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Abstract

This User Operating Manual describes the practical aspects of AUTO. AUTO

is a verification system for process calculi terms. It incorporates increasingly
-many features, starting with bisimulation equivalence proving.

AUTO deals mostly with finite automata, and pretends to treat partial veri-
fication as much as possible as an homogeneous activity: statements themselves
consist in reduced automata obtained by “slicing” in an homomorphic fashion
the original one. The means to attain this js through the notion of abstraction
criteria.

The present Manual describes syntax and functionalities, but does not try to
instill pragmatics or disciplines in the use of AUTO or process calculi modelization
in general. This has been long undertaken in a variety of articles, recalled in the
bibliographic last section.

Résumé

Ce Manuel d’Utilisation décrit les aspects pratiques d’AUTO. AUTO est un
systéme de vérification de termes de calculs de processus. Il contient aujourd’hui
un nombre grandissant de fonctionalités, & partir de la notion initiale de preuve
de bisimulation.

AUTO manipule principalement des automates finis, et tente au maximum
de traiter les vérifications partielles de cette manidre homogene: les propriétés
sont elles-mé&mes considérées comme des automates, obtenus par des “coupes”
de nature homomorphiques, dans Pautomate de départ. Ceci est réalis¢ par la
définition des critéres d’abstraction.

Le présent Manuel décrit la syntaxe et les fonctionnalités d’AUTO, A Pexclu-
sion des considérations méthodologiques et pragmatiques de bonne utilisation,
sur AUTO ou les calculs de processus en général. Une liste d’articles traitant
d’exemples sur ces thames est contenue dans la section bibliographique.
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1 Foreword

This handbook is meant for people who care about Process Calculi. The theory
of Process Calculi [Mil 80] aims at providing both a syntax and a sound semantics
to model concurrent systems at a certain level of mathematical abstraction, in an
algebraic framework. It has now gained wide recognition in this domain, and gave
rise to a whole field of study in its own.

And so AUTO is specifically designed at algebraic manipulations of such expres-
sions. It limits itself to the finitary case, and constructs their underlying automaton.
It also performs on demand a range of reductions on these automata. Actually since
the early days these reductions were asserted as a general philosophy, with reduced (or
“abstracted”) versions of automata considered as partial statements on them. This
leads to a discipline of verification where specification of correctness and realising pro-
cesses share the same semantic domain of automata. As these are highly graphical
objects results may be displayed the very same way terms were provided.

AUTO is fronted by the graphical editor AUTOGRAPH|RS 89], where both au-
tomata and process networks may be edited. Reduced automata obtained by AUTO
may also be drawn in AUTOGRAPH under human guidance.

AUTO has been endowed with lots of side functions which bridge the gap from
theoretical verification theory to everyday life debugging for the best of our intend.
Still this is an evergrowing activity which needs more practice on modelling large
systems to reach its ends to meet full satisfaction.

AUTO was found a valuable tool not only for process calculi, but also for any
language providing automata as reactive systems. It is now widely used in connection
with Esterel [BG 87] to observe automata.
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2 The objects

The range of objects types manipulated in AUTO is rather small. Some of these
objects are user-provided, and entered as input to the system. Others are produced
by AUTO as results of computation. They may themselves be further analysed.

2.1 User-provided Objects

They range upon:

e actions and signals (and lists of them),
e process calculi terms (for the time being MEIJE terms),

e abstraction criteria.

Objects of the first two types can also be produced by AUTO, for instance as sorts of
processes for signal lists, or as readable format of automata for process terms.

Objects of these classes may be supplied to AUTO by using dedicated parsing
commands so that they are syntactically checked. Actually the parser of both actions
and process terms is shared, while criteria are recognized with a different parser.

2.1.1 Actions

They represent the basic behaviours of systems, consisting of communication at-
tempts. They shall become the labels of automata transitions. Actions are thus
generated by emission /reception signals together with atomic actions, and then built
by possibly aggregating them in simultaneous co-ocurrences products. Along with
actions come structures like actions lists.

Concrete syntax for actions and related structures is:

labels
They are the atomic signals basenames. They consist of alphanumerical strings,
possibly containing - (dash) and . (underline) characters, and must start with
a letter. ‘

hidden action
The string tau is reserved and denotes the invisible, or “hidden” action corre-

sponding to the theory of weak bisimulation.

emission signals
They are just consisting of labels, possibly ending with an optional “}” char-
acter. One may also indicate a multiple simultaneous emission of a signal by
grouping as many “!” as needed, as in emit!!!. Another alternative syntax for
this is emit~3.



reception signals
They are consisting of labels suffixed with one or several “?”. Equally, one may
type receive”-3 instead of receive???.

compound actions
They are formed with “.” (dot) separated lists of emission and reception signals,
as for instance in “receive?.transmit~2.token!”

lists
Lists of actions are used by several AUTO functions. They are comma separated,
braces spanned, as in {emit!!, receive?.transmit} for instance.

2.1.2 Process Calculi Terms

They form an algebra based on primitive operators. The operators available in AUTO
are those of MELJE, which closely resemble those of CCS, but for an additional se-
mantic rule for the parallel operator: arbitrary simultaneous co-occurrences of actions
are allowed (and not only when they are mutually inverse signals).

In order to obtain the required finitary conditions, since AUTO only manipulates
finite automata, the algebraic structure is split in two levels:

Sequential regular terms

At a first level, “non-deterministic sequential” regular terms are produced, with a
syntax directly representing automata through right-linear grammars. Still there may
be free variables in those terms, to be matched against previously computed automata
in the global toplevel environment.

In the sequel we shall let R, Ry, ..., Ry range over syntactic terms of this first
level of syntax. Concrete syntax for regular processes is:

stop
for the term without behaviours.

a:R

for the process performing an a action before reconfigurating into R.

R, + R,
for the process which behaves either as R; or R; on demand. Sums should
imperatively be guarded, that is all variables occurring in either Ry or R; should
be prefixed by an action somehow.

variables
They consist of alphanumerical strings, possibly containing - (dash) and _
(underline) characters, and must start with a letter. This was the lexicographic
class of actions labels already. Process variables are supposed to be bound,



either statically to a previously defined global variable containing an already
compiled automaton, or to their surrounding recursive definition.

let rec { X, = R, and ... and Xy = Ry }in R

for recursive definitions of variables X;.

Examplel: a process representing a boolean variable.

let rec
{False = write_false?:False
+ read_false!:False
+ write_true?:True
and
True = write_true?:True
+ read_true!:True
+ write_false?:False}
in True
Networks

At a second level another set of syntactic constructs is used for building networks
setting subcomponents in parallel, with proper communications and scoping of signals
visibility. This level of syntax is also known as building flowgraphs.

In the sequel we shall let P, Py, ..., Py range over all syntactic terms.

let (X1 =P and ... and XN =Py }in P

for local non-recursive definitions of terms variables.

P, /] P
for parallel composition of PI and P2.

P\siglab
for restriction of a process P on a signal label. This limits the scoping of the
signal communication by forcing it to happen inside of this term. Restriction
on several signals at once is simply P\siglabl\siglab2 ... \siglabN.

Plactl/siglabl,act2/siglab2, ..., actN/siglabN]
for the term P in which where atomic signals labels siglabl, siglab2, ...,
siglabN (representing signals with “emission polarity”) are substituted by pos-
sibly compound a1, a2, ..., aN actions.

axP
for the process P piloted -— or driven — by an action a. This means that this
action is added as a simultaneous action to whatever action P may perform. In
particular this can turn the invisible 7 action to become noticeable again!

Example2: A process representing a scheduler on 3 cyclers, extracted
from [Mil 80].



(((cycler [beta3 /beta, alpha3 /alpha,
sig_1 /myTurn, myTurn /Next])
1/
(cycler [beta2 /beta, alpha2 /alpha,
Next /myTurn, sig_1 /Nextl)

//
(cycler [betal /beta, alphal /alphal)
//
((let rec
{st_1 = Start!:st_2
and

st_2 = stop}
in st_1) [myTurn /Start]}))
\ sig_1 \ Next \ myTurm)

These two levels of terms syntax closely correspond to the two modes of edition
in AUTOGRAPH.

Terms may of course be parenthesized to overwhelm the default binding powers.
The default binding priority is that unary operators bing stronger than binary ones,
and that restriction and renaming bind stronger than prefizing and piloting.:

2.1.3 Abstraction Criteria

Abstraction Criteria are finite collections of abstract actions. In a sense, they provide
for a new alphabet of actions, with less fine grain of atomicity as the concrete former
actions, and on which an abstracted version of the automaton will be extracted. In
essence this new automaton will be simpler, with many details forgotten. Thus it
shall “give an angle” on a specific property to be checked for. Interestingly, unlike
for temporal logics formulae one needs not know exactly what the relevant property
is, but rather focus on it with more and more precision by playing around composing
criteria. Still the theory of criteria is perfectly founded on the semantic side. So one
always knows how statements on the reduced automaton should be interpreted going
back to the original one, which more directly represents the system to be observed.
These observations led us to introduce the type of pathes, trying to retrieve original
information in a practical format. Pathes will be described later on.

Concrete syntax for abstraction criteria is, for the time being (it is subject to
improvement in the next future):

criteria
A criteria is just a comma separated list of abstract actions definitions. It must
be bound to a name using the parse-criterion command.

abstract actions
An abstract action definition is of the shape “name = body”. This definition




may not be recursive. That is, if ever an abstract action bears the same name
as a concrete one, they shall be considered different. In particular, one may
have 7 as an hidden abstract action. The body is a regular expression based on
basic predicates as generators. Regular expression syntax is simply:

Abstr; + Abstr,

for set union

Abstr; : Abstr,

for sequential product

Abstr *

for Kleene star.

For instance “A = tau*:/a:tau*” is a well formed abstract action.

basic predicates
They range along:

act
for each act “concrete” action names, to stand for identity predicate to

this action,
/ siglab
for the “divisibility by a signal siglab” predicate,
or, and, not
to form boolean combinations of the precedent two predicates.

Predicates may be parenthesized to overpass usual binding powers.

The following criterion was drawn from an example of ISO transport layer spec-
fication.

A=(tau *):
(((not / CONres_A_B) and (not / CONcon_B_A))*):
(tau *),
B=(tau *):
(/CONres_A_B + /CONcon_B_A):
(tau *): :
((/DATreq_A_B + /DATind_B_A)*):
(tau =*):
(/DATreq_A_C + /DATind_C_A + /CONind_C_A
+ /CONreq_A_C + /DISind_C_A
+ /DISreq_A_C + /CONres_A_C + /CONcon_C_A):
(tau *):
((/DATreq_A_C + /DATind_C_A + /CONind_C_A
+ /CONreq_A_C + /DISind_C_A
+ /DISreq_A_C + /CONres_A_C + /CONcon_C_A)*):
(tan *):



((/DATreq_A_B + /DATind_B_A)%):
(taun *):

(/D1Sreq_A_B + /DISind_B_A):
(tau *),

C=(tau*):

(/CONres_A_B + /CONcon_B_A4):
(tau #*):

((/DATreq_A_B + /DATind_B_A)*):
(tan *):

(/DISreq_A_B + /DISind_B_A):
(tau *);

2.2 Avuto generated Objects

The nature of AUTO is to compute functions on these input objects, of types actions,
process terms or criteria. It then returns other objects as output, this time with one
of the following types:

e automata, which as we saw could be viewed to a certain extend as a
subtype of this of terms,

e actions lists,
e pathes, or sequences of transitions, and

e partitions, or equivalence classes of states referring to a given au-
tomaton.

Out of these, the type of automata is certainly the most important, while others are
just means of recollecting informations on these automata for better comprehension
and analysis.

None of these types really owes a fancy syntax for reading, as they are not sup-
posed to be provided by the user. There are AUTO functions to print them about
nicely, but mostly they are intended in the next future to be graphically displayed
in AUTOGRAPH(which may require human help). One may also use further utilitary
function to extract even finer information from them (like “ which class in a partition
does a state belong to” for instance...).

We shall now sketch a number of simple considerations applying to the intuition
behind the usefulness of such objects in AUTO. We hope to hint at how they may
bridge the gap in between rather theoretical functionalities in parallel systems veri-
fication, in one hand, and on the other practical questioning of the results, specially
when negative, to build up to ad-hoc debugging techniques in the domain of paral-
lelism where a new kind of mistakes are raising up by nature.




2.2.1 Automata

Constructing automata from terms is AUTO’s primary function. It does so following
the celebrated Structural Operational Semantics. Automata have an internal repre-
sentation to allow fast operations on them as required by the algorithms in AUTO’s
engine. There is a variety of functions performing these automata constructions, since
most of them apply reductions at intermediate levels according to what congruences
properties allow. Sizes may then be brought down in the course of construction, which
is of great importance for the ulterior algorithms.

Functions range over simple automaton construction, construction of quotients
both up to strong and weak bisimulation, construction of quotients parameterised by
abstraction criteria, construction of quotients up to trace language semantics, and
a couple of others of less importance. The latter are provided to the user so that
he may perform step by step some of the inner algorithms involved in the preceding
ones, setting several tracing booleans, and learn more about where space and time
were spent. Then the succession of performed functions may be tuned so as to improve
efficiency. This makes AUTO a (small) programming language.

In AUTO automata may be explored or displayed as terms. They may also be
passed to AUTOGRAPH for human-guided graphical displays, or further observed in
AUTO to provide perceptive informations. For instance reduced versions may be
extracted using abstraction criteria. Deadlock states may be listed, as may sorts and
lists of possible labelling actions.

2.2.2 Pathes

Pathes are sequences of transitions, with states alternated by performed actions lead-
ing from one to the next.

They are a means of diagnostic to recover information after playing the criteria
reduction game: typically, one first reduces down some automaton, abstracting about
those behaviours which shall not be relevant to this aspect the user has in mind. As
the size becomes smaller, one is perhaps in the end able to put in evidence either
some state as a specially important one -—a partial deadlock for instance—, or a
path connecting two states while it should not. But then one would need to retrieve
this information on the former automaton, prior to reduction. Using pathes actually
achieves this. A further step would be to recollect this path in its distributed form in
the starting term itself, with indication of what behaviours components share in the
action. This is not done yet.

2.2.3 Partitions

Partitions are made out of an automaton name together with a list of lists of states.
Each list of states amounts for an equivalence class. In case the partition is incomplete,
all remaining states are supposed to belong to the same additional class.

10



There are utilitary functions for regaining information about which class a state
falls in (so that one may easily check whether two states are equivalent). One may
also build partition “by hand”, manipulating lists of states and then linking the result
to a given automaton. Partitions may also be used as an imperative starting case for
the strong bisimulation refinement algorithm.

11



3 Entering the fair world of Auto

3.1 Variables and Commands.

AUTO consists in a main toplevel loop. The user is prompted for commands. Com-
mands typically consist in computing a result, or parsing a term, and then store the
result in a global variable, or identifier. Variables bound to objects form a global
environment (in a ML-like fashion). Bindings are static, so that free variables ap-
pearing in a command are automatically bound to their previous value in the then
environment. In case the variables weren’t found a syntax error is raised. Identifiers
are stored in the same environment, no matter the type. Then no two objects bearing
the same name but of different types may be present at the same time in the toplevel
environment. One cannot name a the process a:stop.

Command are —possibly several input lines long- strings terminated with a semi-
colon. Errors are recovered typing two semicolons in a row. To exit AUTO, just type
end; as a command.

3.2 Binding the variables.

The way to bind variables is two-fold, depending on the object to be bound. Actions,
MEIE/CCS terms and abstraction criteria need to be parsed. Then the command
obeys the syntax:

parse action_var = <actions>;
parse term_var = <term>;

or
parse-criterion crit_var = <criterion>;

respectively. Actions and terms calls for the same parser. AUTO shiftes its prompt
character when a parsing command is not over while typing a carriage-return.

In other cases, a global variable may only be bound to the result of a —possibly
composed— function computed in AUTO. The list of all AUTO functions is to be
found in section 5.

Some global variables names are reserved, and correspond to Control flags, of
boolean nature (see their list in section 6. They may be assigned to true or false
by a command. We see this as applying a nullary function.

When no specific parser is to be called, the command shapes as:

set var = ...;

As a result to performing the command, AUTO shall print the name of the variable
together with the type that was inferred to it. The actual value, or content, that was

12



computed is itself not printed, as it may outstretch what is decently readable on the
screen. In case of automata there are functions which let the user figure out their
sizes without printing them. :

3.3 Showing the result

In any case you may visualise the content of a variable using a command of the form:

show <var>;

Actually you may also visualise the result of applying a function without binding it
to a variable by typing

show function(arguments);

For structured objects, like autornata and terms, the use of show is not advised. The
user should rather use the display command (see section 5).

In case one simply wants to see the result of a function without actually binding
a variable to it, the command show <functions>(<argumentlists>) is perfectly
alright. One may even recover the content of the last unassigned computation result,
as it was stored in the dummy variable it. Just beware that it is not a synonimous
to the last assigned variable, as in ML for instance.

3.4 Auditing the session

AUTO sessions may be recorded, with sequences of instructions interleaved with sys-
tem’s answers. This is done through the andit command, which requires a file name
and adds an .aud suffix. This audit is ended by typing close; as a command.

3.5 Need Help?

There are two commands for recalling informations upon AUTO’s syntactic features
to the forgetful user.

The help command is the more complete of both. It may only be invoked on any
keyword in AUTO(hereafter called “topics”), either objects, command or function
name, control flag or optional format keyword. The lay-out of the help command is
inspired from the Unix “man” command, even though much more primitive.

Informations upon concrete syntax commitments together with short indications
about funtionalities are provided. The command help; on its own, without argu-
ments, explains how to run it (with arguments). One may get a full list of available
help topics by typing help topics; .

The apropos command gives a shorter presentation of these topics, usually just
one line. It may be invoked with other, broader keywords to encompass a subset of

13



topics. This feature is of interest when the name of something in AUTO is indeed what
is to be remembered. Typing apropos; without arguments provides a first range of
fields to start sorting out the search.

The way apropos is implemented is also rather bare. It shall print all lines from
a small database which somehow correspond to a given key. So the lay-out may
seems odd at times, with unconnected lines in succession. But still the information is

present...

3.6 Regarding Unix
To exit AUTO back to Unix, one types:
end;

Still, a few commands allow the user to execute very simple Unix commands
without exiting AUTO. They will certainly become obsolete some day because of
multiwindowing and other escaping orders that would pause AUTO from the Unix
system itself. They are still worth mentioning for the time being.

One may execute any simple unix command by typing:

comline "command-text";

A set of commands deal with the call to a text editor from inside AUTO. This is
done through the command:

edit "filename";

Without further notice, the called editor is Emacs. To change this, one updates a
specific internal string by typing:

default-editor "editor-name";

Now to how the files are spotted in the Unix directory systems: not all files need
to be present in the directory AUTO was called from, be it for editing or actually
loading into our system. Absolute pathes are alright, but also relative pathes to a
certain list of ordered path prefixes that AUTO knows of. There is a default basic
such prefixes initially in the system. It is printed by typing

search-path;

This command in general shall provide the search-path list in use presently. This list
is changed with the two commands:

add-search-path "directory-prefix";
and

del-search-path "directory-prefix";

14



respectively. Notice the order is important. There are no commands for changing it.
Each directory-prefix name should imperatively end with a “/” (slash) symbol, as
the residual of the file name will simply be appended.
The user may reinsure himself about which actual file was taken into account by
the preceding mechanism by typing

search-in-path "relative-file-name";

which shall produce the absolute path of the corresponding file (where it was found).

15



4 The input/output commands

There are two kinds of files which may be read, from files or screen: those which
contain objects, and those which contain sequences of instructions. Only objects
files may be printed, even though there is a way to record sessions with the audit

mechanism.

4.1 Feeding AvuTo

All three following commands shall make implicit use of the directory searching for
files as described in 3.6 whenever needed.

load “InstructionsFileName”

Instructions are kept in Unix files suffixed with “.ec”. There are read and
executed in AUTO by typing the command load “<filename>” ; , without the
suffix. This file may itself recursively calls for loading of other files —or objects
even-. There is provision for inserting comments in the file text, while the
reading is temporarily stopped. It is useful for automatic demos: at each line
starting with a “>” symbol the system will be made to halt, scanning a portion
of uninterpreted text down to a “<” symbol starting another line below. Loading
is resumed by typing <Return>.

include “MeijeTermFilename”
MEUE terms are kept in files suffixed with .m0. There is an AUTO function,
named include, which requires a string representing a file name, without its
.m0 suffix, and then reads from this file instead of the usual input.
This function must of course imperatively be used inside of a parse command,
so that a proper terms parser is turned on.
Abstraction Criteria may also be read from files using this function. The distinc-
tion is made to AUTO as then the function is used while in a parse-criterion
command. In this case the include function will be turned to look for a file
whose name is suffixed by .crit instead.

include-auto “AutomatonFilename”
Automata may be read in their internal form, after they were written down
this way (“dumped”). In this case they are stored in files suffixed with “.au”.
This does not require to parse them back, and so proves much more efficient.
This function is used while using a set or show command.

Files of that format are presently produced also by the Esterelv3 system, to
which AUTO is therefore fully interfaced.

4.2 Getting it back
display identifier [OptionalFormat]

16



write “Filename” identifier [OptionalFormat]

The display comnmand prints the content of the identifier on the screen, while
printing on file calls for the write command. Then a file basename is required,
to which a suffix is appended in case an optional format is prescribed by the
user. We shall now detail these formats, pending on objects. The default format
is a plain one which may not be reentered into any system. display may also
be used in front of the keyword globals, which as a result prints the names of
all existing variables at this time in the environment, together with their types.
Similarly display flags prints the states of all boolean control flags.

meije
For terms only. Then a MEIJE process calculus term is generated, using
a clever paragrapher for pretty-printing. Files produced with this format
may be read back using include.

auto
For automata only. The automaton is then dumped all at once in its
internal Lisp representation, fit being reentered with a call to include-
auto.

autograph

When applied to an automaton, produces a format fit for exploration in
the graphical editor AUTOGRAPH. When applied to a list of signals la-
bels, produces an AUTOGRAPH net consisting of a single box with ports
on its border, named with these labels. When applied to a path, produces
a specific format to be visualised in AUTOGRAPH on the preexisting win-
dows, with states jumps pictured on the component individual processes
and global actions highlighted on the global network. This output format
is still subject to change.

short
for automata only, provides only their size in number of states, transitions

and labels.
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5 The functions

The substance of AUTO is contained in the list of applicable functions. As they tend
to become numerous we split them in two for description: the most evocative ones
first, and the utilitary ones later on.

Arguments to functions should be put in between parenthesis. The single excep-
tion to this is the case of one argument consisting of a single string of characters
(thus a constant or a variable in the environment), in which case parenthesis are not
mandatory.

In the sequel, an argument put in between brackets in the type description of a
function shall be meant as optional. Wherever we use the type of Terms an internal
representation automaton could be provided instead.

5.1 Main functions

5.1.1 From Terms to Automata

These contain both construction and reduction functions. The merging of both ac-
tivities in the same function allows to take benefit of congruences properties and
distribute reductions on subterms.

All these functions allow for an optional second argument. It should be a list of
labels, and represents the set of labels which are visible externally, any other being
then implicitely renamed into r.

tta(MeijeTerm [,ActionsList]): Automaton
short for “term to automata”, performs the full expansion of terms
into automata, using the semantic rules, without performing any sort
of reduction whatsoever. One thus gets a global system which in the
worst case is in size the product of component sizes, but most often is
not, if there is to be synchronisation involved.

mini(MeijjeTerm [,ActionsList]): Automaton
same as before, but then performs a strong bisimulation reduction to

minimal representative.

obs(MeijeTerm [,ActionsList]): Automaton
performs the expansion of terms according to classical weak bisimu-
lation congruence. A reduction to minimal form along this semantics
is performed at every stage of construction after setting two subcom-

ponents in parallel.

The underlying algorithm runs in 3 phases: first all states belonging to
the same strongly connected component for the r-transition relation
are merged into one; then a transitive closure of the remaining tran-
sitions providing the relevant 7* : a : 7* behaviours is computed; last
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reduction w.r.t. strong bisimulation is performed on the automaton
based on these new relations.

tau-simpl(MeijeTerm [,ActionsList]): Automaton
similar to obs, but only the first step of the algorithm is performed,
which shrinks states of the same r-cycle together. The procedure is
~ then guaranteed not to be too costly since no intermediate, eventually
space consuming, structure is ever generated.

trace(MeijeTerm [,ActionsList]): Automaton
This function computes the trace semantics minimal automaton rep-
resentative of a term, that is the minimal deterministic automaton
recognizing the same language.

dterm(MeijeTerm [,ActionsList]): Automaton
This function computes a standard deterministic version of the au-
tomaton, without minimization.

exclusion(MeijeTerm [,SignalsListList]): Automaton
strips from the automaton all transitions whose labelling actions do
not obey the following constraint, drawn from the provided list of
signals list: the considered action may not contain two signals from
the same list!

tau-sature(Automaton): Automaton
Performs the transitive closure of the r transitions, furthermore com-
puting the 7* : a : r* transition completion for all a action. The
function takes an automaton as argument and provides a completed
automaton back, with transitions added. It does not perform any
reduction whatsoever.

refined-mini(Partition): Automaton
practices reduction along strong bisimulation semantics. It starts the
partitioning algorithm involved from the given partition, working on
the automaton contained in the partition.

5.1.2 From Automata and Criteria to Automata

abstract(Automaton, Criterion): Automaton
Takes an automaton and an regular abstraction criterion. Syntax for
criteria was provided in section 2. The function constructs the new
automaton on abstract actions as labels, without further equivalent
states reduction.
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5.1.3 From Terms Couples to Truth Values

eq(MeijeTerm, MeijeTerm): boolean
Directly provides a true/false answer on the bisimulation question,
when applied to a couple of terms. Internally realizes both their min-
imizations, and compare the results. A foreseen improvement to this
function is to provide with an explanatory temporal logic function —on
request only !~ in case of nonbisimulating terms.

obseq(MeijeTerm, MeijeTerm): boolean
Same as before, but with the weak bisimulation equivalence instead.

5.1.4 From Terms to Actions Lists

Providing with sort computing seemed just fair as a protection against mispelling of
signals and misplacing of restrictions as scoping operators. It is safe to run it first on
a term to check that unwanted signals do not surface to the outside.

sort(MeijeTerm) :LabelsList
Returns the usual sort of a term as a list of signals’ and atomic actions’

labels.

signed-sort(MeijeTerm) :SignalsList
Same as sort, but specifies the polarity of signals as they may get out
of the term (only received or emitted, or both).

actions(Automaton) :ActionsList
Only works on compiled automata. Provides the full list of compound
actions which may be performed, that is which are labels of transitions
in the global system.

5.1.5 From Automata to Partitions

These functions provide the partitions internally computed by various algorithms
described above. Partitions may further be queried using some utilitary functions.

strong-partition(Automaton, Criterion) :Partition
Takes an automaton and computes the partition of its equivalence
classes of states w.r.t. strong bisimulation.

weak-partition(Automaton) :Partition
Same as before, but with the weak congruence.

crit-partition(Automaton) :Partition
Same as before, but with the congruence induced by a given criterion,
to be handed to the function.
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To go the other way around:

quotient(Partition) :Automaton
’ Constructs a new automaton from a given partition on states of a
previous automaton. The set of transitions deduded is such that a
transition in between two classes is exactly the union of all transitions
from any state in the source class to any state of the target.

5.1.6 From Automata to States Lists

refusals(Automaton,{LabelList]) :StatesList
Is applied on an automaton with a possible list of signals. It forms
the list of all states whose immediate possible behaviours all contain
at least a signal from the optional list (and all deadlock states if no
such list is present). For the time being it is not possible to set tau as
part of the list.

initial(Automaton) :State
Provides the initial state of a given automaton.

5.1.7 From Automata to Pathes

path(Automaton [, StartState], TargetState) :Path
This function will return a loop—free path of shortest length leading
from start state to target. If no start state is present, then the initial
state is used instead.

5.2 Auxiliary functions

5.2.1 Lists manipulations

These functions owe their concrete syntax to Lisp.

car(List) :ListElement

returns the first element of a list.

cdr(List) :List

returns the list without its first element.

nth(List) :List Element

returns the nt* element of the list.

append(List, List) :List
concatenates the first and second list together.
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5.2.2 States manipulations

number(Automaton, StateName) :StateReference
returns an integer corresponding to the internal numbering of the
state, when applied on its external name.

structure(Automaton, StateReference) :StateName
returns the external character string of a state name when provided

its internal numbering.

The role of these functions is to allow the user to go back and forth in between
automata. In a quotiented automaton, each class bears as its external naming the
name of a representative state of this class, in the previous automaton before the
reducing function took place.

row(Partition, State) : ClassRef
takes a partition and a state identification (be it internal reference or
external name) and produces an integer indicating in which class of
the partition the state falls.

class(Partition, ClassRef) :StatesList
takes an integer indicating a class order in the partition and provides
the class itself.

partition(Automaton, StatesListList) :Partition
takes a list of lists of states, whose names refer to this automaton,
and turns it into the proper internal representation of a partition.

6 Controls

In addition to its collection of various functions, AUTO makes use of several global
boolean controls setting permanent options. These flags may also select the printing
of size information so that the user may further evaluate where most time was spent,
where to focus on improving matters, and other potential problems.

All the following flags are set to false initially when AUTO is started.

Algorithms flags

CCSs
controls the interpretation of the parallel operator as this of the CCS process
calculus, thereby discarding the use of simultaneity product. When on, it dras-
tically reduces the combinatorial explosion. On the other hand, in many cases
the product was used to cut down the states number in the early modelization
of the problem.
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pt
causes the mini and other similar functions performing a state partitioning
along the bisimulation lines to use the so-called Paije-Tarjan algorithm instead

of the naive one.

melhorn
causes the tau-sature and other similar functions performing a transitive
closure algorithm on 7-transitions to use the so-called Melhorn algorithm instead
of the naive one. '

Sizes flags

timer
causes the printing of an (approximative) time measure for any command
executed.

debug-algo
causes the printing of size triplets: (states number, transitions number, actions
number) each time two automata representing subsystems are put in parallel,
and each time the weak bisimulation obs function is invoked by the system.

debug-cycle
completes information provided by debug-algo in adding size triplets reached
after intermediate reductions of the two kinds: collapsing of states on the same
7-relation strongly connected components (or “cycles”); and collapsing states
with only one leaving transition, the label being r, on the end point of the
transition.

debug-gc

causes the printing of informations upon calls to Lisp garbage collector.

debug-state
causes the printing of new state numbers as they are created during execution
of a parallel construction.
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