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Abstract: XPath is the standard language for addressing parts of an XML document. We
present a sound and complete decision procedure for containment of XPath queries. The
considered XPath fragment covers most of the language features used in practice. Specif-
ically, we show how XPath queries can be translated into equivalent formulas in monadic
second-order logic. Using this translation, we construct an optimized logical formulation
of the containment problem, which is decided using tree automata. When the containment
relation does not hold between two XPath expressions, a counter-example XML tree is gen-
erated. We provide a complexity analysis together with practical experiments that illustrate
the efficiency of the decision procedure for realistic scenarios.
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Une procédure de décision pour l’inclusion des requêtes

XPath

Résumé : XPath est le langage standard pour naviguer dans les documents XML et
sélectionner un ensemble de noeuds. Nous présentons une procédure de décision correcte
pour l’inclusion des requêtes XPath. Le fragment considéré de XPath couvre la plupart
des constructions du langage utilisées en pratique. Nous montrons comment les expressions
XPath peuvent être traduites en formules équivalentes en logique monadique du second
ordre. En utilisant cette traduction, nous construisons une formulation logique optimisée
du problème de l’inclusion, qui est décidée à l’aide d’automates d’arbres. Lorsque deux
expressions XPath ne sont pas contenues l’une dans l’autre, un arbre XML contre-exemple
est généré. Nous effectuons une analyse de complexité et menons des expérimentations qui
illustrent l’efficacité de la procédure de décision pour des scénarios réalistes.

Mots-clés : XML, XPath, requêtes, inclusion, logique, automates, MSO, WS2S



XPath Containment 3

1 Introduction

XPath is a simple language for querying an XML tree and returning a set of nodes. It
is increasingly popular due to its expressive power and its compact syntax. These two
advantages have given XPath a central role both in other key XML specifications and XML
applications. It is used in XQuery as a core query language; in XSLT as node selector in the
transformations; in XML Schema to define keys; in XLink and XPointer to reference portions
of XML data. XPath is also used in many applications such as update languages [38]; XML
access control [19] and static analysis of transformations [41]. In all these applications and
many others, solving the XPath containment problem is crucial.

The containment problem received a great research attention recently. The general for-
mulation of the containment is as follows: given two XPath queries p1 and p2, check whether
for any tree t, the results of the evaluation of p1 are always contained in those of p2. Other
variants are also under scrutiny such as when t is additionally constained by an XML Schema
or DTD. Fundamental questions such as the equivalence of two paths and the emptiness
check of a path are both by-products of the containment.

Most of XPath containment applications such as query optimization, typechecking, key
inference, are carried out statically. This allows for example to replace queries by more
efficient specialized ones or to identify at compile time those that do not need to be evaluated
at run time since they yield no results. This kind of analysis may help shifting the cost of
enforcing runtime properties to compile time.

In the literature, much of the attention has been paid to classifying the containment
problem for a simple XPath fragment in complexity classes. This allowed to identify subsets
of this fragment for which deciding the containment can be done efficiently.

In this paper, our goal is to describe a sound, complete and efficient algorithm for a
large XPath fragment supporting most of real-world use cases. We first briefly introduce
the XPath language, and present the approach and outline of the paper.

1.1 Introduction to XPath

XPath [11] has been introduced by the W3C as the standard query language for retrieving
information in XML documents. It allows to navigate in XML trees and return a set of
matching nodes. In their simplest form XPath expressions look like “directory navigation
paths”. For example, the XPath

/book/chapter/section

navigates from the root of a document (designated by the leading slash “/”) through the top-
level “book” element to it’s “chapter” child elements and on to it’s “section” child elements.
The result of the evaluation of the entire expression is the set of all the “section” elements
that can be reached in this manner, returned in the order they occurred in the document. At
each step in the navigation the selected nodes for that step can be filtered using qualifiers.
A qualifier is a boolean expression between brackets that can test path existence. So if we
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4 Genevès & Layaïda

ask for
/book/chapter/section[citation]

then the result is all “section” elements that have a least one child element named “citation”.
The situation becomes more interesting when combined with XPath’s capability of searching
along “axes” other than the shown “children of” axis. Indeed the above XPath is a shorthand
for

/child::book/child::chapter/child::section[child::citation]

where it is made explicit that each path step is meant to search the “child” axis containing
all children of the previous context node. If we instead asked for

/child::book/descendant::*[child::citation]

then the last step selects nodes of any kind that are among the descendants of the top
element “book” and have a “citation” sub-element. Previous examples are all absolute XPath
expressions. The meaning of a relative expression (without the leading “/”) is defined with
respect to a context node in the tree. A key to XPath success is its compactness due to the
powerful navigation made possible by the various axes. Starting from a particular context
node in a tree, every other nodes can be reached. Axes define a partitioning of a tree from
any context node. Figure 1 illustrates this on a sample tree. More informal details on the
complete XPath standard can be found in the W3C specification [11].

Figure 2 gives the abstract syntax of the XPath fragment we consider in this paper. The
fragment covers most features of XPath 1.01. It includes all forward and reverse axes along
with path composition, and boolean operators inside qualifiers (including negation), except
data-value joins. The formal semantics of XPath is given in Section 3.1.

1.2 Approach and Outline

We propose the following staged approach for solving the containment problem between two
XPath expressions:

1. translate each XPath query to an equivalent logical representation

2. express the containment problem as a formula in this logic

3. optimize the formula by taking advantage of specific peculiarities of the containment
problem

4. solve the generated formula using an optimized solver

5. provide relevant examples and/or counter-examples of the truth status of the formula

1The fragment also includes two extensions from the forthcoming XPath 2.0 [7] language: qualified paths
(e.g. (p)[q]) instead of XPath 1.0 qualified steps (e.g. a::n[q]) and path intersection (p1 ∩ p2).

INRIA
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Figure 1: XPath Axes Partition from Context Node.

Expression e ::= /p | p

Path p ::= p1/p2 | p[q] | e1 p e2 | e1 ∩ e2 | (p) | a::n

Qualifier q ::= q and q | q or q | not q | e

Axis a ::= child | descendant | self | descendant-or-self | following-sibling |
following | parent | ancestor | ancestor-or-self | preceding-sibling |
preceding

NodeTest n ::= σ | ∗

Figure 2: XPath Abstract Syntax.
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6 Genevès & Layaïda

Section 2 introduces the logic we use, Section 3 explains the translation of XPath queries
to logical formulas, Section 4 presents the logical formulation of the containment problem.
Complexity analysis and practical results are given in Section 5. Section 6 summarizes the
related work before we conclude in Section 7.

2 A Logic for XML

In this section we introduce a specific variant of monadic second-order logic (MSO) as a
formalism for representing XML instances.

2.1 Logical Description of Trees

An XML document can be seen as a finite ordered and labeled tree of unbounded depth
and arity. Tree nodes are labeled with symbols taken from a finite2 alphabet Σ. There is a
straightforward isomorphism between sequences of unranked trees and binary trees [24, 33].
In order to describe it, we first define unranked trees as σ(h) where σ ∈ Σ and h is a hedge,
i.e. a sequence of unranked trees, defined as follows:

HΣ 3 h ::= σ(h), h′ | ()

A binary tree t is either a σ-labeled root of two subtrees (σ ∈ Σ) or the empty tree:

T 2
Σ 3 t ::= σ(t, t′) | ε

Unranked trees can be translated into binary trees with the following function:

β(·) : HΣ → T 2
Σ

β(σ(h), h′) = σ(β(h), β(h′))
β(()) = ε

The inverse translation function converts a binary tree into a sequence of unranked trees:

β−1(·) : T 2
Σ → HΣ

β−1(σ(t, t′)) = σ(β−1(t)), β−1(t′)
β−1(ε) = ()

For example, Figure 3 illustrates how the sample tree r(a, b, c) is mapped to its binary
representation r(a(ε, b(ε, c(ε, ε))), ε) and vice-versa.

Note that the translation of a single unranked tree results in a binary tree of the form
σ(t, ε). Reciprocally, the inverse translation of such a binary tree always yields a single
unranked tree. When modeling XML, we therefore restrict our attention to binary trees of
the form σ(t, ε), without loss of generality.

2We present a technique for infinite alphabets in Section 2.6.

INRIA
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Figure 3: A n-ary Tree and its Binary Representation.

We define a position in a binary tree as a finite string over the alphabet {0, 1} which
identifies a node in the tree, like a path starting from the root. Each symbol of the string
either corresponds to accessing the left child (0) or the right child (1) in the binary tree.
Since a position in the tree uniquely identifies a node, and a node is uniquely identified by
its position, nodes and positions are not distinguished.

A characteristic function of a set B is a function from A to {0,1}, where A is a superset
of B. It returns 1 if and only if the element of A is also an element of B:

B ⊆ A
f : A → {0, 1}

∀a ∈ A, f(a) =

{
1, if a ∈ B
0, if a /∈ B

A characteristic set is a subset of a set A that contains all elements of A for which the
characteristic function returns 1:

Xf ⊆ A
Xf = {a ∈ A | f(a) = 1}

In this paper, we consider characteristic sets which are subsets of the set of all positions
in a tree. Such a characteristic set denotes where a particular property holds in a tree.
Particular attention is paid to characteristic sets which tell us where a particular symbol
occurs. Consider for instance the binary tree over the alphabet Σ = {r, a, b, c, ε} which is
given on Figure 3. It is identified by its tuple representation t1 = (Xfr

, Xfa
, Xfb

, Xfc
, Xfε

)
where Xfσ

is the characteristic set of the symbol σ:

Xfr
= {ε}

Xfa
= {0}

Xfb
= {01}

Xfc
= {011}

Xfε
= {1, 00, 010, 0110, 0111}

The set Xfr
∪Xfa

∪Xfb
∪Xfc

∪Xfε
of all positions contained in characteristic sets defines

a shape. A position p belongs to a characteristic set Xfσ
(also noted Xσ) if and only if the

symbol σ occurs at p in the shape. Note that in the example of Figure 3, one and only one
symbol occurs at each position. In the general case however, there is no restriction on the
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8 Genevès & Layaïda

content of characteristic sets. A given position can belong to several characteristic sets. In
this case, several symbols may occur at a given position, and therefore we do not describe
an instance anymore but a simple union type instead. On the opposite, a particular position
may not be a member of any characteristic set. In this case, the overall structure contains
a position which is not labeled by any symbol of the considered alphabet; therefore it is
not a tree on this alphabet. We now introduce the logic that allows to capture additional
constraints needed for shapes to conform to XML trees.

2.2 Introduction to WS2S

The logic we use is named WS2S which stands for weak monadic second-order logic of two
successors. In this logic, first-order variables range over tree nodes. Second-order variables
are interpreted as finite sets of tree nodes. A weak second order theory is one in which the
set variables are allowed to range only over finite sets. Weak is enough for our application
since XML documents have an unbounded depth but remain finite trees. Monadic means
that quantification is only allowed over unary relations (sets), not over polyadic relations.
Monadic allows quantification over set of nodes, which is powerful enough to model recursion
in XPath queries (as we will see in Section 3.2). The two successors denote the left and
right children of a node in the binary tree. They are sufficient to consider n-ary XML trees
without loss of generality, owing to the mapping B presented in Section 2.1.

From a syntactic point of view, WS2S can be reduced to a simple core language, whose
abstract syntax is:

Φ ::= X ⊆ Y | X = Y − Z | X = Y.0 | X = Y.1 | ¬Φ | Φ1 ∧ Φ2 | ∃X.Φ

where X , Y , and Z denote arbitrary second-order variables. Other usual logical connectives
can be derived from the core:

Φ1 ∨ Φ2
def
= ¬(¬Φ1 ∧ ¬Φ2)

Φ1 ⇒ Φ2
def
= ¬Φ1 ∨ Φ2

Φ1 ⇔ Φ2
def
= Φ1 ∧ Φ2 ∨ ¬Φ1 ∧ ¬Φ2

Universal quantification can be seen as a syntactic sugar:

∀X.Φ
def
= ¬∃X.¬Φ

Note that only second order variables appear in the core. This is because first order variables
can be encoded as singleton second-order variables. We adopt a notation convention for
simplifying the remaining part of the paper: first-order variables are noted in lowercase and
second-order variables in uppercase.

2.3 Semantics of the Logic

Given a fixed main formula ϕ with k variables, we define its semantics inductively. Let a
tuple representation t = (X1, ..., Xk) ∈ ({0, 1}∗)k be an interpretation of ϕ. We note t(X)

INRIA



XPath Containment 9

the interpretation Xi (such that 1 ≤ i ≤ k) that t associates to the variable X occurring in
ϕ. The semantics of ϕ is inductively defined relative to t. We use the notation t � ϕ (which
is read: t satisfies ϕ) if the interpretation t makes ϕ true:

t � X ⊆ Y iff t(X) ⊆ t(Y )
t � X = Y − Z iff t(X) = t(Y ) \ t(Z)
t � X = Y.0 iff t(X) = {p.0 | p ∈ t(Y )}
t � X = Y.1 iff t(X) = {p.1 | p ∈ t(Y )}
t � ¬ϕ iff t 2 ϕ
t � ϕ1 ∧ ϕ2 iff t � ϕ1 and t � ϕ2

t � ∃X.ϕ iff ∃I ⊆ {0, 1}∗, t[X 7→ I ] � ϕ

where the notation t[X 7→ I ] denotes the tuple representation that interprets X as I and all
other variables as t does. Note that the two successors of a particular position always exist
in WS2S.

A formula ϕ naturally defines a language L(ϕ) = {t | t � ϕ} over the alphabet ({0, 1}∗)k

, where k is the number of variables of ϕ.

2.4 Decidability

A logic is decidable if an algorithm exists that determines for any formula its truth status:
a formula can be valid (always true) or not valid; alternatively (and equivalently) the al-
gorithm can classify formulas according to whether they are satisfiable (sometimes true) or
unsatisfiable (always false).

It has been known since the 1960’s that the class of regular tree languages is linked
to decidability questions in formal logics. In particular, WS2S is decidable through the
automaton-logic connection [40, 15], using tree automata. This follows and generalizes the
results on the decidability of the weak monadic second-order logic of one successor (WS1S)
using word-automata [10, 18]. Specifically, in 1960, Büchi proved that WS1S is as expressive
as finite word-automata, and in 1968, Thatcher and Wright found out that there is an
analogous correspondence for the extended case:

Theorem 2.4.1 WS2S is as expressive as finite tree automata.

The proof works in two directions. First, it is shown that a WS2S formula can be created
such that it simulates a successful run of a tree-automaton. Second, for any given WS2S
formula a corresponding tree automaton can be built. We explain and detail this second
direction as it forms the theoretical basis of the WS2S decision procedure we use.

The correspondence of WS2S formulas and tree automata relies on a convenient rep-
resentation that links the truth status of a formula with the recognition operated by an
automaton. This representation is a matricial vision of the tuple representation described
in Section 2.1. If we consider a tuple t, its matricial representation t̃ is indexed by variables
indices and positions in the tree. Entries of t̃ correspond to values in B = {0, 1} of charac-
teristic functions: an entry (v, p) = 1 in t̃ means that the position p belongs to the variable
Xv.

RR n° 5867



10 Genevès & Layaïda

Consider for instance the formula ϕ = (∃X.∃Y. Y = Z.0 ∧ X = Z.1) which has three
variables X , Y , and Z. A typical matrix looks like:

ε 0 00 01 010 1
X 1 1 0 0 0 0
Y 0 1 0 1 0 0
Z 0 0 1 0 0 1

Note that this matrix is finite since we work with finite trees, and allows to capture trees of
unbounded depth. As a counterpart, there is an infinite number of matrices that define the
same interpretation: we can append any number of columns of zeros at the right end of the
matrix (for positions after the end of the tree). Actually, we denote by t̃ the minimum matrix,
without such empty suffix. Rows of the matrix are called tracks and give the interpretation
of each variable, which is defined as the finite set {p | the bit for position p in the Xi track
is 1}.

Each column of the matrix is a bit vector that indicates the membership status of a node
to the variables of the formula. The automaton recognizes all the interpretations (matrices)
that satisfy the formula. A line by line reading of the matrix gives the interpretation of each
variable (i.e. its associated set of positions), whereas an automaton processes the matrix
column by column; it transits on each bit-vector.

2.5 From Formulas to Automata

Given a particular formula, a corresponding finite tree automaton (FTA) can be built in
order to decide the truth status of the formula. We denote a FTA over an alphabet Σ of
node labels by a tuple (Q, Qf , Γ) where Q is the set of states, Qf ⊆ Q is a set of accepting
states, and Γ is a set of transitions either of the form σ → q or of the form σ(q, q′) → q′′,
depending on the arity of the symbol σ ∈ Σ (respectively a leaf or a binary constructor) and
where q, q′, q′′ are automaton states belonging to Q.

We start from a formula ϕ with k second-order variables. As an interpretation of ϕ, con-
sider a tuple representation t = (X1, ..., Xk) ∈ ({0, 1}∗)k. We note AJϕK the tree automaton
that corresponds to ϕ. AJϕK operates over the alphabet Σ = {0, 1}k, and can be seen as
processing t̃ column by column. Note however that there is an infinite number of matrices
that defines the same interpretation. On one hand, any number columns of zeros can appear
at the end of the matrix. On the other hand, a column of zeros can also appear for any posi-
tion in the tree, before a non-empty column, denoting that this position is not a member of
any interpretation. The automaton therefore faces a problem: when recognizing a column of
zeros, knowing if the recognition should stop (because the end of the tree has been reached)
or continue. In other terms, the automaton needs to know the maximal depth of the tree as
an additional information in order to know when to stop. To this end, we introduce a new
termination symbol ⊥. From a matricial point of view, this symbol appears as a component
of a bit-vector whenever this component will not be 1 anymore for the remaining bit-vectors
to be processed. Technically, AJϕK recognizes the tree representation t of t. t is obtained
from t as follows:

INRIA



XPath Containment 11

t = ({0}, {0, 1})

t̃ =
ε 0 1

X 0 1 0
Y 0 1 1

t = 00

11

⊥⊥ ⊥⊥

⊥1

⊥⊥ ⊥⊥

Figure 4: Representations of a Satisfying Interpretation of X ⊆ Y

1. the set of positions of t is the prefix-closure of X1 ∪ ... ∪ Xk

2. leaves of t are labeled with ⊥k

3. binary constructors of the tree are labeled with an element of {⊥, 0, 1}k such that the
ith component of a position p in t is marked: 1 if and only if p ∈ Xi, 0 if and only if
p /∈ Xi and some extension of p is in Xi, and ⊥ otherwise

Note that in this tree representation, ⊥ appears as a component of a node label whenever no
descendant node has a 1 for the same component. For example, Figure 4 gives the tuple, the
matrix, and the tree representation of a particular satisfying interpretation of the formula
X ⊆ Y .

Theorem 2.5.1 For every formula ϕ, there is an automaton AJϕK such that:

t � ϕ ≡ AJϕK accepts t

The automaton AJϕK is calculated using an induction scheme. First, a basic bottom-up
tree automaton corresponds to each atomic formula:

RR n° 5867



12 Genevès & Layaïda

AJX ⊆ Y K =








⊥⊥ → q, ⊥0(q, q) → q
⊥1(q, q) → q, 00(q, q) → q
01(q, q) → q, 11(q, q) → q



 , {q}




AJX = Y − ZK =








⊥⊥⊥ → q, ⊥⊥0(q, q) → q,
⊥0⊥(q, q) → q, ⊥00(q, q) → q,
⊥01(q, q) → q, ⊥11(q, q) → q,
0⊥⊥(q, q) → q, 0⊥0(q, q) → q,
0⊥1(q, q) → q, 00⊥(q, q) → q,
000(q, q) → q, 001(q, q) → q,
011(q, q) → q, 11⊥(q, q) → q,
110(q, q) → q,





, {q}




AJX = Y.0K =








⊥⊥ → q, 00(q, q′) → q′

00(q′, q) → q′ 01(q′′, q) → q′

1⊥(q, q) → q′′ 10(q, q) → q′′



 , {q′}




AJX = Y.1K =









⊥⊥ → q, 00(q, q′) → q′

00(q′, q) → q′ 01(q, q′′) → q′

1⊥(q, q) → q′′ 10(q, q) → q′′



 , {q′}





Logical connectives are then translated into automata-theoretic operations, taking advantage
of the closure properties of tree automata.

Negation of a formula is handled through automaton complementation:

AJ¬ϕK = {AJϕK

Complementation of a complete FTA simply consists in flipping accepting and rejecting
states. Note that a FTA (Q, Qf , Γ) is complete if and only if there is a transition σ(q, q′) → q′′

for each σ ∈ Σ and (q, q′, q′′) ∈ Q3. Therefore, completing an automaton can be required
before complementing it. For instance, the automaton AJX ⊆ Y K given above is incomplete.
A way to obtain AJ¬X ⊆ Y K from it is to add a new state q′, complete the transitions, and
consider q′ as the only accepting state of AJ¬X ⊆ Y K.

Conjunction in a formula is translated into intersection of automata:

AJϕ1 ∧ ϕ2K = AJϕ1K ∩ AJϕ2K

If we consider that AJϕ1K = (Q1, Qf1
, Γ1) and AJϕ2K = (Q2, Qf2

, Γ2), obtaining AJϕ1K ∩
AJϕ2K basically consists in calculating a product automaton:

AJϕ1K ∩ AJϕ2K = (Q1 × Q2, Qf1
× Qf2

, Γ)

where:

Γ =

{
σ((q1, q2), (q

′
1, q

′
2)) → (q′′1 , q′′2 )|

σ(q1, q
′
1) → q′′1 ∈ Γ1

σ(q2, q
′
2) → q′′2 ∈ Γ2

}

INRIA



XPath Containment 13

Existential quantification relies on projection and determinization of tree automata.
The automaton AJ∃X.ϕK is derived from AJϕK by projection. This means the alphabet
of AJ∃X.ϕK has to be one element smaller than the alphabet of AJϕK. In every tuple of
AJϕK the X component is removed, so that its size is decreased by one. The rest of the
automaton remains the same. Intuitively, AJ∃X.ϕK acts as AJϕK except it is allowed to
guess the bits for X. The automaton AJ∃X.ϕK may be non-deterministic even if AJϕK was
not [13], that is why determinization is required.

As a result, for every formula ϕ it is possible to build an automaton AJϕK in this manner,
which defines the same language as ϕ:

L(AJϕK) = L(ϕ)

Analyzing the automaton AJϕK allows to decide the truth status of the formula ϕ:

• if L(AJϕK) = ∅ then ϕ is unsatisfiable;

• else ϕ is satisfiable. If L({AJϕK) = ∅ then ϕ is always satisfiable (valid).

Possessing the full automaton corresponding to a formula is of great value, since we can
use it to produce examples and counter-examples of the truth status of the formula. We
can generate a relevant example (or counter-example) by looking for an accepting run of the
automaton (or its complement). In practice, our implementation relies on the MONA solver
[27] that implements this WS2S decision procedure along with various optimizations.

2.6 XML Tree Represention

We have seen in Section 2.1 how shapes can be defined using characteristic sets. A shape is
basically a second order variable, interpreted as a set of nodes, for which particular properties
hold. Using WS2S, we now express additional requirements needed in order for a shape X
to represent an XML tree.

The first requirements are structural. First, in order to be a tree, the shape must be
prefix-closed, that is, for any position in the tree, any prefix of this position is also in the
tree:

PrefixClosed(X)
def
= ∀x.∀y.((y = x.1 ∨ y = x.0) ∧ y ∈ X) ⇒ x ∈ X

This ensures the shape is fully connected.
Second, let us define the following predicate for the root of X :

IsRoot(X, x)
def
= x ∈ X ∧ ¬(∃z.z ∈ X ∧ (x = z.1 ∨ x = z.0))

In order to be a tree and not a hedge, X must have only one root with no sibling:

SingleRoot(X)
def
= ∀x.IsRoot(X, x) ⇒ x.1 /∈ X

Then, the labeling of the tree must be consistent with XML. We want to tolerate that the
same symbol may appear at several locations in the tree with different arities: either as
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14 Genevès & Layaïda

a binary constructor or as a leaf. However, one and only one symbol is associated with a
position in the shape. We may at first want to consider that the set of characteristic sets
forms a partition:

Partition(X, X1, ..., Xn)
def
= X =

⋃n
i=1 Xi ∧ Disjoint(X1, ..., Xn)

Disjoint(X1, ..., Xn)
def
=

∧
i6=j Xi ∩ Xj = ∅

but this would prevent us from considering an actual XML tree which is labeled with symbols
taken from an infinite alphabet. Actually, the problem comes from declaring X =

⋃n
i=1 Xi

that prevents any other symbol to occur in the tree. Instead, if we only specify that the
characteristic sets must be disjoint, then we allow a position in the tree not to be a member
of any of the considered characteristic sets. That is how we emulate the labeling from an
infinite alphabet. As a result, we encode an XML tree (that we want non-empty in order
not to get degenerated results) in the following way:

XMLTree(X, X1, ..., Xn)
def
= PrefixClosed(X)
∧ SingleRoot(X)
∧ Disjoint(X1, ..., Xn)
∧ X 6= ∅

where X is the tree and Xi the characteristic sets. Figure 5 introduces how we formulate
this in MONA Syntax [27], for the case of two characteristic sets of interest named Xbook

and Xcitation. The only difference is that the shape X is declared as a global free variable
named $ together with associated restrictions, instead of being passed as a parameter to
predicates. In MONA syntax, “var2” is the keyword for declaring a free second-order vari-
able; “all1” is the universal quantifier for first-order variables; and “&” and “ |” respectively
stand for the “∧” and “∨” connectives.

3 Logical Interpretation of XPath Queries

We explain in this section how an XPath expression can be translated into an equivalent
WS2S formula. We first recall XPath denotational semantics then introduce our logical
interpretation of an XPath query. This representation basically consists in considering a
query as a relation that connects two tree nodes: the context node from which the query is
applied, and the result node.

3.1 Denotational Semantics

In the classical denotational semantics of paths, first given in [42], the evaluation of a path
returns a set of nodes. Figure 6 presents the denotational semantics of our XPath fragment.
The formal semantics functions Se and Sp define the set of nodes returned by expressions
and paths, starting from a context node x in the tree. The function Sq defines the semantics

INRIA



XPath Containment 15

ws2s;

# Data Model

var2 $ where ~empty($)

& (all1 x : all1 y : ((y=x.1 | y=x.0) & (y in $)) => x in $)

& all1 r : (r in $ & ~(ex1 z : z in $ & (r=z.1 | r=z.0)))

=> r.1 notin $;

# Characteristic sets

var2 Xbook, Xcitation;

# Partition

((all1 x : x in Xbook =>x notin Xcitation)

&(all1 x : x in Xcitation =>x notin Xbook));

Figure 5: A WS2S Formula Describing a Sample XML Tree in MONA Syntax.

of qualifiers that basically state the existence or absence of one or more paths from a context
node x. The semantics of paths uses the navigational semantics of axes shown on Figure 7.
Navigation performed by axes (as illustrated on a sample XML tree by Figure 1) relies on
a few primitives over the XML data model:

• root() returns the root of the tree;

• children(x) returns the set of nodes which are children of the node x;

• parent(x) returns the parent node of the node x;

• the relation � defines the ordering: x � y holds if and only if the node x is before
the node y in the depth-first traversal order of the n-ary XML tree;

• and name() returns the XML labeling of a node in a tree.

3.2 Navigation and Recursion

As a first step toward a WS2S encoding of XPath expressions, we need to express the
navigational primitives over binary trees. Considering binary trees involves recursion for
modeling the usual child relation on unranked trees (c.f. Figure 8). Recursion is not available
as a basic construct of WS2S. We define recursion in monadic second-order logic via a
transitive closure formulated using second-order quantification.

We begin by defining the following-sibling relation in WS2S. Let us consider a second-
order variable F as the set of nodes of interest. We define the following-sibling relation as
an induction scheme. The base case just captures that the immediate right successor of x
is effectively its first following sibling:

(x.1 ∈ F )
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16 Genevès & Layaïda

Se : Expression −→ Node −→ Set(Node)
SeJ/pKx = SpJpKroot()
SeJpKx = SpJpKx

Sp : Path −→ Node −→ Set(Node)
SpJp1/p2Kx = {x2 | x1 ∈ SpJp1Kx ∧ x2 ∈ SpJp2Kx1

}
SpJp[q]Kx = {x1 | x1 ∈ SpJpKx ∧ SqJqKx1

}
SpJe1 p e2Kx = SeJe1Kx ∪ SeJe2Kx

SpJe1 ∩ e2Kx = {x1 | x1 ∈ SeJe1Kx ∧ x1 ∈ SeJe2Kx}
SpJ(p)Kx = SpJpKx

SpJa::σKx = {x1 | x1 ∈ SaJaKx ∧ name(x1) = σ}
SpJa::∗Kx = {x1 | x1 ∈ SaJaKx}

Sq : Qualifier −→ Node −→ Boolean
SqJq1 and q2Kx = SqJq1Kx ∧ SqJq2Kx

SqJq1 or q2Kx = SqJq1Kx ∨ SqJq2Kx

SqJnot qKx = ¬ SqJqKx

SqJeKx = SeJeKx 6= ∅

Figure 6: Denotational Semantics of Expressions, Paths and Qualifiers.

Sa : Axis −→ Node −→ Set(Node)
SaJchildKx = children(x)
SaJparentKx = parent(x)
SaJdescendantKx = children+(x)
SaJancestorKx = parent+(x)
SaJselfKx = {x}
SaJdescendant-or-selfKx = SaJdescendantKx ∪ SaJselfKx

SaJancestor-or-selfKx = SaJancestorKx ∪ SaJselfKx

SaJprecedingKx = {y | y � x} − SaJancestorKx

SaJfollowingKx = {y | x � y} − SaJdescendantKx

SaJfollowing-siblingKx = {y | y ∈ child (parent(x)) ∧ x � y}
SaJpreceding-siblingKx = {y | y ∈ child (parent(x)) ∧ y � x}

Figure 7: Denotational Semantics of Axes.
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Figure 8: Children in the Unranked and Binary Cases.

Then the induction step states that the immediate right successor of every position in F is
also among the following siblings, and formulates this as a transitive closure:

∀z.(z ∈ F ⇒ z.1 ∈ F )

We are now about to formulate the global requirement for a node y to be itself one of the
following siblings of x. The node y must belong to the set F which is closed under the
following-sibling relation starting from x.1:

(x.1 ∈ F ∧ ∀z.z ∈ F ⇒ z.1 ∈ F ) ⇒ y ∈ F

Note that this formula is satisfied for multiple sets F . For instance, the set of all tree nodes
satisfies this implication. Actually, we are only interested in the smallest set F for which the
formula holds: the set which contains all and only all following siblings. A way to express
this is to introduce a universal quantification over F . Indeed, ranging over all such set of
nodes notably takes into account the particular case where F is minimal, i.e. the set we
are interested in. If the global formula holds for every F , y is also in the minimal set that
contains only the following siblings of x. Therefore, we define the XPath “following-sibling”
axis as the WS2S predicate:

followingsibling(X, x, y)
def
= ∀F.F ⊆ X ⇒

((x.1 ∈ F ∧ ∀z.z ∈ F ⇒ z.1 ∈ F ) ⇒ y ∈ F )

that expresses the requirements for a node y to be a following sibling of a node x in the tree
X . XPath “descendant” axis can be modeled in the same manner. The set D of interest
is initialized with the left child of the context node, and is closed under both successor
relations:

descendant(X, x, y)
def
= ∀D.D ⊆ X ⇒

(x.0 ∈ D ∧ ∀z.(z ∈ D ⇒ z.1 ∈ D ∧ z.0 ∈ D) ⇒ y ∈ D)
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Considering these two relations as navigational primitives, we can build more complex ones
out of them:

child(X, x, y)
def
= y = x.0 ∨ followingsibling(X, x.0, y)

following(X, x, y)
def
= ∃z.z ∈ X ∧ z.1 ∈ X ∧ ancestor(X, x, z)

∧ descendant(X, z.1, y)

self(X, x, y)
def
= x = y

descendantorself(X, x, y)
def
= self(X, x, y) ∨ descendant(X, x, y)

Eventually, the other XPath axes are defined as syntactic sugars by taking advantage of
XPath symmetry:

ancestor(X, x, y)
def
= descendant(X, y, x)

parent(X, x, y)
def
= child(X, y, x)

precedingsibling(X, x, y)
def
= followingsibling(X, y, x)

ancestororself(X, x, y)
def
= descendantorself(X, y, x)

preceding(X, x, y)
def
= following(X, y, x)

3.3 Logical Composition of Steps

This section describes how path composition operators are translated into logical connec-
tives. The translation We is formally specified as a “derivor” shown on Figure 9 and written
WeJeK

y
x where:

• the parameter e (surrounded by special “syntax” braces JK) is the source language
parameter that is rewritten;

• the additional parameters x and y are respectively the context and the result node of
the query.

The compilation of an XPath expression to WS2S relies on Wp in charge of translating
paths into formulas, and the dual derivor Wq for translating qualifiers into formulas. The
basic principle is that WpJpKy

x holds for all pairs x, y of nodes such that y is accessed from
x through the path p. Similarly, WqJqKx holds for all nodes x such that the qualifier q is
satisfied from the context node x.

The interpretation of path composition WpJp1/p2K
y
x consists in checking the existence

of an intermediate node that connects the two paths, and therefore requires a new fresh
variable to be inserted. The same holds for WeJ/pKy

x that restarts from the root to interpret
p, whatever the current context node x is.

Paths can occur inside qualifiers therefore We, Wp and Wq are mutually recursive. Since
the interpretations of paths and qualifiers are respectively dyadic and monadic formulas, the
translation of a path inside a qualifier WqJeKx requires the insertion of a new fresh variable
whose only purpose consists in testing the existence of the path.
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We : Expression −→ Node −→ Node −→ WS2S
WeJ/pKy

x = ∃z.isroot(z) ∧WpJpKy
z

WeJpKy
x = WpJpKy

x

Wp : Path −→ Node −→ Node −→ WS2S
WpJp1/p2K

y
x = ∃z.WpJp1K

z
x ∧WpJp2K

y
z

WpJp[q]Ky
x = WpJpKy

x ∧WqJqKy

WpJe1 p e2K
y
x = WeJe1K

y
x ∨WeJe2K

y
x

WpJe1 ∩ e2K
y
x = WeJe1K

y
x ∧WeJe2K

y
x

WpJ(p)Ky
x = WpJpKy

x

WpJa::σKy
x = a(x, y) ∧ y ∈ Xσ

WpJa::∗Ky
x = a(x, y)

Wq : Qualifier −→ Node −→ WS2S
WqJq1 and q2Kx = WqJq1Kx ∧WqJq2Kx

WqJq1 or q2Kx = WqJq1Kx ∨WqJq2Kx

WqJnot qKx = ¬ WqJqKx

WqJeKx = ∃y.WeJeK
y
x

Figure 9: Translating XPath into WS2S.

Eventually, the translation of steps relies on the logical definition of axes: a(x, y) denotes
the WS2S predicate defining the XPath axis a, as described in Section 3.2. For instance,
Figure 10 presents the WS2S translation of the XPath expression:

child::book/descendant::citation[parent::section]

4 The XPath Containment Problem

We are now ready to formulate the XPath containment problem in terms of a logical formula.

4.1 Logical Formulation

Given two XPath expressions e1 and e2, we build the WS2S formula corresponding to check-
ing their containment in two steps. We first translate each XPath expression into a WS2S
logical relation that connects two nodes in the tree, as presented in Section 3.3. Then
we have to unify the data model. Each translation yields a set of characteristic sets. We
build the union of them, so that characteristic sets that correspond to symbols used in both
expressions are identified.

From a logical point of view, e1 ⊆ e2 means that each pair of nodes (x, y) such that x
and y are connected by the logical relation corresponding to e1 is similarly connected by the
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# Translated XPath expression:

# child::book/descendant::citation[parent::section]

ws2s;

# Data Model

var2 $ where ~empty($)

& (all1 x : all1 y : ((y=x.1 | y=x.0) & (y in $)) => x in $)

& all1 r : (r in $ & ~(ex1 z : z in $ & (r=z.1 | r=z.0)))

=> r.1 notin $;

# Characteristic sets

var2 Xbook, Xcitation, Xsection;

# Partition

((all1 x : x in Xbook =>x notin Xcitation & x notin Xsection)&

(all1 x : x in Xcitation =>x notin Xbook & x notin Xsection)&

(all1 x : x in Xsection =>x notin Xbook & x notin Xcitation));

# Query (parameters are context and result nodes)

pred xpath1 (var1 x, var1 y)= ex1 x1 : child(x,x1) & x1 in Xbook

& descendant(x1,y) & y in Xcitation

& ex1 x2 : parent(y,x2) & x2 in Xsection;

Figure 10: WS2S Translation of a Sample XPath in MONA Syntax.
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logical relation obtained from e2:

∀x. ∀y. WeJe1K
y
x ⇒ WeJe2K

y
x (1)

The containment relation holds between expressions e1 and e2 if and only if the WS2S
formula (1) is satisfied for all trees. With respect to the notations of Section 2.6, the
containment between expressions e1 and e2 is thus formulated as:

∀X. XMLTree(X, X1, ..., Xn) ⇒ (∀x ∈ X. ∀y ∈ X. WeJe1Ky
x ⇒ WeJe2Ky

x)

where the Xi are members of the union of all characteristic sets detected for each expression.
Consider for instance the two XPath expressions:

e1 = child::book/descendant::citation[parent::section]
e2 = descendant::citation[ancestor::book and ancestor::section]

Figure 11 presents the generated WS2S formula for checking containment between e1 and
e2, in MONA syntax. The formula is determined valid (which means e1 ⊆ e2) in less
than 0.2 seconds, the time spent to build the corresponding automaton and analyze it. If
we reciprocally check the containment between e2 and e1, the formula is satisfiable, which
means e2 6⊆ e1. The generated counter-example XML tree is shown on Figure 12. The total
running time of the decision procedure is less than 0.9 seconds, including the generation of
the counter-example.

4.2 Soundness and Completeness

Soundness and completeness of our decision procedure are ensured by construction. Indeed,
if we restart from the initial definition of the containment problem: provided a XML tree,
checking containment betwen two XPath e1 and e2 consists in determining if the following
proposition holds:

∀x,SeJe1Kx ⊆ SeJe2Kx (2)

By definition, (2) is logically equivalent to:

∀x, ∀y, y ∈ SeJe1Kx ⇒ y ∈ SeJe2Kx (3)

Then the last step remaining to prove is the equivalence between (3) and (1). To this end,
we need to prove that our compilation of XPath expressions into WS2S formulas preserves
XPath denotational semantics, which means:

Theorem 4.2.1 The logical translation of XPath expressions is equivalent to XPath deno-
tational semantics:

WpJeK
y
x ≡ y ∈ SpJeKx (4)
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ws2s;

# Checking XPath Containment between

# ’child::book/descendant::citation[parent::section]’ and

# ’descendant::citation[ancestor::book and ancestor::section]’

# Data Model

var2 $ where ~empty($)

& (all1 x : all1 y : ((y=x.1 | y=x.0) & (y in $)) => x in $)

& all1 r : (r in $ & ~(ex1 z : z in $ & (r=z.1 | r=z.0)))

=> r.1 notin $;

# Characteristic sets

var2 Xbook, Xcitation, Xsection;

# Queries (parameters are context and result nodes)

pred xpath1 (var1 x, var1 y)= ex1 x1 : child(x,x1) & x1 in Xbook

& descendant(x1,y) & y in Xcitation

& ex1 x2 : parent(y,x2) & x2 in Xsection;

pred xpath2 (var1 x, var1 y)= descendant(x,y) & y in Xcitation

& ex1 x1 : (ancestor(y,x1) & x1 in Xbook)

& ex1 x2 : (ancestor(y,x2)

& x2 in Xsection);

# Problem formulation

((all1 x : x in Xbook =>x notin Xcitation & x notin Xsection)&

(all1 x : x in Xcitation =>x notin Xbook & x notin Xsection)&

(all1 x : x in Xsection =>x notin Xbook & x notin Xcitation))

=>

(all1 x : all1 y : (xpath1(x,y)=> xpath2(x,y)));

Figure 11: WS2S Formula for Containment of two XPath Expressions in MONA Syntax.

book

section

σ 6= section

citation

ε ε

ε

ε

ε

book

section

σ 6= section

citation

Figure 12: Binary and n-ary Representations of a Counter-Example XML Tree for which
e2 6⊆ e1.
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Proof (Sketch)
The proof is achieved using induction over the structure of paths. Since the definition of
paths and qualifiers is cross-recursive, we use a mutual induction scheme. The scheme relies
on the dual property for qualifiers that also needs to be proved:

∀p, ∀x, (SqJqKx ≡ WqJqKx) (5)

Specifically (4) is proved by taking (5) as assumption, and reciprocally (5) is proved under
(4) as assumption. Both equivalences (4) and (5) are proved inductively for each composi-
tional layer. The idea basically consists in associating corresponding logical connectives to
each set-theoretic composition operator used in the denotational semantics. XPath quali-
fier constructs trivially correspond to logical WS2S connectives. Path constructs involves
set-theoretic union and intersection operations which are respectively mapped to logical dis-
junction and conjunction. Two path constructs: p1/p2 and p[q] require specific attention in
the sense their denotational semantics introduce particular compositions over sets of nodes.
We recall them below:

SpJp1/p2Kx = {x2 | x1 ∈ SpJp1Kx ∧ x2 ∈ SpJp2Kx1
}

SpJp[q]Kx = {x1 | x1 ∈ SpJpKx ∧ SqJqKx1
}

We introduce auxiliary lemmas to clarify how these constructs are mapped to WS2S. The
XPath construct p1/p2 is generalized as a function product(), whereas the XPath construct
p[q] is generalized as filter():

product() : Set(Node) → (Node → Set(Node)) → Set(Node)
filter() : Set(Node) → (Node → Boolean) → Set(Node)

product() is characterized by the lemmas (6) and (7), in which y and z are nodes, and S is a
set of nodes. These lemmas abstract over XPath navigational functionalities performed by
axes by letting f denoting a function that returns a set of nodes provided a current node:

∀y, ∀z, ∀S, ∀f : Node → Set(Node), z ∈ S ⇒ y ∈ (fz) ⇒ y ∈ product(S, f) (6)

∀y, ∀S, ∀f : Node → Set(Node), y ∈ product(S, f) ⇒ ∃z, z ∈ S ∧ y ∈ (fz). (7)

The function filter() is in turn characterized by the following lemma:

∀y, ∀g : Node → Boolean , y ∈ filter(S, g) ⇒ y ∈ S (8)

The auxiliary lemmas (6), (7), and (8) are also proved by induction. Developping the proof
in constructive logic involves the (trivial) decidability of set-theoretic inclusion and of the
denotational semantics of qualifiers. The full formal proof is detailed in [22]. It has been
mechanically checked by the machine using the Coq formal proof management system [25].
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5 Complexity Analysis and Practical Results

In this section, we review the global complexity of our approach and its implications in
practice. Our method basically consists in building the formula from the input queries and
deciding it. The translation of an XPath query to its logical representation is linear in the
size of the input query. Indeed, each expression is decomposed then translated inductively
in one pass without any duplication, as shown by the formal definition of We in Section 3.3.
The second step is the decision procedure, which, compared to the translation, represents
the major part of the cost.

As introduced earlier, a WS2S formula is decided throughout the logic-automaton con-
nection described in Sections 2.4 and 2.5. This translation from logical formulas to tree
automata, while effective, is unfortunately non-elementary3. Indeed, WS1S is known to
have a unbounded stack of exponentials as worst case lower bound [31, 36], and WS2S is at
least quadratically more difficult to work with [26].

Nevertheless, recent works on MSO solvers - especially those using BDDs techniques [9]
such as MONA [27] - suggest that in particular practical cases the explosiveness of this
technique can be effectively controlled. Our goal in the remaining part of this section is to
show that our WS2S formulation and its associated decision procedure give rather efficient
results in practice.We first describe what makes deciding WS2S non-elementary. We then
introduce a subsequent problem-specific optimization, before presenting practical results
obtained for deciding the containment of XPath expressions using the MONA solver.

5.1 Sources of complexity for a WS2S Decision Procedure

Two factors have a major impact on the cost of a WS2S decision procedure:

1. the number of second-order variables in the formula

2. the number of states of the corresponding automaton (automaton size)

The number of second-order variables determines the alphabet size. More precisely, a
formula with k variables is decided by an automaton operating on the alphabet Σ = {0, 1}k.
Representing the transition function δ of such an automaton can be prohibitive. Indeed, in
the worst case, the representation of a complete FTA requires 2k · |Q|3 transitions where Q
is the set of states of the automaton. A direct encoding with classical FTA such as the one
described in Section 2.5 would lead to an impracticable algorithm. Modern logical solvers

3We recall that the term elementary introduced by Grzegorczyk [23] refers to functions obtained from
some basic functions by operations of limited summation and limited multiplication. Consider the function
tower() defined by: {

tower(n, 0) = n

tower(n, k + 1) = 2tower(n,k)

Grzegorczyk has shown that every elementary function in one argument is bounded by λn.tower(n, c) for
some constant c. Hence, the term non-elementary refers to a function that grows faster than any such
function.
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represent transition functions using BDDs [9] that can lead to exponential improvements
[27, 39].

As seen in Section 2.5, automaton construction is performed inductively by composing
automata corresponding to each sub-formula. During this process, the number of states of
intermediate automata may grow significantly. Automaton size depends on the nature of the
automata-theoretic operation applied and the sizes of automata constructed so far. Each
operation on tree automata particularly affects the size of the resulting automaton:

• Automata intersection causes a quadratic increase in automaton size in the worst case,
as well as all binary WS2S connectors (∧, ∨, ⇒) that involve automata products [28].

• In our case, since MONA works with deterministic complete automata, automata com-
plementation corresponding to WS2S negation is a linear-time algorithm that consists
in flipping accepting and rejecting states.

• The major source of complexity originates from automata determinization which may
cause an exponential increase of the number of states in the worst case [13]. Logical
quantification involves automaton projection (c.f. Section 2.5) which may result in a
non-deterministic automaton, thus involving determinization. Hopefully, a succession
of quantifications of the same type can be combined as a single projection followed by a
single determinization. However, any alternation of second-order quantifiers requires a
determinization, thus possibly causing an exponential increase of the automaton size.

As a consequence, the number of states of the final automaton corresponding to a for-
mula with n quantifier alternations is in the worst case a tower of exponentials of height c ·n
where c is some constant, and this is a lower bound [37]. This bound may sound discour-
aging. Fortunately, the worst-case scenario which corresponds to complex formulas, is not
likely to occur for the containment in practice. Additionally, we describe in the following
section a significant optimization that takes advantage of XPath peculiarities for combating
automaton size explosion.

5.2 Optimization Based on Guided Tree Automata

A major source of complexity arises from the translation of composed paths. Each transla-
tion of the form WpJp1/p2K

y
x introduces an existentially quantified first-order variable which

ranges over all possible tree positions (c.f. Figure 3.3).
The idea in this section is to take advantage of XPath navigational peculiarities for

attempting to reduce the scope associated to such variables. XPath navigates the tree step
by step: each step selects a set of nodes which is in turn used to select a new one by the next
step. The interpretation of a variable inserted during the translation of p1/p2 corresponds
to the intermediate node which is a result of p1 and the context node of p2. The truth status
of the formula is determined by the existence of such an intermediate node at a particular
position in the tree. If we can determine regions in the tree in which such a node may appear
from those where it cannot appear, we gain valuable positional knowledge that can be used
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e1(x,y) = ex1 x1 : isroot(x1) & x1 in $

& ex1 x2 : child(x1,x2) & x2 in Xbook & descendant(x2,y)

& y in $ & ex1 x3 : child(y,x3) & x3 in Xcitation;

Figure 13: WS2S Translation of e3 in MONA Syntax.

to reduce the variable scope. Actually, we need to identify the region in the tree (or even
some larger approximation) in which the node must be located in order for the formula to
be satisfied. XPath sequential structure of steps makes it possible to exploit such positional
knowledge. Indeed, consider for instance the expression:

e3 = /child::book/descendant::*[child::citation]

e3 navigates from the document root through its “book” children elements and then selects all
descendant nodes provided they have at least one child named “citation”. Several conditions
must be satisfied by a tree t1 in order to yield a result for e3:

• t1 must have at least one “book” element as a child of the root;

• t1 must have at least one element that must be a descendant of the “book” element;

• for this node to be selected it must have at least one child named “citation”.

This is made explicit by the logical translation WeJe3K
y
x in MONA syntax shown on Figure 13.

In this translation, x1, x2 and x3 denote the respective positions of the root node, a “book”
child, and a “citation” child of the selected position y. These variables actually only range
over a particular set of positions in the tree. By definition, the root can only appear at
depth level 0, the “book” element can only occur at level 1 and its descendants occur at any
depth level l greater or equals to 2. Eventually, the “citation” element should occur at level
l + 1. This is because each step introduces its particular positional constraint which can be
propagated to the next steps.

The idea of taking advantage of positional knowledge is even more general. Theoretically,
normal bottom-up FTA are sufficient for deciding validity of a WS2S formula (as presented
in Section 2.4). However composition of such automata is particularly sensitive to state
space explosion, as presented in Section 5.1. Guided tree automata (GTA) [8] have been
introduced in order to combat such state space explosion by following the divide to con-
quer approach. A GTA is just an ordinary FTA equipped with an additional deterministic
top-down tree automaton called the guide. The latter is introduced to take advantage of
positional knowledge, and used for partitioning the FTA state space into independent sub-
spaces. Top-down deterministic automata are strictly less powerful than ordinary (bottom-
up or non-deterministic top-down) FTA [13]. However, this is not a problem since the guide
is only intended to provide additional auxiliary information used for optimization purposes.
As a consequence, the more precise is the guide, the more efficient is the decision procedure,
but an approximation is sufficient. The guide basically splits the state space of the FTA in
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Figure 14: Depth Levels in the Unranked and Binary Cases.

independent subsets. Therefore the transition relation of the bottom-up automaton is split
into a family of transition functions, one for each state space name. In our case, a state
space name corresponds to a particular depth level or a set of depth levels. GTA can be
composed in the same way than ordinary FTA as explained in Section 2.4. A GTA can be
seen as an ordinary tree automaton, where the state space has been factorized according to
the guide. A GTA with only one state space is just an ordinary tree automaton. A detailed
description of GTA can be found in [8]. GTA-based optimization may lead to exponential
improvements of the decision procedure [17].

In our case we introduce a tree partitioning based on the depth levels, which is depicted
by Figure 14 for a n-ary sample tree and its binary counterpart. Based on this partitioning,
we define a positional constraint associated to each node variable as a set of depth levels.
Indeed, a node refereed by an XPath can occur at several depth levels since some axes
involve transitive closure (c.f. Section 3.1). Moreover, the set of depth levels can even be
infinite since XPath offers recursion in unbounded trees.

The computation of sets of depth levels is calculated by the function Le shown on Fig-
ure 15, and written LeJeK(N) where e is the XPath expression to be analyzed and N is
the set of positional constraints corresponding to the context node from which e is applied.
Again, our algorithm proceeds inductively on the structure of XPath expressions. XPath
steps are base cases for which the set of levels is effectively calculated from the previous one.
Transitive closure axes such as “descendant” turn the set of depth levels into a infinite one,
even if the previous was finite. Path composition basically propagate the level calculations
by combining with the base cases. Note that an important precision can be gained with
absolute XPath expressions. In this case, the initial set of depth levels is the singleton {0}
as opposed to relative XPath expressions for which the context node is not known and the
initial set of depth levels is subsequently N.

The optimized compilation of XPath expressions to WS2S formulas is given on Figure 16.
W ′

e, W
′
p and W ′

q are respective optimized versions of We, Wp and Wq, which convey a set of
depth levels as an additional parameter passed to Le and Lp. These functions compute the
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Le : Expression −→ Set(Integer) −→ Set(Integer)
LeJ/pK(N) = LpJpK({0})
LeJpK(N) = LpJpK(N)

Lp : Path −→ Set(Integer) −→ Set(Integer)
LpJp1/p2K(N) = LpJp2K(LpJp1K(N))
LpJp[q]K(N) = LpJpK(N)
LpJe1 p e2K(N) = LeJe1K(N) ∪ LeJe2K(N)
LpJe1 ∩ e2K(N) = LeJe1K(N) ∩ LeJe2K(N)
LpJ(p)K(N) = LpJpK(N)
LpJself::nK(N) = N
LpJchild::nK(N) = {n + 1 | n ∈ N}
LpJparent::nK(N) = {n− 1 | n ∈ N}
LpJdescendant::nK(N) = {n′ | n ∈ N ∧ n′ > n}
LpJdescendant-or-self::nK(N) = {n′ | n ∈ N ∧ n′ >= n}
LpJancestor::nK(N) = {n′ | n ∈ N ∧ n′ >= 0 ∧ n′ < n}
LpJancestor-or-self::nK(N) = {n′ | n ∈ N ∧ n′ >= 0 ∧ n′ <= n}
LpJfollowing::nK(N) = N − {0}
LpJpreceding::nK(N) = N − {0}
LpJfollowing-sibling::nK(N) = N
LpJpreceding-sibling::nK(N) = N

Figure 15: Computation of the Depth Levels of Nodes Selected by a Path.
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W ′
e : Expression → Node → Node → Set(Integer) → WS2S

W ′
eJ/pK(x, y, N) = ∃z [{0}] .isroot(z) ∧W ′

pJpK(z, y, {0})
W ′

eJpK(x, y, N) = W ′
pJpK(x, y, N)

W ′
p : Path → Node → Node → Set(Integer) → WS2S

W ′
pJp1/p2K(x, y, N) = ∃z [LpJp1K(N)] .W ′

pJp1K(x, z, N) ∧W ′
pJp2K(z, y, N)

W ′
pJp[q]K(x, y, N) = W ′

pJpK(x, y, N) ∧W ′
qJqK(y, N)

W ′
pJe1 p e2K(x, y, N) = W ′

eJe1K(x, y, N) ∨W ′
eJe2K(x, y, N)

W ′
pJe1 ∩ e2K(x, y, N) = W ′

eJe1K(x, y, N) ∧W ′
eJe2K(x, y, N)

W ′
pJ(p)K(x, y, N) = W ′

pJpK(x, y, N)
W ′

pJa::σK(x, y, N) = a(x, y) ∧ y ∈ Xσ

W ′
pJa::∗K(x, y, N) = a(x, y)

W ′
q : Qualifier → Node → Set(Integer) → WS2S

W ′
qJq1 and q2K(x, N) = W ′

qJq1K(x, N) ∧W ′
qJq2K(x, N)

W ′
qJq1 or q2K(x, N) = W ′

qJq1K(x, N) ∨W ′
qJq2K(x, N)

W ′
qJnot qK(x, N) = ¬ W ′

qJqK(x, N)
W ′

qJeK(x, N) = ∃y [LeJeK(N)] .W ′
eJeK(x, y, N)

Figure 16: Translation of XPath Expressions to WS2S Formulas with Restricted Variable
Scopes.

guide l0 -> (l1, epsilon),

l1 -> (l2, l1),

l2 -> (l3, l2),

l3 -> (lothers, l3),

lothers -> (lothers, lothers),

epsilon -> (epsilon, epsilon);

e1(x,y)= ex1 [l0] x1 : (isroot(x) & x=x1 & x in $)

& ex1 [l1] x2 : child(x1,x2) & x2 in Xbook & descendant(x2,y)

& y in $ & ex1 [l3, lothers] x3 : child(y,x3) & x3 in Xcitation;

Figure 17: Optimized WS2S Translation of e3 in MONA Syntax.

restrictions on variable scope that are inserted by W ′
p and W ′

q. We denote by “∃z [D] ” the
fact that the existentially quantified first-order variable z is restricted to appear at a depth
level among the set of depth levels D. In practice, Le and Lp can be merged into W ′

e and
can be implemented in a single pass over the XPath expression. Thus the translation and
the depth level computation remain linear in the size of the query.

MONA provides an implementation of GTA. The application of the previous algorithm
to e3 leads to the logical formulation shown on Figure 17 in MONA syntax.
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The guide obtained in this translation means that the root is labeled with “l0”; its left
and right successor nodes are labeled with “l1” and “epsilon” respectively. The “epsilon” is a
dummy state space reflecting the fact that the underlying shape is a tree and not a hedge.
No variable is associated with this state space. The “lothers” state space represents any tree
node occurring at a depth level greater than 3. Such a state space is associated with variables
whose scope is of unbounded depth. The size of the guide depends on the maximum depth
level found among the computed restrictions. Formally, a guide for a maximum depth level
n is a top-down deterministic tree automaton with {q0, ..., qn+1} ∪ {qε} as set of states, q0

as the single initial state, and the following set of transitions:

{q0 → (q1, qε)}
∪ {qi → (qi+1, qi) | i ∈ [1...n]}
∪ {qn+1 → (qn+1, qn+1)}
∪ {qε → (qε, qε)}

where qi (i ∈ [0...n]) denotes the state space name corresponding to the depth level i, and
qn+1 represents all depth levels greater or equal to n + 1 . For formulating the XPath con-
tainment, the guide is computed from the two XPath expressions. Specifically, the deepest
(and thus the most precise) guide is chosen as the guide for both expressions.

Eventually, each variable is restricted with a list of state spaces that represents the regions
in the tree where its valuation must be searched. For instance, “ex1 [l1] x2” means the
scope of the variable x2 is limited to tree nodes occurring at depth level 1.

This optimization is useful for any kind of XPath expressions: absolute or relative. More
precise restrictions can be computed for absolute XPath expressions (for which the initial
set of depth levels is the singleton {0}).

5.3 Practical Experiments

The objective of this section aims at testing the practical performance of our method. To
this end, we carried out several testing scenarios of our implementation. First, we used
an XPath benchmark [21] whose goal is to cover XPath features by gathering a significant
variety of XPath expressions met in real-world applications. This first test series consists
in finding the relation holding for each pair of queries from the benchmark. This means
checking the containment of each query of the benchmark against all the others. Comparing
two queries Qi and Qj may yield to three different results:

1. Qi ⊆ Qj and Qj ⊆ Qi, the queries are semantically equivalent, we note Qi ≡ Qj

2. Qi ⊆ Qj but Qj 6⊆ Qi, we denote this by Qi ⊂ Qj or alternatively by Qj ⊃ Qi

3. Qi 6⊆ Qj and Qj 6⊆ Qi, queries are not related, we note Qi 6∼ Qj

Queries are presented on Figure 18, and results together with total running times of the
decision procedure are summarized on Figure 19. Several tests are expensive in the case
of the FTA-based decision procedure. “N/A” denotes that the procedure did not complete
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Q1 /site/regions/*/item
Q2 /site/closedauctions/closedauction/annotation/description/parlist/listitem/text/keyword
Q3 //keyword
Q4 /descendant-or-self::listitem/descendant-or-self::keyword
Q5 /site/regions/*/item[parent::namerica or parent::samerica]
Q6 //keyword/ancestor::listitem
Q7 //keyword/ancestor-or-self::mail
Q8 /site/regions/namerica/item|/site/regions/samerica/item
Q9 /site/people/person[address and (phone or homepage)]

Figure 18: XPath Queries Taken from the XPathmark Benchmark.

within reasonable time and space bounds for comparing Q4 and Q2. The optimized decision
procedure gives better and comparable results for both ⊆ and ⊇ tests. Obtained results
show that all tests are solved in less than 0.5 seconds. This reflects the fact that XPath
expressions used in real-world scenarios tend not to be very complex.

The second test series consists in comparing expressions taken from research papers on
the containment of XPath expressions. Some have been used to test proposed techniques
(such as the tree pattern homomorphisms [32]). They have also been used to show that
checking XPath containment in general may become very hard. Figure 20 presents the
expressions we collected and shows associated results.

Finally, Figure 21 presents the results of a third test series including examples with
intersection, and axes such as “following” and “preceding”, not present in the previous series.

These experiments have been conducted on a Pentium 4, 3 Ghz, with 1Gb of RAM,
running Linux. Our implementation has been developed in JAVA and controls the C++
implementation of the MONA solver.

6 Related Work

Extensive research has been conducted on XPath query containment. Different fragments of
the XPath language have been studied. Among them, a core XPath fragment is frequently
used. This fragment isolates the “child” axis noted “/” (and included in all fragments), the
“descendant” axis (often noted “//” in the literature4), branching “ [ ]”, and wildcard “*” as

the most important features, and is denoted by XP{∗,//,[ ]}. Decidability of containment for
XP{∗,//,[ ]} can be obtained by a translation to datalog with recursion. While containment
is undecidable for general datalog with recursion, it has been shown using chase techniques,
that the datalog fragment needed for XP{∗,//,[ ]} has a decidable containment problem [43].

More specifically, containment for XP{∗,//,[ ]} is coNP-complete [32]. The containment map-
ping technique relies on a polynomial time tree homomorphism algorithm, which gives a
sufficient but not necessary condition for containment of XP{∗,//,[ ]} in general.

4Actually p1//p2 stands for p1/descendant-or-self::node()/p2 in the XPath standard formal semantics
[16]
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Relation
FTA Time (s) GTA Time (s)

⊆ ⊇ ⊆ ⊇
Q1 6∼ Q2 0.12 19.19 0.28 0.28
Q1 6∼ Q3 0.07 0.06 0.10 0.10
Q1 6∼ Q4 0.52 4.76 0.11 0.11
Q1 ⊃ Q5 0.07 0.06 0.08 0.08
Q1 6∼ Q6 0.10 0.07 0.13 0.12
Q1 6∼ Q7 0.10 0.07 0.12 0.13
Q1 ⊃ Q8 0.07 0.07 0.08 0.09
Q1 6∼ Q9 0.08 0.11 0.11 0.11
Q2 ⊂ Q3 0.10 7.23 0.30 0.30
Q2 ⊂ Q4 0.11 N/A 0.31 0.31
Q2 6∼ Q5 20.04 0.13 0.29 0.29
Q2 6∼ Q6 15.25 2.33 0.35 0.35
Q2 6∼ Q7 19.93 10.49 0.37 0.36
Q2 6∼ Q8 19.79 0.12 0.29 0.29
Q2 6∼ Q9 19.76 0.17 0.30 0.31
Q3 ⊃ Q4 0.04 0.04 0.04 0.04
Q3 6∼ Q5 0.06 0.07 0.11 0.11
Q3 6∼ Q6 0.05 0.05 0.06 0.07
Q3 6∼ Q7 0.05 0.05 0.06 0.07
Q3 6∼ Q8 0.08 0.08 0.11 0.11
Q3 6∼ Q9 0.08 0.11 0.13 0.12
Q4 6∼ Q5 7.13 0.63 0.11 0.12
Q4 6∼ Q6 0.05 0.05 0.07 0.07
Q4 6∼ Q7 0.05 0.05 0.07 0.07
Q4 6∼ Q8 7.26 0.64 0.12 0.11
Q4 6∼ Q9 6.45 0.76 0.13 0.13
Q5 6∼ Q6 0.11 0.07 0.13 0.12
Q5 6∼ Q7 0.12 0.08 0.13 0.14
Q5 ≡ Q8 0.06 0.07 0.07 0.09
Q5 6∼ Q9 0.08 0.12 0.12 0.11
Q6 6∼ Q7 0.05 0.05 0.07 0.06
Q6 6∼ Q8 0.08 0.12 0.13 0.13
Q6 6∼ Q9 0.09 0.24 0.14 0.15
Q7 6∼ Q8 0.08 0.13 0.13 0.13
Q7 6∼ Q9 0.09 0.24 0.15 0.15
Q8 6∼ Q9 0.13 0.09 0.14 0.14

Figure 19: Results and Total Running Times of the Decision Procedure.
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E1 /a[.//b[c/*//d]/b[c//d]/b[c/d]]
E2 /a[.//b[c/*//d]/b[c/d]]

E3 a[b]/*/d/*/g
E4 a[b]/(b|c)/d/(e|f)/g
E5 a[b]/b/d/e/g p a/b/d/f/g

E6 a[b/e][b/f][c]
E7 a[b/e][b/f]

E8 /descendant::editor[parent::journal]
E9 /descendant-or-self::journal/child::editor

Relation
FTA Time (s) GTA Time (s)

⊆ ⊇ ⊆ ⊇
E1 ⊂ E2 1.49 1.56 0.79 0.71
E3 ⊃ E4 1.64 0.07 0.83 0.22
E3 ⊃ E5 1.67 0.08 0.76 0.24
E4 ⊃ E5 0.31 0.08 0.36 0.24
E6 ⊂ E7 0.07 0.17 0.15 0.22
E8 ≡ E9 0.04 0.04 0.04 0.04

Figure 20: Results on XPath Containment Examples Found in Research Papers.
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E10 a/b//c/following-sibling::d/e
E11 a//d[preceding-sibling::c]/e
E12 //a//b//c/following-sibling::d/e
E13 //b[ancestor::a]//*[preceding-sibling::c]/e
E14 /b[preceding::a]//following::c
E15 /a/b//following::c
E16 a/b[//c]/following::d/e
E17 a//d[preceding::c]/e
E18 a/b//d[preceding-sibling::c]/e
E19 a/c/following::d/e
E20 a/d[preceding::c]/e
E21 a/b[//c]/following::d/e ∩ a/d[preceding::c]/e
E22 a/c/following::d/e ∩ a/d[preceding::c]/e

Relation
FTA Time (s) GTA Time (s)
⊆ ⊇ ⊆ ⊇

E10 ⊂ E11 0.14 0.18 0.21 0.12
E12 ⊂ E13 0.11 0.39 0.27 0.31
E14 ⊂ E15 0.08 0.33 0.12 0.13
E16 ⊂ E17 0.14 0.19 0.21 0.28
E18 ≡ E10 0.09 0.09 0.18 0.19
E19 6∼ E20 0.22 0.76 0.31 0.48
E21 ⊂ E19 0.15 0.17 0.22 0.23
E22 6∼ E16 0.09 0.24 0.18 0.21

Figure 21: Results on Examples Including “following” and “preceding” Axes.
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If any of the three constructs “*”, “//”, or “ [ ]” is dropped then query containment is in

PTIME [32]. In particular, containment for XP{//,[ ]} is shown to be in PTIME in [2], and

[43] noted that containment for XP{//,∗} is also in PTIME.

Authors of [34] show that containment for XP{∗,//,[ ],|}, while coNP-complete for an
infinite alphabet, is in PSPACE for a finite alphabet. They also show that containment for
XP{//,|} is complete for PSPACE.

A summary of complexity results for various XPath fragments, classified with respect to
complexity classes can be found in [35].

Characterizations of the expressive power of these language in terms of both logics and
tree patterns are given in [5]. This work also studies structural properties such as closure
properties focusing on the ability to perform basic boolean operations while remaining in
the same fragment.

A different but nevertheless related problem concerns XPath containment in presence of
constraints. [14] considers XPath containment in the presence of DTDs and simple XPath
integrity constraints (SXICS). They obtain that this problem is undecidable in general and
in the presence of bounded SXICs and DTDs. Additionally, the containment problem is
shown to be in EXPTIME for the fragments XP{//,[ ]}, XP{//,[ ],|}, XP{//,|} in the presence
of DTDs [44].

From a theoretical perspective, the connection between XPath and formal logics is ac-
tively studied [30, 4, 3]. In particular, [30] characterizes a subset of XPath in terms of
extensions of Computational Tree Logic (CTL) [12], which is equivalent to first order logic
(FO) over tree structures [29, 3] and whose satisfiability is in EXPTIME. Authors of [32]
first observed that a fragment of XPath can be embedded in CTL. However, regular tree
languages are not fully captured by such FO variants [6]. The work found in [1] proposes
a variant of Propositional Dynamic Logic (PDL) [20] with a similar EXPTIME complexity
for reasoning about ordered trees, but whose exact expressive power is still under study.

Compared to all these previous works, the XPath fragment we consider is far more com-
plete and much more realistic. If the connection between XPath and MSO has already been
mentioned [4, 3], it has not been developed nor exploited yet. Note that our implementation
is, in our knowledge, the only known fully implemented working system for deciding the
containment between two realistic XPath expressions. WS2S has a high worst-case com-
plexity, which indicates probable blow-ups for large and complex WS2S formulas. This does
not preclude a useful and practical decision procedure for XPath containment.

7 Conclusion

In this paper, we proposed a new logical approach for the XPath containment problem.
XPath queries are translated in a decidable logic called WS2S. XPath containment is for-
mulated in terms of a WS2S formula, then decided using tree automata. This paper makes
several contributions.

First, we propose a specific variant of MSO, namely WS2S, as a logic for modeling
XML instances and XPath queries. The automaton-logic connection has not been fully
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investigated in the context of XML. We believe that this work is a significant step in this
direction which has not revealed its full potential yet. As a valuable outcome, we show how
an XPath expression can be translated into an equivalent formula in monadic second-order
logic.

We propose a sound and complete decision procedure for XPath containment. It consists
in building the full automaton corresponding to the XPath containment problem. An addi-
tional benefit of this technique is to allow generation of tree examples and counter-examples
of the truth status of the formula. We believe this makes our method of special interest for
many applications including debuggers, or enhancing reporting during static analysis stages.

We show how containment can be effectively decided for a large XPath fragment that
includes union, intersection, path composition and boolean connectives together with all
XPath axes, branching, and wildcards. This fragment is far more complete than other
fragments addressed in previous studies.

Eventually, we propose an optimization method based on guided tree automata that
takes advantage of XPath peculiarities to speed up the decision procedure. The global
proposed approach has been implemented. Although the worst-case complexity of WS2S is
non-elementary, we provide practical experiments and detailed results that corroborate our
claim that this decision procedure is efficient for real-world XPath expressions.

One direction of future work is to search for tree automata guides that produce a finer-
grained partition of the automaton state space, in order to enhance the scalability of the
decision procedure. Another direction consists in studying the containment problem under
regular type constraints such as DTDs or XML-Schemas. This requires to express type
constraints in WS2S and combine them efficiently with the containment formula.
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