archives-ouvertes

The RDL/C language reference manual V1
G. Kiernan, Christophe de Maindreville

» To cite this version:

G. Kiernan, Christophe de Maindreville. The RDL/C language reference manual V1. [Research
Report] RT-0123, INRIA. 1990, pp.85. inria-00070044

HAL Id: inria-00070044
https://hal.inria.fr /inria-00070044
Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.inria.fr/inria-00070044
https://hal.archives-ouvertes.fr

My ST AL

(5 73 Y M AR ) e LAY RS

LRI FERD e SR T

|
|

1qUes

P

123
ées

Programme 4
Bases de Donn

Rapports Techn
NO
THE RDL/C LANGUAGE

\mm
>
L .
<
-
p4
<
=
=
Q
Z.
=
-~
=
=
=
L

RN o § UL RS AR T YL DAY TR A BN O N BURAYTVAY DA DS AT M1 KRS 2 TR A RN TZ0A LA WA NS VA B T OGRS A DA P RSOLT A3 S U AT S RE S A N G ARSI R TG L I PRSI ESNON A IR R ARG Y (7 Y DRAN BV P TR H RTS8

35
Lo

vmr
N2y

LAY for o 5 hy SO0

&

R ECEIOSE

AR N O A Rk

G. KIERNAN
C. de MAINDREVILLE

LSS EAR VH AT C CAEROAML RN EHIARAYR « SOMOINIIDIATNI 23 01

Octobre 1990

*RT _B123%




The RDL/C Language

Reference Manual V1

Gerald Kiernan and Christophe de Maindreville
LN.RI.A. Rocquencourt
78135 Le Chesnay, FRANCE
INFOSYS
15, rue A.France
92800 Puteaux, France

Abstract

This manual describes the usage of a rule language compiler for a relational DBMS. The rule
language described in this manual is called RDL/C. It is based on a production rule language and
on C code. RDL/C includes a rule section to define in a declarative way, general knowledge about
the data stored in the database. This language includes procedural constructs such as e);pli;'cil
“control over the rules and calls to a language such as C. Rules and procedures exchange parameters
in an easy way. The compiler is designed as an application generator which translates rule pt,ograms.

into C based database applications.

Le Langage RDL/C @
Manuel de Référence V1

Résumé:

Ce rapport décrit un langage de régles de production pour base de données relationnelles. Le
langage RDL/C supporte une programmation déclarative basé sur un langage de regles de
production et une programmation procédurale qui utilise le langage C. Le langage RDL/C étant
orienté base de données, les programmes sont exécutables par le SGBD sans chargement de
données dans la mémoire de C. Le langage de régles et le langage C communiquent 3 travers fies
variables C qui peuvent apparaitre dans les parties action et condition d'une ragle. Le compilateur

traduit des programmes RDL/C en programmes C qui contiennnent des requétes SQL.

1 Ce travail a été partiellement financé par le Ministere de la Recherche et des Technologics




1.

2.

3.

4.

5.

PrEfac....cvuirinrenierenniiiiniente sttt s s s prreegesesses pessesnenss vl
| £1X3 0T RUTel 4 Lo  VOU R O OUURUSTPPRORY RPN |
Data Model...c.ccviiniiiniiiniiinrniinniinnenreesiesesseessssasserasssaesinessss e saees N veaperane-d
3.1.  Abstract Data TypesS.....ccnevirnrrcsenscncsinnianeas qeressanerenieene R SO
3.2.  User-defined Data TyPesS......ccoverrvenmaenrreisinnsnnmsensransssssssressssssssessans S
3.3.  User-defined FUNCHONS ....c..cocimeuiniiiiiiininiiiiiissencreiiteinsnssregeessssassssanee pesssese -6
34.  Access to the Lisp ENVIFONMENLt.....ccoovcvicimiiininiscsnninsennninnnsinsssisenssssenes 7
3.4.1.  Example of a working SESSION. . vvecrereressssnes _— oesssnspurssagopgunegarasn:

“35.  Using ADT in SQL Statements.......... ,9
3.5.1.  Complex Object Creation .......................... ........... voeraancs oo

3.5.2. Complex Object Selection.........covvvniverierernnnes rrrsnnessnniinas vorsnege:9d
Overview of the LaNgUAgEe.........couvuiiiiiiiiiniiiineniiir e siie s e e sagenssssans 1
41 Ilustrative Examples.......... e, eeeeessrsssaaeemmsnes 1
4.2.  The Kernel Language.........cccoevuveninieinciiiinniieeiininnnnn. rereerenirreenn. versoses Y...;.12
4.2.1. The symtaX....ccceivmvrenerieninniiineninsisnceesssnngenneenens forsesorerrenne fossaresens 12

4.2.2. The semantics ......ccoovvrreiiiriiiiiniiieeenn, prerene , 13

4.3. Programnﬁng Constructs........ocvvvenniiinens NN versesnnserennery 14
4.3.1.  Structuring an RDL program........cccccminrmncnniincrsinsenns esgopgesenyes 14

4.3.2.  Partial ordering of rules..........cccovvniiiiniiiniiiiiiiniean, yooes 14

4.3.3.  Main memory variables.......iiiii e 15

4.34.  Basic Structure of a Module......ccovvivniiniiinnininn prrennsansarenere 16

4.3.5. Interfacing RDL with C...c.cccoiiiiinininniiiiiii g RIR pereerenens 17

Contents

The Language,....cccccevveeeiieiiiiiiiiee bereer et s e e se e e rrar e aarpraearens 19




5.1,

5.2,

5.3.

INEFOAUCHION.cccuuiiieeireieireerereertrereeresnnssresrssesssserressssserenssessosmonesesssnssosessnssssase 19

Basic Elements of the language..........ccecvveininnnnn esresessannessiann vereesesnnessens 19
521. Key Words.....ccornvirnninneninnirinnnniesinnes sersenssnsesarsanne fressessasssanenencns 19
5.2.2.  Key Symbols......cccceveenricniiininnennnnns eeseraees et r s s nasaesesesennee 19
5.2.3. Identifiers.................................,... .......... ossessssns Crseeresisessseseisanes 19
5.2.4.  Separators..........ccceeenueiiinnniienineeninenes eerseneneareasiiintraeesiesartanennes 19
5.2.5. Domams ...... peegrertsetennrartasanrerainensenarees 20
5.2.6.  TeIMS...ueitnreiirrecinre s ssssssssssessesassnssens - ceressenrpessons o 20
5.2.6.1. Constants.....cceeeeerenenes ............. cvanen ,20
5.2.6.2.  Attributes.......ccccvciiirininingunnensenreenen creneserereserinrssrsnnsesnnnes 21
5.2.6.3.  FUNCLIONS....cotieeiirnnriicnnnrennssnsneenessessnsesessssnseessssssssenessssns 21
5.2.64.  VAHADIES cooeoesresressessesseseesssssssssssesspesssnpossesssssesssss e 22
5.27. Relations......cccccivvriciiiiiinennnennienecnens peveseunses greseraeeghesttnstrnacrenserearen 22
5.2.8. CCOME...ccotiiiuriiiiiiitrtiitiniirc st epesttessssgsesssnatesssnranssssnaesssnenas 22
5.29. COMMENLS...ccovnuuririmnereiisineeienecsinnegesssssnn tesrsennrrrersarethtaraeaeeaanes 22
5.2.10.  EXPIreSSIONS ....occuvviiviiniieiiiiinuiniinsineniiesiisnentisisssssssisessssssensenssssenne 23
The Production Rule........ccociiiiiiiviiiniininiisieeoeemeeen. 23
5.3.1.  The IF Part.....cocciiniiiiiiininieiinnienicinisnnienisissmeensiesesesnessessesssns 24
5.3.1.1.  Declaring Range Variables......c..cccernnurvrvnriivcrinsvsncnenens 24
5.3.1.2.  The Condition........ccceveeninvimennineeninseninnnscnnnnnenneenin. 24
5.3.1.3.  Examples of Conditions........c.cccvevernnuneinneniiniccnennnecenane 27
532. The THEN Part....c.ccccevvcemrerrieernnnens frrsrsesessapersegasapernesansasrnontos 27
5.3.2.1.  The ACHOM.....ucieiriiireerieeieierrerneresararresnsseserieserssserenssnnnsoes 27
5.3.2.2. Multiple Actions........cccceeiiiiiiingersenns N 29

5.33. The THENONCE part......ccccoveeruenas et sa et snsaseseans 30




6.

"5.3.4:" ':'-’C-code ‘p%e'c‘:eding the rule T RSN Cerreerereretisiereererausensrasanares '30

: 5.35. C-code fo]]bwing the rule, ..................... e 30

536 Ha.lti}ng' the Inferencé Engme ...... ..... , ............ veverens 31

 5.4.\ . The‘Co%\trol.Str’ing.;...!........i ....... ,.T.,.Bl

: 5',4471_ " The Sequence SUCHUTE .............vveerrerrorvroonn, veresasiieestsnssseenerebenans 32

5.4.2.  The Block Structure........ccovvireninnas teoreee ......... .......... 33

i 5.5..‘ | Struvcture-ofa Module......coorrunen ........ ................ 33
5.5.1.  Include Statements..........cecocvrrerirnenen. esreensnessnnsenns veregrrtessannssennns 33

5.5.2. | The Module Name.......cceeurerrsunenen. eereraetetsiiirsttaeereessrennesstnassanes 34

5.5.3. The Variable Section.........cccveeerevveversesssnnnns [eerentnetessessnsnnsseesensannes K7

5.54. The Relation Declaration Section............... tevrereernnnerennnases revererenens 35

5.5.4.1. InputRelations...............................,..,........,........... ....... 35

5.54.2. Base Relations.......................,............, .......................... 36

5.5.4.3. Deduced Relations.................... eseserteeeteneerraerreatreann s 36

5.5.4.4.  Output Relations........cceveveurenerrreveinerenseesrenesssesssoseon, 37

5.5.5.  The Report SECHON ..ottt e s 37

5.5.6.  The Production Rule S€CtON......covverrveveeereessressssnnsssesoenssoossonn, 39

5.5.7. The Control SHANG ettt sregarsessennassssssssaresessessraes 39

5.5.8.  The Initialization Code Section........... Sepepeatassensssaeeneresrenernsnsenee 39

5.5.9. The Wrapup SeCtON......coccverummrurereserassmsssesssssessssnssssssmneemmseennnn, 40

5.5.10. The End Module Statement.................... ..... 9eresesrerasencnnraresssenes 40

A Sample Application: A Geographic Information System......... fremsennnrsasrataessasisananse 41
6l A Sample Database........coccvvminiiriiiticcnsers e 41
6.1.1.  INTOAUCHON ...ttt eeeeet e 41

6.1.2. The Database .......c.cuiviviuiiiireiiinneereeee e e 41




6.1.2.1. Toulouse.CTA.............. teereersenrneroassene eeersieentensesensnnseerannas 42

6.1.2.2.  Toulouse.DiStrict........couuuuerrsecrrsemersnnrssesnsensesoon. 42

6.1.2.3. Toulouse.Crossroad............... terssessttsnesteenneaen s eneneennens 43

6.1.2.4. Toulouse.0S............ccvveerann. YT PP cerenes X

6.1.2.5. Toulc;use.RT_Fonction ..... onesessnnsanes it 4

6.1.2.6. Toulouse.RT_Revet............. ettt e ereserreeeresessnnannnes 4

6.1.2.7.  Toulouse.RT_Nbvoies........ e e e e ssnenns 45

6.1.2.8. Toulouse.RT_ADM................. ereeranasnerensane teseseresnrescessonne 45

6.2. A Sample Application..........cesneens s 45
6.2,1.  Introduction..........c.cu.nun.. e s et ee e 46

6.?.2. The Main program............u..... Ottt essaresaeeonesens w46

6.23, The Rule Modules............corvunn....n.. rresnnsiennneenn perneritetsenneersnresaren 50
6.2.3.1.  Search_District................. Rt r ettt rrar et eernaneanans 50

6.2.3.2.  Locate_Fire.......cooeuvvveveennn, s rerierasenterantienieanteranas trersreane 51

6.2.3.3.  Locate_Departure............ccooueurueruseeesnessnssssoosooooo 53

6.2.3.4.  Locate_Arrival.......oeesrurvnnnn. Nttt et aa e eeeseneans 54

6.2.3.5.  GOOA_Path ....oovmiveirniencenricsineneenses s 55

6.24.  Rosults of Execution....................... coreeressngansssnnnes frreeresennnerssrennes 61

7. Compiler OptONS.......ccovvrervirureieeeeeereess e, e s s 63
7.1. ThcModuleasaI’rogram.....‘......................................................, ............... 63
7.2.  The Module as a Procedure.............o.oovvoovnovoeooonn terererreet e e e ans 64
7.3. Compiling Modules and C Programs..........o.eeeressessoessooooosooooo. 64
7;4. Decbugging Programs ................ 65
8. Running programs.......................... b s et e st 67

8.1.  The iml Flle ..................................... 67




10.

11.

12.

8.2. The rdIHEAdEr File....cocciiiiiiiiiiiiiicciccein e ettetrteseseeeeeeeeesnneseessesssesmnmmnans 69

CONCIUSION .1tveeeiiiirninrieee ittt ettt ee s erae e asessessssssrsssesessonnnnnnesnses 71
REfEIOINCES .cciiviiiiiiiiiiiiiiiiiiiiiiiiiiiiititie et rsiessisssse st raratararseresessstsreesesssnseessonsssesessnses 73
The BNF of the Language .........ccociiuiiiiiiiiniiniiiiiiiiesiineneeeieeesie s ecseessseneseneeens 75
Error MeSSages... .ottt e e s s s s e ssares s s ssa s gesenne s e nne 79
12.1.  Compile-Time EITOrs.....couoveiiininiiininiiiniiicnicsitnesrtnesseee s es s e 79
12.2.  RUN-TIME EITOIS..ciiiiininiiiiiniiiiiinisinnineeeninerinssenseentessesessnsessesssssses 79




1. Preface

This manual describes the usage of a rule language compiler for a relational DBMS. The rule
language described in this manual is called RDL/C. It is based on a production rule language called
RDL1 and on C code. The compiler is designed as an application generator which translates rule
programs into C based database applications. The DBMS system that is described in this manual is
the SABRINA DBMS [Sabrinal]. SABRINA supports the standard features of a relational DBMS
in addition to an Abstract Data Type (ADT) facility. This ADT facility is accessible from within
the production rules of RDL/C. . '

The introduction presents the general ideas behind the research in the area of deductive DBMS.
The Data Model section describes the relational data model of the SABRINA DBMS. This section
introduces the notion of Abstract Data Type and assumes that the user is familiar with relational
systems. The next section is a brief overview of the language introducing the main ideas of the
language. This section is intended for users who are not familiar with production rule environments

for database. The general notions of deductive DBMS are presented in this section.

The section on the language is the heart of the manual. This section details all aspects of the
language. Users writing deductive DBMS applications can refer to this section to write rule modules
and fix compile-time errors. The terms of the language are described. These are constants,
attributes, functions and main memory variables. Terms appear in expressions which are also
described in this section. The notion of C program code appearing in rule modules is introduced. The
production rule is described next. The production rule is the key element of the language. Then the
control string is presented in the next section. The control string induces a partial ordering among
rules. This section also outlines all parts of a rule module. These are: include statements, the
module name, the variable declaration section, the relation declaration section, the report section,
the production rule section, the control string, the initialization code section, the wrapup code

section, and the end module statement.

A sample database is introduced in the following section. This sample is a geographic information
system based on a geographic data model designed by researchers from the National Geographic
Institute (IGN) in France in the framework of the ESPRIT Project TROPICS. Readers may find that
this example is too complicated. However, the usefulness of RDL/C cannot be demonstrated on a toy
database where a language like SQL is entirely sufficient. The geographic database has the
quality of being too complicated for SQL and therefore, of being adequate for a language like
RDL/C. The geographic data model is supported by the relational model with one abstract data
type defined to support the geometric quality of geographic data. A sample application is then
described. The application is based on a shortest path algorithm. A map of the region of Toulouse in
the south of France is displayed. The user is asked to select a district where there is a fire. Then he

is asked to select the departure district and the arrival district. These districts are first displayed



to the user using X windows facilities. Then, the program searches for a path along the roads in the

database avoiding roads going through the district where there is a fire.

The next section looks at the problem of compiling rule programs and details the various compilation
options. Running rule applications is then discussed. Two important header files are described.
These are to be included in all C programs that interact with rule modules. The two files are the
imLh file and the rdlHeader.h file. The iml file has declarations necessary to establish contact
with the DBMS and to query the database with SQL. The rdiHeader file has the declarations
necessary to communicate with rule modules. The conclusion of the manual is given. Two annexes
follow the conclusion. The first describes the BNF of the rule language. This can be useful in the
case of hard to overcome syntax errors. The last section describes the main types of error messages

that can occur.



2, Introduction

The RDL/C approach can provide a rule interface on top of any relational DBMS, More precisely,
the approach taken for RDL/C provides :

(1) a rule language suitable for data-intensive applications, This language is more suitable than
C-SQL for traditional applications and more adequate than PROLOG for intelligent data-
intensive applications, RDL/C includes a rule section to define in a declarative way, general
knowledge about the data stored in the database, This language includes procedural constructs
such as explicit control over the rules and calls to a language such as C. Rules and procedures
exchange parameters in an easy way. However, the initial semantics of the rule language re-
mains declarative and easily comprehensible to the user,

(2) programs which run on top of any relational DBMS which supports ADT facilities. The
interface between the rule language and the DBMS is SQL. The compiler produces C/SQL code
which runs over the DBMS,

(3) efficlency, and standard database system features, The first requirement {s achieved by the
fact that all data are manipulated by the DBMS. The second feature is achieved by the high-
level interface between the rule language and the DBMS, i.e, SQL.

The RDL/C language is a rule based language for querying and updating database relations, The
RDL/C data model is an extension of the relational model with the support of Abstract Data Types
(ADT). The RDL/C language is derived from the RDL1 language defined in [Maindreville8s]: It
supports limited data functions, negation, quantifiers and updates. It has been extended to support an
external control of rule progréms by the use of a language of control. Communication with an external
language is done through user defined data functions which can appear in the calculus or in
procedural sections attached to the rules.

The main motivation which lead to design and implement such a language is the following one :

The Datalog language and its extensions do not seem appropriate for the development of real
deductive database applications. It does not provide complete programming language
capabilities such as control structures, main memory variables, procedure calls and side
effects, interaction with the user. It is also more query oriented than application oriented.
RDL/C extends Datalog with the support for these programming features However, the
underlying data model stays relational.

The RDL/C compiler accepts a source program and produces as output, a C program which
implements the rule program. The DBMS does not require any inferencing capabilities to process the
program. The C program contains code to implement each rule and includes the inference engine
which fires rules until a fixpoint is reached. All data remains in the DBMS during the inference
process. This is because rules are based on relational calculus and can thus be solved ‘by the DBMS.




3. Data Model
3.1. Abstract Data Types

The support of Abstract Data Types (ADT) provides a rich typing capability for relational
database systems. An ADT is a type described by its operational semantics, i.e., by a set of
operations which can be performed on the instances of that type. For example, the type Stack is
described by the push, pop and top operations and not by the data structure that implements a stack.
Types in languages like Pascal and C are described structurally.

The ADT capability is supported by User-Defined Data Types (UDT) and User-Defined Functions
(UDF). UDTs generalize the notion of domain in the relational model. Thus, a domain is defined
either as a basic data type (real, integer, boolean, string) or as a user-defined data type built from
basic data types and type constructors that depend on the UDT implementation language. Previously
defined UDTs can be used in turn to build new data types. From the input languages (extended SQL
and RDL/C), an ADT is viewed as a set of (user-defined) functions, the UDF, that operate on in-
stances of the defined type.

The UDT/UDF implementation language supported by the system is LISP [Sabrina2]. From the user
point of view, LISP creates and manipulates complex hierarchical structures required by
applications. An interpreted environment protects the DBMS from abnormal termination in case of

programming errors.

3.2. User-defined Data Types

A UDT is specified using a functional notation. The name of the data type is also the name of a
Boolean function that evaluates to True if its parameter qualifies as an instance of the defined type.
UDTs can be recﬁrsively defined using basic data types and existing UDT. Furthermore, UDT are
described in a ISA hierarchy capturing the usual notion of type inheritance. Thus, UDT operators
can be inherited along the hierarchy. The extension of the set of basic types together with the UDTs

form the set of domains from which tuples and relations can be built.

The specification of a new type requires the use of the dd primitive. It specifies the name of a super-
type if it is a specialization of another type. The type specification is the code used to check
whether a datum is an instance of the type A UDT type specification is a LISP function that returns

either a True or a Nil value. Its syntax is:
(dd <super-type name>:<type name>
(<type specification>))

Examples :

The "set” domain can be defined as follows:




(dd #:t:set (x)

(cond
((null x) t)
((member (car x) (cdr x)) nil)
(t (apply '#:t:set (cdr x)))))

The support for UDT are the basic DBMS domains which are integers, real numbers and text strings.
Text strings are used to support complex data structures as well as plain text. The domain "point” can
be defined as follows:
(dd #:t:point (x)
(and

(numberp (car x))

(nurberp (car (cdr x)))

(null (cdr (cdr x)))))

The domain "listofPoints" is defined as below:
(dd #:t:listofPoints (x)
(cond

((null x) t)

({and
(#:t:point (car x))
(apply '#:t:listeDePoints (cdr x)) t)

(t nil)))

The domain "polygon" is defined as a specialization of "listofPoints":
(dd #:t:listofPoints:polygon (x)
(and (apply ':listofPoints x)
(equalPoint (car x) (last x))))

Then, a new relation called "map" can be created with a reference to this domain:
CREATE TABLE map (mapid integer, contour polygon, ...)

3.3. User-defined Functions

User-defined functions (UDF) are built from a library of primitive functions. These include standard
LISP functions and window management functions (a C package) which allow the user to implement
graphics and user interaction. The specification of a new function over UDT requires the use of the de
primitive. It specifies the name of the function, the type of its arguments, and the type of its result.

The syntax of the command is:
(de <function-name> (parj, ...parp)

<function-body>)
Examples :
One could define the function card which returns the cardinality of a set :

(Ge #: (#:set) :card (x)
{cond



((null x)0)
(t (+ 1 (:card (cdr x))))))

The functions are inherited from a type to its subtypes. A UDF can also be redefined on a subtype
(overloading). For instance, the surface function defined on polygon can be redefined for triangle.
Function selection is done according to the type of all the arguments of the function. The function
selection mechanism can be operationally defined as follows:
F (P1, .., Pn)
where
F is a function name, and
each Pi is either
- a constant,
- an attribute,
- a function
and is of type Ti

Function selection considers all parameters (multi-targetting):
F (Ti, .., Tn)
where
each Ti is a path name in the hierarchy.

The problem with multi-targetting is insuring that only one function qualifies the selection
mechanism. This problem is resolved operationally by varying i+1 faster than i. The following

example illustrates the mechanism.

Select a function for the following expression :
F{p, Q)

where both p and q are of type #:A:B:C. If there is one function defined as #:(#:A #:A):F, the system

will find it by going through the hierarchy as can be seen below.
#: (#:A:B:C #:A:B:C):F

#: (#:A:B:C #:A:B:):F
#: (#:A:B:C #:A:):F
#: (#:A:B: #:A:B:C):F
#: (#:A:B #:A:B:):F
#: (#:A:B #:A):F

#: (#:A #:A:B:C):F

#: (#:A #:A:B):F

#: (#:A #:2):F

3.4. Access to the Lisp Environment

The LISP environment is reachable from the SQL environment. To define new complex domains or
new functions, the user types the LISP command. Then the prompt ? is displayed on the screen. The
user can define and test his operators under the LISP environment. After this definition phase, the

new domains can be stored into the DBMS using the following command :
(save <function name> <result type>)




Examples :
(save #:t:listofPoints:polygon )

stores the complex domain polygon
(save #: (#:t:listofPoints:polygon ) :surface r)

stores the definition of user defined function surface. The type of the result is r meaning real.

3.4.1. Example of a working session.

The following example illustrates the steps a user would go through to define the ADT function
CARDinality for polygons. The cardinality is the number of points in the polygon. The '>'
character is the SQL: prompt character which indicates that the system is ready to accept SQL
statements. The LISP command is an SQL command which puts the user in the ADT definition
environment. The '?' is the LISP prompt character which indicates that the interpreter is ready to
process ADT definitions. What follows the '=' character is the interpreters response to the user's

input.
> select *
> fram rectangles ;

> lisp;
*** SABRTNA-LISP (exit with END)
?

? (de #: (#:t:listofPoints:polygon) :card (x)

? (cond
? ((null x) 0)
? (t (addl (#: (#:t:listofPoints:polygon) :card (cdr )N

= #: (#:t:1listofPoints:polygon) :card

? (#: (#:t:1listofPoints:polygon) :card '((4 5) (4 55) (45 55) (4 5)))
=4
(save #: (#:t:listofPoints:polygon):card integer)

«J

#: (#:t:listofPoints:polygon) :card
? end

>
> select r.*, card (sides)
> from rectangles as r;

The de function allows to define new ADT functions. The Card ADT is defined for polygons. The
interpreter responds by accepting the definition of the function simply by returning its name. Then,
the user tests the Card function on sample data. The card function returns the value 4 after having
evaluated the sample data. Then, the definition is saved in the DBMS using the Save function. The
result type of the card function is specified as the last argument to the Save function. Card returns an

integer result. End signals the end of the ADT definition cycle. The user returns to SQL and can



immediately test the Card operator in an SQL select statement. This SQL statement selects all

tuples in the Rectangles relation and calculates the cardinality of the sides attribute for all tuples.

3.5. Using ADT in SQL Statements

3.5.1. Complex Object Creation

The relational DBMS implements an SQL interface which is based on the SQL norm. The language
has been extended to manipulate ADT. SQL++ is the name of this extended language interface
[Sabrina2]. The database administrator extends the DBMS by defining new ADT which are then
made available for use in the external language. In this section, the various extensions brought to
SQL to include ADT are considered.

Relations are created using the CREATE TABLE command. For example, the RECTANGLES

relation is created in the following:
CREATE TABLE RECTANGLES  (

R# integer,
COLOR text,
SIDES polygon) ;

This relation contains three attributes where the first two are of standard domains and the last one
is a complex domain. The SIDES attribute takes its values from the polygon domain which has been
defined in the previous section. Once the rectangles relation has been created, values may be

inserted into the relation using the INSERT command. For example,
INSERT INTO RECTANGLES VALUES (1, BLEU, ((4 5) (4 55) (45 55) (4 5))) ;

When new values are inserted into relations, the ADT function which implements domain integrity
constraints validation are run over the new values to determine if the values qualify as occurrences
of the domain. The same check applies when ADT values are updated. Here, the value ((4 5)...)
qualifies as an occurrence of the polygon domain. Note that the system does not implement object
identity. However, it could be possible to identify complex objects within the validation function;

that would make possible referential sharing among complex objects (i.e., complex domain values).

3.5.2. Complex Object Selection

A ADT function can be used in any clause of a relational expression (projection, restriction,
aggregation, sort) and is applicable to one or more attributes. A ADT function F applied to a number
n of arguments is written as F(P1..Pn). The parameters Pi can be constants, attributes or ADT
functions applied to other parameters. The F function will be selected according to all the
parameter types. Functions may also appear according to their complete name (as in their
declaration) and thereby bypassing the inheritance based selection mechanism. The following

examples demonstrate the various possibilities:




Example 1: A ADT function appears in the projection clause. The query selects all attributes in the

relation in addition to the surface value of the sides attribute.
SELECT *, SURFACE (SIDES)
FROM RECTANGLES ;

Example 2 : ADT functions are used in a restriction clause. This query selects those rectangles with a

height greater than their width.

SELECT *
FROM RECTANGLES
WHERE HEIGHT (SIDES) > WIDTH (SIDES) ;

Example 3 : A ADT function is used in a join expression. This query selects rectangles with different
surface values and displays the greatest of the two values.

SELECT *, BIG (R1.SIDES, R2.SIDES)

FROM RECTANGLES AS Rl, RECTANGLES AS R2

WHERE SURFACE (R1.SIDES) <> SURFACE (R2,SIDES) ;

Example 4 : A ADT function is used to sort a relation. This query sorts the tuples of the Rectangles

relation in ascending order of cardinality of the sides attribute.
SELECT R.NR, CARD (SIDES)
FROM RECTANGLES AS R
ORDER 2 ASC;

10



4. Overview of the Language

RDL/C is derived from RDL1 [Maindreville88, Kiernan90], a production rule language which has
been integrated in the Sabrina RDBMS [Sabrinall. The RDL/C language supports declarative
programming based on RDL1 and procedural programming based on C code. In this section, we present
an overview of the language through some examples. The complete syntax and semantics of RDL/C

are detailed in the next section.

4.1. Illustrative Examples

The purpose of these examples is to show the main features of the language: The ability to query a
database, the declaration of an intentional database through production rules, the integration of C

statements which manipulate main memory variables, and the interaction with the user. Let us

consider a base relation Person having for schema Person (name char, age integer).

The first rule program inserts into the deduced relation Same-Age all the Persons who are have the

same age : o
MODULE MO ;
BASE
Person (name char, age integer);
DEDUCED
Same Age (namel char, name2 char) ;
RULES
rl is
IF Person(x) and Person(y) (x.age = y.age)
THEN + Same_Age (namel = xX.name, name2 = y.name) ;
END MODULE

The following rule program asks the user to enter a value for the C-variable age and then, fires the
rule r1 using the current value of age. This illustrates the use of main memory variables in rules and

interaction with the user.

MODULE M1 ;
BASE’

Person (name char, age integer);
DEDUCED

OldPerson like Person;
VAR

integer age;
RULES
rl is

IF Person(x) ( x.age >= age)

THEN + OldPerson (x) ;

INIT
. {scanf ("%d", age);)

END MODULE

Let us consider the slightly modified module :

MODULE M2 ;
BASE
Person (name char, age integer);
DEDUCED
OldPerson like Person;
VAR
integer age;
RULES

11



rl is
{scanf ("%d", age);)
IF Person(x) ( x.age >= age)
THEN + OldPerson (x) ;
{printf ("Successful firing with ¥d\n", age) ;}

END MODULE

This module asks the user an initial value for the C variable age. If the firing of r1 is successful, (i.e,
the relation OldPerson has been modified) the program prints a message.

4.2. The Kernel Language
4.21. The syntax

The rule part of an RDL/C program is composed of a set of if-then rules. The IF part of a rule is a
tuple relational calculus expression. The syntax of this part is very close to the syntax of a WHERE
clause in the SQL language. The THEN part of a rule is a set of actions that are either insertions,
deletions or updates of tuples in relations. Arguments in this action part are very close to the
SELECT clause of an SQL statement.

Examples :

Let Person and Worker, be two relations having the same schema (id : integer, name : char, age :

integer)

The following expressions are valid LHS of rules :
Person (x) Person(x) and Worker (y)
Person(x) (x.age > 20) Exist x in Person
Person(x) (Foreach y in Person (y.age > 20))
Person(x) and Worker(y) ( x.id = y.id)
Foreach x in Person (x.age + 1 > 20)

The following expressions are not valid LHS of rules :
Person (x) and Worker (x)
Person(x) ( Exist x in Person)
Person(x) and Worker(y) ( x =y)
Person(x) ( Foreach x in Person x.age > 20)

The Right-Hand Side (RHS) of a production supports two elementary actions, denoted "+" and "-".
The update action "+" takes a set of facts and maps a database state into another state which
contains these facts. On the contrary, the action "-" takes a set of facts and deletes it from a relation.

A multiple action consists in a sequence of actions.
Examples :

The following expressions are valid RHS of rules :

+Person (x) -Person (x)
+Person(x) + Person (x) +Person (x) - Person (x)
+Person(id = 4) +Person(id = x.number)

12




+Person(id = x.nunber, name = y.name, age = 20)
+Person(x) + Person(y) — Worker(x)

+Person(id = 4, name = 'Smith', age = 20)
-Person(id = 4, age = 20, name = 'Smith')

The following expressions are not valid RHS of rules :
+ Person(2) - Person(x,2)
+ Person(x, name = 'Smith') - Person(4, 'Smith', 20)

Following is a set of valid rules :

Examples : .
If Person(x) then + Worker(x) ; If Person(x) then - Worker(x) ;
If Person(x) ( x.id = 4) then + Worker(x) ; If Person(x) then + Person(x) ;
If Person(x) then + Person(x) -Person(id= x.id, name= x.name, age= x.age +1);
If 1 =1 then + Worker( id = 4, name = 'Smith', age = 20)

42,2, The semantics

The semantics adopted for the RDL/C language is a set oriented one: When a formula is evaluated
against the database, it returns the set of instances which make the formula valid. When an action
is executed against the database, it is executed for all the values which appear as arguments in the

action. In the following, we present examples of rule execution.
Let us consider the following rules :

The firing of this rule leads to insert into the relation Worker the contents of the relation Person.
if Person(x) then + Worker(x) ;

The firing of this rule leads to delete from the relation R 1, the contents of the relation Person.
if Person(x) then - R1(x) ;

The firing of this rule leads to a null action.
if Person(x) then - R1(x) + Rl(x) ;

The firing of this rule
if Person(x) and Rl(y) and x.attl = 10 and x.att2 = y.att2

then +Ql1(attl = x.attl, att2 = y.attl) - Rl{y) :

leads to insert into the relation Q1 the following set of tuples :
I = {x.attl, y.att2/Person(x) and Rl{y) and x.attl = 10 and x.att2 = y.att2 }

and to delete from R1 the set
D= {x/Person(x) and Rl(y) and x.attl = 10 and x.att2 = y.att2)

A rule is firable if its condition part evaluates to True in the current database state for a particular

instantiation of the free variables in the condition, and if firing it modifies the current state. Firing

13




a rule consists in modifying the current database state using the action part of the rule. More
precisely, the firing operation is done as follows. First, a relational query that corresponds to the
condition part of the rule is run. This query returns a result relation whose schema is given by the set
of free variables in the condition part. Thus, a rule is firable whenever the query returns a non-
empty result. Second, a temporary relation is built for each action encountered in the action part of
the rule. It is obtained by a projection over the query result on the arguments of the action. This
temporary relation is either added to or deleted from the current instance of the relation appearing

in the rule.
The semantics of a rule program is then described by the following procedure ;
While a firable rule exist, do fire a rule;

The execution of a program describes a state transition diagram over database instances. A database
instance is reached from a current one by firing a rule chosen at random among the set of firable rules

in the current instance. Program execution terminates when no rule is firable.

4.3. Programming Constructs

A RDL/C program is composed of a set of rules as defined in the previous section. Programming
constructs are added to this kernel language. These programming constructs structure programs into
modules, control the execution ordering among rules, allow C main memory variables and procedural

side-effects. This section presents each of these programming constructs.

4.3.1. Structuring an RDL program

The rule module is the compilation unit of the language. Its input and output interfaces are a set of
base or deduced relations. The notion of module is very similar to the notion of rule set in rule-based
systems. With rule sets, modular knowledge bases can be designed and the possible connection
between different rule programs can be defined. Input relations are declared using the INPUT
<RelationName>, ..., statement. Output relations are declared with a similar statement. The
output relations are the result of a rule program execution and can be used by another rule program.

Base and deduced relations are declared in the same way.

4.3.2.  Partial ordering of rules

Knowledge bases need to be structured to be usable. Furthermore, the mixing of declarative reasoning
and imperative control has been shown necessary for many applications. The RDL/C language
allows two kinds of procedural aspects: The first one is the possibility of exchanging parameters
between rule programs and C programs. The second is the possibility of specifying an explicit control
over the rules. Standard control structures such as sequences and iterations can be specified with the
formalism we have chosen. This formalism clarifies the control which would be otherwise spread

into the rules.

14



The control sub-language specifies an application mode over the rules. It induces a partial ordering
over the rules. Each expression of the sub-language is declared in the module. The basic terms of this

language are rule names. A general expression exp in this language is :
block (exp) means that exp has to be fired until a fixpoint is reached.

seq (expl,exp2 ) means that expl is fired once and then exp2 is fired once.

If a rule does not belong to the control language, its firing is chosen at random by the inference engine.
If there is no CONTROL section, the rule interpreter applies a default strategy. If r1,r2,.., m are the
rules declared in a module, the default strategy is given by : block {r1, r2, ... ,rn} mixed with a

possible partial ordering due to the stratification.
Examples
Let us consider a rule program {r1, r2, r3, r4, r5}.

seq (r1, block (r2, r3, r4), r5) is a possible expression. It enforces a computation of the form : (r1)3
((r2)*(r3)*(r4)*)9(r5)2 using standard notation for context-free grammars. The notation ()% stands

for "fire up to saturation” and a is equal to1or0.
Let us consider a rule program {r1, r2, r3}.
block ( seq (r1 r2 r3))enforces a computation of the form : ((r1)3(r2)3(r3)3)0 ¢

"~ 433. Main memory variables

C variables can be declared in a module. These variables are local to the module. C variables
ranging over database domains can appear in a rule and are materialized as constants before firing a
rule. The RDL/C inference engine is aware of these main memory variables and includes them in the
semantics of rule firing. This means that the behaviour of these variables is similar to the
behaviour of relations. Updates to variables referenced in a rule make the rule a candidate for
firing. Variables are often used to pass parameters between rules or to communicate with the user
environment. Variables used in the rule section can be simulated by a relation with a single

attribute. This relation would always contain one tuple since variables are mono-valued.
Example :

Let us consider the following rule module :

MODULE M1 ;
BASE

Person (name char, age integer);
DEDUCED

OldPerson like Person;
VAR

integer age;
RULES
rl is

IF Person(x) (x.age >= age)
THEN + OldPerson (x) ;

15




INIT
{scanf ("%d", age);)}
END MODULE

A C variable named age is declared in this module. It is used in rule r1 as a relation containing one
tuple which is the value of the variable. This variable is initialized in the init section which is

computed before the execution of the rule part of the module

4.3.4. Basic Structure of a Module

The general syntax of an RDL/C module is the following one :
MODULE <Module name> ;
[INPUT <RelationName>,...;]
[BASE <RelationName>,...;]
[DEDUCED <RelationName>,...;]
[OUTPUT <RelationName>,...;]

[VAR ...;]
[REPORT
<report specs> )
RULES
<RuleNamel> is
{C code}
IF <Conditions> THEN <Actions> ;
{C code}
<RuleNameN> is
{C code}
IF <Conditions> THEN <Actions> ;
{C code}
[CONTROL: ...]
[INIT
{C code} ]
[WRAPUP
{C code} ]
END MCODULE

After the relation declaration sections, C variables can be declared in the optional VAR section.
These variables are local to the module. Their use is detailed in the following section. An optional
REPORT section is used to display the results of program execution. A library of C procedures can be
called in this section. These procedures take for parameters all attributes in the schema of a relation
or a format parameter to display the contents of a relation. The REPORT section is executed at the

end of the program. This section is followed by the RULE section.

The RULE section is a sequence of rules. Each rule is preceded by a "<RuleName> is " statement. A
rule in RDL/C is preceded by an optional C statement. A C statement can be a compound C statement
and hence include more that one statement. This statement is executed just before firing the rule.
Then, the rule is declared and is optionally followed by C statements. This C code is executed if

firing the rule has modified the database or main memory variables.

16



An optional'control section can be declared. As described in a previous section, it consists of the string
that describes an explicit ordering among rules. After the control section, Initialization statements
can be used. These statements are written in C and are executed at the beginning of program ex-
ecution. Wrap-up statements can also be given. These statements are written in C and are executed at

the end of program execution.

4.3.5. Interfacing RDL with C

As described in the previous section, an RDL/C program includes two different languages: A
production rule language where conditions and actions range over database relations and the C
language which manipulates main memory variables. In this section, we describe the communication
between these two languages. We also detail the effect of embedded procedural statements on the

semantics of the language.

C programs to RDL/C programs:

The RDL/C compiler produces either procedures or programs. Procedures can be linked to any C
program. Programs generated by the compiler are immediately executable over the database. For
procedures generated by the compiler, the procedure parameters are given by the INPUT section
declared in the module. The procedure result is given by the OUPTUT section also declared in the
module.

RDL/C programs to C programs:

As described in the previous section, an RDL/C program can include C statements. C variables
declared in the VAR section are local to the module. C variables ranging over database domains can
appear in a rule and are materialized as constants before firing a rule. The RDL/C inference engine
is aware of these main memory variables and includes them in the semantics of rule firing. Updates
to variables referenced in a rule make the rule a candidate for firing. Variables are often used to
pass parameters between rules or to communicate with the user environment. Variables used in the
rule section can be simulated by a relation with a single attribute. This relation would always
contain one tuple since variables are mono-valued. Special C statements might be used in a rule. The
C code preceding the definition of the rule is executed just before firing the rule. The C code
appearing after the definition of the rule is executed if firing the rule has been successful (i.e. it has’

lead to modify the database state) .

The following figures outline the possible communication between the RDL language and the C

language :

17




l RDL MODULE

RDL MODULE

C program

DATA BASE

[ ——

Figure 4.3 : Communication between C and RDL

4 )

C procedured
RDL Module

DATA BASE

[ e ———

Figure 4.4 : Communication between RDL and C

18



5. The Language
5.1. Introduction

This section outlines each aspect of a rule module. It is intended for the RDL/C programmer. The
compiler is case sensitive. However, key words may appear either in all capital letters or all in
lower case letters. The list of key words are given in the following section. A word cannot have a

double meaning in RDL/C. That is, no word can be used in two contexts.

5.2. Basic Elements of the language

52.1. Key Words

if IF then THEN thenonce THENONCE
module MODULE deduced DEDUCED base BASE
input INPUT output QUTPUT end END
like LIKE and AND or OR

not NOT mod MDD div DIV
user "~ USER use USE between BETWEEN
is IS null NULL like LIKE
escape ESCAPE exists EXISTS foreach FOREACH
in IN true TRUE integer INTEGER
entier ENTIER real REAL reel REEL
char CHAR texte TEXTE control CONTROL
block BLOCK seq SEQ report REPORT
on ON header HEADER format FORMAT
title TITLE linesppage LINESPPAGE rules RULES
var VAR init INIT wrapup WRAPUP
include INCLUDE extemn EXTERN

5.2.2. Key Symbols
= < <= < > >=
>> + + - *
( ) { ]

.
’ 14

~

5.2.3. Identifiers

Valid identifiers are symbols which are not key words and are at least two characters in length. An
identifier must start with a letter and can include letters, digits, underscores or dashes. The

following are valid identifiers:
rl repl myRule Start Module Finish Module  Break 22-23

5.24. Separators
Separators are used to isolate terms in a module. Valid separators are white spaces, tabulations,

and new lines.

19



5.2.5. Domains

Each attribute in the schema of a relation takes its values from a particular domain. In this sense,
the domain of an attribute is the type of values that can appear in that column. Standard relational
systems support a limited set of domains. These include Integers, Reals and Text Strings. In the
relational model that we are using, the notion of domain has been extended to include Abstract Data
Types (ADT). ADT are user-defined domains. The user implements the domains which qualify his
particular application. In the example we are using (the Geographic Database), the Polygon
domain is an ADT. The polygon domain is used to model the geometric quality of geographic data.

Valid domains are the key words

integer real char
INTEGER REAL CHAR
entier reel - texte
ENTIER REET, TEXTE

ADT domains can also appear in the body of RDL/C modules. They are a path starting at a root
domain to a terminal domain name. The inheritance mechanism uses these paths when selecting
functions. Root domains are the basic domain types: integer, real, and char. These are represented
respectively by the sets of letters (eE}, {rR) and {tT}. A sequence of identifiers, each separated by a

colon determine the remainder of the path. The following definitions are valid domains:
t:polygon t:polygon: rectangle t:polygon: square
e:positiveNumber e:positiveNumber:oneToTen r:positiveNurber

Each ADT domain appearing in a module should be known to the DBMS. For example, the t:polygon
domain defines the generic type for polygons.

5.2.6. Terms

5.2.6.1. Constants

Integers

Integers are a sequence of digits (0 to 9), optionally preceded by a minus (-) sign. Valid integers are:
1 12 123 -45

Real Numbers

Real numbers are a sequence of digits (0 to 9), optionally preceded by a minus (-) sign, followed by a

dot (.) and followed by a sequence of digits (0 to 9). Valid real numbers are:
1.0 1.1 1.11 22.999999 -24.0

Text Strings

20



Text strings are a sequence of characters délimited at each extremity by a quote (') character. Text

strings cannot continue on more than one line. Valid text strings are the following:
My String' 12345 'This is a string'

C Text Strings

C text strings appear in a module mostly in C statements but not in the body of pure RDL/C rules. A C

string is contained between double quotes. The following are valid C strings:
"aString"” "“a long string"

Type Casting

It is possible to force the type of a constant to a different type than the one that is assumed by the
analyzer. This is particularly useful in the case of ADT. The casting follows the constant. The
domain to which the constant is to be set if contained in square brackets. However, the base type of
the constant must be compatible with the root of the ADT. That is, a text constant can be casted to an
ADT whose root is 't’; an integer constant can be casted to an ADT whose root is 'e' and a real constant

can be casted to an ADT whose root is 'r'. The following are valid examples of type casted constants.
4 [e:positiveNumber] '(3 4)' [t:point] 4.0 [r:positiveNumber]

5.2.6.2.  Attributes

Attributes refer to the names of columns of relations. Relations are denoted by range variables in
rules. A range variable is a letter of the alphabet. Each range variable is initialized to a
particular relation in the left hand side (LHS or IF part) of a rule. For example, the LHS IF
EMPLOYEE(x) defines the range variable x over the EMPLOYEE relation. Attributes can then
appear in the body of a rule, preceded by the range variable indicating to which relation the
attribute is referring. The type of an attribute is taken from the schema of the relation in which it

appears. The following are valid attribute expressions:
X.NAME X.SALARY '

5.2.6.3. Functions

Functions are Abstract Data Type (ADT) operators which can appear in the body of rules. See
section 3 for more informations about ADT facilities. A function F takes one or many parameters
which appear between parenthesis after the function name. Function parameters (P1, ..., Pn) are any
valid expression. Parameters can thus include constants, attributes or other function calls.
F (P1l, .., Pn)
where
F is a function name, and
each Pi is either
- a constant,
- an attribute,

- a function

21



and is of type Ti

Function selection considers all parameters (multi-targetting):
F (Ti, ., Tn)
where
each Ti is a path name in the hierarchy.

Since function selection is done at run-time by the DBMS system, it is impossible to determinc at
compile time, the domain type of the function result. Hence, functions are considered as type-less by
fhe compiler. So certain type errors will not be detected by the compiler and will only be detected at
run-time. However, run-time type-error detection code is produced by the compiler to detect such

spe errors at run time. The following «re examples of valid function calls.
Luulaze ("((3 4)(5 8)(6 7) (5 )" [t:polygon])
union (x.set, y.set)

union (x.set, intersection (x.set, y.set))

5.2.6.4. Variables

Variables can be declared in the variable section of a rule program and can appear in the body of
rules. Variables are typed by domains which are either simple domains or ADT. Variables are
either single letters or identifiers. Essentially, all variables are scalars and can assume only one

value at a time. Valid variable names are the following:
i MyVar id21

5.2.7. Relations

The relations involved in a rule program are referenced by:
identifier.identifier

The first identifiqr is the name of a database and the second one is the name of the relation. The
database name is optional. If it is not given, the login name is assumed for the database name. The

following are valid relation names:
SYS.EMPLOYEE SYS.SUPPLIERS PARIS . INHABITANTS EMPIOYEES

5.2.8. CCode

C code is C programming language source code which appears in a module. C code is one line of C
source code which starts with the character ({) includes any character except a new line and ends
with the character (}). Although C code cannot cross over new lines, this limitation has been

overcome by allowing sequences of C code over several lines. Two valid units of C code follow:
{i++7}
{i++; if (1 > 25) {procl(); proc2();}}

5.2.9. Comments

22



Comments can appear anywhere in a module after the sequence (>>) up to the end of a line. Valid

comments are the following:
' >> This is a comment

rl is >> This is another camment
5.2.10. Expressions

Expressions are built from terms. Terms have been described in the previous section and are
constants, attributes and functions. Complex expressions are essentially built from numeric terms.
Expressions are combined with the basic arithmetic operators +, -, *, /, MOD, and DIV. Parenthesis‘
can be used to alter the priority of an operator. The type of an expression is determined from its
subekpressions. Integers yield integers with the exception of the / operator. Integers and reals, or
reals yield real results. Expressions of type text cannot be used with the basic arithmetic operators.
Types of expressions with ADT are calculated using the ADT's root type. Types of expressions with
functions become unknown and are labelled NO_TYPE and cannot be checked at compile time. The

following are valid expressions:

3 3.0 'a string’
3+ 3 3-4 3 + func (4)
X.card x.card DIV S x.card + 3 - func (x.a2)

5.3. The Production Rule

The production rule is the basic semantic unit of a module. An RDL/C program is composed of a set of
if-then rules. The IF part of a rule (also called condition part) is a tuple relational calculus
expression which may include main memory variables. The THEN part of a rule (also called action
part) is a set of actions that are either insertions or deletions in a relation, variable assignments or
procedural side-effects. A range restricted condition imposes that all the range variables that

appear in the action part also appear positively in the condition part of the rule.

The semantics adopted for the language mixes non-deterministic and deterministic aspects. Non-
determinism is in the arbitrary choice of a rule to fire at each step of program execution. De-
terminism is in set-oriented rules as opposed to instance-oriented rules. A rule is firable if its
condition part evaluates to True in the current database state for a particular instantiation of the
free variables of the condition, and if firing it modifies the current state. Firing a rule consists in
modifying the current database state using the action part of the rule. More precisely, the firing
operation is done as follows. First, a relational query that corresponds to the condition part of the
rule is run. This query returns a result relation whose schema is given by the set of free variables of
the condition part. Thus, a rule is firable whenever the query returns a non-empty result. Second,
with each action (an insert, or a deletion) is built a relation, obtained by a projection over the query
result on the arguments of the action. Theses relations are added or deleted to the relations figuring

in the actions.

23




The execution of a program describes a state transition diagram over database instances. A database
instance is reached from a current one by firing a rule among the set of firable rules in the current in-

stance. A program execution terminates when no more rules are firable.
5.3.1. The IF Part

The IF or condition part of a rule contains two parts. The first part declares the range variables
which will appear in the condition part of the rule. The second part is the condition itself. The
condition is a tuple relational calculus expression which qualifies the tuples which will participate

in the rule's firing.

2.3.1.1.  Declaring Range Variables

At least one range variable must be declared in the if part of a rule. However, a range variable can
appear in a quantified formula (FOREACH or EXISTS). Range variables are variables which

designate virtual relations over the database. For example, the declaration:
SYS.EMPLOYEE (x)

will create one range variable called x over relation SYS.EMPLOYEE. The following declaration

will create two variables called x and y over the relation SYS.EMPLOYEE:
SYS.EMPLOYEE (x) and SYS.EMPLOYEE (y)

Each variable corresponds to a virtual image of the SYS.EMPLOYEE relation.

5.3.1.2. The Condition

The condition in a rule specifies a logical condition that the tuples must satisfy in order to fire the
rule. The syntax of a condition in the RDL/C language is very close to the WHERE part of a SQL
statement. A rule condition is composed of a set of logical conditions connected with the logical
comparators AND, OR, NOT.

The Simple Condition

Comparing Scalars

This specifies a condition between two scalars. This condition returns TRUE, FALSE or
UNDEFINED.

Let us consider x as a range variable declared over the relation SYS.EMPLOYEE.
x.ID = 10

is a simple comparison between the attribute ID and the numeric constant 10, Other valid

comparisons are :
X.NAME = 'TCM'
x.ID + 10.0 < 100

24



2 =2
varl + 1 = var2

where varl and var2 are numeric C variables
x.ID = NB

where NB is a C integer
X.NAME < 'TQM'

length (x.GEQM) < 10.0

where length is a user defined function over the GEOM domain and returning a real or an integer.

More generally, a condition between two scalars follows the syntax :
expressionl RELOP expression2

where RELOP is a logical comparator chosen from the set {=, <>, <, >, <=, >=}. Expression1 and
expression2 have to belong to the same type or must have compatible types such as for instance

integer and real. ADT are evaluated to their basic types.

Testing for Intervals

This condition allows to test if a scalar belongs to an interval.
x.ID BETWEEN 100 AND 500

tests if x.ID belongs to the interval [100, 500].

More generally, the syntax is :
expressionl BETWEEN expression2 AND expression3

Testing for Nulls

This condition allows to test if a scalar has the NULL value, (unknown value).
x.ID IS NULL

tests if x.ID is a NULL value.
x.ID IS NOT NULL

tests if x.ID is not a NULL value.

The general syntax is :
expression IS [NOT] NULL

Text processing

It is possible to compare a textual scalar value to a pattern. For instance,
X.NAME .LIKE '$ET'

returns TRUE if x NAME is a string which terminates by the substring 'ET'.

25



X.NAME LIKE'3ET%'

returns TRUE if x NAME is a string which includes the substring 'ET.
X.NAME LIKE'-ET-'

returns TRUE if xNAME is a string which has exactly four characters and the second character is 'E'

and the third character is 'T'.
X.NAME LIKE'\[2]-ET-\[3]"'

returns TRUE if xNAME is a string which has exactly seven characters and whose third character

is 'E' and whose fourth character is 'T".
x.NAME LIKE'\[*]E\[*]T'

returns TRUE if x NAME is a string which has 0 or n 'E' at the beginning and then 0 or n 'T' at the end

of the string.
X.NAME LIKE'\[*]E\[*]z[' ESCAPE z

returns TRUE if xNAME is a string which has 0 or n 'E' at the beginning and then 0 or n [’ at the end
of the string. The escape character is used to qualify a control character as its character value.

The general syntax is :
expression [NOT] LIKE 'pattern' [ESCAPE 'character')

Quantified Formulae

Quantified formulae are allowed in the condition part of a rule. The two usual quantifiers EXISTS
and FOREACH are used.

For instance :
EXISTS x IN SYS.EMPLOYEE

returns true if the relation is not empty
EXISTS x IN SYS.EMPLOYEE(x.ID + 1 = 200)

returns true if there exists a tuple x in SYS.EMPLOYEE whose attribute ID is equal to 199.
EXISTS x IN SYS.EMPLOYEEl, EXISTS y IN SYS.EMPLOYEE2 (x.ID = y.ID)

returns true if there exist a tuple x in SYS.EMPLOYEE], a tuple y in SYS.EMPLOYEE2 such that x.ID

= y.ID.
FOREACH x IN SYS.EMPLOYEE (x.ID <> 1000)

returns true if all the tuples of the relation have their ID attribute different from the value 1000.

Free variables may occur in quantified formulae:
SYS.EMPLOYEE (x) (EXISTS y IN SYS.EMPLOYEE (x.ID = y.ID))

is a valid LHS of the RDL/C language.

26



The general syntax of a quantified formula follows.
(01 x1 INRl, ..., On IN Rn ( condition))

where Qi is the EXISTS or FOREACH quantifier, and each Ri is a relation.
Predicate Expressions

The Predicate Expression is a special form of Abstract Data Type. It is a function call that can only
appear in the condition of a rule and whose result is a boolean value. Predicate functions appear

after the key word PRED. For example, the INCLUDES predicate tests for the inclusion of a point in

a polygon.
PRED INCLUDES (! (10 10)* [T:POLY]), x.GEQM)

5.3.1.3. _Examples of Conditions

In the following‘, we give examples of valid LHS of RDL/C rules. A condition immediately follows
the declaration part of a rule.

¢ SYS.EMPLOYEE (x)

+ EXISTS x IN SYS.EMPLOYEE

+ (NOT EXISTS x IN SYS.EMPLOYEE)

+ SYS.EVPLOYEE(x) (x.ID = 100 or x.SAL > 1000)

* SYS.EMPLOYEE(x) ((x.SAL > 1000 and x.SAL < 2000) and (foreach y in SYS.DFPT
(y.ID < x.ID))) '

+ SYS.EMPLOYEE (x) and SYS.EMPLOYEE (y) (x.ID > y.ID)
5.3.2. The THEN Part

The THEN part of a rule specifies the actions to perform if the rule is fired.

5.3.2.1. The Action

Insertions

An insertion adds a set of tuples in a relation. Duplicates are deleted. The argument of an insertion is
an expression similar to the SQL projection clause. The name of the attribute has to be given in the

argument. The ordering is not relevant.

Add to the contents of a relation

Let us consider a relation P1 having for schema: P1 (Al integer, A2 integer, A3 char)
+ Pl(x)

inserts into the relation P1 the tuples specified by the x variable ranging over a relation having the

same schema as P1.
+ P1(Al =1, A2 = 2, A3 = ‘A'")

27




inserts the tuple (1, 2, 'A’) in relation P1.

As the ordering is not relevant, this insertion is equivalent to
+P1(A2 =2, Al =1, A3 = 'A')

Constants and variables may appear in an action (varl is a C integer):
+ PL(Al = x.ID, A2 = 2, A3 = x.NAME)

+ P1(Al = x.ID, A2 = varl, A3 = y.NAME)

Numeric expressions and functions are allowed in the action part:
+ Pl (Al = f(x.ID) + 2, A2 = (x.ID + 4) * 4, A3 = Y.NAME)

Partial schema are allowed. The missing attributes are considered as NULL values:
+Pl (Al =1, A3 = 'A")

is a valid insertion and inserts the tuple (1, NULL, 'A") in the relation P1. (Note: Partial schemas

are not implemented in this version; all attributes must be given)

The general syntax of an insertion is :
+ Rl (%)

where x is a range variable over a relation Q1 having same schema as R1, or
+Rl (Al =tl, ..., An = tn)

where Al, ..., An are attribute names of R1 and t1,..., tn are terms of compatible types.

Destroying the contents of a relation

A special insertion consists in deleting the previous contents of the relation before adding the new
tuples. The syntax of this action is similar to the simple insertion except that the relation name has

to be preceded by the symbol ++.
+ Pl (x)

destroys the contents of P1 before adding the set of tuples x.

The rule
if Pl(x) and Q1 (y) then - P1(x) + P1 y) ;

is equivalent to the rule :
if Ql(y) then ++ Pl(y) ;

Note that the second rule is more efficient than the first one.
Deletions

A deletion removes a set of tuples from a relation. The syntax of a deletion is similar to an insertion

except that the - symbol replaces the + symbol.

28



-Pl (Al =1, A2 = 2, A3 ='A")

deletes the tuple (1, 2, 'A’) from the contents of P.
- P1(Al = x.ID, AZ = varl, A3 = y.NAME)

deletes the set of tuples {(x.ID, varl, yNAME)} from the contents of P.
Variable Assignments

C variable assignments are allowed in the action part of a rule.
varl =1

assigns the value 1 to the C variable varl
varl = 1+ var2

assigns the expression 1+ var2 to the variable varl
varl = x.ID

assigns the value of x.ID to the variable varl. Note that in this case, the x variable must range over

exactly one tuple in a relation, if not, a run time error will occur.

The general syntax of a variable assignment is :
varname = expression

External Procedure Calls

Calls to external procedures are allowed in the action part. These calls are similar to C procedure
calls in a C program. The user is in charge of checking the correct typing of the parameters. The

parameters are general expressions.
Geametric Display (y.XMIN,y.YMIN,y.GEQM,1,0,0)

is a valid call to a C procedure called Geometric_Display. The parameters are terms. The procedure
is executed for each instanciation of its parameters. In this example, the y variable is ranging over

the TOULOUSE.CTA relation and the constants 1, 0, 0 are X11 parameters. The complete rule is :
if TOULOUSE.CTA(y) then Geometric Display (y.XMIN,y.YMIN,y.GEOM,1,0,0) ;

Null values for external procedure calls are handled in the following way. Attributes containing

numeric nulls are zero valued while text strings are blanked (text string of length zero).

5.3.2.2. Multiple Actions

Actions may be combined together in a then part of a rule. The different elementary actions are

isolated by a separator. They are sequentially executed in the order given by the user. For instance:
if Ql(x) (x.Al < 10) then - Pl(x) + P1(Al = x.Al, A2 = x.A2 +1, A3 = x.A3) ;

deletes from P1 all the tuples which satisfy the LHS of the rule and then, inserts into P1 the sect of
tuples{(x.A1, x.A2 + 1, x.A3)).

29



if1=1then—P1(Al=1,A2=2,A3='A')+p]_(A1=1,A2=2,A3=-B.)'.

updates the tuple (1, 2, 'A") into (1, 2, 'B')
if P1(x) (x.Al < 10) then -P1l(x) + Ql(x) ;

This rule deletes from the relation P1 all the tuples which satisfy the LHS and inserts into Q1 the
same set of tuples. That is, the LHS of the rule is evaluated only once, before the effects of the RHS.

Insertions, deletions, variable assignments and procedure calls may be combined together like in :
if SYS.EMPLOYEE(y) (y.SAL > 1000) then + SYS.RICH (y) - SYS.EMPLOYEE (y)
Display(y.NAME,y.SAL,y.DEPT,1,0,0) done = 1 H

5.3.3. The THENONCE part

The keyword THENONCE may be used in the place on the keyword THEN. It may be followed by

exactly the same action part as described above. The semantics are the following : A rule
if ... THENONCE ...

is only fired once, even if the database states make it firable again. The keyword THENONCE is

then equivalent to add a control variable in the RHS of the rule to control the execution:
rl is
if Pl(x) (done = 0) then + Ql(x) ;
{puts ("firing of rl"); done = 1;}

is equivalent to (as long as the done variable is not modified elsewhere)
rl is
if Pl(x) thenonce + Ql(x) ;
{puts ("firing of rl1"); }

5.34. C-code preceding the rule

A C code section can appear between the name of the rule and the IF part of the rule. The C variables
appearing in this section have to be declared in the main C program or must be declared in the var
section of the module. This C code is executed whenever the inference engine tries to fire the rule. It

is included between the two separators {JFor instance :
rl is
{puts("Let's try rl");)
if ... then ...;

is a simple way to trace the execution of a rule program.

5.3.5. C-code following the rule

A C code section can appear at the end of a rule. The C variables appearing in this section have to be

declared in the main C program or must be declared in the var section of the module. This C Code is

30




executed when firing the rule is successful, i.e, when firing modifies the database state. It is

included between the two characters {}. For instance :
rl is
if Pl(x) (done = 0) then + Ql(x) ;
{puts ("firing of rl"); done = 1;}

is a way to ensure that rule r1 will be fired only zero or one time (if the contents of done is not
modified elsewhere in the program). The variable done has to be declared in the module or in the C

main program which calls this module.

5.3.6. Halting the Inference Engine

The on-going inference process can be stopped by the user. It might be interesting to accomplish this
in certain situations; for example, when a particular solution is found. The inference process is
halted by assigning NULL to a system variable which is used by the inference engine. This

assignment is done in the C-code section of a rule as follows:
{listeReglesPert = NULL;}

For example, this statement can be used to halt the rule program when rule r56 fires.
r56 is
if P1(x)
then
+success (x);
{listeReglesPert = NULL;}

5.4. The Control String

The control section consists of a string that describes an explicit ordering among rules. Basic symbols
in this string are rule names given in the rule section. Two particular symbols BLOCK(string) and
SEQ(string) can be recursively used to build a control string. The string BLOCK(string1) means that
string] must be executed up to saturation without any ordering consideration of the symbols contained
in stringl. On the contrary, SEQ(string1) means that string1 must be evaluated using a total ordering |
of the symbols in string1 from left to right. Thus, a control string can either describe a sequential or a

non deterministic execution, or a combination of these [Maindreville 88].

The following is a control string declaration over the rules r1, ..., 15
SEQ1(rl, r2, BLOCK (r3, r4), r5)

This control string imposes that rule r1 fires once, then rule r2 is fired once, then rules r3 and r4 are
fired up to saturation, and finally, rule r5 fires. This description assumes that all rules are firable.
If a rule is not pertinent (cannot be fired), it is merely skipped and execution continues on to the

following rule.

All rules that are in the control string have a greater priority of firing over rules which are not in

the control string. That is, the inference engine first tries to satisfy the control string. If no rule can

31




be fired in the control string, the inference engine chooses a rule among the remaining pertinent rules.

Pertinent rules not appearing in the control string are chosen in any order by the inference engine.

. 5.4.1. The Sequence Structure

The sequence structure is used when rules are to be fired in order and only once. Normally, recursive
rules are fired up to saturation. A recursive rule which is present in a sequence structure is fired once

and the engine tries to fire the next rule in the sequence. Consider the following rules:
rl is
if P1(x) and Ql (%) (x.a2 = y.al)
then +0l(al = x.al, a2 =y.a2) ;
r2 is
if Ql(x) and Rl(x) (x.a2 = y.al)
then +Rl(al = x.al, a2 =y.a2) ;

If there are no tuples in relation R1, as soon as rule r1 is fired, then rule r2 becomes pertinent (ie. it
can be fired). However, under no specific control string, the engine might fire r1 up until saturation.
If the user needs to have rule r2 fired immediately after rule r1, a control structure must be include in
the rule. In the absence of a control structure, the usual way of imposing an ordering is by adding a
control predicate in the body of the rules. The predicate is more often called DONE. To force a

sequential firing of the rules, rules r1 and r2 could be rewritten as follows:

rl is
if P1(x) and Ql(x) (x.a2 = y.al and done = 0)
then +Ql(al = x.al, a2 =y.a2) ;
{done = 1;}
r2 is
if Ql(x) and R1(x) (x.a2 = y.al and done = 1)

then +Rl1(al = x.al, a2 =y.a2) ;
{done = 0}

In the above example, the predicate done is implemented as a main memory variable which is
modified in each rule's post code. Rule r1 can only fire if done = 0. If rule r1 fires, it will set done to 1
and therefore will not be able to fire until rule r2 fires. Rule r2 can only fire if done = 1 (ie. after r1

has fired). If rule r2 fires, it sets done to 0 disabling it and allowing r1 to fire again.

The presence of such predicates in the body of rules is simple for such small programs but becomes
cumbersome when programs become large and the order among rules is not trivial. At that point,
many such predicates have to be defined and make the program hard to read and to maintain.
Moreover, there is an extra overhead involved in managing such predicates because the inference
engine will try to fire a rule again unsuccessfully. The presence of a control string allows to remove
~ such predicates from the body of rules and place them in a separate structure which is efficiently
managed by the inference engine. For example, the following control string enforces the firing of

rules r1 and r2 in a sequence.
seq (rl, r2)

32



The inference engine will fire r1, and then it will try to fire r2. This is a more efficient
implementation of imposed ordering of rules because the engine will not try firing a rule twice in a

row as it did with the control predicates in the above example.

Sequence strings may include Block strings which may in turn include sequence strings. It is not useful

for a sequence string to include another sequence string. For example,
seq (rl, seq (r2, r3))

is equivalent to
seq (rl, r2, r3)

5.4.2. The Block Structure

The block structure imposes that rules in the block argument be fired in any order up to saturation.

Consider the following control string.
BLOCK (rl, r2, r3)

This control string imposes that rules r1, r2 and 13 be fired up to saturation. Theoretically, rules in a
block structure should be selected in any order; however, this implementation selects rules according
to a strategy. The first rule appearing in a block is selected for firing. It is fired up to saturation.
When it can no longer be fired, the engine tries to fire the next rule in the block. Once it finds a rule
and fires it, the engine comes back to the-first rule in the block and tries to fire'it again. In essence, a
rule r1 appearing to the left of a rule r2 has a higher precedence for firing. Consider the above
example again. The engine fires rule r1 up to saturation. Then it tries to fire rule r2. If firing rule r2
allows rule r1 to become pertinent again, the engine will resume by firing r1. When rules r1 and r2

are no longer pertinent, the engine moves to rule r3.

It is often useful to mix seq and block control structures. Consider the following control string.
seq (rl, r2, block (seq (r3, rd)), r5)

This control string would impose that r1 and r2 fire in order. Then, that r3 and r4 fire in order, but up

to saturation and finally, that r5 fires last.

5.5. Structure of a Module
5.5.1. Include Statements

Include statements are directives to the RDL/C compiler which specify the names of files which
must be present in the compilation. Include statements are optional. These files contain C code
which will be referenced in the rule module. For example, the included file may contain a procedure
which implements some side-effect which is referenced in the action part of a rule (discussed later
in this section). These statements precede the module name statement and are of the form include
"fileName". FileName is the name of the file to be included by the module. The following are

valid include statements.

33




include "header.h"
include "proc.h"

5.5.2. The Module Name

The module statement assigns a name to the module being compiled. Module names are identifiers.

The following are valid module statements.
module anc;
mocule pcc2;

If the module is compiled into a procedure, the name of the module will be the external interface (or
procedure call) by which the module will be called from within a C program. See the compiler
options section for more detail. For example, the anc module is called from a C program by the

following procedure call:
outputRelations = anc (argc, argv, inputRelations) ;

In this procedure call, the variables outputRelations and inputRelations are of type relations (see
section on rdlHeader.h) and the argc, and argv arguments are those taken from the command line
and passed to the procedure. Input and output relations are discussed in the section on relation

declarations.

5.5.3. The Variable Section

The variable section is used to define variables whose types are domains. Variables can be of simple
domains which are integers, reals or text strings. They can also be defined over ADTs. Variables can
then appear in the body of rules as terms and used in the place of constants. They are monitored by
the inference engine during rule program execution. If a variable appearing in a rule changes value,
the inference engine will reconsider that rule for potential firing. The variable declaration section
begins with the key word VAR. A list of declarations then follow. The following is an example of a

variable declaration section:

VAR
integer i,3;
real rl;
char strl;
t:polygon pl;

Integer and Real variables are initialized to 0 before running the module. Char variables are
assigned a buffer of 250 characters which correspond to the maximum length of a text attribute in the
DBMS we are using. An overflow of a text string may cause a run-time error. ADT variables are
supported by the ADT root type. In the above example, polygons are supported by text strings. The
integer domain is supported by the C int type, the real domain is supported by the C double type.
Variables can be assigned values in the INIT statement. (See the section on this statement for more

information). Consider for example the following INIT statement:
{i = 5; rl =1.0; strepy(strl,"a string to be used in a rule™) ;}

34



This statement will initialize variable i to the value 5, variable rl to the value 1.0 and the
variable str1 to the value “a string to be used in a rule". Strings should be assigned using the strcpy

procedure because the memory for strl has been allocated by the var declaration.

Variables can be declared as external so as to be shared by different programs. The domain type is
preceded by the key word EXTERNAL to qualify variables as shared. For example, variable rl
would have been declared as external if the declaration had been:

VAR
integer i3
extemal real rl;
char strl;

t:polygon pl;
5.5.4. The Relation Declaration Section

This section is used to declare all relations which will participate in the rule program. Relation
names are given along with their schemas. A relation name is an identifier optionally preceded by
a base name. The base name is also given as an identifier. The base name and relation name are
separated by a .". These names correspond to actual relations which are present in the database, or
to relations which have been derived by other modules or will be derived from the current module.
Each relation is followed by the declaration of its schema. The schema describes the attribute
names and their domains. The schema of one relation can be based on the schema of another. This
avoids having to repeat the entire schema of a relation if it is the same as that of another relation.

In this case, the key word LIKE is used. The following correspond to valid relation declarations:
road in fire( D integer,
DEPARTURE integer,
ARRIVAL  integer,

XMIN integer,
YMIN integer,
GEQM t:polygon) ;

road in fire2 LIKE road in fire;

Two relations are defined by the above declaration: road_in_fire and road_in_fire2. Relation
road_in_fire has six attributes. The first five are of simple domains while the last is an ADT based
attribute. Relation road_in_fire2 has the same schema as road_in_fire. This is possible with the
LIKE key word.

There are four types of relations in the language. These are Input, Base, Deduced and Output
relations. Relations belonging to a particular class are declared in the corresponding section. Each

one of these sections is optional and is described in the following.

5.5.4.1. Input Relations

Input relations are derived relations which have been produced either by an SQL program or by

another module. Input relations are passed to the module in a data structure called relations (see

35




the rdIHeader section) which references a list of relations. The relations that the module expects to
receive are given in the Input Relations Section. This section begins with the key word INPUT
which is followed by a list of relations. The presence of this section in the module forces the
compiler to adopt the procedure compiler option (see the compiler options section for more detail)
which means that the module will not be compiled as an independent program but will be called as a

procedure by another program. The following is a valid Input declaration section:
input
road in fire( D integer,
DEPARTURE integer,
ARRIVAL  integer,

XMIN integer,
YMIN integer,
GEQM t:polygon) ;

This declaration implies that the road_in_fire relation will be passed by the calling procedure in

the argument list.

5.5.4.2. Base Relations

This section describes all of the base relations that will be manipulated by the module. Base
relations are those relations which contain stored values in the database. Base relations are often

referred to as extensional relations. The following is a valid Base relations declaration:

base

TOULOUSE.CTA{ ID integer,
DEPARTURE integer,
ARRTVAL integer,
NAME char,
FONCTION integer,
NBVOIES integer,
DIVERS integer,
LARGEUR integer,
ADM integer,
REVET integer,
POSITION integer,
XMIN integer,
YMIN integer,
XMAX integer,
YMAX integer,
GEQOM t:polygon) ;

The Toulouse.CTA relation is expected to be in the database when the rule module is run. A run-time
error will be generated if the relation is not present or if its schema does not correspond to the onc

given in this module.

5.5.4.3.  Deduced Relations

Deduced relations store intermediary results which are necessary for a rule program execution.
These relations are created by the rule module and destroyed when the module is exited. This

section is optional. The following is an example of a valid Deduced relation section:
deduced

CTAbis LIKE TCULOUSE.CTA ;



5.5.44. Qutput Relations |

Output relations are those produced by the rule module. Contrary to deduced relations, output
relations are not freed when a module terminates, The presence of output relations assumes that the
rule module will be used as a procedure called by another program. Hence, the presence of output
relations will force the compiler to assume the procedure option as does the presence of Input
relations. This optional section is started with the key word OUTPUT and followed by a list of
relations. The module will return as result, a list of relations contained in the relations data
structure described in the rdlHeader section of this manual. The following is an example of a valid

output section:
output
depl aff( 1D integer,
NAME char,
NBVOIES char,
FONCTION  char,
ADM char,
REVET char) ;

5.5.5. The Report Section

The report section is used to display the contents of derived relations at the end of a module run.
This section is optional and starts with the key word REPORT which appears after the relation
declaration section. Several reports can be listed in this section. Each report has a name (labelled
with a unique identifier), and is attached to one derived relation. A title, column headers and the
specification of the number of lines per page are all optional. The title, if given, is preceded by the
key word TITLE. The same applies for column headers and the number of lines per page with the
key words HEADER and LINESPERPAGE respectively. Finally, a print format must be given. This
format is either a string which is compatible with the PRINTF display format or a procedure which
will accept all of the attributes in the derived relation as parameters. Consider the following

example:
REPORT
repl ON depl aff IS
TITLE "This is the title of the report"
HEADER "ID\tNAME\tNBVOIES\t FONCTION\ tADM\ t REVET"
LINESPERPAGE 25
FORMAT "%d\t%s\t%s\t%s\t3s\t2s"

In the above example, a report called rep1 is defined for the derived relation depl_aff. The report
will be used to display all of the attributes of relation depl_aff. A report title will be displayed.
This title is given between double quotes. A report header will appear above every page. The
report header is given between double quotes. It conforms to the standards for the printf C
procedure. For example, the \t will cause a TAB character to be printed between column headers.
The number of lines per page will be 25 lines. If no lines are given, a default number of lines applies.

Finally, a display format is given. This format is used to display the individual attributes in the

37



relation. The display elements in the string must correspond in number, in order and in type to the
attributes in the relation. Otherwise, this may cause the program to abort. For example, %d is used
to display integers and corresponds to the type of the first attribute in relation depl_aff which is of
type integer. Then, %s is used to display the other attributes in the relation; these are all of type
string. Null values are handled in the following way, numerics are zero valued and strings are
blanked. Another possibility for displaying the contents of the relation would have been the

following declaration.
REPORT
repl ON depl aff IS
USE MyProc;

In this example, all the tuples contained in the depl_aff relation will be passed to procedure
MyProc when the module has finished executing. This procedure must have a number of parameters
equal in number and in type to the attributes in relation depl_aff; otherwise, a run-time error will
occur. It is possible to state exactly which parameters are to be passed to a procedure; instead of
having the default which is all the attributes in the relation. This is done by supplying an
argument list to the stated procedure. This argument list will be used in the call instead of the

default. Consider the following example:
REPORT
repl ON depl aff IS
USE MyProc (NAME, varl, 34);

In the above example, an argument list is supplied to procedure MyProc. Therefore, for all tuples in
relation depl_aff, procedure MyProc will be called with the value of attribute NAME, the varl
variable and the constant 34. Null value indicators can be passed to the user procedﬁre. For each
attribute in the relation, the null value indicator is the name of the attribute suffixed with IsNull.
For example, the null value indicator for attribute NAME would be called NAMEIsNull. Null
value indic_z;tors are always of type int. A value of -1 indicates the presence of a null value in the

corresponding attribute.

Reports can also be run during a rule module execution for trace purposes. Consider the following rule.
r55 is
if P1(x) ..
then + depl aff (x);

It might be interesting for the user to see the contents of the depl_aff relation each time rule 155 fires
and not only its final contents at the end of the program. To obtain this effect, the following post

code can be added to the rule.
r55 is
if P1(x) ..
then + depl aff (x);
{repl();}

This procedure call will cause report rep1 to be executed each time rule r55 fircs.

38



5.5.6. The Production Rule Section }

The production rule is the basic semantic unit in a module. A rule module must contain at least one
production rule which begins after the key word RULES. An RDL/C program is composed of a set of
if-then rules. The IF part of a rule (also called condition part) is a tuple relational calculus
expression which may include main memory variables. The THEN part of a rule (also called action
part) is a set of actions that are either insertions, deletions in a relation, variable assignments or
procedural side-effects. A range restricted condition imposes that all the variables that appear in
the action part also appear positively in the condition part of the rule. Consider the following

example.
rules
rl is
if P1l(x) then +Q1(x);

This is a valid rule section with only one rule called r1.

5.5.7. The Control String

The control string is optional and appears after the key word CONTROL. The following is a control

string declaration over the rulesrl, ..., 15
QONTROL
SEQL (rl, r2, BLOC (r3, r4), r5)

This control string imposes that rule r1 fires once, then rule r2 is fired once, then rules r3 and r4 are
fired up to saturation, and finally, rule r5 is fired. This description assumes that all rules are
firable. If a rule is not pertinent (cannot be fired), it is merely skipped and execution continues till

the following rule.

All rules that are in the control string have a greater priority of firing over rules which are not in
the control string. That is, the inference engine first tries to satisfy the control string. If no rules can
be fired in the control string, the inference engine chooses a rule among the remaining pertinent rules.

Pertinent rules not appearing in the control string are chosen in any order by the inference engine.

5.5.8. The Initialization Code Section

Lines of C source code which are run before the rules start to run can be given after the control string
and follow the key word INIT. This is particularly useful for initializing variables and for setting

window environments before a program starts to run. Consider the following code.
INIT

{i = 5; strcpy (strl, "This is a string");}
{openWindow () ; }

39




These two lines of C code will be run before the module starts the rules. The first line sets the
variable i to the value 5 and the variable str1 to the value "This is a string”. The second line calls

the procedure openWindow.

5.5.9. The Wrapup Section

Lines of C source code which are run after the rules have finished firing (the program has reached a
fix-point) can be given in the Wrapup section. The optional wrapup section appears after the Init

section and begins with the key word WRAPUP. Consider the following wrapup code.
WRAPUP
{printf("Type a character to quit\n");}
{getchar(); closeWindow();}

This C code is particularly useful at the end of a program. It avoids having the display disappear
once the rules have finished firing. At the end of a module run, the message issued by the C Printf
statement will appear. The program will wait for the user to type in a character. This is achieved
by the call to the getchar procedure. Once the character is typed, the closeWindow procedure is
‘called and the program is exited.

5.5.10. The End Module Statement

The end module statement should be the last statement is the RDL/C source file. Hence a module is
ended with the key words END MODULE.

40



6. A Sample Application: A Geographic
Information System

6.1. A Sample Database
6.1.1. Introduction

The RDL/C compiler has been tested over a database designed in the framework of the ESPRIT
Project TROPICS. The geographic database stores information on the region of Toulouse in the south
of France. In brief, the geographic model is basically the relational model with special Abstract
Data Types (ADT) for geometric data. There is one general ADT for geometric data which is the
polygon. The graphical elements of maps are modelled with this ADT. A polygon is represented as
a list of points. To plot a map on a plane, two additional values are used. These are two integers
which position the offset from where the graph should be plotted. Thus, each polygon is contained
in a box or rectangle. The base of this rectangle is given by its top left coordinates which are held in
two attributes, namely, XMIN and YMIN. Two additional coordinates might be given. These are
the bottom right coordinates of the rectangles, namely XMAX and YMAX. The attribute which
holds the graph is called GEOM. This is essentially the structure of all relations which manipulate

geometric data.

A set of operators which manipulate geometric data have been implemented as ADT operators.
These perform the basic operations on graphs which are used in geography. The most important ones

are:
* Surface:  The surface operator takes a polygon as input and returns its surface in acres.
* Length: The length operator takes a polygon as input and returns its length in kilometres.

* Adjacency: This predicate takes the offsets and geometry of two polygons and determines if

they are adjacent.

* Difference: The difference operator takes the offsets and geometry of two polygons and

returns the difference of the first minus the second.

* Intersection:The intersection operator takes the offsets and geometry of two polygons and

returns the intersection of the two.

* Union: The union operator takes the offsets and geometry of two polygons and returns the

union of the two.

* Inclusion:  The inclusion operator takes the offsets and geometry of two polygons and

determines if the second polygon is included in the first.

6.1.2. The Database

41




The Toulouse database is fourteen megabytes in size. There are eleven relations in this database.
The District relation stores the districts in the region of Toulouse. There are about 70 such districts.
The CTA relation stores the roads in the region. Each tuple in the CTA relation is one segment of a
road from one Crossroad (intersection) to another. There are over one thousand tuples in this
relation. The Crossroad relation stores all the intersections in the region of Toulouse. There are
about 700 such intersections. The OS relation stores the surface occupancy for the region. The tuples
in this relation plot areas as forests, lakes, urban dwellings, ... Other relations associate names to
codes. This is the case for relations with names starting with Rt_. For example, the Rt_fonction
relation gives the different types of usages of roads. The relations which appear in examples in the
remainder of the manual are described in the following. For each relation, the contents are
described; the schema of the relation is then given and finally; a sample of the tuples contained in

the relation is listed.

6.1.2.1. Toulouse.CTA

This relation describes the roads in the area of Toulouse. It has sixteen attributes which are given
below. The ID attribute identifies a unique segment of a road from one intersection to another. The
DEPARTURE and ARRIVAL attributes describe the links between one road and another. Two tuples
of this relation can be linked using these attributes (as for example in a transitive closure operation).
The NAME attribute gives the name of a road. Attributes 5 to 11 give codes which qualify the road
segment. Attributes 12 to 16 quallfy the geometry of the road as described in the introduction.

R 1 5 TR I

2 . DEPARTURE........0oou.... s

3. ARRIVAL.....oovvvennnnn.. : I

4 O NAME.....ovivivnrnnnnnnnn . T

S . FONCTION.......o0vvnunn.. : I

6 . NBUVOIES. ...t euunnnnn.. : I

7 . DIVERS.....ovveeerunnnn.. : I

8 . IARGEUR. ...0ovveennnnnnn. : I

9 L  ADM. ...ttt : I

10 . REVET. .o vviiineneeennnns. 0 1

11 . POSITION. ..ovvvennnnnnnn. i I

12 O XMIN. ..ot : I

13 0 YMIN...oiiiiii e, : I

14  XMAX. . e : I

15 0 YMAX. . cieiiii it HE

16 . GEOM. et iieieeeeennnnnn, : T:POLY
1002 tuples
| ID | DEPARTURE| ARRIVAL | NAME | FONCTION | NBVOIES | DIVERS |
| 570] 451 42511 | 4| 2] Ot
| 844| 657| 650{D24 | 4] 11 0l
| 782 604| 605| | 4| 0l 01
| 623 488| 4801 | 4] 11 0]
| 373 297] 298| | 4] 1] 0l
| 238 195} 194|p24 | 41 1 Of

6.1.2.2.  Toulouse.District

42



This relation describes the districts in the region of Toulouse. The INSEE attribute holds a
government assigned code for the district. Attributes 2, 3 and 4 also store such codes. Attribute POPU

gives the population for the district. The remainder of the attributes store geometric data for the

district.

1 . INSEE. ... veuiueeeenneennns : T(S)

2 ARRD.....ceieernnncnnnnas : I

3 . REGIMN...vvvviivnennennnn I

4 CODE..iienneeenneeennanns I

5 L  NAME....ivieiennnnnnnnnn. T

6 . POPU....oovvirnnnnnnnnnn. I

A G I

T I

9 L XMIN....iornnerennnnnnnn I

10 0 YMIN....eiinreinnnennnnns I

11 C XMAX. i iiierecineenennans I

12 0 YMAX. it iiieninnnaeennnns I

13 . GEQM. i vveiiiiieenaennn. T:POLY
63 tuples
| INSEE | ARRD | REGION | CODE | NAME | POPU | X | Y
132334) 1) 73| 4 |PUJAUDRAN | 660 5040 18440|
32016} 1] 73| 4 | AURADE | 329] 4964 | 18414}
131182] 3] 73] 4 |FENOUILIET| 2928} 5239) 18534)
131592} 3] 73] 4|1ARRA | 674| 5109 18604

6.1.2.3. Toulouse.Crossroad

This relation identifies the crossroads (intersections) in the area. These intersections are points
where roads meet or cross each other. The ID attribute identifies individual intersections. It can be
matched against the values of attributes DEPARTURE and ARRIVAL in the CTA relation to select
roads which meet at a particular intersection. The TYPE attribute qualifies the intersection.

Attributes X and Y indicate its position on the map.

S £ 5 : I
IR & 44 OB 0 I
3 X e : I
L I

701 tuples

| D | TYPE | X | Y |
| 251 98| 1527| 2554
| 502]) 98| 2945| 1362
] 252| 98| 1371 25681
| 1] 98| 1141} 4476 |
| 503] 98| 2948 | 1354| i
i 253| 98| 6066 2507
I 2| 98| 1224 4511

6.1.24. Toulouse.OS

This relation distinguishes surface occupancy in the area of Toulouse. It plots areas according to
qualities identified in the attribute CODE and described in the attribute TEXTE. These can be

43




forests, lakes and the like. The attribute ID identifies one area. The last five attributes give the

geometric information of a surface occupancy.

O 5 T + I
2 L CODE...ivieneennnnnnnnnns : I
3 . TEXTE. .t eeeiennnneennanas : T
4 XMIN......ooiinimnnnnnnns : I
ST 4 1 0\ : I
6 . XMBX .. iiiiiiinntenanan. : I
AR 4.v: V. QR : I
8 . GEM....vvrriiiiiinnnnnn : T:POLY

1178 tuples

| D ] CCDE ] TEXTE | XMIN | YMIN | XMAX |
| 311) 8|cultures, prairies | 1120] 3632 1140]
| 1036} 3|espace peu artificialise'| 1032} 1184 1068
| 686 17|cours d'eau, rivie'res ou| 808 2432| 840
| I | fleuves d'au moins 50m s| | | I
| | fur 1lkm | | | |
| 446 3lespace peu artificialise') 24001 3244] 2460|
| 496| 4|ensenbles industriels et | 50801 3048| 5112|
| | | cammerciaux | | | |
| 93| 8|cultures, prairies ) 3388| 4212| 3484|
[ 7801 3lespace peu artificialise'| 1444 2028| 1496|
| 138 6lgrands e'quipements d'inf| 5340| 4100] 5392
| | | rastructure et leur empri| | | |
] 51} 8|cultures, prairies | 2054| 4368| 2104
| 1234} 8{cultures, prairies | 43581 492| 4448

6.1.2.5. Toulouse.RT Fonction

This relation matches codes with descriptions of roads, in terms of their function. Seven such types

have been enumerated.
1l .  CODE.iiininennnnnnenennns : I
2 L  TEXTE..iueiiienrenennnnnn : T

—
t
i
T

0] inconnu

1l|type autoroutier
2|grande circulation
3lliaison regionale
4|autre

5|V.F.

6|voie industrielle

1
T

6.1.2.6. Toulouse.RT Revet

This relation matches codes with descriptions of roads, in terms of their surface covering. Ten
different codes are described. They qualify road segments as segments which are regularly

maintained to segments which are dirt roads.

44



<+

:
:

]
0/inconnu }
7iv.£. neutralisee [
1|Rte regul. entret. |
8|v.f. neutralisee |
2| rte non revetue |
9|v.f. en construction }
3|rte en constr |
4|chemin d'exploitatation |
S|sentier i
6|v.f. en .service |

-)._—________—-).—--

6.1.2.7. Toulouse.RT Nbvoies

This relation matches codes with descriptions of roads, in terms of the number of lanes. Roads go

from one lane to over'four lanes.
1 . CODE....vvviiiiinniiinns, : I
2 L TEXTE.....covnienennnnnn. : T

:
%

|
|
712 voies larges |
1|1 voie |
8|plusieurs V.F. (etranger) |
212 voies : |
3]3 voies i
4)4 voies ]
S|plus de 4 voies |

8
+
|
+
] 0| inconnu

I
|
|
|
]
I
!
+

6.1.2.8. Toulouse.RT ADM

This relation matches codes with descriptions of roads, in terms of administrative jurisdiction.

Roads are departmental, national highways, autoroutes or other qualifications.
1.CODE...iieieiininannnn.. i I
2 . TEXTE........... e : T

g
:

|
0] inconnu |
1{SNCF |
2|autre |
3lautoroad |
4|nationale |
S|departementale |

6.2. A Sample Application

45




6.2.1. Introduction

In the following, we present a complete sample of a geographic application written in the RDL/C
language. This application uses the database schema described in section 6.1. This application first
displays a part of the geographic information stored in the database. Then, the user is asked to
choose on the screen a district where there is a fire. Finally, the program asks for two different
crossroads to join using the shortest available roads. The program computes the shortest path

between these two crossroads and displays it to the user.

This program is made of two logical parts: The first one consists in displaying the stored map. The
second one is the computation of the shortest path between the chosen points. Thus, this example
illustrates two different features of the language : the interaction with the C language (and the X11

window manager) and a purely computational part which is the computation of the shortest path.

The program is composed of a C main program which is in charge of initializing the graphics

interface and calls different RDL/C modules to display and compute the shortest path.

6.2.2. The Main program

#include <stdio.h>
#include <math.h>

#include <X11/X.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

#include "Bd_Carto.h"
ffinclude "iml. h"
#include "rdlHeader.h "

/*-—=--—— Declarations =—=-—-—————=%/

Display *Affichage;

Window  Fenetre;

[eo Contexte_Graphique;
int Ecran;

XeEvent  Evenement X11;

XSetWindowAttributes Attribut_Fenetre;
XPoint  Tableau_de points[NB_POINT MAX];

int Nombre de points;
float cx,cy; /* translation between "map<~>X11" */
int  x District,y District; /* coordinates for the clicked District */

int  xmin, xmax, ymin, ymax = 0;

double xa,ya, xd, yd;

int xx1, yyl, x2, y2 =0;

int  origx,origy;

char Nom District (LG _NAME MAX],geom (1G_GEQM_MAX] ;
relations *lien;

e e e e e k)
/* x/
/* This procedure extracts an array from a LISP list : */
/¥ (D oyyD) (X2 y2) L.l ) */
/* array XPoint : { short x,y}; */
/*_______.________—______...____....._._______.-.._.._____—.._*/

46



void Extrait Coordonnees_List Lisp(Liste de points,
Tableau de points,

Nombre_de points,

Coef X,Coef Y,

Origine X,Origine ¥)

char *Liste de_points;
XPoint  *Tableau de_points;
int *Nombre_de points;
float Coef X,Coef_Y;

int Origine X,Origine Y;

char Coordonnes_Temporaires{TAILLE COORD_MAX);
short x,y;

int  Nombre Courant;

int  Indice_Temp;

Nombre_Courant = 0;

*Nombre de points = 0;
while ( *Liste de points != '\0")
{
while ( *Listede points == (' |{ *Liste de points =— '

Liste de pointst+;
Indice Temp = 0;

while ( *Liste de points != *)" )
Coordonnes_Temporaires[Indice_Temp++] = *( Liste de_points++ );

*/ :
sscanf (Coordonnes Temporaires,"$hd %hd",&x,8y);
" Tableau de points{Nombre Courant].x =(short)( x*Coef_X + Origine X );

Tableau_de_points(Nombre Courant++].y =(short) ( y*Coef Y + Origine Y ):

*Nombre_de points += 1;

Coordonnes_Temporaires[Indice Temp] = '\0'; /* le format hd signifie

while ( *Liste de points == ')' || *Liste_de_points == ' ' ) Liste_de points++

o
’

}

/** ok ok ek ko Rk Aok KRk Rk Ak ek ok ok ek ke ko ek Wk A kot ek ok ek sk ek kol */

/* procedure to display a polygon */

/** ek dek Sk gk sk ok kb sk Kk ok sk Kok ke Aok ki sk ok dokok ek sk sk Ak ke Wk ek */

Geometry Display (x_rect min,y rect_min,
contour,

type,

style,

epaisseur)

int X rect_min,y rect_min;
char *contour;

int  type;

unsigned int style;

int  epaisseur;

Extrait_Coordonnees_List_Lisp (contour,
Polygone,
&Nb_Sommets Polygone,
cx,cy,origx, origy);

XFillPolygon(Affichage,Fenetre, Conte xte_Graphique,
Polygone,
No Sommets Polygone,

47




Complex,
CoordModeOrigin);

XFlush (Affichage);
}
/t* Jekk sk gk ek ek koK kok ok ko ke ke dek ok ok ko ok dedkdk deok sk *kk kkwhk kg iti/

/*
/*

/** Feokk kok ok ok ko kdok ko Rk Ak ok Ak Ak kKR Rk kokk Kk dk o ok *k ok ek bk /
Saisie_Souris District()
{

int Saisie Termine;
int xx1,yyl;

Saisie Termine = False;

while ( !Saisie Termine )
{
XextEvent (Af fichage, sEvenement_X11) ;

switch ( Evenement Xll.type )

{

case ButtonPress :
xx1 = Evenement_X11.xbutton.x;
yyl = Evenement_X11.xbutton.y;

/* Procedure to display the name of a clicked district */

X District = (int) (xx1/cx + x_carte_min);
y District = (int) ((yyl - hauteur_fenetre)/cy + y_carte min);
lien = (relations*) Saearc h District (0,NULL ,1ien);
XSetFillStyle (Af fichage, Contexte_rGrapldque, Fillsolid);
XDrawString (Affichage,?enetre,Contexte_craphique,

xx1,yyl,Nom District,strlen (Nom District));

]

XFlush (Affichage);
Saisie_Termine = True;
break;

case KeyPress :
Saisie_Termine = True;
break;

default
break;

}

/** ok ok ek ko deok kokk kok dek ok kk ok Kk ke kk ki kk Rk ko ek ok kb k¥ dkokk ***/

MAIN PROGRAM

/** ek e ek ek ok sk dedkodk sk dokdk ko ok ko sk ek ek ok Rk ek ke dek ke ek dedkdk drwe ***/

main(argc,argv)

int arge;
char **argv;
{
float c_ y;

int alpha,beta;
int Refus = -1;
lien = NULL ;
/* Connection to the database system*/

if ( Connexion a_la Base() = Refus )

fprint f (stderr, "\n\n Connection to the

SABRINA  DBMS

*/
*/

impossible.

48




X11_Init (;
/* .Open the main X11 window where the results are displayed */
‘Ouvrej‘enetre_Xll(),' .

cx = (float) largeur_ fenetre/beta;
ey = -cx;

puts("displaying of the districts");
+ /* Call to the Districts module */

(vol d)D istr ict s(ar gc, argv ,NULL) ;

'phts("‘disblaying of the forests"™);
/*.Call to the Verdure.module */ -

(void)Verdure(arge ,argv, NULL);

puts("displaying of the inhabited areas");
/* Call to the Urbdens module */

(vol d) U bde ns( argc ,argv, NULL);
puts("fire area input");
Saisie_Souris District();
"xmin=xmax=x_District;
ymin=ymax=y District;
puts("display of the roads in fire");

/* Call to the Roads_in fire module */

lien =(r elat ion s*) Roads_i n fire(argc, argv, 1ien) ;
puts("input the étai'ting point");

Saisie_Souris District() ;-

xd=xmin=xmax=x District;

yd=ymin=ymax=y District;

/* Call to the Departure roads module */

lien=(r elat ion s*) Dep artu re_road s(argc, argv, lien);

puts("input the arrival point);
Saisie_Souris District();

/* Call to the Arrival roads module */
lien =(r elat ion s*). Arr ival roads(arge, argv, 1ien) ;

/* Call to the Pcc2 module ¥/
lien= (relations*) Pcc2(argc,argv,lien) ;

.

(void) getchar () ;

X11 _Close() ;

Important items in this program have been flagged in bold characters. At the beginning of the
program, the files iml and rdlHeader have been included. The variable licn has been declared of

type relations. This type is defined in the rdlHeader file. It will be used to pass input relations to

the rule programs and obtain output result relations.

49



In the main program section, the District module is called to display the districts in the Toulouse
database. The Verdure module is called to display those areas on the map where green spaces can be
found. The Urbdens module is called to display those areas which are high density urban
dwellings. Then, the user is asked to select the district in which the fire is located. The module
Search_District is used to locate the district where the mouse was clicked. The module
Roads_in_fire is called to select those roads which are in the district where the fire is located.
Roads_in_fire also darkens this district on the map. The user is asked to select the departure
district and the arrival district. The roads in these respective districts are isolated by the
Departure_roads and the Arrival_roads modules respectively. Finally, module Pcc2 is called to
find a good path between the departure and the arrival without going through the roads in the

district where the fire is located.

6.2.3. The Rule Modules

In the following, we present the different RDL/C rule modules which are used in the geographic
application. These rule modules are called from the main C program described above. The first rule
modules are used to select part of the geographic information which is stored in the database. The

Pcc2 module is the one which computes the shortest path between two clicked districts.

6.2.3.1.  Search District

This module takes as input the geographic coordinates of a clicked point on the screen. These
coordinates are stored in the x_District and y_District C variables. It returns the Nom_District
variable which contains the name of the district where the mouse was clicked. It affects also the
contents of four global variables xmin, xmax,ymin, ymax which are used to store the geometry of a

district. The contents of these variables is modified in the RHS of the rule r3.

module Search District;

var
extern integer x District,y District;
extern char Nom District ;

base
TOULOUSE. DISTRICT ( INSEE char, ARRD integer,
REGION integer, CDE  integer,
NAME . char, POPU integer,
IX integer, 1Y integer,
XMIN integer, YMIN integer,
XMAX - integer, YMAX integer,
GEOM t:poly):
deduced
comm_inter like TOULOUSE.DISTRICT:
out put

District like TOULOUSE.DISTRICT;

rules
rl is
if TOULOUSE.DISTRICT(X)

(x.XMIN < x District and >> inserts in the relation com_inter all the
X .XMAX > x District and >> Districts that intersect x District y District

50



District and

X. ™M
X.YM District)

IN <y |
AX >y

then .
+comm_inter (X);

r2 is
if comm_inter (x)
(xyinpoly(x District, y District, geom_to_poly (x.XMIN, x.YMIN, x.GECM))='T' )
then

++District(x)
Nom District= x.NAME ; >> modifies the contents of the Nom District variable

r3 is

if District (x)
then

aff _minmax(x.XMIN, x.YMIN, x.XMAX, X.YMAX);
>> call to the aff_minmax procedure to modify the xmin, xmax, ymin, ymax variables

init )
{strcpy(Nom District, ") ;}

end module

Rule r1 selects the districts which may contain the point where the mouse was clicked. This is done
using attributes which give the coordinates of the smallest rectangle containing the district. These
districts are assigned to the deduced relation comm_inter. Rule r2 then takes the actual geometry of
each district selected by the preceding rule and matches the point where the mouse was clicked to
the geometry of the district. This is achieved with the xyinpoly function. Rule r3 assigns the

district area to variables.

6.2.3.2. Locate Fire

This module displays on the screen the geometry of the district with the fire and stores in the
road_in_fire relation the roads which are not available (ie. the roads which are in the district
with the fire).

module Roads_in fire;
input
District ( INSEE char, ARRD integer,
REGION integer, CODE integer,
NAME char, POPU integer,
IX integer, IY integer,
XMIN integer, YMIN integer,
XMAX integer, YMAX integer,
GEOM t:poly);
base
TOULOUSE., CROSSROAD ( ] integer, TYPE integer,
XC integer, YC integer) ;
TOULOUSE. CTA ( D integer, DEP ARTURE integer,
! : ARRIVAL integer, NAME char,
FONCTION integer, NBVOIES integer,
DIVERS integer, LARGEUR integer,
ADM integer, REVET integer,
51

e S _ ot e




POSITION integer, XMIN integer,
YMIN integer, XMAX integer,
YMAX integer, GEOM t:poly);

deduced

inter fire 1like TOULOUSE.CROSSROAD;
inter_fire2 like TOULOUSE.CROSSROAD;

output
road in fire( ID integer, DEPARTURE integer,
ARRIVAL integer, XMIN integer,
YMIN integer, GEOM t:poly);
rules
rl is

if District(x) and TOULOUSE. CROSSROAD (y)
{(x.XMIN < y.XC and
X . XMAX > y.XC and
X.YMIN < y.YC and
X.YMAX > y.YC)
then

+inter_fire(y); >> stores in the inter fire relation the in fire crossroads
rlbis is

if District (y)
then

Geometry_ Display (y .XMIN, y. YMIN, y.GEOM, 1,6,0) ; >> displays the in fire District
r2 is
if District (x) and inter fire(y)
(xyinpoly (y.XC, y.YC, geom_to_poly (x.XMIN, x.YMIN, x.GEOM)) = 'T')
then
+ inter fire2(y):

r3 is

if TOULOUSE.CTA(x) and inter_fire2(y) (x.DEPARTURE = y,ID or x.ARRIVAL = y. ID)
then

>> inserts in the relation road_in fire all the in fire roads

+road _in_fire( D = x.ID,
DEPARTURE = X .DEPARTURE,
ARRIVAL = X.ARRIVAL,
XMIN = x.XMIN,
YMIN = X.YMIN,
GEOM = X.GEQM) ;

end module

Rule r1 selects the intersections in the Toulouse.Crossroad relation which are in the rectangle
containing the district that was sclected by preceding module. These intersections are put into the
inter_fire relation. Rule rlbis displays in grey, the district with the fire. Rule r2 maps each
intersection selected by the previous rule to the actual geometry of the district. Rule r3 selects all

roads in the CTA relation which cither arrive or leave the intersections selected by the preceding

rule and puts into the road_in_fire relation, all roads in the selected district.

52




6.2.3.3. Locate Departure

This module computes all the roads starting from the chosen district. These are the departure point

for the calculation of the shortest path. The logic behind this module is similar to the previous one.

module Departure roads;

input
District ( INSEE char, ARRD integer,
REGION integer, OCDE integer,
NAME char, POPU integer,
IX ' integer, Iy integer,
XMIN integer, YMIN integer,
XMAX integer, YMAX integer,
GEOM t:poly):
base
TOULOUSE . CROSSROAD { ID integer, TYPE integer,
Xc integer, YC integer) :
TOULOUSE. CTA ( D integer, DEPARTURE integer,
ARRIVAL integer, NAME char,
FONCTION integer, NBVOIES integer,
DIVERS integer, LARGEUR integer,
ADM integer, REVET integer,
POSITION integer, XMIN integer,
YMIN integer, XMAX integer,
YMAX integer, GEOM t:poly);
deduced

inter depart 1like TOULOUSE .CROSSROAD;
inter_depart2 like TOULOUSE .CROSSROAD;

out put
road depart ( D integer, DEPARTURE integer,
: ARRIVAL integer, XMIN integer,
_ YMIN integer, GEOM t:poly);
rules
rl is

if District(x) and TOULOUSE. CROSSRCAD (y)
(x . XMIN < y.XC and
X.XMAX > y.XC and
X.YMIN < y.YC and
X.YMAX > y.YC)
then

tinter depart (y) ;
r2 is
if District (x) and inter_depart (y)
(xyinpoly (y.XC, y.YC, geom_to poly (x.XMIN, x.YMIN, x.GEOM)) = 'T')

then

>> computes the departure District
+ inter depart2(y);

r3 is

if TOUIOUSE.CTA(x) and inter depart2(y) (x.DEPARTURE = y.ID or x.ARRIVAL = y.1D}

53



then

>> computes all the departure roads

+road depart ( D = x.ID,
DEPARTURE = X .DEPARTURE,
ARRIVAL = X.ARRIVAL,
XMIN = X . XMIN,
YMIN = X.YMIN,
GEOM = X.GEQM);

rd4 is

if road depart (x)
then

>> displays the departure roads
Geometry Display (x.XMIN, x.YMIN, x.GEOM, 1, 0, 0)
Geometry Display (x.XMIN, x.YMIN, x.GEQM, 0, 0, 1);

end module

6.2.34. Locate Arrival

This module computes the roads which are in the district which is designated as the arrival.

module Arrival roads;

input
>> OOMMUNE is DISTRICT

Distriet ( INSEE char, ARRD integer,
REGION integer, CODE integer,
NAME char, POPU integer,
IX integer, IY integer,
XMIN integer, YMIN integer,
XMAX integer, YMAX integer,
GEOM t:poly);

base
>>TOULOUSE., CARREFOUR is TOULOUSE.CROSSROAD

TCULOUSE. CROSSROAD ( ID integer, TYPE integer,
XC integer, YC integer) ;
TOULOUSE. CTA ( D integer, DEPARTURE integer,
ARRIVAL integer, NAME char,
FONCTION integer, NBVOIES integer,
DIVERS integer, LARGEUR integer,
ADM integer, REVET integer,
POSITION integer, XMIN integer,
YMIN integer, XMAX integer,
YMAX integer, GEOM t:poly);
deduced

inter_arrival like TOULOUSE.CROSSROAD;
inter_arrival2 like TOULOUSE.CROSSROAD;

out put
road_arrival( ity) integer, DEPARTURE integer,
ARRIVAL integer, XMIN integer,
YMIN integer, GEOM t:ipoly);

54



rules o

rl is ’
if District(x) and TOULOUSE.CROSSROAD(y)
(X.XMIN < y.XC and
X.XMAX > y.XC and
X, YMIN < y.YC and
X MAX > y.XC)
then

+inter arrivally);
r2 is
if District (x) and inter_arrival(y)
(xyinpoly (y.XC, y.YC, geom to_poly (x.XMIN, x.YMIN, X.GEOM)) = 'T‘)
then
+ inter_arrival2(y);

r3 is

if TOULOUSE.CTA(xX) and inter arrival2 (y)
(x.DEPARTURE = y.ID or x.ARRIVAL = y,ID)

then
+road arrival ( D =x.ID,
DEPARTURE = X .DEPARTURE,
ARRIVAL = x.ARRIVAL,
XMIN - = X.XMIN,
YMIN = X.YMIN,
GEOM = X.GEQM);
end module

6.2.3.5. Good Path

This module computes a good path between the departure and arrival districts, avoiding those roads

which are in the district on fire.

module Pcce2;

var
extern integer xmin, xmax, ymin, ymax;
extern integer x District, y District;
integer gen_id, done;

input
road in_fire( D integer, DEPARTURE integer,
ARRIVAL integer, XMIN integer,
YMIN integer, GEOM ‘t:ipoly):
road depart: ( D integer, DEPARTURE integer,
ARRIVAL integer, XMIN integer,
YMIN integer, GEOM t:poly):
road arrival( ID integer, DEPARTURE integer,
ARRIVAL integer, XMIN integer,

YMIN | . .integer, GEOM t:poly):

55



base . .
TOULOUSE .CTA( ID integer, DEPARTURE integer,

ARRIVAL integer, NAME char,
FONCTION integer, NBVOIES integer,
DIVERS integer, LARGEUR integer,
ADM integer, REVET integer,
POSITION integer, XMIN integer,
YMIN integer, XMAX integer,
YMAX integer, GEOM t:poly);
toulouse.rt fonction (CODE integer, TXT char);
toulouse.rt_revet ( CODE integer, TXT char);
toulouse. rt_adm( CODE integer, TXT char);
toulouse.rt nbvoies{ CODE integer, TXT char);
deduced

CTAbis like TOULQUSE.CTA;

steps ( is] integer, CTA integer,
DEPARTURE integer, ARRIVAL integer,
LENGTH integer, DISTANCE real,
RAMIFIE integer) ;

newsteps ( ORIGINE integer, D integer,
CTA integer, DEPARTURE integer,
ARRIVAL integer, DISTANCE real,
LENGTH integer);

good_steps( CTA integer, DEPART URE. integer) ;

delta ( CTA integer, DEPARTURE integer);

steps_aff( D integer, NAME char,
NBVOIES char, FONCTION char,
ADM char, REVET char);

report
rep3 on steps aff is
title "\t\tsteps"
header "ID\tNAME\tNBVOIES\t FONCTION\t \t ADM\t\tREVET"
linesppage 25
format "$d\t%-7s\t%-7s\t%-20s %-20s $-20s";

rules

init traj is
>>Eliminate all roads which are not in the global rectangle

{puts("Examining init_traj");}

if TOULOUSE.CTA(x)
((x.XMIN > xmin) and (X.XMAX < xmax) and (x.YMIN > ymin) and (x.YMAX < ymax)
and (foreach y in road in_fire (y.ID <> x.ID)))

thenonce
+ CTAbis ( ID = x.1ID,

DEPARTURE = x .DEPARTURE,
ARRIVAL = X.ARRIVAL,
NAME = X .NAME,
FONCTION = x .FONCTION,
NBVOIES = X .NBWIES,
DIVERS = X ,DIVERS,

56



LARGEUR = x . LARGEUR,

ADM = X.ADM,

REVET = X ,REVET,

POSITION = X .POSITION,

XMIN = X .XMIN,

YMIN = X.YMIN,

XMAX = X .XMAX,

YMAX = X.YMAX,

DISTANCE =sqr ((x.XMIN + X.XMAX) /2 - x_District)
+sqr ((X.YMIN + x.YMAX) /2 - y District),

GEOM =X GECM),

{puts("Firing init_traj");}

init trajbis is

>> The relation steps is initialized with the departure roads
{puts("Examining init_trajbis");)

if CTAbis (x) and road depart (y) (x.ID=y.ID)

thenonce

+steps ( 1D = gen_id*1000+x. ID,
CTA =x.1ID,
DEPARTURE = x .DEPARTURE,
ARRIVAL = x.ARRIVAL, .

. LENGTH = longueur (x.GEOM) ,

DISTANCE = x .DISTANCE,
RAMIFIE =0) ;

{gen_idt+;}
{puts ("Firing init_trajbis");}
init_trajoisbis is

>> The relation steps is initialized with the starting roads, in the other direction
{puts("Examining init_trajbisbis") ;} .

if steps(x)
thenonce .
+steps ( ID = gen_id*1000+x.ID,
CTA =x.1D,
DEPARTURE = X.ARRIVAL,
ARRIVAL = X .DEPARIURE,
LENGTH = X.LENGTH,
DISTANCE = x .DISTANCE,
RAMIFIE =0) ;
{gen_id++;)

{puts("Firing init _trajbisbis") ;}

ramif is

>> computes a new step
{puts("Examining ramif");}

if steps(x) and CTAbis (y)
(x.ARRIVAL = y.DEPARTURE and
y.ID <> x.CTA and
y.DISTANCE < x.DISTANCE and
X.RAMIFIE = 0)

t.hen
+tnewsteps( ORIGINE =x.ID,
D = gen_id*1000 + y, ID,
CTA =y.ID,
DEPARTURE = y .DEPARTURE,
ARRIVAL = y .ARRIVAL,

57




DISTANCE = y.DISTANCE,
LENGTH x.IENGTH + longueur (y.GEQM)) :

{gen_id++;}
{done = 1;}
{puts("Firing ramif");}

ramifbis is

>> compute a new step
{puts("Examining ramifbis");}

if steps(x) and CTAbis (y)
{(x.,ARRIVAL = y,ARRIVAL and
y.ID <> x.CTA and
y.DISTANCE < X.DISTANCE and
X.RAMIFIE = 0}

then
+newsteps ( ORIGINE =x.ID,
1D = gen_id*1000+y. ID,
CTA =y.ID,
DEPARTURE = y .ARRIVAL,
ARRIVAL = y.DEPARTURE,
DISTANCE = y.DISTANCE,
LENGTH = X.IENGTH + longueur {(y.GEQM) ) ;
{gen_id++;}
{done =1;)}

{puts("Firing ramifbis") ;}

aff_geom is
>> displays the new steps

if newsteps (x) and CTAbis(y) (x.CTA = y.ID)
then

Geometry Display (y .XMIN, y. YMIN, y.GEOM, 1,0,0)
Geometry Display (y .XMIN, y. YMIN, y.GEOM,0,0,1) ;
maj is

>> inserts in the relation steps the new steps
{puts("Examining maj");}

if newsteps (x) and steps(y} (x.ORIGINE = y.ID and done =1)
then

+steps ( ID = x.ID,
CTA = x.CTA,
DEPARTURE = x .DEPARTURE,
ARRIVAL = x .ARRIVAL,
LENGTH = X.LENGTH,
DISTANCE = x .DISTANCE,
RAMIFIE =0}

-steps (y)

+steps ( D =vy.ID,
CTA = y.CTA,
DEPARTURE =y .DEPARTURE,
ARRIVAL = y.ARRIVAL,
LENGTH =y .1ENGTH,
DISTANCE = y .DISTANCE,
RAMIFIE =1);

{puts("Firing maj");}

58




{done = 0;}

optim is

>> deletes the lengest paths from the steps relation
{puts("Examining optim") ;}

if steps(x) and steps(y)
((x .ARRIVAL = y,ARRIVAL) and
. %x.LENGTH < y.LENGTH)
then
-steps(y):

{puts("Firing optim") ;)

end_init is

>> This rule is fired when there exists a road between the departure and arrival
{puts("Examining end_init");}

if steps(x) and road arrival(z)

{(x.CTA = 2.1ID)
thenonce
+good_steps ( CTA = x,CTA,
DEPARTURE = X ,DEPARTURE)
-steps (X);

{puts("Firing end init")y)

end_copy is
>> coples all the elementary steps in the good_steps relation
>> computation of the transitive closure of the relation steps
{puts("Examining end_copy");}
if steps(x) and gocd_steps (yi
(X, ARRIVAL = y,DEPARTURE)
then

+good_steps ( CTA = X .CTA,
DEPARTURE = X .DEPARTURE) :

{puts("Firing end_copy") i}

copy _aff is

>> displays the shortest path on the screen
{puts(“Examining copy_aff");)

if good steps(x) and CTAbis(y)
(x.CTA = y,ID)
then
Geometry Display (y.XMIN, y. YMIN, y.GEOM,0,0,2) ;

{puts("Firing copy_aff") ;)

copy affbis is

>> displays the travel information about the roads between the two crossroads
{puts("Examining copy_af fbis");)

if good_steps(x) and CTAbis (y) and
toulouse.rt fonction(a) and

59




toulouse.rt_revet(b) and
toulouse.rt_adm(c) and
toulouse.rt_nbvoies(e)
(x.CTA =y.ID

and a.CODE = y.FONCTION
and b.CDE = y,REVET
and ¢,CODE = y .ADM

and e.CODE = y .NBVOIES)

then
+steps_aff( 1D =y.ID,
NAME = Y-NAME/
NBVOIES = e ,TXT,
FONCTION = a.TXT,
ADM = ¢ TXT,
REVET =0, TXT)
{puts(“Firing copy_affbis"):}
{listeReglesPert = NULL;
control
seq (init_traj, init trais - ‘% “rajbisbis,
block (seq (ramif, ramifbl.. ... -jeom, maj,optim, end init,
blocz (end cci~v. ~opy aff, copy_affbis))) ;
init

{printf("Starting Pcc2\n");}
{gen_id=1; done = 0;}

end module

The first rule init_traj puts into CTAbis the roads that will participate in the calculation of a good
path. These are the roads in a rectangle on the map calculated from the districts where the mouse
was clicked. For each road selected with this method, the road must not be found in the set of roads
in the district where the fire is found. The second rule init_trajbis initializes the steps relation
with the first displacement; these are the roads found in the departure relation. The init_trajbisbis
module takes all of the roads selected by the previous relation and adds the same roads inverting
the departure and arrival attributes. This adds to the step relation reverse roads to disregard
directions. The ramif and ramifbis rules calculate a newstep from each step to determine connections
between roads. This is a typical transitive closure operation to establish connections between roads.
The aff_geom rule is used to display the new roads that have been calculated. The maj rule adds to
the step relation all of the new roads which have joined with the previous roads. The optim rule
removes all paths which, for a same arrival have a longer length. The end_init rule signals the
presence of a path. The end_copy rule backtracks from the arrival back to the starting point to
establish the path that has been selected by the program. The copy_aff rule displays a thick line

corresponding to this path. The copy_affbis rule reports the roads selected by the program (name,

type, ...).

The control string insures that the rules ramif,ramifbis,aff_geom,maj and optim are done in

sequence. For the program to work correctly, this must be the case. When end_init is able to fire, the

60



remainder of the rules in the program can fire to display and report a path from the departure to the

arrival. The C code of copy_aff stops the rule program. This is done with
{listeReglesPert = NULL;}

which is the C variable which holds the list of pertinent rules.

6.2.4. Results of Execution

In this section, we give some results of the execution of the RDL/C program. The figures described in
the following can be found at the end of the manual. The first figure displays the map which is
stored in the database. This screen is displayed after the connection to the database without any
interaction with the user. It represents the contour of the different districts, the forests, and the

inhabited areas. It is displayed by the execution of the modules Districts, Verdure and Urbdens.

The second figure represents the state of the main window after the execution of the Roads_in_fire,
Departure_roads and Arrival_roads modules. As can be seen on the figure, the names of the

departure, arrival and on fire districts are displayed to the screen. The on fire district is shaded in

grey.

The third figure represents the main window at the end of execution. The shortest path is drawn in
bold.

The fourth figure is also one complete execution with the associated information on the shortest

path, i.e, the name of the different roads, the type of roads, etc.

The final figure is a trace of the execution of a program. These messages are included in the RDL/C

modules and display the name of the current rule to fire.

61




7. Compiler Options

The source code of an RDL/C module is wntten in a file which should have the suffix .r. The general

architecture of the RDL/C compller 1s portrayed in Figure 7.1.

SQL

DBMS

Figure.7.1. Sketch of the RDL/C compilation and run-time environment.

The compiler accepts a source program and produces as output, a C program which implements the
rule program. The DBMS does not require any inferencing capabilities to process the program. The C
program contains code to implement each rule and includes the inference engine which fires rules
until a fixpoint is rcached. All data remains in the DBMS during the inference process. This is

because rules are based on relational calculus and can thus be solved by the DBMS.

There exist different options to compile a rule module. These options are detailed in the next
sections. The user interface includes two sets of primitives: The SQL language, and a set of commands
to edit, run, compile and debug rule programs. There are two key compilation options. The first one
generates a C/SQL procedure. The input interface to these procedures is given by the INPUT section
declared in the module. The output interface is given by the OUTPUT section also declared in the
module. The second option generates C/SQL programs. The option -c creates the C program produced
by the RDL/C compiler. The program will be created with the same name as the source except that
it will have the suffix .c instcad of the suffix .r. However, using the -c option inhibits the
compilation of the program into its executable version. This option can be used to see how the
compiler implements rule programs in C. The name of the RDL/C source file is stated on the RDL/C
command line along with other object code files and libraries used in the compilation. Programs
produced by the RDL/C compiler can be run with the -t option to obtain run-time information such as
the list of pertinent rules for a cycle; the rule chosen by the inference engine for firing; the number of
tuples produced by a rule's firing; the SQL query produced by the inference engine; and error
messages. RDL/C source and object code are managed by the UNIX standard editors and file system.

7.1. The Module as a Program

A RDL/C module can be compiled in an executable application program. The syntax is :

rd1C name of file.r

63




Example : rdIC pecl.r

The command line must contain one and only one .r file. If other files and libraries are needed in the

compilation, they can also be included on this line. Consider the following example:
rdlC modl.r draw.o /usr/lib/libXaw.a

The draw.o file could have been produced by the C compiler from a C source file called draw.c. The

command for compiling this file is the following one.
cc ~c draw.c

Any number of these .o files can appear on the command line. Also, special libraries such as the X-
Window library can be required. These files also appear on the command line.

If no errors are detected in the compilation, it will result in an executable file whose name is the

name of the .r file.

7.2. The Module as a Procedure

A RDL/C module can be compiled into a procedure. The corresponding option is -pr. This option will
compile a .r file into a .o file which is to be linked with a C main program. The presence of INPUT
or OUTPUT relations in the module will automatically switch on this option. This is discussed in
the next section on compiling modules and C programs. The execution status of a module is set in the
imlsqlcode variable and can be checked after the module call. A status value of zero indicates that

no errors or problems occurred during the module's execution.

Example: rdIC -pr Pcc2.r produces a compiled version of a C procedure Pcc2(argc, argv, relations)
where relations is a list of relations (defined in the section on the rdlHeader file) corresponding to
the INPUT section. This procedure returns a list of relations corresponding to the OUTPUT section.

For more information, see the relation declaration section of this manual.

Example: (void)Verdure(argc,argv,NULL); is a valid call to the compiled version of the Verdure
RDL/C module. The NULL argument means that no input relations are used in this module. The

Verdure module should not return any relations.

Example : lien=(relations*) Pcc2(argc, argv, lien); is a valid call to the compiled version of the Pcc2

module. The execution of this procedure returns a list of relations.

7.3. Conipiling Modules and C programs

If modules have been compiled as procedures, they must be linked together with a C main program.
The command to compile an application from a C main program and from modules is the Crdl

command. Consider the following command.
Crdl main.c Pcc2.0 draw.o /usr/lib/libXaw.a



There can only be one .c file on the command line. The remaining files can be modules compiled as
procedures. This is the case for file Pcc2.0. Other files can also be C program files to be included in
the application. This is the case for the draw.o file. Libraries may also appear on the command
line. The name of the application is the name of the .c file. In this case, the application will be

'~ called main.

The main program must include the DBMS connect and disconnect commands. The body of the main

program should look like the following.
#include "iml.h"
#include "rdlHeader.h"

char user([100], passwd[100];
relations *liens;

/* start program */
strcpy (user, "SYS"):
strcpy (passwd, "");

rep = sql_connection (user, passwd);
if (rep != 0) exit (-1);
/* body of program */

liens = Pcc2(arge, argv, liens);

/* end of program */
rep = sql deconnection():
exit; '

The imLh file includes all the declarations necessary to communicate with the DBMS. (See the
section on this file for more details). The rdIHeader file includes all the declarations necessary to
mix C programs with rule modules. For example, relations is a type defined in this file. Variables
of this type must be declared to pass INPUT relations to modules and to obtain results from modules.
This is the role of the liens variable. This variable should contain the list of INPUT relations
needed by the Pcc2 module at the time of the call. The Pcc2 module will assign its result to this
variable by adding to this list, the list of output relations that it has produced. The sql_connection

and sql_deconnection procedures allow to establish and relinquish contact with the DBMS.

7.4. Debugging Programs

For the time being, it is only possible to debug programs by tracing its execution. To trace the
execution of a rule program, the -t option should appear on the application command line. Consider

the following compile command which compiles a module into an executable program.
rdlC modl.x

65



To obtain a trace of the execution at mod1 run-time, the mod1 application should be run with the -t

option as follows.
modl -t

The option will cause the inference engine to display (for each cycle) the list of pertinent rules; the
rule that it chose to fire; for each element in the action part of the rule, the SQL query used to select
those tuples that qualify the condition part of the rule; the number of tuples which qualify the
condition; and the effect on the relations appearing in the action part of the rule.

The list of pertinent rules are those rules which are considered by the engine as possible candidates
for fmng The rule that it will select for firing depends on the control string. For each relation
appearmg in the action part of the rule, the number of tuples that were present in the relation before
firing are given along with the number of tuples present in the relation after firing the rule. A
change in cardinality implies that the rule has had an effect on the relations in the action part of

the rule.

If the module is implemented as a procedure, the -t option from the command line has to be passed to
the module at the time of the call to obtain trace information from the inference engine. Consider

the following command lines.
rdlC -pr modl.r
Crdl main.c modl.o

main -t

For the inference engine to deliver trace information when it will run module mod], the -t option
must be passed in the call to procedure mod1 from the main C program. Hence, the main C program
must have the argc, argv parameters declared in the main procedure. These parameters must also be

present in the call to mod1. This is shown in the following call to mod]1.
outRels = modl ( argv, argc, inRels);

Reports can be run during a rule module execution for trace purposes. Consider the following rule.
rS5 is
if P1(x) ..
then + depl aff (x);

It might be interesting for the user to see the contents of the depl_aff relation each time that rule 155
fires and not only its final contents at the end of the program. To obtain this effect, the following

post code can be added to the rule.
55 is
if P1(x) ..
then + depl aff (x);
{repl ();}

This procedure call will cause report repl to be executed each time rule 155 fires to display the

contents of the depl_aff relation.

66



8. Running programs

Before running the application, the DBMS environment should be set. To set the environment, make
sure that the DBMS files are present and issue a DBSTART command. If no error messages result
from this command, the application is ready to run. Simply type in the name of the application to
start it. If the module has been compiled as a program, the application will ask to user to enter the
base name and password under which he wants to work. SYS is the system base name and is used to

access all relations in the database.

8.1. The iml File

The following is the contents of the imlLh file which should be included in all applications which
communicate with the DBMS. Important items have been flagged in bold. Non flagged items

corresponds to less general operations which are detailed in the IML manual [Sabre89a).

/* FICHIER de definition de types et de variables a inclure
dans tout programme C utilisant 1'interface IML

*/

/* Differentes valeurs du type attribut rendu par la primitive SQL GETTUPLE */
# define ENTIER 0

# define RE EL 1

# define TE XTE 2

#define LGENT IER [

#define LGREEL

#define MAXLIG 100

#define LAMAXATT 255

#aefine MAXA 40

foefine MAXPARAM 20

#de fine DIM_TAB REQ 3000 /*DIMENSION MAXI D'UNE REQUETE IML */

typedef char oct ;
typedef char typnomiml [MAXLIG] ;

struct texte /* Type texte IML */
{
long Long ;
char cont [LGMAXATT] ;
b

/* Definition du type SCHEM LISTE rendu par la primitive GET SCH */
struct schem 1 iste
{ long numatt;
long tyat ;
long lgattdef ;
long tylisp ;
struct texte t ;
struct schem 1iste *ps ;
}

/* declaration des variables SABRE externes au programme d'application */
extern struct tsqlca sqlca ;

extern long imlsqlcode ;

extern long imlnbt uwple ;

extern long iml nbatt ;

extern char * imllisp ;

extern long sabre finrel;

extern tsql_attribut sql_attribut ;

/* declaration externes des primitives IML */

67




extern long sql cannection();

ext ern long sql _deconnection();

extern long sql exec ();

extern long sql read ();

extern long sql_usefile()

extern long sql_execfile() :

extern long sgl_gettuple();

ext ern struct schem liste *sql get schema();

Codes for the three basic domain types in the DBMS are given. These are integers, reals and text
strings represented in French by ENTIER, REEL and TEXTE respectively. These codes are referred to
by the tyat field of the schem_liste data structure. This field yields a number which is the base
domain of the attribute. If the attribute is an ADT, the tylisp field is set to a value which is greater
than 3. The t field is the name of the attribute. The ps field allows to link attributes together to

obtain the list of attributes which comprise the relation.

Schema information is automatically obtained with a call to the sql_getschema function. This
function takes two text arguments which are the base name and the relation name of the relation
whose schema is to be obtained. For example, to obtain the schema of relation Toulouse.CTA, the

following call should be issued.
sch = sql_getschema ("Toulouse"”, "CTA");

If no such relation can be found in the database, the sch variable will be set to NULL.

To establish and relinquish contact with the DBMS, the sql_connection and sql_deconnection
functions are used. The sql_connection function accepts two text parameters and returns a code that
relates the status of the connection. A code value other than zero indicates a problem. The two
connection parameters are the user's name and the pass word. There should be one such call per

program. Consider the following example.
rep = sql_connection ("SYs", "");

This call connects the user SYS to the DBMS. There is no pass word associated to this user. To

relinquish contact with the DBMS, the following procedure call is used.
rep = sql_deconnection();

This procedure takes no parameters.

The sql_exec procedure takes one parameter which is the sql statement that is to be processed. The
number of tuples selected by the statement is assigned to a variable called imInbtuple. Consider the

following example.
rep = sql_exec ("select * from Toulouse.CTA;");
printf ("The number of tuples is %d\n", imlnbtuple);

The first statement issues a sclect statement to the DBMS selecting all tuples from the Toulouse.CTA
relation. The second statement displays the number of tuples that were selected by the call. The
tuples can be read by an sql_read procedure call. See the Sabrina reference manual, [Sabrinat], for

more information.

68




8.2. The rdlHeader File

This file must be included in programs which will interact with modules compiled as procedures.

The interesting elements in this file have been highlighted in bold characters.
# include <stdio.h>

# define baseRel 1

# define deducedRel 2

# define outputRel 11

# define defRegle O

# define defSeq 1

# define defBlock 2

/* 2= */

/* definition de types */

typedaf struct ({
char *fir stName;
char *name;
struct schem_liste *tlist;
int t ypeRal;
int «card;
} relat ion ;

type def struct Sre lat ions (
re lat ion *pt relation;
int projectionClause; /* for post place only */
re lat jon *projRel; '/* foar postplace only */
st ruct Sralations *next ;
} relat ions ;

Three different types of relations are*defined. These are base, deduced and output relations. These
types are referenced by the typeRel field of the relation data structure. The relation data structure
is the one used by the inference engine to manage relations during the execution of a rule program.
The firstName field holds the name of the relation that was defined by the user in the rule module.
The name field holds the name of the temporary relation which is the current state of the relation.
This is done to overcome a problem in SQL naming conventions. Hence, a relation is identified by the
use'r with the firstName field and its content is accessed with the name field. The tlist attribute
holds the schema of the relation. The schem_list data structure has been detailed in the previous
section on the iml header file. The card field holds the number of tuples in the relation. (This field

is not valid for base relations. For these relations, the card field is assigned a zero value).

The relations data structure creates a list of relations. The ptrelation field is a pointer to a relation
data structure. The next field links the elements in the list. Consider the following C main program
segment.

relations *cutRels, *inRels;

outRels = modl (argv, argc, inRels);

pt = outRels;

while (pt != NULL) {
if (stramp (pt~>ptrelation->firstName, "aRelation") == 0) break;
pt = pt—->next;

}

if (pt == NULL) stopProgram();

69




rép = sql_exec ("select * fram $s where al = 25", pt->ptrelation->name);

The output relations of module mod1 are obtained in the outRels variable. Both variables have been
defined to be of type relations. The while loop allows to search for a relation called aRelation in
this list. If the relation is not in the list, the program is halted. Otherwise, the relation produced
by module mod1 is used in an SQL query. The string processing facility allows to replace the control
sequence %s by the character string represented by the name field of the relation structure. This is

the name of the temporary relation generated by the module to hold the tuples of relation
aRelation.

70



9. Conclusion

The RDL/C language integrates a rule language and a procedural language (namely C). The kernel of
the language is the RDL1 language. RDL/C is a proper subset of the RDL1 language.

For the development of database applications, the RDL/C language presents some interesting
features compared to the C/SQL language. The first one is the expressive power of a rule compared
to an SQL query. A rule might include several actions in its action part and is then equivalent to
several SQL queries. A rﬁle can be recursive and is equivalent to a C while loop over several SQL
~ queries. Therefore, an RDL/C program is more concise than the equivalent C/SQL program. The
second advantage over C/SQL programs is that the user is freed from the management of temporary
relations. In RDL/C, these tasks are hidden from the user and managed by the inference engine. The
resulting program is easier to develop and to maintain. Control in an RDL/C program might be writ-
ten in two ways: In the language itself or with the control sub-language. This simulates standard
control structures such as IF THEN ELSE and DO WHILE. Furthermore, RDL/C modules can be
combined and called by C programs.

The data model is the relational one, (in the implementation we used as a testbed, it is extended
with Abstract Data Types). Due to C and to SQL, the rule language is coupled with a query lan-

guage. This is a useful feature for the development of applications.

71




10. References

[Gardarin89] G. Gardarin et al.: "Managing Complex Objects in an Extendible Relational DBMS",
Proc. of Int. Conf. on VLDB, Amsterdam, Aug. 1989.

[Kiernan90] G. Kiernan, C. de Maindreville, E. Simon : "Making Deductive Database a Practical
Technology: a step forward", Proc. of SIGMOD 90, Atlantic City NJ., June. 1990.

[Maindreville88] C. de Maindreville, E. Simon : "A Production Rule Based Approach to Deductive
Databases", Proc. of Int. Conf. on Data Engineering, Los Angeles, Feb. 1988.

[Sabrina1] "Sabrina*SQL Volume 1 et 2", Reference Manual, 1989, Infosys, 15, rue A. France 92800

Puteaux, France.

[Sabrina2] "Sabrina*SQL-Object", Reference Manual, 1989, Infosys, 15, rue A. France 92800 Puteaux,
France.

73



11. The BNF of the Language

programme : includes module variables declrel reports RULES rules controls inits wrapup
END MODULE '
| error
includes , include
|
include : INCLUDE CSTRING
l include INCLUDE CSTRING
module : MODULE ID %/
declrel ' inputrels baserels deducedrels outputrels
inputrels ' INPUT declrels
| .
baserels  BASE declrels
|
deducedrels ' DEDUCED declrels
I
outputrels ’ OUTPUT declrels
I
declrels ’ relat ;'

| declrels relat ;'

relat ' rela '(" schema ')’
I rela LIKE rela
schema ' ID domaine

| schema ', ID domaine

reports - REPORT reps
!
reps ' report
| reps report
report ‘ ID ON rela IS title header linesperpage format ';'
| error
format : FORMAT CSTRING
| USEID
| USE ID '(’ repparms ')’
repparms : repparm
| repparms ',' repparm
repparm ’ ID -
| constbase
title : TITLE CSTRING
I /* no title */
header : HEADER CSTRING
| /* no header */
linesperpage : LINESPPAGE INTNUMBER
I /* no lines per page */
variables ' VAR listeVariableDecl
|
listeVariableDecl ’ variableDecl

I listeVariableDecl variableDecl

75




variableDecl : externe domaine listeVariables *;'

| error

; .
externe : EXTERN

|

H
listeVariables ) . varname

| listeVariables ',’ varname

varmame ID

ILETTRE
inits ' INIT ccodee
|
wrapup , WRAPUP ccodee
|
rules , rule
| rules rule
rule . ID
IS ccode IF
declvars
conditions
alors
actions ;' ccode
| error !
alors ' THEN
I'THENONCE
ccode ' ccodee
|
ceodee . CCODE
| ccodee CCODE
declvars ' rela ‘(' LETTRE ')
-l declvars AND rela '( LETTRE 'y
I /* empty */
rela ' ID
HID ' ID
conditions ’ '(" condition 'y’

I /* emptly condition*/
condition : ‘(" condition ')’

| condition AND condition

| condition OR condition

I NOT condition

| cond
cond : compsimple

| formuquant

I PRED fonction
compsimple : compscal

| appinterval

| testvalnulle

| comptextfloue

compscal : expression relop expression

relop :EQ
ILT
ILE
INE
IGT
IGE

76



appinterval

testvalnulle

comptextfloue

patron
carescape

formuquant

listevarquant

actions

projections

extcall

extparms

plusmoins

projliste

projection

expression

terme

attribut

domaine

dombase

constante .

: expression BETWEEN expression' AND expression
| expression NOT BETWEEN expression AND oxpeession

; expression IS NULL
| expression IS NOT NULL

: expression LIKE patron-

| expression LIKE patron ESCAPE carescape

| expression NOT LIKE patron

| expression NOT LIKE patron ESCAPE carescape

: STRING
: STRING

: EXISTS listevarquant
} EXISTS listevarquant '(’ condition ')
| FOREACH listevarquant ‘(' condition )"

: LETTRE IN rela

 listevarquant ‘' LETTRE IN rela
; projections

| actions projections

: plusmoins rela ‘(' projliste *Y
| varname EQ expression
| extcall

’

: ID '(" extparms 'y’

’

: expression

| extparms ',' expression

B
. Myt

D+
I l-l
IPLUSPLUS k
: projection

ILETTRE

’
: ID EQ expression
| projection ', ID EQ expression
H
‘(" expression ')’
| expression '+' expression
| expression '-' expression
| expression '*' expression
| expression /' expression
| expression MOD expression
I expression DIV expression

| - expression %prec UMINUS
| terme

.
’

: constante
| attribut
| fonction

' ID

|LETTRE

| LETTRE " ID
; dombase

| DOM

: INTEGER
IREAL

| CHAR

! USER



constbase

fonction

listearguments

controls

controlargs

bsargs

| constbase

| constbase '[' domaine ']’

: STRING
| INTNUMBER
| REALNUMBER

L 1ID '(" listearguments ')’
I1ID ¢y

- : expression

| listearguments ', expression

: CONTROL controlargs ;'
|

; BLOCK ‘(" bsargs ‘)’
I SEQ ‘( bsargs 'Y
; controlargs

11D

| bsargs ', controlargs

| bsargs ', ID

78



12. Error Messages

Error messages are supplied by the compiler at compile-tirrie and by the application at run-time." At
compile time, errors might occur in pure RDL/C statements or in C statements, Run-time errors can
arise from different sources. Some errors are detected by the application. Among those that are not
detected are of the type division by zero and the like. The user will get a segmentation fault
message which is not particularly helpful. Among the errors that are detected at run-time by the
application are schema errors for base and derived relations or errors arising in ti\e SQL statements

issued to solve rules. These error messages are discussed in the following sections.

12.1.  Compile-Time Errors

The compiler has two phases. The first phase translates the rule source program into a C source
program. Errors can be detected in this phase. If no errors are detected,-thel C source program is
compiled by the C compiler. Errors in C statements appearing in the RDL/C source file might be
detected in this phase. Error messages in this phase are usually self explanatory. Consider module
search_District given as an example module in the sample application of this manual. An error can
be created by an unknown relation called unKnown in the output declarati_on section. Since a relation
is declared to be like relation unKnown, relation unKnown must have been declared for the program
to be correct. The error message that the compiler will produce during the first phase is the

following one.
*** ERROR The schema of unKnown is not defined
*** ERROR line 23 - makeSchemeLike : unKnown
*** ERROR line 23 - programme : unKnown
1 error detected

The first message gives an explicit indication as to the nature of the error. Such a message is printed
provided that the error is not a pure syntax error, in which case there in no such message. The two
following messages are always present. They give the line number where the error was detected,
the name of grammar rule the compiler was trying to reduce the expression to (see the BNF of the
language) followed by a colon and the token that caused the syntax error, This last information is

only useful if the error is a pure syntax error.

Errors produced by the C compiler in the second phase of evaluation refer to C code in the body of the
rule source program. A compiler option allows the C compiler to refer to the line number in the rule

source program where the error was detected.

12.2. Run-Time Errors

Some run-time errors are detected by the application. Consijder one more time, module
search_District given in the sample application section. A run-time error can be provoked by
changing the function xyinpoly to xyinpoly1l. The ADT function xyinpoly1 is not known to the DBMS

system are will provoke a run-time error when the module tries to run the SQL query to solve the

79



rule. First, an error is reported. -72 is the SQL code which corresponds to a function call that cannot
be solved by the DBMS. This error code can also be detected in the application with the imlsqlcode
variable, after the module call. (See the SQL manual for more detail on these codes). The message
signals that the error was found in rule r2 in module search_District. The text of the SQL query that
provoked the error is then given. This is an SQL query generated by the compiler to solve the rule.
The function xyinpoly1 appears in the body of the query. In all cases, the schemas of the relations
involved in the module are given. The District relation has not been assigned a relation, so it has no
schema at the time of the error. The relation comm_inter has the temporary relation L1 assigned to
it. The schema of L1 is given. For each attribute in the list, the name of the attribute comes first,
followed by the base type of the attribute. The ADT type is given before the comma. Values of 1 to 3
correspond to integers, reals and texts respectively; all other values correspond to ADT and can be

found in the SCHEMA.DEFLISP relation of the DBMS.
ERREUR ~72 sur regle r2 dans search District.

REQUETE SQL PROVOQUANT L'ERREUR

SELECT x.INSEE, x.ARRD, X.REGION, x.CODE, x.NAME, x.POPU, x.X, x.Y, x.XMIN,

X.YMIN, x.

XMAX, x.YMAX, x.GEOM FROM L1 as x WHERE xyinpolyl ( 4357 , 3236
rgeam _to. poly( x.X

MIN,x.YMIN,x.GEQM)) = 'T' ;

Schemas des relations dans 1'environnement

District -> District ()

ccm'n_inter -> L1 (INSEE TEXTE, 3, ARRD ENTIER, 1, REGION ENTIER, 1, CODE
ENTIER, 1, NAME TEXTE, 3, POPU ENTIER, 1, X ENTIER, 1, Y ENTIER, 1, XMIN
ENTIER, 1, YMIN ENTIER, 1, XMAX ENTIER, 1, YMAX ENTIER, 1, GEOM TEXTE, 14)
TOULOUSE.DISTRICT -> TOULOUSE.DISTRICT (INSEE TEXTE, 3, ARRD ENTIER, 1, REGION
ENTIER,

1, CCDE ENTIER, 1, NAME TEXTE, 3, POPU ENTIER, 1, X ENTIER, 1, Y ENTIER, 1,
XMIN ENTIER, 1, YMIN ENTIER, 1, XMAX ENTIER, 1, YMAX ENTIER, 1, GEOM TEXTE, 14)

80



Rdoouey dunpuaadds¢adges eTo7

0397 T 1ddy /1Y~ I 1ddy./2 A/ T4IA4IS /RUUOPRW,/JSN
pmd¢asges eJoft

4°34NpPIIA Yy uaye1oTaTI7T3uTO0d
O *ad4npuan 4 °good H
403X TWgan 0°*goad
J4suapgun good
0 *sulIpqun J4 *upogoad
J°Z2WuodTaAnou] 0 *updZdod
0°ZwWwooT3AN0d4] ns4*zood
J4*WwooTa3AN0u] p1oua-goad [} (-NRd-N L FENNT)
O *WWOO~IANOUZ 4*zgood 4*SUN04ILseD
4°4n0jaddedduy 0°*z2ood 0°SJ4N04asJed
4e0
dde

dde
dde
dde!
Y{dde
‘{dde
3ie
EELS
Jie

ea (X

13e09do 4

LT R
~vaca
’ -

Rttt T S T S

P e % M crrec e e e, nem

-
7

-
’
.
‘
)
’
e

A
»

/

LY

\,

—_———
A

A

4

.

Lt A




2a0e.n %:vﬁH...BmAu.ﬁmw
QRN dinpusssos(esges
_ par S8 3 0
16dY/¢h/THendes /eulcpeu/ asn/
prdcauges
punoy ou
20043 {-

ugﬁgﬁ

Nt e —a

ati

¢

I
1

ST T T e e e _g~-

s
¢
[}
¢
+
'
i
|
i

”

i e L E . & N

3[0suod/Adp/ nu..m_ a




1313 dUNPUERJIS(IIQeS u.:om

03971 [ddy/ WY ™1 1ddY/ 20/ T40AUSS /e UIOpeW/ S

w 61pJ(ouqes :efo]

JOUMO 0N (0303 SURDYD

0307 3004 UMOYICIJIQRS lR1O]

0303 IPT J3SN UMOLDUN TUMOYD

3004 0303 UMOYI(RIQeS (v[O]

0303 PEITT b2 N[ 2£962T auges T ——mu-nu-
0303 [- S[(%Jges le|oj
qesAapseio] usny
po¢ouges 0]
Au039au1p U0 3[14 Yons oN :aweudy BFCFYNEVERNNG VAN
0303/493SR4/[RI0] JuSN/ 0303 MI(IIGes R[O]

0303 $EITT T INf 2£962T N

0303 [I<o4qes le[o]

2 3 2101 (X

Paiatun

seg

A e T S AP

310SU00 /AP, @




3NJ3A34 uou 334 Idne aJyne 3toA T £19
3N33A34 uou 234 adsne 43N0 artoA T £15
9N33A34 UOU 334 uqne auIne aroa 1 9fp
AN3I3AIL UOU 34 Ju3ne aJ3ne ItoA | pbeH
3N3IAIL UOU 3I3u Fuqne aJd3ne Irvoa | 00p
3NJIA32 Uou 334 augzne 243ne  J10A T 86¢
*33J43uU3 *nBau a3y auzne aJayne 3rtoA 1 £9¢
3aN33A34 UOU 334 augne 343ne  aroa T 862

I
1

. CoJges le1o]

0-: nl
_:...e_.. m\s :,
J*zo0d [N

PatiTiun X




]
en FINpUss.s oS tefo]
_ 099”1 [ddy, 0y
1t/ 0/ T 500195 feusopew  asn,

prdcasges jeqo

punoy jou
0N - S[CEUES

*3ILJ3UI ITejuswajzaedap S43n@ IT0A D 60
*334qua a4qne aJaane a3avtoa | L1
‘334U aagne 943N 3700 1 £GT
*3343Uua adgqne 243Ne 3T0A 1 SFT
13734 wWayg NOI1INO4 S3I0AGN WON ar
Sjuawase Tdap

$7Q44€7ITdOD Ip JUIWISSTYOURL 4
$TqQ43e~37d0od ap uadwex3y

339T97d0D Ip uawexy

37dod™UTy ap uauwex3

9TdOOTUTY Ip JUSIWISS TYOURY 4
37dod™UTy ap uawex3y

2TdO2TUT Ip JUIWISSTYOURJ 4
S7dOdTUT3 3p UdWRX]

3TdO0TUTy Ip FJUIWISS TYOURU 4
27doOdTUTy 3p usdwex3

ST7dOdTUT4 Ip JUIWISS TYOUR. 4
37dod™UT4 ap ulwex3

ITUTTUTY Ip JUSWISSTYOURJ 4

ITUT UTY 3p uawex3y

WT3do Ip JUIWISSTYOUR 4

wr3do 3Ip uduex3]

few ap JuawassTyoueu 4

few 3p uawex3

STQjTWRJY Ip JUIWISSTYDURJ 4

STQiTWed 3P Udwexy

JTWRL 3P JUIWISSTYIURY 4

JTwed 3p ulwex3

ITUT UTS ap uswex3

wT3do Sp JUIWISS TYSURY 4

wy3zdo ap uUduwexy

few 3p JUBWISS TYdURY 4

few ap uIuex 3y

STQjTuRd 3p JUIWISSTYIURJ 4

STQiTWeL Ip UIwex]

JTuRJL 3p JUIWISSTYDURU 4

JTWed Ip uawex3

sSTgsTqlredy—3TUT 2p JUIWISS TYoURY 4
$T9STqle43™3TUT ap uawex3
s1qfeu3™3TUT 3p JUSWISS TYIUed 4
STAleJd3™3TuT 9p uawex3

fed3™3TUY 3p USWISS TYOURY 4
fedy™3Tuy ap usdwex3

2294 3ut3juesg

9ATIIR P SJUNO34I44¥D NP aTSTES
J4edap ap sunojauues np avstes
JJIPUTOl @ SUNOJ214ED XNIP 3P ITSTeS
SauueT4 S3T Jed S334N0JUI SI3NOUL SIP a3%eyoryge
N334 U3 JUOZ ®] 9P 2TSTES

S3sSuap sIurequn sS3UOZ SIp a3eyoryye
$33.404 SIp 23eyoyy4e

S3uUNwWWod S3p a3eyoTygye

UOTXduuo] -

——— -] U0 TXaUUO) (—m—m — ———————————
' ¢ sSa3uuo(g 9p Iseq 1 @ UOTXIuuog

n
1]
=3

M
3
T

afosuoosasp, [N v ney @

—




