-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Concurrent programming and numerical applications
Jocelyne Erhel

» To cite this version:

Jocelyne Erhel. Concurrent programming and numerical applications. RT-0067, INRIA. 1986, pp.31.
inria-00070093

HAL Id: inria-00070093
https://hal.inria.fr /inria-00070093
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50454515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070093
https://hal.archives-ouvertes.fr

R A e AT

| o
. Z 2
O W O
= =
o M < .
m &) m = O
< - = %
@) B = &
D) ~ RDP
- 2 7, < @ 2
2 ~ = < = g
5 SIS 3
= A~ .
o o &
w =)
3 Z.




o

«
'

CONCURRENT PROGRAMMING
AND NUMERICAL APPLICATIONS

Jocelyne ERHEL

‘Abstract

This lecture gives some outlines about problems of concurrent
programming. How to express parallelism and communication between pro-
cesses require adequate languages or notations.

. Primitives such as monitors are used to specify clearly

synchronizations between tasks. Overhead due to the scheduling of
concurrency must be limited to,obtain good speed. Experiments on

Cray-XMP show how to exhibit parallelism in certain numerical appli-

cations.

‘Résumé

Ce cours ‘a péur but d'exposer les problémes relatifs a la

Aprogrammation multitaches. L'expression du parallélisme et des commu-

nications entre processus nécessite un langage ou des notations adéquates.

Des primitives telles que les moniteurs permettent de spécifier
clairement les synchronisations entre tdches. I1 faut limiter les pertes

‘de temps dues 3 la gestion du parallélisme pour obtenir une accélération

satisfaisante. Des expériences -sur Cray-XMP montrent comment paralléliser
certaines applications numériques.

’ N! !D PAPIER RECUPERE ET RECYCLE



INTRODUCTION

A lot of scientific fields make use of numerical simulations or
computations. Aerodynamics, me;eorology, physics and so on deal with a
great amount of data objects and require large memories as well as fast

execution.

Parallelism becomes an important key to design very fast computers.
Pipeline was first greatly exploited and the scientific community is now
used with the notions of vector programming. The next generation of super-
computers seems to take advantage of multiprocessor configurations.

Some multi-vector'processors are already used by scientific
programmer, or announced for the next years. A lot of projects are studied
in universities of research institutes. Section 1 will describe briefly

three examples of multiprocessor systems.

Concurrent programming is no longer reserved to operating
system designers but now concerns also numerical programmers. New notations
are necessary to express parallel computations and required communications ;
this is the object of section 2. Section 3 is devoted to the'problems related
to the specification of simultaneous execution. Synchronization mechanisms
using shared variables are discussed in section 4, and some examples of high
level synchronization tools are given ; whereas message passing primitives

are briefly treated in section 5.

Since speed of execution is the main goal of paralllel computing,
the measure of performances is crucial for the programmer. A well under-
standing of the factors to take into account is required to get maximal

speed-ups. Some aspects of the question are discussed in section 6.

Last but not least, examples of numerical algorithms and results

are described in section 7.

i



rll

~ Schematically, a multiprocessor consists of several processors,‘
each of them having arithmetic units and control unit, with may be program
memory. Each processor is independant from the others and can proceed its

Own program at its own rate. Asynchronous and concurrent executionvis the
rule to keep in mind.

In most cases, a global memory-is shared by the processors, which
access it through an interconnection network. Local memories can be added
to each processor. (Figure 1)

SHARED MEMORY

INTERCONNECTION NETWORK

® [ ] ® A
PROCESSOR | | PROCESSOR
LOCAL '_ LOCAL
MEMORY , MEMORY

Figure 1



Communication between processors can be achieved through the
shared memory if it exists or by means of message passing. The design
of a parallel language depends of course on the type of communication.

'The scheduling of the parallel components can be completely'
distributed among the processors or a supervisor can control the parallel
flows. Once more, software development is heavily linked to the scheduling
policy. |

Existing multiprocessors make use of one or several of these
concepts, in general in a hierarchical manner. We will describe briefly
the Cray-XMP [13, the ETA'? [21, and the Cedar Project [3].

The Cray-XMP computers consists of two or four vector processors
with high-bandwith shared memory accessed by a one or two-level cross-bar
network. Interprocessor communication tools are, in addition to shared
memory, a shared real-time clock, shared semaphores, shared registers,
shared I/0 channels, and finally inter-CPU interrupt. (Figure 2)

FRONT END
SYSTEM

TAPES

STORAGE

DATA PATH
— = ——=CONTROL PATH

Figure 2 : Cray XMP-2Z system organization



-

The Cray Operating System does not support a new parallel language
but rather a multitasking library directly callable from Fortran codes. [4].
It will be described in details in next section. The Cray-XMP is already
available. Cray-2 is a slightly different four-processor system with shared

memory, and Cray-3 will contain sixteen parallel processors.

The ETA'? computer, designed by ETA systems, is also
a multiprocessor system with up to 8 processors, and has been announced
for 1986. Each processor has a local high-bandwith memory, and a direct
access to a very large shared memory. Each précessor has a scalar unit
and a vector unit. (Figure 3)

(——>| COMMUNICATION [

-
— BUFFER <
CENTRAL , | | INPUT/

PROCESSING |<——> S M| ouTPUT -
UNIT #1 UNIT #1 .

'Y | | :

‘ SHARED .

MEMORY .

[ I °

R . LT B
o | <-——L—> OUTPUT |

UNIT #18
[ ] .
e
[
~ CENTRAL | - |
| PROCESSING |<t—f—bt—> | —>——p] SERVICE <
| UNIT #8 : - | UNITS

I L

Figure 3 : X



R

The Cedar project is developed at the University of Illinois at
Urbana-Champaign. The architecture introduces the notion of a cluster of
processors which is the 'smallest execution unit in the Cedar machine".

Each processor has its own control unit and a local memory. It can access
other local memories of the cluster through a local network (crossbar

switch) and the global shared memory through a global network (omega
network) . The global control unit controls the macro data flow. The program
is viewed as a directed flow graph, the nodes of which are compound functions
executed by processor clusters. (Figure 4)

GLOBAL MEMORY (GM)

GLOBAL NETWORK (GN) |

Gcu| °
LON|
ONI
T pee-- BTT
! o o AR
Lo
~ 7 LOCAL NETWORX | -———=—-— L
' 4
EL (Geu) .

LM ———LOCAL MEMORY
o CCU———CLUSTER CONTROL UNIT
voomer /o orwct P ~——PROCESSOR .
- CP ———COMMUNICATION PROCESSOR

Figure 4 : Overall system diagram



2 - Parallel programming

New programming notations are necessary to express the parallelism
of the applications to be run on multiprocessors. Concurrent programming is

used in many areas such as design of operating systems, management of
large database systems, control of real-time embedded systems. We will
focus our attention to parallel scientific computations which may require
some slightly different concepts.

The .first point to design a concurrent program is to describe

" the parallel execution, by defining processes which are supposed to Tun

simultaneously.

Those processes must communicate in order to exchange data or
results and to cooperate to the same apﬁlication. The kind of communica-
tion may depend on the architecture of the multiprocessor devoted to the
execution. We will discuss first shared membry systems and primitives
based on shared variables, and then briefly message passing primitives.

It is very important to keep in mind that the order of execution
of the parallel processes is undeterministic with time. They are executed
asynchronously at different speeds and no assumption must be made about

duration or completion of a process.

But it is sometimes necessary to impose a precise order of some
events. For example, a process updates a data used by another, which must
wait until this data is made available. Synchronization mechan;sms‘énsures
some ordering to satisfy such constraints.

Because the discussion of such concepts need some notations, we

will describe the multitasking library used on Cray Operating Systems..

~ Hopefully the use of this language will not suppress the general interest

of the examples. A survey of concurrent programming tools is reported in
[51. '



5 - Specification of parallelism

Some parallel languages propose a specific control language to
express parallelism and synchronization. Processes are then viewed as
black boxes without interferences with the exterior and all communications
are achieved through the in- and out-data [6,7].

We prefer to define parallel processes which may cooperate at
any point of execution by means of specialized primitives. This method
seems to us more powerful and more flexible.

A sequential program contains statements executed in sequential
order. A concurrent program contains processes executed independently
and asynchronoulsy. The statements inside a process are executed in
sequential order. .

On Cray systems; processes are rather called tasks. An initial
root task is created by the system when running a job. Then the user
must express explicitly in the program (written always in Fortran) the
activation of parallel tasks. A task is a subroutine, but when it is
invoked, it may proceed simultaneously with the calling task. Another
routine is provided to wait for the completion of a task. Those pri-
mitives are respectively TSKSTART and TSKWAIT.

This construction is similar to the FORK and JOIN statements
[8], and statements used in UNIX operating system [9].

It is very powerful and permits to express a lot of parallel
graphs. It is also well suited to dynamic task creation or multiple
activations of the same code. Numerical applications make an extensive
use of this mechanism, to do concurrently the same computation on diffe-
rent data sets.

On the other side, these routines must be used in a disciplined
manner to understand the concurrent program execution. In figure 5
are shown some parallel graphs easily described by routines TSKSTART and
- TSKWAIT. ‘



2]

" time

root task \
— active task
T1 T2 T3 - . - waiting task
——y Signal °*
TSKSTART
TSKSTART
| < RETURN
| TSKWAIT
TSKWAIT
| R
' 4 RETURN
1 STOP _
T1 T2 T3 T4 TS 6 7 T8 |
H 7 M r * ;
| .
— > ety SN ——
>
Figure 5



10

4 - Synchronization with shared variables

4.1 - Scope of variables

On Cray multiprocessor systems, processors share a common

memory, and concurrent tasks communicate by means of shared variables.

The scope of a variable is the region of a program in which it
is defined and can be referenced. In a parallel environment, two kinds
of variables must be carefully distinguished :

- the local variables of a task are accessible only by that task,
and are guaranteed only for the lifetime of this task.

- a special case of local variables has been introduced by Cray
to define variables common to the subroutines of a task but
still local to that task. This is called a TASK COMMON.

- the global variables are stored in COMMON blocks and may be
accessible by several tasks. They are guaranteed for the
lifetime of the entire program.

The variables worked on by more than one task or used for

communication between tasks must be included in common data.

4.2 - Mutual exclusion problem

Let us give first an exemple to illustrate the problem. Suppose
X is a shared variable common to tasks T1 et T2, and initialized to 0.
If both tasks update this variable, which will be the final value of x ?

T1 T2 result
X:=x+1 X:=X+2 x=1/2/3 ?
Figure 6

This underterministic result comes from interleaving of the
sequences of atomic actions generated by the tasks (for example, (i)
load the value of x from the memory ; (ii) perform the addition in
registers ; (iii) store the new value of x back to memory).



“ -

11

To avoid this problem, the assignments statements must be made
indivisible, by controlling the ordering of the atomic actions. Synchror
nization must enforce restrictions on possible interleavings.

More generally, operations performed on a shared.data object
must be treated as indivisible, in order to get a meaningful result.:

A sequence of statements which mus£ be executed as an indivisible
operation is called a CRITICAL SECTION. Critical sections are executed in
MUTUAL EXCLUSION : at any time, only one process may execute a critical
séction, while other processes must wait for gaining access to their
corresponding critical section.

Figure 7 shows how to ensure a proper updating of the
shared variable x by including critical sections. The order of execution
of the two statements is not known but they are indivisible and executed
in mutual exclusion, one after the other.

T1 T2 - Result

" Enter Critical Section Enter Critical Section
' xi=x+1 : / X:=X+2 . x=3
Exit Critical Section Exit Critical Section
Figure 7

The Cray multitasking library provides a mechanism to enforce

. Critical Sections. Special variables, called LOCKS, have two states :

ON and OFF. They are represented by integer variables on which perform
several primitives. ' ‘

A critical section is defined by associating a lock to it. To
enter the critical section, the lock must be set ON. If the lock is
already ON, the task waits until it becomes OFF and then sets the lock
ON. To exit the critical section simply means to set the lock OFF.
Because the lock remains ON during execution of the critical section,
mutual exclusion is guaranteed. Of course, hardware mechanisms provide
indivisibility of lock primitives ! |



12

The precedent example can be now expressed by using locks, as
shown on figure 8.

T1 T2

COMMON/DATA/x ,LKX COMMON/DATA/x , LKX

C enter critical section C enter critical section
CALL LOCKON(LKX) CALL LOCKON(LKX)

x:=x+1 X:=X+2

C exit critical section C exit critical section

CALL LOCKOFF (LKX) CALL LOCKOFF (LKX)
Figure 8

The lock variables may be viewed as binary semaphores, and the
LOCKON and LOCKOFF primitives correspond respectively to the P and V

primitives [10].

The synchronization'is implemented on Cray by using queues. If
a lock is already ON, the task is placed on a waiting list, and its exe-
cution is suspended. The LOCKOFF primitive removes the first task waiting
for that lock which then can resume execution. This mechanism avoids
starvation as could happen when using busy-waiting ; any task will be
eventually reactivated after a finite time ; no task will wait for ever.

4.3 - Condition synchronization

. In some situations, a shared data must be updated by a task
before another task can operate on it (Figure 9 ).

Task T1 Task T2
X:i= ... y:= £(x)

Figure 9

Task T2 must be delayed until task T1 has performed the assignment
statement [x:= ... ].



13

Condition synchronlzatlon refers to this type of synchronlzatlon,
where a task must wait for a special event to occur before resumlng exe-
cutlon ; this event should be eventually 51gnalled by another task. The
"order of execution of the tasks is controlled and is partially’ 1mposed

by introducing condition synchronization points.

Wait and Signal operations are included in task codes to ensure

synchronization (Figure 10).

T1 T2
Xi= ... ‘ WAIT condition
SIGNAL condition. y:=f(x)
Figure 10
The Cray multitasking library provides EVENT variables and pri-
mitives operating on them to express condition synchronization. An event
variable has two states : POSTED and CLEARED. A task can POST an event,
CLEAR it, or WAIT for an event to be posted.

At any condition is associated an event. The condition is
signalled when the event is posted. Figure 11 illustrates a possible
use of an event. '

T1 ' T2

COMMON/DATA/x, IEVX 'COMMON/DATA/x , IEVX
X= ;.. C wait
C signal , CALL EVWAIT(IEVX)
CALL EVPOST(IEVX) CALL EVCLEAR(IEVX)
y=£(x)
Figure 11 .

An event remains postéd unless it is explicitely cleared. It
is in general safe to clear an event immediately after having waited for
it. The event mechanism is very powerful but requires a disciplined
coding to use it correctly. In many occasions, two events must be used,
one for signalling a condition, and the other for acknowledging the



- reception of the signal. We will come back later to this problem.

If an event is not yet posted, a task executing the primitive
evwait is put on a waiting-list. The evpost routine removes all tasks
waiting for that event. No starvation occur since no task remains in
the queue.

4.4 - Deadlock problem

Synchronization tools are necessary to ensure exclusive access
to shared data objects and to enforce some constraints on the order of
execution. But they must be used carefully and in a proper manner, else
unintented situations would arise.

A deadlock situation occur when all participating tasks are
waiting for some reason. Because no task is still active, no task can
be awakened. They are all blocked for ever. Of course, a safe code
must prevent from this problem ; it must be proved that at any time
at least one task is active.

Some deadlock situations are easily recognized and avoided.

First of all, every call to LOCKON must be followed by a
call to LOCKOFF, at least in most cases. Similarly, a call to EVWAIT
must be balanced by a call to EVPOST in another task. An event must
remain posted until all tasks waiting on it have resumed execution,

although it must be cleared for a new use (in a loop for example).

Secondly, the use of nested Critical Sections must be carefully
organized, as illustrated by figure 12

T1 T2

enter C.S. 1 enter C.S. 2
enter C.S.2 enter C.S. 1
<code> <code>
exit C.S. 2 -exit C.S. 1
exit C.S. 1 exit C.S. 2

Figure 12



15

It may happen that both tasks enter simultaneously Critical
Sections 1 .and 2, and then wait -always simultaneously !- for entering
Critical Sections 2 and 1. That is unfortunately a deadlock situation.

A simple rule, to get free of deadlock, is to nest the Critical
Sections everywhere in the same order. ‘

Thirdly, it seéms very dangerous -although it may be correct-
to wait for a condition inside a critical section ; in many cases, the
condition is signalled after or inside the same critical séction, as
illustrated by figure 13:

T1 T2
enter CS - enter CS

signal , wait
exit CS exit CS

Figure 13

Both tasks are blocked if waiting on Critical Section access and
on signalling of condition.

Deadlock situations are even more common and moré difficult to -
:avoid with more than two tasks. Any cycle in the synchronizations is a
source of deadlock. '

N

The arrows indicate a
condition synchronization,

Figure 14

The Cray Operating System recognizes deadlock situations only
when all tasks are blocked. But it may happen that a partial deadlock
occured first between a subset of the tasks, finally degenerating in an
~overall stop of all tasks. Debugging of such problems is not easy,




16

all the more that they are not reproducible since they depend on the

order of execution.

Last but not least, the synchronization mechanism is not

. *always correctly implemented, even if some tests seems to work well.

It is much more difficult to debug a parallel code than a
sequential one because different runs may give different results and
some errors may be masked for a long time before appearing in a new
environment. Also the source of an error is not well defined, it may
be located several statements before it is discovered or even come from
another task. Therefore high-level constructs and modularity are recommended.

~

4.5 - Monitors

A monitor is a high-level programming tool useful to deal with
shared resources. It facilitates prove of correctness and debug.

A monitor encapsulates both a resource definition and operations
that manipulate it [11,12]. It can be viewed as a module and allow to
ignore the details of its implementation when using it.

A monitor consists of global shared variables, procedures which
.implement operations on them, and some initialization code executed once

before any monitor invocation.

Any procedure in a monitor is executed in mutual exclusion, in

order to protect access to its global variables.

Wait and signal operations realize condition synchronization
in monitors. The wait operation causes the invoker to relinquish its
control of monitor if it is blocked ; the signal invoker is also

suspended if another process is blocked on the condition.

Monitors are implemented on Cray using locks and events,
respectively to ensure mutual exclusion and condition synchronization.
The variables of the monitor are stored in a common block, as well as
lock and event variables used inside the monitor.



17

Each procedure begins with a call to LOCKON and ends with a
call to LOCKOFF Any call to EVWAIT is preceeded by a call to LOCKOFF,
and in general is followed by a call to EVCLEAR, and any call to EVPOST
is followed by a call to LOCKOFF. In this Way, a monitor can be proved
to be correct and deadlock free. The modularity and the debug are greatly
enhanced. ‘

We will give now some examples of monltors which have been
1mp1emented on Cray-XMP.

4.6 - Fork and Join monitor

In many numerical applications, a parallel program contains a
loop, the body of which begins by concurrent execution of several tasks
(FORK) and ends with a global synchronizatipn of all tasks (JOIN).

Figure 15

It could be implemented by means of TSKSTART ana TSKWAIT
routines ; but this solution would be very expensive in terms of
time of execution. It is much better to implement the monitor. described
in figure 16 .

The trick here is the use of two events in flip/flop. It is -
necessary to keep the event associated to the present join postéd until
the next join and ensure the event associated to the next event is
cleared. '



a0o0o0an (g}

g

18

Monitor fork and join

monitor variables

idlock = lock of the monitor

idevent = events of the monitor

fliop = flip/flop on the events
nwait = number of waiting tasks
nproc = number of tacks to be joined

monitor procedure

subroutine forkjoin
common/mlbx/idlock,idevent(2), fllop nwa1t ,iproc
integer fliop .

enter the monitor

call lockon (idlock)
nwait = nwait + 1
if (nwait.lt.nproc)then
exit the monitor and wait for the last task
locflp = fliop '
call lockoff (idlock)
call evwait (idevent (locflp))
else
last task : wake up the others, change the flip/flop
and exit the monitor
nwait = 0
call evpost (idevent (fliop))
fliop = 3 - fliop
call evclear (idevent (fliop))
call lockoff (idlock)
endif
end
return
end

monitor intialization

subroutine mlbxinit (ntask)
common/mlbx/idlock,idevent (2),fliop,nwait ,nproc
integer fliop

call lockasgn (idlock)
call evasgn (idevent (1))
 call evasgn (idevent (2))

nwait = 0
fliop = 1
nproc = ntask
return '
end

Figure 16



19

4.7 - Rendez-vous'monitor

The rendez-vous éoncept has been introduced in concurrent
languages such as CSP[ 13 Jland Ada [ 14 1. Two tasks which execute
a rendez-vous know exactly the status of the other. They meet for some
time at a precise point of execution and then go their separate way.

In general, one task is waiting for the other to awaken it,

and after some computations, signals back the end of the rendez-vous.

T1 4- T2

WAIT

PR WAKE' UP
l RENDEZ~-VOUS . WAIT
|

Figure 17

‘ The monitor implemented on Cray to realize a rendez-vous is
special in the sense it uses oniy’event variables. One event is used
to wakeup and the event for the back. This va-et-viént and the calls
to evclear allows safe repeated rendez-vous. (Figure 18)



20

rendez-vous monitor

monitor variables

idev(1:2) = events for rendez-vous
idev(1) = posted by sender and waited by receiver
idev(2) = posted back by receiver and waited by sender

monitor procedure wake up

subroutine wake up
common/mbrv/idev(2)

post the send

call evpost (idev(1))
wait for the back

call evwait (idev(2))

call evclear (idev(2))
end

return -

end

monitor procedure wait

subroutine wait
common/mbrv/idev(2)

wait for the send
call evwait (idev(1))
call evclear (idev(1))
post the back :
call evpost (idev(2))
end
return
end

monitor intialization

subroutine mbrvinit
common/mbrv/idev(2)

call evasgn (idev(1))
call evasgn (idev(2))
return

end

Figure 18



21

4.8 - DOALL monitor

A doall means that all iterations of a loop are independent3;
hence can proceed simultaneously. Even if this loop is not vectorizable,
it can be multitasked. , | "

Of course, the program could activate one task per iteration.
But this solution is too costly and the resulted overhead would decrease
dramatically the speed-up. (cf. next section).

It is better to define a priori‘a fixed small number of tasks (for
example the number of processors) and to assign them a group of iterations.
' If the workload of the iterations is almost constant, then static partitien

is enough. But if it is unknown, dynamic partition: will give a better speed-up.

The monitor implémented on Cray is}performed:by'each task to
look for a new index of iteration (figure 19 . If the overhead is too
high compared with the effective time of computation, the monitor
would allocate small groups of iterations instead of only one.



22

monitor doall

monitor variables

lkiter = lock of the monitor
iter = current number pf iteration

monitor procedure

subroutine getiter (myiter)
common/doal/lkiter,iter
enter the monitor

call lockon (lkiter)
copy iter and increment it
myiter = iter -
iter : iter + 1
exit the monitor
call lockoff (lkiter)
end
return
end

monitor initialization

subroutine doalinit
common/doal/lkiter,iter

call lockasgn (lkiter)
iter = 1

return

end

Figure 19



23

5 - Message passing primitives

On distributed systems without shared data, processors
communicate through messages. Languages such as CSP [13] and Ada [14]
are based on message passing.

Communication is accomplished throughout the contents of -
messages. A process receives values sent by another one. Synchronization
is achieved by the order imposed upon the sending and the reception of
the same message. '

General commands are defined to send and receive a message.
The semantics of the primitives must specify how to adress the source
and the destination and how to synchronize the message passing.

!

5.1 - Channels of communication

A communication channel consists of a source and a destination.

Direct naming used in CSP is thevsimplcst mechanism : source
and destination are names of processes. But it is not always powerful
enough and other schemes have been defined to express complicated
interactions. '

Instead of adressing directly processes, primitives use
maibloxes to send and receive messages. The implementation is more
tricky but this mechanism is well suited for producer/consumer inter-
actions.



24

Static or dynamic naming is also an important issue of the
design of the language.

5.2 - Synchronization

In general, the reception of a message is blocking because
the process is delayed until a message has effectively been sent. But
some primitives can be added to test without blocking if a message is
received.

If send is never blocking, message passing is said asynchro-
nous. At the other extremety,.synchronous message passing occurs when
send is blocking until a corresponding receive is executed. Both proces-
ses are then synchronized and this is a kind of rendez-vous. Intermediate
solution is buffered message passing where only a finite number of messages
can be sent without blocking.

6 - Performances of parallel programs

A crucial point of many numerical applications is their time
of execution. Whereas weather forecasting is an evident illustration
of this rule, it is not the only domain where such constraints are
imposed on the time of execution. Furthermore, the concurrent development
of very large memories allows large scale simulations which require a large

amount of operations, hence fast computing capabilities.

The use of parallel computers can improve greatly the performances,



25

. although several factors slow down the execution. It is very important

to get an idea of the improvements achievable with parallelism.

In general, the user compares times of execution of a sequential
program and its parallel version. The notion of speed-up has been defined
to measure performances of parallel programs. The speed-up is ‘the quotient
of the sequential time of execution over the parallel one. Well, that is fine,
but what 1s the sequential time ? To be fair, it would be the "best" sequen-
tial time, but what does it mean ? So, say that it is the best measured.
sequéntial time. This precision is important because parallei versions
may be quite different from the initial one and work worse in a sequential
environment, sothat it is not fair to compare sequential and parallel

execution of the same code.

The speed-up divided by the number of processors is called
the efficiency and measures the actual use of the processors. It is often
expressed in percentage and the aim is of course to get as near as possible
from the 100 4% barrier. '

The first factor influencing the speed-up is the so-called
'""load balancing'. It is evident that an equal amount of work should be
done by each processor, in order to reduce inactive time by keeping all
processors active. The figure 20 illustrates this remark.

CPU 1 2/3 work. speed-up < 1.5
CPU 2 1/3 work «-,@¥_N unbalanced job
CPU 1 1/2 work speed-up < 2
CPU 2 1/2 work balanced job

| Figure 20

But what is easy to remark is not so easy to realize ! In some
cases, it is possible to define a static partition of the work. Concurrent
tasks are defined with similar workloads, when the time of execution can.
be known a priori, and parallelism can be statically expressed. Load
balancing is guaranteed before execution by a partition into tasks of
same durafion.




26

But in general pieces of a program have unknown workloads.
A dynamic partition is necessary to keep the tasks busy, by looking for
and executing the next piece of work. The workload of each piece of
work must be great enough to compensate the overhead due to the management
of the dynamic partition.

This guides us to the second factor influencing the time of
execution, namely the so-called ''task granularity''. We have seen that
first concurrent tasks must be activated, then they must communicate
and synchronize them. So the time of execution of a task must be divided
into the effective computing time and the overhead due to task management

and synchronization (waiting time on a lock or an event for example).
Even if the work is well balanced, we have the following relation :

Tp > T1/p + 0

where Tp is the parallel time on p processors,
T1 is the sequential time,
and 0 is the overhead

"so that Sp < p/(1 + 0 * p/T1)

where Sp is the speed-up.

In the figure 21, we have drawn the speed-up Sp as a function
of T1/0, in the case of 4 processors (p = 4).

Sp
A s

0 } i e e + N ) v T1/0



27

“ The third point which may decrease the speed-up is the potential
memory bank conflicts. Some results obtained on Cray-XMP seem to show a
non negligeable effect of memory conflicts on the performances [15]. Tests
and simulations study in more details memory conflicts on Cray-XMP [16].

'Numerical algorithms were-paralleliZed and measured on the
multiprocessor simulator MUPI [17]. They have shown that the overhead
become preponderant when increasing the number of processors, if the
size of the problem is not great enough to get sufficiant amount of effec-
tive work. It is therefore necessary to find a tradeoff between the amount
of possible parallelism and the overhead inherent to it. '

7 - Numericdl experiments

An important part of numerical computations consists of the

resolution of a large and sparse matrix. Vectorization can be handled if the

studied domain is regular enough. Parallelism is extracted by using techni-
ques of subdomains [18]. Each subdomain can be treated concurrently and
separators impose some synchfonizations. This mechanism is well suited to
not regular matrix structures issued from finite element methods.

Experiments have been conducted using Incomplete Choleski
Conjugate Gradient, which is inherently fast and vectorizable, except
the strongly coupled resolution of the preconditioner. _Results are given
concernlng the resolution of a Laplacien over a domain divided into two
rectangles (figure 22) ; results will soon appear with four subdomains
[161]. '

The assembly of a finite element method has also been implemented
in a parallel environment. The main difficulty comes from the concurrent
update of the shared matrix structure. A subdomain technique has also

been tested : parallélism is guarenteed on subdomains, while elements

‘of separators must be assembled in mutual exclusion. Results are given

for the assembly of the Laplacien on two domains meshed by P1 Finite
Elements. (Figure 23 ) It should be noted that vectorization would be
better with another operator or element (more computations to do) and

using vectors with hardware indirect adressing.



28

Cray-XMP CFT X.11

e cmmmmmmmmmgmmmmm———mm e !

!Unknowns! ELAPSED T. {SPEEDUP!

L "t 1 CPU ! 2 CPUs ! !

ny 1(nx* ny)! Mflops! Mflops ! !
L e D istatatndnled R !

114400 t 0.91 t 0.64 t 1.4 !

! ! ! ! !

1120*%60 ! 51 t 71 ! !

o e R oo !

120000 ! 0.93 ! 0.66 1 1.4 !

1 ! ! 1 1

1100*%100 ! 69 1 97 o !

ny I R et I it lomome !
) 140000 -t 1.41 ! 0.94 ! 1.50 !
! ! ! : ! !

"1100%200 ! 90 ' 129 ! !

Ymmmmemm o p— P —— !

180000 1 2.7 ! 1.8 1 1.49 !

! ! ! ! !

1200*200 ! 95 1 142 ! !

nx Yoo e P PG | RSN 1

Figure 22

\DOM!ELEMENTS! ELAPSED T. 'SPEED !
R 1 1 CPU! 2 CPU! UP !

SD2

————
Mutual
exclusion

Figure 23



29

REFERENCES

11  Cray-XMP reference manual, Cray Research.

[21 E‘ca10 supercomputer, ETA systems4.

£31] Cedar "a large scale multlprocessor
January 1983, Dept. of Comp Sc. Unlver51ty of Illinois at
Urbana Champalgn

[4 ]:- Cray Multitasking User Guide, Cray Research, 1984.

£s51 Gregory R. Andrews & Fred B. Schneider
' "Concepts and notations for concurrent programming',
ACM computing surveys, Vol. 15, N° 1 (March 1983), 3-43.

(61l LC 2 reference manual, Sintra Alcatel (Jan 1983).

£71 Smir M.
"A parallel computer prototype',
Comp. Sc. Dept. University of Jerusalem, Israél (Apr11 1985).

[81 Dennis J.B. & Van Horn E.C.
""Programming semantics for multiprogrammed computatlons
Comm. ACM 9, 3 (March 1966), 143-375.

(91 Ritchie D.M. & Thompson K.
"The Unix timesharing system'', -
Comm ACM 17, 7 (July 1974), 365-375.

- {101 Dijkstra E.W.
' "The structure of 'THE' multiprogramming system'',
© Comm. ACM 11, 5 (May 1968), 341-346.

[11] Brinch Hansen P. ’
"'Concurrent programming: concepts',
ACM Comput. Surveys 5, 4 (Dec 1973), 223-245.

123 Hoare C.A.R.
"Monitors : an operating system structuring concept',
Comm. ACM 17, 10 (Oct 1974), 549-557.




[13]

[14]

[15]

[16]

{173

[18]

30

Hoare C.A.R.
"Communicating sequential processes",
Comm. ACM 21, 8 (Aug 1978), 666-677.

U.S. Department of Defense

""Programming language Ada",

reference manual, Vol. 106 Lecture Notes in Computer Science,
Springer Verlag, New York, 1981.

Meurant G.
Workshop GMD-INRIA (Jan 1985).

Butel R.
"Experiments on Cray-XMP 4",
Rapp. Rech. INRIA to appear.

Erhel J.
"Paralleélisation d'algorithmes numériques',
Thése 3éme cycle, Mars 1982.

Erhel J., Jalby W., Thomasset F., Lichnewsky A.

"Quelques progrés en calcul paralléle et vectoriel,
Proceedings of the sixth international symposium on Computing
methods in applied sciences and engineering Versailles,
France, (Dec 1984).

Imprimé en France

par
I'Institut National de Recherche en Informatique et en Automatique



