Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

archives-ouvertes

METANET : a system for network problems study

Claude Gomez, Maurice Goursat

» To cite this version:

Claude Gomez, Maurice Goursat. METANET: a system for network problems study. [Research
Report] RT-0124, INRIA. 1990, pp.32. inria-00070043

HAL Id: inria-00070043
https://hal.inria.fr /inria-00070043
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50454565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070043
https://hal.archives-ouvertes.fr

N R AV B KRR IR TR0

2SN

7

1ques
ees

tique,
| et des Donn

S S AN AT S N AR,

N

et o

Produc
GOURSAT

ice

Programme 5
ique,
igna

Claude GOMEZ
Novembre 1990

e
a4
-
=
)
=
MN
7,
28
=g
[t
7
P
7
<

Automat
Traitement du S
Maur

Rapports lechn
PROBLEMS STUDY

TR

B R R R T

METANET: a system for network problems study

METANET : un systéme pour 1’étude des problémes de réseaux

Claude Gomez Maurice Goursat

INRIA
Domaine de Voluceau
Rocquencourt - BP105

78153 Le Chesnay Cedex
FRANCE

Abstract

METANET is a software written in C++ and using X Window graphics for graph and network
problems studies. It manages alibrary of FORTRAN programs in which the algorithms are encoded.
A number of programs solving classical graph problems and minimal cost flow network problems
are resident in METANET. Tools are given for generating new graphs and for graphically handling
graphs. METANET includes BASILE which is a CACSD system for automatic control providing the
user with a comprehensive language and interpreter for manipulating graph objects. METANET
is an open system where the user can add its own programs.

Résumé

METANET est un logiciel pour la résolution des problémes de réseaux et 1’étude de nouvelles
méthodes. Il est écrit en C++ et utilise I’environnement X Window. Les algorithmes résidents
dans METANET sont écrits en FORTRAN. METANET fournit des outils graphiques pour la
manipulation et la génération des graphes. METANET inclut BASILE, systeme de CAO pour
Pautomatique. Il dispose donc de son interpréteur et de son langage ainsi que de toutes ses fonc-
tionalités, permettant ainsi de manipuler les objets calculés sur les réseaux. METANET est un
systéme ouvert et l'utilisateur peut y inclure ses propres programmes.

METANET

1 Introduction

METANET is a system for network problems study. The aim of METANET is twofold: to use
various solution methods and to try new methods.

METANET works on a computer under a UNIX system with X Window.

We use C [5] and C++ [6]. In fact, we use the GNU compilers gcc [13] and g++ [14] made by
Free Software Foundation. But you can use standard C and C++ compilers.

Graphics are of major interest for network problems and are have been developed in METANET
by using the X Window System Version 11 Release 4 [11] with the Athena Widgets library [12].

The BASILE system ([1]) which is a CACSD system for automatic control developed at INRIA
is included in METANET. This provides the user with a comprehensive language and interpreter
together with the BASILE functionalities (see section 5.3).

METANET is an open system. You can add your own programs in METANET for testing new
methods (see section 6.2).

On the computer, the location of the system is a directory called metanet. When we speak
about a file in the file system of the computer, its path is relative to metanet directory.

2 Graph and network problems

We describe in this section the graph and network problems METANET can solve. The menus and
functions used to solve them are described in sections 5.2.2 and 5.3.1.

2.1 Graph problems
METANET can directly solve the following graph problems:

e computing the connected and strong connected components of a graph.

e computing shortest paths from one node to another. There are two problems. The first one
is to find a path compound by the minimum number of arcs between two nodes (arc number
shortest path). The second one is to find a path of minimum length between two nodes
(length shortest path). The arc lengths are given.

e searching for a circuit in a directed graph.

e computing the minimal weight spanning tree with a given node as its root. For that, to each
arc can be given a weight. The total weight of this spanning tree, if it exists, is the sum of
the weight of the arcs of the tree. This number must be minimum.

2.2 Flow problems

We consider a connected digraph G = (V,.A) where A and A are respectively the sets of nodes and

arcs. There are n nodes and m arcs. With each node ¢ is associated a real number b; which can be

positive (supply, source node), negative (demand, sink node) or zero (pure transshipment node).
A flow on G is a vector z having a value on each arc and verifying the first Kirchhoff law:

Z Tij — Z Tji= b,‘ Vi € N
Ci(ig)EA J:(Gi)eA
With each arc (7, 7) (from node i to node j) are associated two numbers /; ; and u; ; which are

respectively the lower and upper bounds for the flow. Moreover a cost ¢; ; is associated with each
arc.

METANET 3

METANET can compute the maximum capacity path from node i to node j. It is a path for
which the minimum capacity of all the arcs is maximum.

The general minimum linear cost network flow problem consists in finding a flow which minimizes
the linear cost on the arcs and which verifies the capacity constraints. We call it problem (P):

min E Ci,;Ti,j

(i)eA
P) | ¥ ws- ¥ mi=h VieN
i:(i,7)€A 3:(5i)eA

Lij<zij<u,; V({,j)eA

METANET can solve problem (P)and various problems related to problem (P)we describe
below.

If we suppose that vector b is equal to 0, i.e. there are only pure transshipment nodes, we obtain
problem (Py).

Moreover, we can consider that the graph has only one source and one sink. If the graph has
more than one source and one sink, it is possible to link all the sources to a single super source and
to link all the sinks to a single super sink (this is the augmented graph).

With theses assumptions we can compute the maximum flow from the source to the sink ac-
cording to the flow bounds on the arcs. This is problem (Pp,). The value of this flow is called the
value of the flow on the return arc (virtual arc from sink to node).

With theses assumptions, we can also impose the value of the flow on the return arc and solve
problem (P)for this flow value. This is problem (P;).

All these flow problems are linear. We can consider a minimum quadratic cost network flow
problem. We call it problem (Q):

)) 1 B
min Y Tyij(zij) with Tij(ei) = swijl(ei; — 2i5)%]
2

(i.g)eA
(Q) S omii— Y wmii=b VieN
:(4,5)€A j:(di)eA

Li; <zi; <y V(i.j)e A

where w; ; and Z;; are given.
If we suppose that the vector b is equal to 0, i.e. there are only pure transshipment nodes, we
obtain problem (Q).

3 Data structures

3.1 Variables

In a network problem, there are many variables denoting graph theory objects (trees, number of arcs,
tail node of arc ...), physical flow objects (source, pressure, supply ...), computer science ob jects
(pointer, error flag . ..) together with mathematical ob jects (matrix line, coordinates, maximum .. .).
The number of variables is very high (a few hundred !). In METANET, we use many FORTRAN
subroutines written by many various people who use their own names for these variables. Moreover,
a variable name cannot have more than 6 letters in FORTRAN and it is often difficult to find the
meaning of a variable from its name.

To get rid of these taxinomy problems which are not obvious problems (see Linné), we have
adopted the following method. Each variable is characterized by its definition. This definition is

METANET 4

unique and is a string (a kind of object every high level language knows). This definition corresponds
to an abstract variable.

These variables are global variables in METANET.

The definitions of the abstract variables used so far are given below.

of a node of a circuit

of arc for starting the search of a cycle

of node to be labelled

of the pseudo node to be expanded

arc array for adjacency description for directed graph
arc array for adjacency description for undirected graph
arc array for adjacency description of the reduced graph
arc array for adjacency description of the transitive closure
arc number shortest path from i to j

arc number shortest path length from i to j

arc type array

array of arc number shortest path length from i0 to node .
circuit

circuit logical

connected component # of node .

connecting edge # of node .

discretization step

end variable

error variable

eulerian chain array

head node array

integer demand node array

integer flow value on return arc

integer imposed value for the flow

integer maximal flow edge array

integer maximum capacity edge array

integer minimal cost flow edge array

integer minimal cost flow edge array (relax)

integer minimal cost imposed flow edge array

integer minimum capacity edge array

integer minimum cost value

integer quadratic cost function origin edge array
integer unitary cost edge array

integer working array for edges

integer working array for nodes

integer working array for pseudo-nodes

integer working variable

logical for searching circuit

logical working array for nodes

matrix of arc number shortest path lengths

matrix of previous node on arc number shortest paths
matrix of previous node on max capacity paths

matrix of previous node on shortest paths

max capacity path from i to j

* = I 1

"~

METANET

maximum
maximum
maximum
maximum
maximum

maximum
maximum
minimal
minimal
minimal
minimal

number
number
number
number
number
number
number
number
number
number

number
number

number

number

number
maximum n
maximum number

umber

number
number
cost flow

of
of
of
of
of
of
of
of
of

arcs

arcs for undirected graph

arcs of the transitive closure

arcs of the transitive closure of reduced graph
edges

edges + 1

nodes

nodes + 1

pseudo-nodes

error variable

cost imposed flow error variable
quadratic cost flow error variable
weight tree with root i0

modif logical
negative length circuit logical

no tree with root i0

node and pseudo node number

node array for adjacency description for directed graph

node array for adjacency description for undirected graph

node array for adjacency description of the transitive closure
node set of connected component i

node set of strong connected component i

of
of
of
of
of
of
of
of
of
of

odd cycle

pointer array

arcs

arcs for undirected graph
arcs of the reduced graph
connected components

edges
edges
nodes
nodes
nodes

pointer array f

pointer array
pointer array
precision for

previous
previous
previous
previous
previous
primal variable array
rank function
real array of max capacity path value from i0 to node .
real array of shortest path length from i0 to node .

node o
node o
node o
node o
node o

+

+

1

of the reduced graph
strong connected components
giving a pseudo node
origin for labelling

for

or

for
for
minimum quadratic cost flow (2**precision)
. in a circuit

. in minimal weight tree with root iO

. on a arc number shortest path from iO
. on a shortest path from i0

. on max capacity path from i0

f
£
f
£
f

adjacency description for directed graph
adjacency description for undirected graph
adjacency description of the reduced graph
adjacency description of the transitive closure

METANET 6

real length edge array

real matrix of arc lengths

real matrix of max capacity path values
real matrix of shortest path lengths

real max capacity path value from i to j
real maximum capacity edge array

real maximum weight matching value

real minimal quadratic cost flow edge array
real quadratic cost function weight arc array
real quadratic cost function weight edge array
real shortest path length from i to j

real unitary cost edge array

real weight arc array

real weight edge array

real working array for nodes

real working array for pseudo-nodes
shortest path from i to j

sink node #

source node #

starting node # i0

strong connected component # of node .

tail node array

value for infinity

variable for connectivity

The abstract variables are defined in an unique file as graph_variable structures (see section
3.2.

3.2 C++4 Objects
Each abstract variable is described by a C++ structure called graph_variable:

enum ftype {FLOGICAL, FINT, FREAL, FDOUBLE, FINT2, FREAL2, FDOUBLE2};

struct graph_variable {
int id;
char* definition;
charx description;
int dim;
int* dimensions_id;
int value;
int object;
ftype type;
union {
flogical* 1;
fint* i;
freal* r;
fdouble* d;
fint2* i2;

METANET 7

freal2*x r2;
fdouble2* d2;
};
void (*compute) (graph_variablex*);
void (xdisplay) (graph_variablex);
};

id is a unique integer which characterizes the variable. It is its identifier. This number is used
in internal computations.

definition is the definition of the variable (see section 3.1).

description is the complete description of the variable.

dim is the number of dimensions of the variable, which can be 0 if it is a scalar.

dimensions_id is a vector with dim elements representing the identifiers of other scalar variables
giving the number of dimensions.

value is 1 if a value has been assigned to the variable and 0 otherwise.

object is 1 if an object has been created for the variable (i.e. memory has been allocated for
it) and 0 otherwise.

type is the type of the variable which can be:

e FLOGICAL: FORTRAN logical scalar or vector

FINT: FORTRAN integer scalar or vector
e FREAL: FORTRAN real scalar or vector
FDOUBLE: FORTRAN double precision scalar or vector

FINT2: FORTRAN integer matrix
e FREAL2: FORTRAN real matrix
e FDOUBLE2: FORTRAN double precision matrix

1, i, 1, d, i2, r2 or d2 is a pointer to the object containing the value of the variable.

compute is the address of a function which must be applied to the variable to compute its value.

display is the address of a function which must be applied to the variable to (possibly graphi-
cally) display the value of the variable.

Variables can be used by FORTRAN subroutines or by internal C functions of METANET.
For coherency, the types of the variables used in C functions are the same as the ones used in
FORTRAN subroutines in order to be able to mix them.

To understand the meaning of the various slots, we give below a description of the various cases
which can appear in practice. We describe what to do with the slots according to the use of the
variable in a FORTRAN subroutine or in a C function.

Output variable from a FORTRAN subroutine or from a C function: If the object has
not yet been created (the slot object is 0), it is automatically created by using the slots
type, dim and dimensions.id. After the FORTRAN subroutine has been executed, this
variable has values and the slot value is 1.

Input variable in a FORTRAN subroutine or in a C function: If the object has not yet
been created (the slot object is 0), it is automatically created by using the slots type, dim
and dimensions_id. Then, if the object has not yet been given a value (the slot value is 0),
we compute the values of the object by using the function pointed to by the slot compute.

METANET 8

Working variable in a FORTRAN subroutine: Do the same as an output variable from a
FORTRAN subroutine but a new object is created every time. The slots object and value
are not used.

Except for a working variable, only one object is created for an abstract variable.

The process of computing variables is recursive. Indeed, if necessary, other abstract variables
can be computed for computing the value of an abstract variable. This is typically the case when
we need to compute the dimensions of an array.

3.3 Graph object

Each graph is described by a C++ structure called graph. There is a global variable called theGraph
which is a pointer to the graph structure of the graph under study.

There are two types of graph: directed or undirected. The differences between these two types
of graphs are reflected by their graphic representation and their internal representation. But any
type of graph can be considered as directed or undirected. Indeed, there are FORTRAN programs
dealing with directed graphs and FORTRAN program dealing with undirected graphs and we could
want to apply any type of program to any type of graph.

Notice that an edge is an undirected link between two nodes and that an arc is a directed edge
from a tail node to a head node and that any type of graph is internally represented by its nodes
and its arcs, never by its edges. This means that each edge of an undirected graph is internally
represented by two arcs (see figure 2). '

There are three abstract variables used by FORTRAN programs according to the type of graphs
they deal with: "number of arcs", "number of edges' and "number of arcs for undirected
graphs". "number of arcs" is the number of arcs in the internal representation of the graph.
“number of edges" is the number of links in the real graph. "number of arcs for undirected
graphs" is the number of arcs in the internal representation of the graph if we consider it as
undirected.

A directed graph is represented by its nodes and its arcs into a graph structure. '"number
of edges" equals "number of arcs" and "number of arcs for undirected graphs" equals 2
times "number of arcs". See figure 1.

An undirected graph is represented by its nodes and its arcs into a graph structure. But
now "number of edges" equals "number of arcs" divided by 2. Indeed an edge is internally
represented by two arcs with opposite directions and with consecutive internal numbers 2p — 1 and
2p. And "number of arcs for undirected graphs" equals "number of arcs". See figure 2.

The graph structure is described below.

struct graph {
char name[MAXNAM] ;
graph* un_graph;
int directed;
int node_number;
int arc_number;
int sink_number;
int source_number;
list sinks;
list sources;
list arcs;
list nodes;

METANET 9

Number of arcs = 3
Number of edges = 3
Number of arcs for undirected graph = 6

Graphic representation = Internal representation

Figure 1: Directed Graph

Number of arcs = 6
Number of edges = 3
Number of arcs for undirected graph = 6

oo p

Graphic representation Internal representation

Figure 2: Undirected Graph

METANET 10

int max_arc_user_number;
int max_node_user_number;
arc** arcArray;

node** nodeArray;

arc** userArcArray;
nodex* userNodeArray;

};

name is the name of the graph.

un_graph is a pointer to the corresponding undirected graph obtained from this graph if it is
directed.

directed is a flag which is 1 if the graph is a directed one and 0 if it is undirected.
node_number is the total number of nodes including sources and sinks.

arc_number is the total number of arcs (remember that an arc is a directed edge).
sink_number is the number of sink nodes.

source_number is the number of source nodes.

sinks is a list of the sink nodes pointers.

sources is a list of the source nodes pointers.

nodes is a list of pointers to node structures corresponding to the nodes of the graph in de-

creasing order of node internal numbers.

arcs is a list of pointers to arc structures corresponding to the arcs of the graph in decreasing

order of arc internal numbers.

The slots max_arc_user_number and max_node_user number are the maximum number of the

arc user numbers and the maximum number of the node user numbers.

The graph structure uses in its slots four other structures described below.
arcArray, nodeArray, userArcArray and userNodeArray are arrays of pointers to the corre-

sponding object. For instance arcArray[i] is a pointer to arc object with internal number ¢ + 1
and userArcArray[i] is a pointer to arc object with user number i +1. These arrays are redundant
with the slots nodes and arcs but are used for efficiency.

3.3.1 Node object

Each node is described by a C++ structure called node.

enum node_type {PLAIN, SINK, SOURCE};

struct node {

};

int number;

int user_number;
list connected_arcs;
double demand;

node_type type;

int x, y;

number is the internal node number.
user_number is the user node number.
connected_arcs is a list of pointers to the arcs the node is connected to (the notion of connected

arc is not a directed one).

METANET 11

demand is the demand of node wich can be positive or negative (supply).
node_type is the type of the node which can be PLAIN, SINK or SOURCE.
The other slots are used for graphic purposes.

3.3.2 Arc object

Each arc is described by a C++ structure called arc.

struct arc {
int number;
int user_number;
node* head;
node* tail;
double unitary_cost;
double minimum_capacity;
double maximum_capacity;
double length;
double quadratic_weight;
double quadratic_origin;
double weight;
int g_type;
int x0, yo0, xi, yi, x2, y2, x3, y3, xmax, ymax, xa0, yaO, xal, yal, xa2, ya2;

number is the internal arc number.

user_number is the user arc number.

head is a pointer to the head node of the arc.

tail is a pointer to the tail node of the arc.

unitary_cost is the unitary cost of the arc.

minimum_capacity is the minimum capacity of the arc.

maximum_capacity is the maximum capacity of the arc. When an arc has only a capacity as
attribute, we use this slot.

length is the length of the arc.

quadratic_weight is the value w, in the quadratic cost -;-wu[(gou - @u)?].

quadratic_origin is the value ¢, in the quadratic cost %wu[(cpu - @)Y

weight is a value on the arc. It can be used for computing a minimal weight tree. [t can also
be the resistance of the arc.

The other slots are used for graphic purposes.

3.4 FORTRAN Program Description

A family of FORTRAN programs is a number of FORTRAN subroutines with FORTRAN names (or
FORTRAN variables corresponding to abstract variables (sce section 3.1). Usually, one FORTRAN
variable corresponds to one abstract variable, but it is possible to have several FORTRAN variables
corresponding to one abstract variable (it is the case of working arrays for instance). Typically a
family of FORTRAN programs has been written by a same group of people and deals with a same
type of network problems.

Each family of FORTRAN programs is described by two files. If <name> is the name of
the family, there is a file called <name>-variable.desc describing variables and another one called
<name>-subroutine.desc describing subroutines. Their syntax is explained below.

METANET 12

<name>-variable.desc is an ASCII file describing FORTRAN variables. Each variable is de-

scribed by three lines plus a separator line:

name
definition
description
<separator line>

name is the FORTRAN name of the variable. definition is the definition of the variable
(see section 3.1) and description is a comment or description.

This file only establishes a correspondence between name and definition.

<name>-subroutine.desc is an ASCII file describing FORTRAN subroutines. Each subroutine

is described by five lines plus a separator line:

name

<list of input variable names in lexicographic order>
<list of output variable names in lexicographic order>
<list of working variable names in lexicographic order>
description

<separator line>

name is the FORTRAN name of the subroutine and description is its complete description.
In the three other lines, a tabulation of 8 characters is used.

3.5 FORTRAN subroutine objects

The objects described below are not given by the user but are automatically generated by a program
using the definition of the graph_variable objects (see section 3.2) together with the files x.desc
described in section 3.4.

Each FORTRAN subroutine is described by a C++ structure called fortran_subroutine:

enum ptype {IN, OUT, WORK};

struct arg {

};

ptype type;
int id;

struct subroutine {

charx family;

char*x name;

char* description;
void (*compute) (...);
int n_arg;

arg* args;

‘e

METANET 13

family is the family of the FORTRAN programs to which the variable belongs.
name is the FORTRAN name of the subroutine.
description is the complete description of the subroutine.
compute is a pointer to the FORTRAN subroutine,
n_arg is the number of arguments for the FORTRAN subroutine.
args is a pointer to a vector of arg objects describing the arguments:
type is the type of the argument which can be IN for input, OUT for output or WORK for
working.
id if the identifier of the corresponding abstract variable.

4 Data Files

A graph named g is described by two data files: g.graph and g.metanet. The data files are in
the directory data. The former is an ascii file and contains minimal data for a graph. It can be
modified by the user in an editor. It is described below. The latter is a binary file created by
METANET and contains complementary data (graphics, redundant data ...).

4.1 Structure of graph file

The graph file is an ascii file with the following structure:

GRAPH TYPE (0 = UNDIRECTED, 1 = DIRECTED) :

<one line with 0 or 1 according to the type of the graph>
NUMBER OF ARCS :

<one line with the number of arcs>

NUMBER OF NODES :

<one line with the number of nodes>

3K o oK o o o K Ko o K K o o o K ok o K KoK ok o o ok ok sk ok ok ok ok
DESCRIPTICN OF ARCS :

ARC #, TAIL NODE #, HEAD NODE #

COST, MIN CAP, CAP, MAX CAP, LENGTH, Q WEIGHT, Q ORIGIN, WEIGHT
<a blank line>

<two lines for each arc>

sk ok o o Ko o ok o o ko ok sk sk ok ok ko ok ok ko ok ok
DESCRIPTION OF NODES :

NODE #, POSSIBLE TYPE (1 = SINK, 2 = SOURCE)

X, Y

DEMAND

<a blank line>

<three lines for each node>

When describing a node, no type means a plain node.

4.2 Modifying graphs

You can modify an existing file by using the Modify menu (see section 5.2.3). But it is also possible
to do it by hand. For that, you have to modify the graph ascii file described above. Then, you
have to use the “Load and Compute Graph” item of the Begin menu (see section 5.2.1) to update
the metanet binary file.

METANET 14

4.3 Generating graphs

There are programs used to automatically generate graphs in the directory gengraph.
They are make-graph-file, netgen and mesh.

4.3.1 Making a template graph file

make-graph-file is used to created a template graph file. It asks for the graph name, verifies if it
is not the name of an existing file, and asks for the number of arcs, nodes, sources and sinks. Then
a graph file is created in the data directory and you can modify it by hands.

4.3.2 Netgen

netgen is a modification of the famous netgen program for generating graphs ([10]). First you can
use seed for generating a random number in the file FORO11.DAT used by netgen, but this is not
necessary (there is already one).

netgen displays the following line :

INPUT NODES,NSORC,NSINK,DENS,MINCST,MAXCST,ITSUP

and you have to put the number of nodes, the number of pure sources, the number of pure sinks,
the density of the graph (an integer for an approximate number of arcs), the minimum cost, the
maximum cost and the maximum supply for the whole network.

Then netgen displays the following line :

INPUT NTSORC,NTSINK,BHICST,BCAP,MINCAP,MAXCAP

and you have to put the number of transshipment source nodes, the number of transshipment sink
nodes, the percentage of arcs with a cost, the percentage of capacitated arcs and the minimum and
maximum arc upper capacities (the lower capacity is always 0).

An ascii file describing the network is created (NETGEN.DAT) and you have to use the program
netgen2graph to create a graph file in the data directory. This saved graph can be the original
graph or the corresponding augmented graph (only one source and one sink). netgen2graph asks
the question.

netgen computes no coordinates for the nodes. When METANET loads such a graph, before
computing the metanet file, it has to compute values for the coordinates of the nodes. The algorithm
is at the present time a very simple one and it will be improved in the future.

4.3.3 Mesh

mesh is a program derived from a finite element one. It resembles netgen and uses a subpart of
it for generating the network but it gives a triangulation of the plan from which we have the node
coordinates. The generated graph is planar.

mesh displays the following line :
INPUT NODES,NSORC,NSINK,MINCST,MAXCST,ITSUP,O0TSUP
and you have to put the number of nodes, the number of pure sources, the number of pure sinks,
the minimum cost, the maximum cost and the maximum supply and the maximum demand for the
whole network.

Then netgen displays the following line :
INPUT BHICST,BCAP,MINCAP,MAXCAP
and you have to put the percentage of arcs with a cost, the percentage of capacitated arcs and the
minimum and maximum arc upper capacities (the lower capacity is always 0).

An ascii file describing the network is created (MESH.DAT) and you have to use the program
mesh2graph to create a graph file in the data directory. This saved graph can be the original

METANET 15

graph or the corresponding augmented graph (only one source and one sink). netgen2graph asks
the question.

Figure 3 summarizes everything about data files, generating graph files and concerned programs.

5 Using METANET

To activate METANET, you only have to issue a metanet command to your system.

There are two windows. The first one is the interpreter window (see section 5.3). The second
one is a graphic window with menus (see sections 5.1 and 5.2). See also appendix A where a sample
session of METANET is given.

5.1 Using the mouse in the graphic window

All mouse buttons are equivalent.

The mouse can be used to highlight an object (arc or node) in the graphic window. For that,
you only have to click once in the object. For a curbed arc, you have to click in the middle of the
arc. If another object was already highlighted, it becomes non highlighted. When you click in an
highlighted object, it is no longer highlighted.

When you are in the Modify menu (see section 5.2.3), the mouse can be used to modify the
graph. When you click in a place where there is no object, a new node is created. If you click in a
node and another node is highlighted, then a new arc is created from the latter node to the former
node. You can also move a node by clicking in it and moving the mouse while the button is down.

5.2 Menus

There are three levels of menus. We call them the Begin menu, the Study menu and the Modify
menu.

5.2.1 Begin Menu

This menu is displayed when METANET is activated. The items are described below.

Quit For quitting METANET.

Load Graph When this item is activated, a list of all the graphs existing in the data directory
(see section 4) is displayed and you can choose one of them. Then it is displayed and we are
in the Study menu. If the graph you are loading has no metanet data file (see section 4),
then a message is issued and METANET will first create the missing file. In this case, il the
nodes have no coordinates, a message is issued and METANET will compute them.

Load and Compute Graph It is the same thing as Load Graph menu, but the binary file
<graph_name>.metanet is recomputed from the ascii file <graph_name>.graph. This item
must be activated when you have modified the data in the ascii file.

New Graph This is for creating a new graph. METANET prompts for its name which must be
different from the names of already existing graphs. Then we are in the Modify menu.

Delete Graph For deleting a graph.
Copy Graph For copying a graph.

Rename Graph For renaming a graph.

METANET

seed ~— FORO11.DAT —

netgen

16

— > NETGEN.DAT

mesh netgen2graph
Y
MESH.DAT
mesh2graph
toto.graph
4
toto.graph

toto.graph — METANET

Figure 3: Data files

——-

toto.metanet

~

METANET 17

5.2.2 Study Menu

This menu is the standard menu displayed when we want to use METANET to perform computa-
tions.

Quit For quitting the Study menu and entering the Begin menu.

Compute Variable This is to perform a computation by menu. When this item is activated,
a list of all the abstract variables we can compute by menu is displayed and the user must
choose one of them. The list of these variables is given below.

arc number shortest path from i to j

arc number shortest path length from i to j
circuit

integer flow value on return arc

integer maximal flow edge array

integer minimal cost flow edge array
integer minimal cost flow edge array (relax)
integer minimal cost imposed flow edge array
integer minimum cost value

max capacity path from i to j

minimal weight tree with root iO

node set of connected component i

node set of strong connected component i
number of connected components

number of strong connected components

rank function

real max capacity path value from i to j
real minimal quadratic cost flow edge array
real shortest path length from i to j
shortest path from i to j

They correspond to the problems described in section 2. We have the same functionalities in
the interpreter (see section 5.3.1).

Object Attributes If an object (arc or node) is highlighted, its attributes are printed in the
interpreter window. Otherwise the attributes of the graph are displayed.

Find Node Used to highlight a node. METANET prompts for a node number. If the node is not
displayed, the graph moves to display it.

Find Arc Used to highlight an arc. METANET prompts for an arc number. If the arc is not
displayed, the graph moves to display it.

Modify Graph This item permits to enter the Modify menu.

5.2.3 Modify Menu

This menu is displayed when we want to modify an existing graph or we want to create a new one.

MFETANET 18

Quit For quitting the Modify menu. If the graph has been modified but not saved, METANET
asks you if you want to save it. If you answer yes, you are again in the Modify menu and you
can activate the Save Graph menu.

Delete Object If there is an highlighted object (arc or node), delete it.

Number Object If thereis an highlighted object (arc or node), METANET prompts for a number
for it. If there is no highlighted object and no number has be given to arcs and nodes,
METANET asks you if you want to use internal numbers (automatically given by METANET
every time an arc or a node is created) for nodes and arcs. Otherwise, if there are nodes and/or
arcs without number, METANET asks you if you want to automatically number nodes and
arcs. In this case, each non numbered arc or node is displayed and you can give a number to
it.

Object Attributes If an object (arc or node) is highlighted, its attributes are printed in the
interpreter window. Moreover a window appears and you can interactively modify attributes
of the object. Otherwise the attributes of the graph are displayed.

Find Node Used to highlight a node. METANET prompts for a node number. If the node is not
displayed, the graph moves to display it.

Find Arc Used to highlight an arc. METANET prompts for an arc number. If the arc is not
displayed, the graph moves to display it.

Create Source If there is an highlighted node, it becomes a source.
Create Sink If there is an highlighted node, it becomes a sink.
Remove Source/Sink If there is an highlighted source or sink, it becomes a plain node.

Save Graph This item is used to save the graph. If there are nodes and/or arcs that have not
been numbered, METANET issues a message and you are again in the Modify menu. Then
you have to use the Number Object item. When the graph is saved, METANET always
renumber nodes and arcs internal numbers in order to have consecutive numbers.

Rename and Save Graph The same as the item Save Graph, but METANET prompts for a
new name for it.

5.3 The interpreter

The interpreter window provides the user with a comprehensive MATLAB ([8]) like language. In
fact, we have in this window the BASILE system ([1]) which is a CACSD system for automatic
control developed at INRIA.

Most of the variables you can compute by using the Compute Variable item of the Study menu
can be computed in BASILE interpreter. But now, you can get the results as BASILE expressions
and do computations on them.

5.3.1 METANET functions in BASILE

We describe below the new functions in BASILE.
See section 2 for the description of the various network problems.
A path or a tree is a BASILE row of arc numbers and a node set is a BASILE row of node

numbers.

METANET 19

printg(n) prints characteristics of the loaded graph with more or less informations according to
the value of n (0, 1 or 2 where 2 corresponds to maximum information).

printa(i,n) prints characteristics of arc i with more or less informations according to the value
of n (0, 1 or 2 where 2 corresponds to maximum information).

printn(i,n) prints characteristics of node i with more or less informations according to the value
of n (0, 1 or 2 where 2 corresponds to maximum information).

showp(p) highlights the path p in the graphic window.
showns(s) highlights the node set s in the graphic window.
connum() returns the number of connected components of the graph.

h

concom(n) returns the set of nodes in the n'! connected component.

sconnum() returns the number of strong connected components of the graph.

sconcom(n) returns the set of nodes in the ath

strong connected component.

ansp(i,j) returns the arc number shortest path from node i to node j.

anspl(i,j) returns the number of arcs in the arc number shortest path from node i to node j.
1sp(i,j) returns the length shortest path from node i to node j.

1spl(i,j) returns the total length of the shortest path from node i to node j.

circuit() returns a circuit of the graph if there is one.

wstree(i) returns the minimal weight spanning tree with node i as its root.

maxcpp(i,j) returns the maximum capacity path from node i to node j.

maxcpv(i,j) returns the value of the maximum capacity in the maximum capacity path from node
i to node j.

mcfar() returns the array of flows for minimum cost network flow problem (P)by using a relaxation
method (see [3]).

mcfa() returns the array of flows for minimum cost network flow problem (7).
mfa() returns the maximal flow array, solving problem (P,,).

micfa(c) returns the array of flows for minimum imposed cost network flow problem (P). c is
the given value of the imposed flow.

mqcfa(p) returns the array of flows for quadratic minimum cost network flow problem (Q). pis
a negative integer corresponding to the precision of the algorithm which is 27 (discretization

step).
mcfv() returns the value of the computed cost for problems (P), (P1), (Pz)and (Q).

rafv() returns the value of the flow on the return arc for problems (P2)and (Py,).

METANET 20

6 Internals

6.1 Using FORTRAN

We describe here the way METANET uses FORTRAN subroutines.

First of all, all the abstract variables (see section 3.1) are uniquely defined as graph_variable
structures in C++ (see section 3.2). There are two global variables: nVariables which is the
number of abstract variables and variables which is a vector of pointers to the graph_variable
objects. These objects and this vector are created in the file abstract-variables.c. This file is
the reference for the definition of the abstract variables.

There are programs which automatically add or remove abstract variables (see section 6.2).

All FORTRAN subroutines of all families are loaded in METANET and linked to METANET.
With the definition of the graph_variable objects (see section 3.2) together with the files *.desc
described in section 3.4 a program automatically generates a file containing a function creating and
computing subroutine objects corresponding to FORTRAN subroutines (see section 6.2.1). This
file is subroutines.c.

There are two global variables: nSubroutines is the number of subroutines and subroutines

is a vector of pointers to the subroutine objects.
Then, the steps to execute the FORTRAN subroutines are described below.

1. By looking to the subroutine structure of the FORTRAN subroutine, we get the abstract
variable identifiers of the variables which appear in the calling sequence of the subroutine.

2. For each graph variable of the calling sequence of the subroutine, we create the corresponding
object and/or compute its value if necessary (see section 3.2).

3. Then we can call the FORTRAN subroutine with good C++ objects as arguments and execute
it.

The above process is recursive because other FORTRAN subroutines can be called when com-
puting values of abstract variables for input.

6.2 Maintaining METANET

There are programs for maintaining METANET for a user who wants to modify METANET inter-
nals (variables) and to manage subroutine families.
These programs are in the directory src/maintain.

6.2.1 Adding or removing

There are programs that automatically manage the abstract variables and FORTRAN subroutines
in METANET.

e add-variable <filename> adds abstract variables described in file <filename>. Each vari-
able is described by three lines plus a separator line:

name type dimensions dimil dim2 ... dimn
definition

description

<separator line>

<)

<)

METANET 21

definition is the definition of the variable (see section 3.1) and description is a comment
or description.

e remove-variable <id> ... removes one or more abstract variable described by its unique
identifier <id> (see section 3.1). Before removing these variables, the program verifies if they
are used as arguments in FORTRAN subroutines.

e add-family <family name> adds a new family of subroutines in METANET. This program
transforms the family FORTRAN variables appearing in the description files of the family
(see section 3.4) into abstract variables. These abstract variables must have been created
before.

e remove-family <family name> removes all the subroutines of a family from METANET.
This program is useful and necessary when we have modified a family and we want to add it
again in METANET.

e remove-subroutine <subroutine> ... removes one or more subroutine described by its
name.

After using these programs, METANET must be recompiled.

6.2.2 Adding new functions

It is possible for the user to add new functions in the interpreter. This is the way for the user to
test its own programs in METANET and to add its own family of FORTRAN subroutines.

The process is described below.

First, you define a new FORTRAN family. We suppose that the name of this family is myfamily.
You create a directory named myfamily in the directory 1ib and put the FORTRAN subroutines
in it. After having compiled them, you create a library with them named 1ibmyfamily.a and put
it in the 1ib directory. This new library must be known by METANET makefiles and you must
add its name in the FAMILIES macro in the file src/make.incl.

Then, you create in the directory 1ib/myfamily the description files of the family (see 3.4), i.e.
myfamily-variables.desc and myfamily-subroutines.desc.

The second step is to make this family known by METANET. For that you use the programs
described in 6.2.1. You use add-variable to add your new variables and then add-family to add
your new family.

The third step is to create the functions that correspond in the interpreter to the FORTRAN
subroutines of the family.

If the outputs of your FORTRAN subroutine do not correspond to any METANET variable, you
are obliged to create new ones. But if they correspond, for instance to test a subroutine improving
an already existing algorithm in METANET, it is unnecessary to create new METANET variables.
But it is highly recommended to do it. The reason is that a METANET variable is only computed
once in METANET and then you cannot use two functions computing the same variable.

To create the functions, you have to go in the src/basile directory and describe the new func-
tions in the file matusr.desc and add them in the fundef file. The syntax in the file matusr.desc
is explained in the user guide of INTERBAS which comes with [1]. Then, the new function must
be defined in the file src/basile.c and the computation of the new variables must be settled at
the end of the file src/function-variables.c.

Then go to src directory and issue a make command.

In the next version of METANET, the whole process will be improved in a more user-friendly
manner.

METANET 22

7 FORTRAN families

7.1 General family
The FORTRAN programs of this family are in [9].

compc for computing the number of connected components
compfc for computing the number of strong connected components
arbor, prim for computing a minimal weight tree

chem for computing a max capacity path
pccsc, ford, johns, dijkst, pcchna and floyd are various programs for shortest path problems

flomax for maximum flow problems

frmtrs for computing transitive closure

fcirc for finding a circuit

frang for computing the rank function

kilter and busack for minimum cost flow problems
floqua for minimum quadratic cost flow problem

7.2 Relax family

The FORTRAN programs of this family are for solving minimum cost network flow problems by
relaxation methods (see (3], [4]).

-

METANET 23

A Sample sessions of METANET

A.1 Shortest path

In this session, we load into METANET the directed graph called “mesh100”. This graph has been
generated using the program mesh (see section 4.3.3).
Figure 4 shows METANET graphic window with graph “mesh100” loaded.
We compute the arc number shortest path from node 57 to node 42 and display the path.
Figure 6 shows METANET graphic window with displayed shortest path.
The session in the interpreter window is:

<>p=ansp(57,42)

p =

! 87. 111. 145. 173. 167. 161. 171. 195. !
<>showp(p)
<

A.2 Strong connected components

In this session, we load into METANET the directed graph called “netgen10”. This graph has been
generated using the program netgen (see section 4.3.2).

Figure 5 shows METANET graphic window with graph “netgen10” loaded.

We compute the number of strong connected components of the graph and then display the
strong connected component number 2.

Figure 7 shows METANET graphic window with displayed strong connected component number
2.

The session in the interpreter window is:

<>sconnum()

<>s=sconcom(2)
S =

! 4, 5. 7. 2. 3. 8. 6. 9. !
<>showns(s)
<

A.3 Maximal flow

We also use the directed graph called “netgen10” (see figure 5).

We compute the maximal flow array with “mfa” command. Then, by using BASILE language
we construct the path “p” corresponding to this flow (where the flow is not zero) and we display it
on the graph.

Figure 8 shows METANET graphic window with displayed path.

METANET 24

The session in the interpreter window is:

<>a=mfa()

colonnes 1a 10

! 66. 3. 97. 0. 100. 0. 0. 0. 100. 0. !

colonnes 11 a 21

! 0. 0. 0. 66. 0. 3. 0. 0. c. 0. 0. !

colonnes 22 a 30

! 100. 0. 0. 0. 0. 0. 0. 0. 66. !
<><m,n>=size(a)
n = s

30.
1.

<>j=0; for i=1:n, if a(i) <> 0 then j=j+1; p(1,j)=i; end end
<p

<>showp(p)
<>

METANET 26

metanet
Quit Conpute Variable Object fttributes Find Node Find Arc Hodify Graph

Figure 5: Graph “netgenl0”

METANET

Conpute Variable 0b ject fetributes

28

Modify Graph

Figure 7: Strong connected component 2 in graph “nctgen10”

‘

METANET

[metanet

29

Hodify Graph

Ob jJect Rttributes

Conpute Variable

Figure 8: Path for maximal flow in graph “netgen10”

METANET 30

References

(1] Frangois Delebecque, Carlos Klimann and Serge Steer, BASILE, guide de I'utilisateur, INRIA
1989.

[2] Claude Berge, Graphes, Gaulthier-Villars 1973.

(3] Dimitri P. Bertsekas and Paul Tseng, Relaxation Methods for Minimum Cost Ordinary and
Generalized Network Flow Problems, Operations Research, Vol. 26, No. 1, January-February
1988.

[4] Dimitri P. Bertsekas and John N. Tsitsiklis, Parallel and Distributed Computation, Prentice
Hall 1989.

[5] Brian W. Kernighan and Dennis M. Ritchie, the C Programming Language, Prentice Hall
1978.

[6] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley 1986.
[7] Michel Gondran and Michel Minoux, Graphes et algorithmes, Eyrolles 1985.

[8] Cleve Moler, MATLAB User’s Guide. Technical report CS81-1, Department of Computer
Science, University of New Mexico, 1982.

[9] Georges Bartnik and Michel Minoux, Graphes algorithmes logiciels, Dunod 1986.

[10] D. Klingman, A. Napier and J. Stutz, NETGEN: A Program for Generating Large Scale Capac-
itated Assignment, Transportation and Minimum Cost Flow Network Problems, Management
Science, Vol. 20, No. 5, January 1974.

[11] James Gettys, Robert W. Scheifler and Ron Newman, X Window System, Xlib - C Language
X Interface, X Version 11 Release 4, MIT, 1989.

[12] Chris D. Peterson, X Window System, Athena Widget Set - C Langage Interface, X Version
11 Release 4, MIT, 1989.

[13] Richard M. Stallman, Using and Porting GNU CC, September 1989.
[14] Michael D. Tiemann, User’s Guide to GNU C++, August 1989.

)

METANET 31

Contents
1 Introduction 2
2 Graph and network problems : 2
2.1 Graphproblems. .« e e e e 2
2.2 Flow problems e e e e e e e e e e e e 2
3 Data structures 3
3.1 Variables e e e e e e e 3
32 CH4 O0bjects . . v v v v i e e e e e e e e e e 6
3.3 Graphobject e . 8
3.3.1 Nodeobject« o v it i e e e 10
3.3.2 Arcobject e e e 11
3.4 FORTRAN Program Description oo 11
3.5 FORTRAN subroutine objects v v oo 12
4 Data Files 13
4.1 Structureof graphfile o oo 13
4.2 Modifying graphs L e e 13
4.3 Generating graphs e e 14
4.3.1 Making a template graphfile L oo 14
4.3.2 Netgen v v v v v i i e e e e e e e e 14
433 Mesh. e e e e e e e 14
5 Using METANET 15
5.1 Using the mouse in the graphic window 15
5.2 MENUS . v v v v v o e s 15
52.1 BeginMenu o 15
522 Study Menu. o oo i e e e e 17
523 Modify Menu i e e e 17
5.3 TheinteIpreter« o v v v v it e i e e e e e e e e e 18
5.3.1 METANET functionsin BASILE, 18
6 Internals 20
6.1 Using FORTRAN e s e 20
6.2 Maintaining METANET o o 20
6.2.1 Addingorremovingo oo e 20
6.2.2 Adding new functionso oo 21
7 FORTRAN families 22
7.1 General family e 22
7.2 Relaxfamily e 22
A Sample sessions of METANET 23
A.1 Shortest path e 23
A.2 Strong connected componentso e e 23

A3 Maximalflow e e e e e e e e e e 23

METANET 32

List of Figures

QW N Ot WN

Directed Graph L e e e e e 9
Undirected Graph L e e 9
Datafiles i i i e e e e e e e 16
Graph “mesh100” e e e 25
Graph “netgenl0” e e e e e 26
Shortest path in graph “mesh100” from node 57 tonode 42 27
Strong connected component 2 in graph “netgen10” 28
Path for maximal flow in graph “netgen10” e 29

Imprimé en France
ar
.Plnstitut National de Recherche en Informatique et en Automatique

