to instruction 2.10.

Instruction 2.7 [1A72]
Only in the case of variable permeability (FLOW>1).

Notes Columns Variable Description

(1) 1-72 NFFORC File which contains the S.D. FORC
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(1)

-36.

The data structure FORC describes as the form in which the forces or flows, necessary
for the calculation of the second member elementals of an elastic and heat problem,
are given. In this case it describes the flow of water through the boundaries and also,

in case of the existence, the flow sources or sink.

The default option is to calculate the data with the FORCE module, in which flow

sources are not defined and flow does not exist through the references.

Instruction 2.8 [1A72]

Notes Columns Variable Description
(1) 1-72 NFMILI File that contains the S.D. MILI
Notes
¢)) The data structure MILI describes as the form in which the properties of the materials,

necessary for the calculation of the elemental matrices for a thermal or elastic problem,

are given.

In the default case, we consider that there exists a bilinear relation between the void
ratio e and the logarithm of the permeability Xk which represents fairly well the
behaviour of the soil. Such a relation, calculated experimentally by Monte and
Kritzen!"”, is assumed considering that the vertical is the direction of maximum stress.
If k. and e, are the critical values of the permeability and of the void ratio in which a
change of slope is produced (see figure 8) and if ¢, is the initial void ratio, then the

permeability & for a void ratio e is given by

5= " {s:s,, e<e,
k)7 7s where S=5, e>e,

FIGURE 8
Void ratio versus permeability logarithm
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Instruction 2.9 [1A72]

Notes Columns Variable Description

(1) 1-72 NFTAE File that contains the S.D. TAE

Notes

(1) The data structure TAE describes the mass, stiffness and second members elemental

matrices. Given the volume of required information, it must be stored in secondary
memory, for which, even when it is a structure of intermediate data in the problem, it
is necessary to assign it a file. After its assembly, we obtain S.D. MUA of mass and

of stiffness, and a S.D. B of seconds member constants.

Skip to instruction 2.12.

‘Instruction 2.10 [1A72]

Only in case of constant permeability (FLOW=0 or 1).

Notes Columns Variable Description

(1) 1-72 NFMUAK File that contains the S.D. MUA

Notes

(1) The data structure MUA stores the coefficients coming from the discretization of the

problem by the finite element method in the profile form. In this case it is the matrix

of stiffness, obtained to discretize the term Vv - & - Vv.

If the permeability is variable (FLOW=3 or 4) we skip over the next line.

Instruction 2.11[1A72]

Only in the case of constant permeability (FLOW=0 or 1).

Notes Columns Variable Description
(1) 1-72 NFBCTE File that contains the §.D. B
Notes

(1) The data structure B stores the coefficients coming from the discretization of the

problem by the finite element method second members independent of time®. This is

8) See Modulef Manual N%3.
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due to the fact that the second member is considered as that can be separated from
function space and time, i.e., F(x,t) = f(x) g(¢). In this case it is the vector that stores

the terms due to sink or sources, and also the flow through the boundary.

Instruction 2.12[1A72]

Notes Columns Variable Description

(1) 1-72 NFBS File that contains the S.D. BS
Notes

)] The data structure BS stores the solution in hydraulic heads for different times.

Instruction 2.13[110]

Notes Columns Variable Description

(1) 1-10 IEBDCL Existence of boundary conditions
Notes

(1 Positive or nil integer.

IEBDCL=0, boundary conditions don’t exist.
IEBDCL+0, boundary conditions do exist.

If boundary conditions aren’t present, skip over the next line

Instruction 2.14 [1A72]

Notes Columns Variable Description

(1) 1-72 NFBDCL File that contains the §.D. BDCL
Notes

(1) The data structure BDCL describes the Dirichlet boundary conditions:

h=m
i.e., of the known values of pressure.
Instruction 2.15[1F12.5]
Notes Columns Variable Description
(1) 1-12 HMIN Minimum value of the hydraulic head
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Notes

1) Real. v
Describes the minimum value of the hydraulic head, and is used to prevent the
existence of inferior depressions to the vacuum, for which it is necessary that the initial

hydraulic head together with the pore overpressure aren’t lower than the nil pressure.

If FLOW=0, skip to instruction 3.1.

Instruction 2.16 [1A72]

Notes Columns Variable Description

(1) 1-72 NFBO File that contains the §S.D. B0
Notes

1) The data structure BO describes the initial conditions of hydraulic heads.

If FLOW=2 (incompressible fluid), skip to the instruction 3.1.

Instruction 2.17 [2110]

Notes Columns Variable Description
(1) 1-10 MF Problem type
(2) 11-20 NO Method steps
Notes

1) Positive integer

MF=0 The time dependent problem is parabolic, and the data for starting up the
process are given by multistep methods of order 1.
MF=1 The time depending problem is parabolic, and the data for starting up are
calculated by the Runge-Kutta method (to three steps).

2) Positive integer.
NQ determines the number of method steps. Depending on its value, it will be

necessary to calculate previous values or not, using the option given in MF.
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Instruction 2.18 [2110]

This line is kept eventually for tests with the different methods.

Notes Columns Variable Description
(1) 1-10 NMET Method type employed
(2) 11-20 NMET1 Method type, in case it is hecessary to

calculate previous solutions.

C.- Parameters of the Elastic Problem

Instruction 3.1 [1A72]

Notes Columns Variable Description

(1) 1-72 NFMAIL File which contains the S.D. MAIL.
Notes

1 The data structure MAIL describes the topology of the elements of a mesh that cover
a mono, Bi or three dimensional domain. It equally contains the numbers associated
with subdomains and with borders. Such numbers allow us to characterise the physical
and/or geometric properties of the different materials.

Instruction 3.2 [1A72]

Notes Columns Variable Description

(1) 1-72 NFMUAM File that contain the S.D. MUA
Notes

(1) The data structure MUA stores the coefficients coming from the discretization of the
problem by the finite element method in profile (skyline) form. In this case the mass

matrix obtained to discretize the term pw.

Instruction 3.3 [1A72]

Notes Columns Variable Description
(1) 1-72 NFMUAK File that contains the S.D. MUA
Notes
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¢)) The data structure MUA stores the coefficients coming from the discretization of the
problem by the finite element method in the profile form. In this case it is the matrix

of stiffness, obtained to discretize the term g;(w) - E{,“ - gy(w)

Instruction 3.4 [1A72]

Notes Columns Variable Description
(1) 1-72 NFBCTE File that contains the S.D. BS
Notes

(1) The S.D. B store the coefficients coming from the discretization of the problem through
the finite element method for second members. For this case, it is the vector that stores
the part of the time independent forces f, since the second member can be put as F(x,¢)
= f(x) g(1). These forces can be volumetric (self weight, etc), superficial (applied

forces, etc) or punctual ones (punctual heads due to cables, etc).

Instruction 3.5 [1A72]

Notes Columns Variable Description
(1) 1-72 NFBS File that contains the S.D. B
Notes

(1) The S.D. BS stores the solution of the displacements for different times.

Instruction 3.6 [110]

Notes Columns Variable Description

(1) 1-10 IEBDCL Existence of boundary conditions.
- Notes

1) Whole positive number or zero.

IEBDCL=0, Boundary conditions don’t exist.
IEBDCL#0, Boundary conditions do exist.

In the absence of boundary conditions, we skip over the next line.
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Instruction 3.7 [1A72]

Only in the case where boundary conditions exist IEBDCL=0).

Notes Columns Variable Description
(1) 1-72 NFBDCL File that contains the S.D. BDCL

Notes
¢)) The structure of data BDCL describes the boundary conditions and it can be of two

types:
DiriChlct: u,= 1),-

Lineal combinations: oLl + 0L+ ... +ou, =0

In the latter case, the definition can be necessary through the module VALCLR, of the
lineal relations that join the conditions in the boundary nodes®.

Instruction 3.8 [1A72]

Notes Columns Variable Desciipt.ion

(1) 1-72 NFBO File that contains the S.D. B0
Notes

) The structure of data BO describes the initial conditions in displacement. It need two
initial values, which depending on the type of problem will be the displacements in

two consecutive instants or the displacement and the velocity in an instant.

Instruction 3.9 [110]

Notes Columns Variable Description

(1) 1-10 IESIGMA Existence of the initial stress.
Notes

¢)) Positive integer or zero.

IESIGMA=0, initial stresses don’t exist.
IESIGMA#0, initial stresses do exist.

6) See Modulef Manual N® 57.
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Ifinitial stresses don’t exist, skip over the next line.

Instruction 3.10 [1A72]

Notes Columns Variable Description
(1) 1-72 NFSIGMA File that contains the S.D. BSIGMA.
Notes

(1) The data structure BSIGMA describe the initial stresses of the soil. Such S.D. is
obtained by running the module thelxx’ or thecxx with initial stresses and without
loads.

Instruction 3.11[2110]

Notes Columns Variable Description
(1) 1-10 MF Problem type.
(2) 11-20 NQ Method steps.
Notes

(1) Positive integer greater than one.
MF=2 The time dependent problem is hyperbolic, and the data to start up are
displacemenis in consecutive times. ,
MF=3 The time dependent problem is hyperbolic, and the data to start up are
displacements and velocity in a time.
MF=4 The time dependent problem is hyperbolic, and the data to start up are
displacements in consecutive times. Viscous damping matrix are substituted by a
combination of the mass and stiffness matrices.
MEF=5 The time dependent problem is hyperbolic, and the data to start up are

displacements and velocity in a time. Viscous damping also exist.

2 A positive whole number greater than one and lesser than five.
NQ determines the number of method steps. Such number indicates the number of

coefficients needed in the subprogram evcoef.

If viscous damping doesn’t exist, go to the next time.

7) See manual N*14 Club Modulef.
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Instruction 3.12 [2F12.5]

Notes Columns Variable Description

(1) 1-10 CcM Viscous damping coefficient for mass

(1) 11-20 CK Viscous damping coefficient for stiffness
Notes

1) A particularly convenient form of B is the Rayleigh damping matrix B = ¢, A + ¢,C,
where c,, and ¢, are coefficients. The two constituent of Rayleigh damping are seen

to be mass and stiffness proportional. Thus the relation

32’: +B3—u+Cu is changed to Agzz +(c,, A+c*C) a
Instruction 3.13 [2110]

This line is kept eventually for tests with the different methods.

Notes Columns Variable Description
(1) 1-10 NMET Method type employed
(2) 11-20 NMET1 Method type, in case it is necessary to

calculate previous solutions.

D.- Control Parameters

Instruction 4.1 [3F12.5]

Notes Columns Variable Description
(1) 1-10 TINI Starting time
(1) 11-20 TFIN Final time
(1) 21-30 DELTAT Time increment
Notes

Positive reals

The time increment value must be chosen in a way which satisfies the conditions of
stability and convergence. Given that a multistep method is employed, the solutions
average the time dependent values of the hydraulic head and the displacements. The V

smaller time increment the greater will be the accuracy obtained, and also a greater
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number of steps will be necessary in order to obtain a static equilibrium. Likewise,
a greater number of iterations will be necessary in each time step in order to reach the

convergence.

Instruction 4.2 [2110]

Notes Columns Variable Description

(1) 1-10 CONTRO Program control

(2) 11-20 MAXITE Maximum number of iterations in each time

step

Notes

@) Positive or nil integer.
CONTRO=0 In each time step the program carries out the iterations given by
maxite
CONTRO=1 In each time step the program carries out the necessary iterations
up to a maximum of MAXITE, in order to reach an estimated error between two
consecutive iterations.

2) Positive integer.

When the number of iterations exceed this value, if CONTRO=1, it produces the
stopping of the program and a warning indicating that the desired convergence has
not been obtained.

Instruction 4.3 [2F12.5]

Notes Columns Variable Description

(1) 1-10 RELAX Relaxation factor of the solution in
hydraulic head

(2) 11-20 ESCALA Scale factor

Notes

¢)) Real number between zero and one.

The value of RELAX controls the convergence of the algorithm. RELAX small values
help its convergence, but by means of carrying out a high number of iterations in each
time step. On the contrary, the nearest values to one permit a quick adjustment of the

system requirements, but they can make it divergent.
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2) Positive real
It permit the definition of a scale value, correction of the hydraulic matrix, in order

to correct the rounding errors. It must be of inverse order to the lowest permeability.

Instruction 4.4 [2F12.5]

Notes Columns Variable Description

(1) 11-20 ERRH Estimated error in hydraulic head
(1) 21-30 ERRD Estimated error in displacements
Notes

¢)) Positive reals.
ERRH and ERRD permit the definition of, in the case of CONTRO=1, the admissible
errors, in absolute value, of the hydraulic head and the displacements between two

successive iterations.

3.- Imstructions for the Graphic Qutput

A simple program dacoxx has been added in order to obtain a graphic output for
the unknown variable time distribution. The point number in which it is plotted is
given by the number of time steps in which they have obtained the results

Instruction 1.1/1A72]

Notes Columns Variable Description
(1) 1-72 NFBS File contains the solutions S.D. B
Notes

(1) File that contains the S.D. B with hydraulic heads or displacement solutions from solcxx.

In tion 1.2[111

Notes Columns Variable Description
(1) 1-10 INTERF Interface drawing type
Notes
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(1) Zero or positive integer less than 3
INTERF=1 Create a legible file for the programme of the Modulef library tracxx
(curve plotting).
INTERF=2 . Create a legible file for the program excel.
INTERF=0 Create a legible file for the program fracxx and another for excel.
In nl E12
Notes Columns Variable Description
(1) 1-12 ESCALX X axis scale
(1) 13-24 ESCALY Y axis scale
(2) 25-36 DESPX Displacement in the X axis.
Notes
1) Positive reals
Determine the solution representation scale; this permits using in the graph measures
which are not of the International System, but simplify the interpretation of the results.
) Real.

Determine the displacement of the X axis origin. Allow graphic comparison of the results
with different starting times on displacing the measure origin. If it is positive, the graph
has a displacement on the X axis indicated by the magnitude of DESPX; else, the
absolute value will be taken by the graph as origin.

Instruction 1.4 [3110]

Notes Columns Variable Description

(1) 1-10 ND Freedom degree
(2) 11-20 NPTIME Time steps

(3) 21-30 NOE Number of curves
Notes

(1) Integer greater than zero.

In the hydraulic case ND=1, there doesn’t exist more than one degree of freedom for
each node.

In the elastic case, ND is a positive integer taken between 1 and the dimension of the
space.
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) Positive integer or zero.
It indicates the number of time steps, counting from the beginning, which we have to
take. If its value is nil, take all the existing ones in the solution file.

3) Positive integer less than ten
NOE indicates the number of nodes whose behaviour we want to represent in a time,

therefore each node having a different curve.

Instruction 1.5 [10I5

Notes Columns Variable Description

(1) 1-5 NP1 First node number
(1) 6-10 NP2 Second node number
(1) 45-50 NP10 Tenth node number
Notes

(1) All of these must be positive integers, not repeated and taken between one and the total
node number of the mesh.

Instruction 1.6 [1A72]
This instruction is necessary when INTERF=0 or INTERF=1

Notes Columns Variable Description
(1) 1-72 NFTRAC Input file for the program tracxx.

Instruction 1.7[1A72]
This instruction is necessary when INTERF=0 or INTERF=2

Notes Columns Variable Description
(1) 1-72 NFEXCE Input file for the program excel.
4o T

Initially we present a quasi-unidimensional model that allows comparison with
Terzaghi’s solution, thus noting the effects that the variation of the different para-

meters have on it.
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Then, we can study a more realistic example, in which there exist different
materials for Studying the settlement of a slab.

A,- Unidimensional Case
The problem of unidimensional consolidation of a elastic soil is analysed under

the following conditions:

a.- We consider a horizontal layer of infinite extension and thickness H, placed over

an impermeable rock layer.
b.- Water flow is considered unidirectional, draining through a free surface.

c.- We apply a instant load on the surface of the soil in the initial instant, and

maintain it constant during the drainage.

F{x, %> 3

WL |

0+

oV

" FIGURE 9 Unidimensional consolidation
According to this hypothesis (figure 9), the soil behaves according to Terzaghi’s
model, and the solution (vertical displacements and pore pressure) depends on the
following parameters: k, f/E,,, v and H, where k is the permeability of the soil, f the
applied load, E,, the edometric module of the soil and v is the Poisson’s ratio.

Given the symmetry of the layer, it is enough for this study to consider a surface
with a fixed area, imposing on its lateral faces neither flow nor horizontal dis-
placement conditions. This case has been widely studied to test different models

[sineizolEIEIRs | gince its analytical solution is known.

The data employed is as follows

Layer thickness (H) 7m
Edometric module (E,, 5 MPa
Poisson’s ratio (v) 0.2
Surfaceload () 500 kN [ m?
Permeability (k) 10%m/s
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The mesh employed is shown in graph 1. The influence of the time increment
on the results can be seen in graphs 2 and 3. We used the central node of the surface
(node 62) for the study of the displacement, and the next inferior one (node 58) for
the study of pore water pressure. It was observed that with the reduction in the
time increment, the settlement curves became smoother, arriving at the analytical
solution in the initial moments. An increase in the peak of the pore pressure was
observed with the reduction of the time increment, which is reasonable considering
that, in the following instant to the application of the load, it is supported by the
water. When taking a smaller increment, the pore pressure decreases, dissipated
by the flow of water through the surface.

In graphs 4 and 5 the result obtained with a 500s time increment are compared
with Terzaghi’s model for distinct depths (nodes). In such graphs, we can observe
the coincidence of both models for the expected settlement once they pass the starting
time. In the same way, we can see the similarity of the results in the nodes further
from the drainage surface, and also the ones nearer the above surface once the
consolidation is in process.

It is unusual to find works in the numerical examples whose permeability is
lessthan 10°m/s. In graphs 6 and 7, we show, for the nodes 62 and 58, the settlement
and the pore pressure curves in a permeability range decreasing from 10%to 10%°

m/s.

B.- Consolidation under a slab

Finally, we shall study a practical case where the load is time-depending and
the soil is composed of two layer, one below consisting of sand, and the other above

consisting of clay (figure 10).

f (x,™)

maan. llll 32 m

fim,t)

aV

80 0

FIGURE 10 Consolidation under a slab
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a.- Let’s consider a horizontal layer 80 m long and 30 m thick, placed over an
impermeable rocky layer. Such a layer is composed of a sandy layer below, 23 m in
depth at one extreme, and 18 m at the other, and a clay layer above, in which a slab
18 m long and 1 m thick is placed.

b.- Water flow takes place through the surface of the terrain and lateral sides of the
sandy layer.

c.- A load fis applied increasing lineally until it reaches 300 kN /em? for a time of

2.5x10°s, remaining constant for that value during the rest of the process.

d.- The properties of the material are

Clay Concrete Sand

Edometric Module (E,, 5 MPa | 20000 MPa 5 MPa
Poisson’s Ratio (v) 02 0,3 0,45
Permeability (k) 10%m/s 10°m/s | 10°m/s

The mesh employed is shown in graph 8, and an enlargement of the slab area
is given in graph 9. Next, the settlement and the pore pressure curves are given
(graphs 10 and 11). It can be observed that the settlement curve has two clearly
different parts. A first part, where the settlements are proportional to the increase
in the load and a second part, with no change in load', in which settlement still takes
place in a slower way. The first part is explained as an elastic deformation caused
in the sand layer by the load (permeability being high, the response to the load is
immediate) while the second partisdue to the deformation of the clay layer, which
starts with the draining of the pore fluid. Similarity, it can be seen that at the
beginning, the pressure in the central inferior part of the slab is lower than that in
the extremes, a fact already experimentally proved®?.

Finally, a study has been carried out, for different times in the evolution of pore
pressure expressed in water column meters (graphs 12-15). It can be pointed out
that peaks of the pressure appear at the extremes of the slab, a fact referred to,
which later develop forming a pressure bulb®,

TIME 0.5000E+05 | 0.1600E+06 | 0.5500E+06 | 0.9250E+06

GRAPH 12 13 14 15
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