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Abstract: Module systems are an essential feature of programming languages as they
facilitate the re-use of existing code and the development of general purpose libraries. Un-
fortunately, there has been no consensual module system for Prolog, hence no strong de-
velopment of libraries, in sharp contrast to what exists in Java for instance. One difficulty
comes from the call predicate which interferes with the protection of the code, an essential
task of a module system. By distinguishing the called module code protection from the
calling module code protection, we review the existing syntactic module systems for Prolog.
We show that no module system ensures both forms of code protection, with the notice-
able exceptions of Ciao-Prolog and XSB. We then present a formal module system for logic
programs with calls and closures, define its operational semantics and formally prove the
code protection property. Interestingly, we also provide an equivalent logical semantics of
modular logic programs without calls nor closures, which shows how they can be translated
into constraint logic programs over a simple module constraint system.

Key-words:  constraint logic programming, module system, code protection, closures,
higher-order programming, meta-programming
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Résumé : Les systémes de modules sont un dispositif essentiel des langages de pro-
grammation car ils facilitent la réutilisation du code existant ainsi que le développement de
bibliothéques génériques. Malheureusement, il n’existe pas de systéme de module consen-
suel pour Prolog, et pour cette raison il n’y jamais eu de développements importants de
bibliothéques, ce qui contraste, par exemple, avec ce qui a été fait pour Java. Une diffi-
culté vient du prédicat de méta-programmation call qui interfére avec la protection du
code, une tache essentielle d’un systéme de module. En distinguant la protection du code
du module appelé de la protection du code du module appelant, nous passons en revue
les systémes syntactiques existants de modules pour Prolog. Nous montrons qu’aucun de
ces systémes de module n’assure les deux formes de protection du code, & I’exception no-
table de Ciao-Prolog et XSB. Nous présentons ensuite un systéme formel de modules pour
des programmes logiques avec call et fermetures, définissons sa sémantique opérationnelle
et prouvons formellement la propriété de protection du code. Nous fournissons également
une sémantique logique équivalente des programmes modulaires sans call ni fermeture, qui
montre que ces derniers peuvent étre traduits en programmes logiques avec contraintes sur
un systéme simple de contraintes de modules.

Mots-clés : programmation logique avec contraintes, systéme de modules, protection du
code, fermetures, programmation d’ordre supérieur, méta-programmation
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1 Introduction

Module systems are an essential feature of programming languages as they facilitate the re-
use of existing code and the development of general purpose libraries. Unfortunately, there
has been no consensual module system for Prolog, hence no strong development of libraries,
in sharp contrast to what exists in Java for instance.

One difficulty in Prolog comes from the call predicate which interferes with the protection
of the code, an essential task of a module system. There has been therefore several proposals
of module systems realizing different trade-offs between code protection and the preservation
of meta-programming facilities.

In order to enforce the proper segmentation of the code, and to guarantee the semantics
of the predicates defined in a library, a module system has however to strictly prevent
any predicate execution not allowed by the programmer. This means that it should be
possible to restrict the access to the code of a module (by predicate calls, dynamic calls,
dynamic asserts or retracts, syntax modifications, global variable assignments, etc.) from
extra-modular code. This property is called code protection.

The relationship between the calling module and the called module is however asymmet-
ric. The called module code protection ensures that only the visible predicates of a module
can be called from outside. The calling module code protection should ensure that the called
module does not call any predicate of the calling module, as they are not visible. The
following example illustrates however the need to provide an exception to this rule with a
mechanism for executing a predicate in the calling environment, which we will call a closure.

Ezample. The list iterator predicate forall/2 defined below in ISO-Prolog [13], checks that
every element of a list, passed in the first argument, satisfies a given property, passed as a
unary predicate in the second argument:

forall([]1, _).
forall([H|T], P):- G=..[P,H], call(G), forall(T, P).

Such a predicate forall cannot be defined in a library (for lists as it should) without
violating the calling module code protection, as the intended meaning of the predicate is
indeed to call the predicate passed as argument in the calling module environment.

Most module systems for Prolog solve the difficulty either by abandoning any form of code
protection, or by introducing ad-hoc mechanisms to escape from the code protection rules.
Our proposal here is to keep a strict code protection discipline but distinguish closures from
dynamic calls, closures being executed in the environment where they are created. This
makes it possible to define a module for lists which exports a forall predicate taking a
closure from outside as argument.

Ezample.

:- module(lists, [forall/2, ...]).
forall([], C).
forall([X|T], C) :- apply(C, [X]), forall(T, C).
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4 Rémy Haemmerlé and Francgois Fages

That definition of forall using closures instead of dynamic calls can be used from any
module importing the list module, by passing to it a closure constructed from a unary
predicate like var/1 for instance:

:- module(foo, ...).
:- use_module(lists).
all_variables(L) :- closure([X],var(X),C), forall(L,C).

In this paper, we first review the main module systems for Prolog in the light of the two
forms of module code protection. We show that no module system ensures both forms of
code protection, with the noticeable exceptions of Ciao-Prolog and XSB.

Then we give a formal presentation of a safe module system with calls and closures. We
precisely define its operational semantics and show the full code protection property.

We also provide an equivalent logical semantics for modular logic programs without
calls nor closures. That semantics, obtained by translating modular logic programs into
constraint logic programs over a simple constraint module system, shows how the module
system can be compiled into a constraint logic program.

We then conclude on the relevance of these results to an on-going implementation of a
fully bootstrapped constraint programming language, from which this work originated.

Related work

Modularity in the context of Logic Programming has been considerably studied, and there
has been some standardization attempts for ISO-Prolog [14]. Different approaches can be
distinguished however.

The syntactic approach mainly deals with the alphabet of symbols, as a mean to par-
titionate large programs, safely re-use existing code and develop general purpose libraries.
This approach is often chosen for its simplicity and compatibility with existing code. For
instance, a constraint solver like OEFAI CLP(q,r) [12], or a Prolog implementation of the
Constraint Handling Rules language CHR [24], should be portable as libraries in a modular
Prolog system. Most of the current modular Prolog systems, such as SICStus [25], SWI
[29], ECLiPSe [2], XSB [22], Ciao [4, [7, 6] for instance, fall into this category. We will focus
on this approach in this paper, together with the object-oriented approach [19} 20] which is
somewhat similar.

The algebraic approach defines module calculi with operations over sets of program
clauses |21, B, 23]. They are somehow more general than the object-oriented extensions
of Prolog, as they consider a great variety of operations on predicate definitions, like over-
riding, merging, etc. On the other hand, the greater versatility does not facilitate reasoning
on large programs, and this approach has not been widely adopted.

The logical approach to module systems extends the underlying logic of programs. One
can cite extensions with nested implications [16, [I7], meta-logic [3] or second order predicates
[O]. Such logical modules can be created dynamically, similarly to other approaches such
as Contextual Logic Programming [I8, [T]. Perhaps because their poor compatibility with
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existing code, they are also not widely used however, and will not be considered in this
paper.

2 Review of existing syntactic module systems

In this section, we analyze the main syntactic module systems developed for Prolog. A
reference example will be used to illustrate their peculiarities, and classify them according
to the two previously introduced properties: the called module code protection and the
calling module code protection.

Following ISO Prolog terminology [14], a module is a set of Prolog clauses associated
to a unique identifier, the module name. The calling context — or simply context — is the
name of the module from where a call is made. A qualified goal M:G is a classical Prolog
goal G prefixed by a module name M in which it must be interpreted. A predicate is visible
from some context if it can be called from this particular context without any qualification.
A predicate is accessible from some context if it can be called from this particular context
with or without qualification. A meta-predicate is a predicate that handles arguments to be
interpreted as goals. Those arguments are called meta-arguments.

2.1 A Basic Module System

We first consider a basic module system from which the syntactic module systems of Prolog
can be derived through different extensions.

In this basic system, the predicates that are wvisible in a module are either defined in the
module, or imported from another module. In order to ensure the protection of the called
module code, only the predicates explicitly ezported in the defining module can be imported
by other modules. Furthermore, the qualification of predicates is not allowed.

The basic module system thus trivially satisfies both forms of code protection properties,
but is not able to modularize the predicate forall of example [

2.2 SICStus Prolog

The modules of SICStus Prolog [25] make accessible any predicate, by using qualifications.
The list iterator forall can thus be modularized, and used simply by passing to it goals
qualified with the calling module. As a consequence however, this versatile module system
does not ensure any form of module code protection.

It is also possible to explicitly declare meta-predicates and meta-arguments. In that case,
the non-qualified meta-arguments are qualified dynamically with the calling context of the
meta-predicate. With this feature, the called module is thus able to manipulate explicitly
the name of the calling module and call any predicate in the calling module.

Ezxample. This example, that will be also used in the following, tests the capabilities of
calling private predicates in modules.

RR n° 5869
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:-module(library, [mycall/1]).

p :-
write(’library:p/0 ).

:-meta_predicate(mycall(:)).
mycall(M:G):-
M:p, call(M:G).

:- module(using, [test/0]).
:- use_module(library).

p -
write(’using:p/0 ).
q -

write(’using:q/0 ).
test :-

library:p, mycall(q).

| ?- using:test.
library:p/0 using:p/0 using:q/0
yes

The private predicate p of the library is called from the using module, the library correctly
calls the predicate g of the calling module, but is also able to call the private predicate p of
the calling module.

This module system is similar to the ones of Quintus Prolog [26] and Yap Prolog [27]. The
standardization attempt of ISO-Prolog [14] is also very close in spirit, but the accessibility
rules of qualified predicates have been left to the implementation.

2.3 ECLiPSe

ECLiPSe [2] introduces two mechanisms to call non visible predicates. The first is the
qualified call, where only the exported predicates are accessible. The second one, which uses
the construct call(Goal)@Module, makes any predicate accessible as with a qualified goal
Module:Goal in SICStus Prolog. This system provides also a directive tool/2 for adding the
calling context as an extra argument to the meta-predicate. This solution has the advantage
of limiting the unauthorized calls made in a unconscious way.

FExample.

:- module(library, [mycall/1]). :- module(using, [test/0]).

:- use_module(library) .

p :-
write(’library:p/0 ). p -
write(Pusing:p/0 7).
:- tool(mycall/1,mycall/2). q :-
mycall(G, M):- write(Pusing:q/0 ).
call(p)@M, call(G)@M. test :-

call(p)@library, mycall(q) .

INRIA



Modules for Prolog Revisited 7

[eclipse 2]: using:test.
library:p/0 using:p/0 using:q/0
Yes (0.00s cpu)

As beforehand, the system does not ensure module code protection.

2.4 SWI Prolog

For compatibility reasons, SWI accepts qualified predicates and uses the same policy as SIC-
Stus Prolog. Hence the complete system does not ensure the called module code protection.
Meta-programming in SWI Prolog [29] has a slightly different semantics. For a meta-call
made in the clause of a meta-predicate declared with the directive module_transparent/1,
the calling context is the calling context of the goal that invoked the meta-predicate. Hence,
by declaring the list iterator forall/2 as a module transparent predicate, one obtains the
expected behavior, since the meta-call to G is invoked in the module that called forall,
i.e. in the calling module.
Nonetheless, this choice has two main disadvantages:

Ezample.
:-module(library, [mycall/1]). :- module(using, [test/0]).
:- use_module(library) .
P :-
write(’library:p/0 ). p -
write(’using:p/0 7).
:-module_transparent (mycall/1) . q :-
mycall(G):- write(Pusing:q/0 7).
p, call(p), call(G). test :-
mycall(q).

?- using:test.
library:p/0 using:p/0 using:q/0

Yes

First, a dynamic call call(p(x)) does not behave as the static one p(x). Second, the
conventions for meta-predicates break the protection of the calling module code.

2.5 Logtalk

Logtalk [19, 20] is not really a syntactic module system but an object-oriented extension
of Prolog. Nonetheless by restricting its syntax — by forbidding parameterized objects and
inheritance — one obtains a module system close to the ones studied here.

RR n° 5869



8 Rémy Haemmerlé and Francgois Fages

The object/1 directive can be read as a module/2 directive, where the public predicates
are the exported predicates. Then, message sending plays the role of goal qualification.
Indeed, sending the message P to the object M — which is denoted by M: :P instead of M:P
— calls the predicate P defined in the module M, only if P have been declared public in M.
Therefore this module system ensures the protection of the called module code.

In order to deal with meta-predicates, Logtalk provides its own version of the directive
meta_predicate/1 directive, which can be used in a similar way to the SICStus one, with : :
used instead of : for declaring meta-argument. As SWI, Logtalk does not realize a module
name expansion of the meta-arguments, but realize dynamic calls in a context which may be
different from a static call. In this system, the dynamic context is the module (i.e. object)
that sent the last message. Since the non qualified calls are not considered as messages
however, it is possible to call any predicate of the calling module.

Ezample.

:- object(library). :- object(using).

:- public(mycall/1). :- public(test/0).

p :- p :-
write(’library:p/0 ). write(’using:p/0 ).

q :-

mycall(G) :- mycall(G,p). write(’using:q/0 ).

:-metapredicate(mycall(::,::)). test :-

mycall(G1,G2) :- library: :mycall(q) .

call(G1l), call(G2).
:- end_object.

:-end_object.

| ?- using::test.
using:q/0 using:p/0
yes

That module system does not ensure the calling module protection.

2.6 Ciao Prolog.

The module system of Ciao Prolog [4] satisfies the two forms of code protection. Only
exported predicates are accessible for outside a module, and this property is checked for
qualified goals. The manipulation of meta-data through the module system is possible
through an advanced version of the meta_predicate/1 directive.

Before calling the meta-predicates, the system dynamically translates the meta-arguments
into an internal representation containing the goal and the context in which the goal must be
called. Since this translation is done before calling the meta-predicate, the system correctly
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selects the context in which the meta-data must be called. As far as the system does not
document any predicate able to create or manipulate the internal data, the protection of
the code is preserved. In this sense, Ciao Prolog does make a distinction between terms and
higher-order data (i.e. goals manipulated as terms) [g].

FExample.

:-module(library, [mycall/1]). :- module(using, [test/0]).

:- use_module(library).

p :- write(’library:p/0 ).

p :- write(’using:p/0 7).

:-meta_predicate(mycall(:)).

mycall(G):- test :- mycall(p).
writeq(G), write(’ ’), call(G).

7- using:test.
$:(Cusing:p’) using:p/0
yes

The program realizes the expected behavior without compromising the called module pro-
tection, nor the calling module protection.

2.7 XSB

The module system of XSB [22] is an atom-based, rather than predicate-based, syntactic
module system. This means that function symbols, as well as predicate symbols, are mod-
ularized in XSB. Similar terms constructed in different modules may thus not unify. In
a module, it is possible however to import public symbols from another module, with the
effect that the modules share the same symbols.

Then, the semantics of the call/1 predicate is very simple: the meta-call of a term
corresponds to the call of the predicate of the same symbol and arity as the module where
the term has been created. The system fully satisfies the code protection property.

Example.
:-export mycall/1. :- export test/1.
:- import mycall/1l from library.

p(L) :-

write(’library:p/1 7). p() :-

write(’using:p/0 ).

mycall(G):- test(_) :-

call(G). mycall(p(_)).

RR n° 5869
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| 7- test(l).
using:p/0
yes

On the other hand, the problem of defining the visibility rules for meta-programming
predicates is moved to the construction of the terms. Indeed, in XSB, the terms constructed
with =../2, functor/2 and read/1 belong to the module user. As a consequence, in a
module different from user, the goal (functor(X,q,1), X=q(_)) fails, whereas (X=q(_),
functor(X,q, 1)) succeeds.

3 A safe module system with calls and closures

In this section, we define a formal module system with calls and closures. We present the
operational semantics of modular logic programs, and formally prove that they satisfy both
forms of module code protection.

3.1 Syntax of Modular Logic Programs

We consider here modular logic programs with calls and closures. For the sake of simplicity,
we adopt the following conventions. First, we consider a simple form of closures, that
abstract only one argument in an atom. Second, we adopt the syntax of constraint logic
programs, with syntactic conventions to distinguish constraints and closures from the other
atoms in goals. Third, we assume that all goals are explicitly qualified, and do not formalize
the conventions that are used for automatically prefixing the non-qualified atoms in a clause
or a goal. Fourth, all public predicates in a module are accessible from outside with no
consideration of a use_module directive.
We consider the following disjoint alphabets of symbols given with their arity:

e V a countable set of variables (of arity 0) denoted by z,y... ;

e Y a set of constant (of arity 0) and function symbols;

e X aset of constraint predicate symbols containing = /2 and true/0;

e Y p a set of program predicate symbols containing call/2, closure/3 and apply/2 ;
e Y/ a set of module names (of arity 0), noted u,v. ..

Furthermore, two coercion relations, ~: ¥ x ¥p and X: S x ¥)y, are assumed to interpret
function symbols as predicate symbols and module names respectively. It is worth noting
that in classical Prolog systems, where function symbols are not distinguished from predicate
symbols, these relations are just the identity, while here they relate disjoint sets.

The sets of terms, formed over V and X, of atomic constraints, formed with predicate
symbols in ¥ and terms, and of atoms, formed with predicate symbols in ¥ p and terms,

INRIA
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are defined as usual. In addition, atoms qualified by a module name are noted p: A. The
call predicate has two arguments, the first being the module name qualifying the second
argument.

Definition 3.1 A closure is an atom of the form closure(x,pu: A, z) where x and z are
variables, p: A is a qualified atom. The application of a closure associated to a variable z
to an argument x is the atom apply(z,x).

The closure closure(z, u: A, z) associates to variable z a qualified atom p: A in which the
variable z is abstracted. The meta-argument in a closure must be a qualified atom, hence
not a variable as in a call.

Definition 3.2 A modular clause is a formula of the form
Ag —c1y..yc|f1y e Bnlpri Al oo im A

where the c;’s are atomic constraints, the x;’s are closures, and the u; : A;’s are qualified
atoms.

Definition 3.3 A module is a tuple (11, Dy, Z,,) where i € X is the name of the module,
D, is a set of clauses, called the implementation of the module, and Z,, C Xp is the set
of public predicates, called the interface of the module. The predicates not in I, are called
private in p. A modular program P is a set of modules with distinct names.

Definition 3.4 A modular goal is a formula
C|<l/1—H1>,...,<I/n—lin>|<l/1 _u1:A1>7'-'a<V7/n_,LLm:Am>

where c is a set of atomic constraints, the k;’s are closures, the (u;: A;)’s are prefized atoms
and both the v;’s and the v)’s are module names called calling contexts.

In the following, the construct (v — (k1, ..., £,)) denotes the sequence of closures ((v — k1),
. (v — Kyp)) and similarly for sequence of atoms with context.

3.2 Operational Semantics

Let P be a program defined over some constraint system X. The transition relation — on
goals is defined as the least relation satisfying the rules in table [ll, where 6 is a renaming
substitution with fresh variables. A successful derivation for a goal G is a finite sequence
of transitions from G which ends with a goal containing only constraints (the computed
answer) and closures.

The modular CSLD resolution rule is a restriction of the classical CSLD rule for CLP
[T5]. The additional condition (v=y) V (p € Z,,) imposes that j:p(f) can be executed only
if, either the call is made from inside the module (i.e. from the calling context p), or the
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(,LL,D#,I#)EP (V:,UJ)\/(pEI#)
e (&) —¢|MBPED, X FI(ens=inc)
(C|K|77 <I/ - /Lp({)> 7’71) — (07 §:t, C/|K7 <M - k> |’Yv <,u/ - /6> 77/)
Call X Ec= (s=gnt=f(7) g%,u f’zp
(c| K|y, (v —v:call(s,t)),y) — (¢, s=g,t=F(Z)| K|y, (v — p:p(Z)),v)
XEc=z=y
Apply (clr1, (u — closure(z, p': A, ), k2|, (v — viapply(y,t)) . 7') —
(c|k1, (u — closure(x, iy’ A, 2)) , ka|y, (p — p' : Al2\t]) , ')

Table 1: Transition relation for goals with calls and closures.

predicate p is a public predicate in u. Moreover, this rule propagates the new calling context
to the closures and atoms of the selected clause body.

The call rule defines the operational semantics of meta-calls. It is worth noting that this
transition rule does not change the calling context v. This property is necessary to guarantee
the calling module code protection. For the sake of simplicity, a call goal with a free variable
as meta-argument has no transition. Similarly, the call rule does not handle the meta-call of
conjunctions of atoms or constraints. Those meta-calls can nevertheless be easily emulated,
by supposing (°,’/2 & and/2) and by adding the clause (and(z,y) < p:call(x),u: call(y))
to the implementation of any module pu.

The apply rule allows the invocation of a closure collected by a previous predicate call.
In practice, it looks for the closure associated to the closure variable (formally checks the
equality of variables z=y), and applies the closure to the argument in the closure context.

3.3 Module Code Protection

Intuitively, the called module code protection property states that only the public predicates
of a module p can be called from outside, and produce subgoals in context p. The calling
module code property states that the goal of a closure can only be executed in the context
of creation of the closure. These properties can be formalized as follows:

Definition 3.5 The operational semantics of programs satisfies the called module code
protection if the reduction of a qualified atom p : p(t) in a context v produces qualified
atoms and closures in the context p only, and either p is public in p or p=v.

Definition 3.6 The operational semantics of programs satisfies the calling module code
protection property if the application of a closure created in context v produces atoms and
closures in the context v only.

INRIA
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Proposition 3.7 The operational semantics of modular logic programs satisfies the called
and calling module code protection properties.

Proof. For the called module code protection property, let us consider the reduction of a
qualified atom g : p(f) in context v. Only a modular CSLD or a call transition can apply,
producing a goal in context p’. In the former case, we have /' = p and either 4 = v or p
public in u. In the latter case, we have trivially u = v =v/.

For the calling module code protection property, we first remark that the transition rules
do not change the context of closures, which thus remain in their context of creation. Given
an application of a closure created in context v, the transition Apply is the only applicable
rule, and procudes a goal in context v. O

4 Logical Semantics

Syntactic module systems have been criticized for their lack of logical semantics [21],23]. Here
we provide modular logic programs without calls nor closures, with a logical semantics based
on their translation into constraint logic programs. In course, that translation describes an
implementation of the module system.

4.1 Modules as a Constraint System M

To a given MCLP program P, one can associate a simple module constraint system M, in
which the constraint allow(v, u, p) that states that the predicate p of module p can be called
in module v, is defined by the following axiom schemas:

veXy peXp vyu€ Xy (u,Du,Z,)€P pel,
M E allow(v, v, p) M E allow(v, i, p)

This constraint system depends solely on the interface of the different modules that composes
the program P, and not on its implementation.

4.2 Pure MCLP programs

Pure MCLP programs can be given a logical semantics equivalent to their operational seman-
tics, obtained by a simple translation of pure MCLP(X') programs into ordinary CLP(M, X)
programs. This translation can be used for the implementation, and shows that the mod-
ule system can be viewed as simple syntactic sugar. The alphabet ¥p of the associated
CLP(M, X) program, is constructed by associating one and only one predicate symbol
p € Up of arity n + 2 to each predicate symbol p € X p of arity n.

Let II be the translation of MCLP programs and goals into CLP programs over M,
defined in table 21

This translation basically adds two arguments to each predicate. The first argument
is the calling context and the second is the qualification. The constraint allow realizes a
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14 Rémy Haemmerlé and Francgois Fages

I (UA{(1, Dy Zp)}) = U{1L (D) }
I (vy,7") =1 (y),I(y)
(v = p:p(®))) = p(v, . T)

u (U{(A = cla)}) = U{TIu(A < cla)}
pO(a — C|a) = p'o(y, M,f} — allow(u7y,p0), C|H#(Oé)
A, A) = 11,(A), 1L, (A7)

=

I
H#
I
I

~—~

Table 2: Formal translation of MCLP(X) into CLP(M, X).

dynamic check of accessibility. It is worth noting that for a qualified atom, the contexts
are known at compile-time and the accessibility check can be done statically. For the call

predicate not considered in this section, the allow predicate would implement a dynamic
check.

Proposition 4.1 (Soundness) Let P and (c|y) be a pure MCLP program and a pure
MCLP goal

i ((eh) 52 @) tnen ((lIt) 222 (@ atton(y. )y = Vi) )

MCLP

for some v, u, p and some y is not free in d.

Proof. Let us suppose ((c|y) ——— (d|7")). Let (v — u:p(t)) be the selected atom in .

MCLP
Then 7 is of the form (1, (v — p:p(£)),72) for some y1 and v,. Hence we have II(v) =
(I1(71), (v, 1, £), I1(72)) . Now let (p(5) « ¢’|) be the selected clause in module x. In such
a case whe have, in the translation of P, the clause (p(y, i, 5)) — ¢, allow(y, p, p)| () 6.
We also have d = (¢,t=35,¢'), X = 3(d) and (v=p)V (p € Z). As (v=p) V (p € T) is true,
the constraint allow(v, u, p) is true in M, hence we have X', M |= 3d’ with d’ = (¢, (v, u, t) =

n(P)

y, i, 8), ¢, allow(y, i, p)). Therefore we have ((c|II(y)) — (d'|TI(7"))). O
CLP

Lemma 4.2 The functions 11,,, and 11 on goals, are injective.

Proof.

As it is the composition of injective functions, the function II on goals is injective. For
the same reason, the function II,, on prefixed atoms, atom sequences and clauses is injective.
As II,, on modules is the pointwise extension of the injective function II, on clauses, it is
injective too. g
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Proposition 4.3 (Completeness) Let P and (c|y) be pure MCLP program and goal

CLP MCLP

if () 22 o)) then () 2 @h))

where I1(y")=~" and d’' =(d, allow(y, u, p), y=v) for some v, i, p and such that y is not free
ind.

Proof. Because I, and II are injective, we can use their respective inverses Hlfl and IT1,
n(P)

Let us suppose that ((c|II(v)) P (d]7")). The constraint ¢ does not contain any allow/3
constraint since (c|y) is a MCLP goal. Let ¢(f) be the selected atom, II(v) is of the form
(71, 4(t),72) for some v, and 2. Hence we have v =TI"1(v1),p(v, p, ), T () with g=p
and t= (v, i, 7). Let q(5) < /|3 be the selected clause. We have p(s') — "\, ~*(3) in the
implementation of some module p’, with §=(y, ¢/, 57) and ¢’ =, allow(y, 1, p) where y is
fresh. We have d = (¢, ¢, allow(y, it', p), (v, i1, #) = (y, 1', s')) and X, M |= 3(d). Hence for
d' = (¢, 1 = '), we have X, M |= 3(d'). Therefore, for a = (II*(y;), I~ (8), I~} (72)),
we conclude that (c|vy) can be reduced by a clause of P to (d'|y") with II(y") = ~'. O

5 Conclusion

In a paper of D.H.D. Warren [28], the higher-order extensions of Prolog were questioned as
they do not really provide more expressive power than meta-programming predicates. We
have shown here that the situation is different in the context of modular logic programming,
and that module code protection issues necessitate to distinguish between calls and closures.

The module system we propose is close to the one of Ciao Prolog in its implementation.
We gave an operational semantics for modular logic programs with calls and closures |,
and used it to formally prove the full module code protection property. Furthermore, an
equivalent logical semantics formodular logic programs without calls nor closures has been
provided, showing a translation of modular logic programs into constraint logic programs.

This module system has been implemented in GNU-Prolog, and has been used to port
some existing code as libraries. The modularization of the Constraint Handling Rules lan-
guage CHR obtained by porting a Prolog implementation [24] as a library, provides an
interesting example of intensive use of the module system, as it allows the development of
several layers of constraint solvers in CHR. New libraries are also developed with this module
system for making a fully bootstrapped implementation of the constraint programming lan-
guage SiLCC [T}, 0], such as for instance, a dynamic lexer-parser allowing modular syntax
redefinitions generalizing the directive op/3.
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