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Abstract: The control of a class of underactuated mechanical systems on Lie groups is ad-
dressed, with the objective of stabilizing, in a practical sense, any (possibly non-admissible)
reference trajectory in the configuration space. The present control design method extends
a previous result by the authors to systems underactuated by more than one control. For
example, it allows to address the case of a 3D-rigid body immersed in a perfect fluid with
only three control inputs. The choice of the control parameters is also discussed in relation
to the system’s zero-dynamics.

Key-words: mechanical system, trajectory stabilization, transverse function, underactu-
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Commande de systèmes mécaniques sous-actionnés avec

les fonctions transverses et un seul générateur

Résumé : Nous proposons une méthode de synthèse de retours d’état pour une classe de
systèmes mécaniques sous-actionnés invariants par rapport à une opération de groupe (de
Lie) définie sur l’espace de configuration. L’objectif de commande est de stabiliser, dans
un sens pratique, toute trajectoire dans l’espace de configuration, admissible ou non. La
méthode de synthèse de retours d’état proposée étend un résultat que nous avions obtenu
précédemment à des systèmes dont le degré de sous-actionnement est supérieur à un. Elle
s’applique par exemple à un corps rigide 3-D immergé dans un fluide parfait, dans le cas
où on ne dispose que de trois entrées de commande. Le choix de certains paramètres de
commande, basé sur une étude de zéro-dynamique, est aussi abordé.

Mots-clés : fonction transverse, stabilisation de trajectoire, système mécanique, système
sous-actionné



Control of underactuated mechanical systems 3

1 Introduction

This paper addresses the control of underactuated (mechanical) systems the dynamics of
which can be modeled in the form



















ġ = X(g)ξ :=

n
∑

i=1

Xi(g)ξi

ξ̇ = Q(ξ) +
m

∑

i=1

biui (m < n)

(1)

with g the system’s configuration (e.g. position and orientation) belonging to an n-dimensional
connected Lie group G, {X1, . . . , Xn} a left-invariant basis of the group’s Lie algebra g,
ξ ∈ R

n a vector of instantaneous velocities, Q a quadratic vector-valued function containing
the terms associated with Coriolis and centrifugal forces, {b1, . . . , bm} independent vectors
of R

n, and u = (u1, . . . , um) the vector of control inputs produced by the actuators. Such a
system is invariant on the Lie group G in the sense that, given an initial velocity ξ(0) then,
whatever the input function t 7→ u(t) (t ≥ 0) applied to the system, the associated trajectory
originated at some point g1 is the same as the one originated at another point g2, modulo a
fixed translation on the group. The fact that m < n (by assumption) makes the control of
this class of systems particularly challenging. In this respect, note that the linearization of
System (1) at any fixed point (g, ξ) = (g, 0) is not controllable, and also that Brockett’s nec-
essary condition [3] for the existence of smooth state feedbacks that asymptotically stabilize
a fixed configuration is not satisfied in this case.

The difficulties associated with the control of this class of underactuated mechanical
systems have motivated many studies in recent years, and a variety of problems have been
addressed: characterization of the controllability properties [11], of the asymptotic stabi-
lizability of fixed points [6], open-loop control design [4], asymptotic stabilization of fixed
configurations with different types of feedbacks [18, 7, 15, 4, 13], asymptotic stabilization of
specific non-constant admissible trajectories [5, 10, 1]. Recently, in [17], we have proposed
a control design method for the stabilization of general reference trajectories gr(t) (t ≥ 0),
i.e. arbitrary smooth curves on G which are not necessarily solutions to System (1) for some
control input ur(t). This control method relies on the transverse function approach, initially
developed by the authors for the control of nonholonomic systems [16]. The feedback laws
derived in [17] are practical stabilizers, i.e. they ensure a bounded tracking error, the ulti-
mate norm of which can be upper-bounded by any (strictly positive) pre-specified value, via
the choice of the control parameters. Note that, for non-admissible reference trajectories,
asymptotic stabilization cannot be achieved anyway. Moreover, even by restricting the set
of reference trajectories to admissible ones, the generic problem of asymptotic stabilization
remains ill-posed [12].

In this paper, we develop the control approach proposed in [17] further. First, we extend
the control design method to a larger class of systems. More precisely, in [17], we addressed
the case of mechanical systems underactuated by one control only (i.e. m = n − 1) and we
assumed a specific structure for the term Q(ξ) in (1). The solution here proposed applies
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4 Morin & Samson

to a much larger class of systems. For example we show that the very challenging example
of a rigid body on SE(3) with three control forces (see e.g. [4]), for which m = 3 = n − 3,
can be treated with our approach. For Lie groups of dimension three, we also show that the
present approach applies provided only that the system is STLC (i.e. Small Time Locally
Controllable). Another issue, which was not addressed in [17], concerns the selection of the
generator used in the control design in relation to the asymptotical behavior of the controlled
system’s solutions. This involves the study of the system’s “zero-dynamics” in the special
case where the reference trajectory is a fixed point in the configuration space. A general
treatment of this issue is not available yet, and only a case study is presented here.

Let us finally mention two recently published papers related to the present approach.
In [2], the control of an underactuated surface vessel is addressed, also with an objective
of practical stabilization, but the concept of transverse function is absent (a notion of a
dynamic oscillator is used instead), the properties of systems on Lie groups are not explicitly
exploited, and only the case of admissible trajectories is considered. In [14], another control
design strategy, also based on the transverse function approach, is proposed for a large class
of underactuated systems. It yields a different asymptotical behavior of the closed-loop
system’s solutions (compare in particular [14, Sec. VI] and Section 6 of the present paper).
A more thorough comparison of the two ways of using transverse functions for underactuated
mechanical systems still has to be conducted.

2 Notation and recalls

2.1 Special vectors and matrices

Throughout the paper, the transpose of a vector x in R
n is denoted as x′. The i-th vector of

the canonical basis of R
n is denoted as ei, i.e. all components of ei are equal to zero except

for the i-th one which is equal to one. The cross product in R
3 is denoted as × and x̂ is the

skew-symmetric matrix associated with this product, i.e. x̂y = x × y. With x = (x′

1, x
′

2)
′ a

vector in R
6 such that x1 ∈ R

3 and x2 ∈ R
3 we associate the matrix ˆ̂x =

(

x̂1 x2

03×3 03

)

.

2.2 Systems on Lie groups

Let G denote a connected Lie group of dimension n. The unit element of G is denoted
as e, i.e. ∀g ∈ G : ge = eg = g. The inverse g−1 of g ∈ G is the (unique) element
in G such that gg−1 = g−1g = e. The left (resp. right) translation operator on G is
denoted as l (resp. r), i.e. ∀(σ, τ) ∈ G2 : lσ(τ) = rτ (σ) = στ . A v.f. X on G is
left-invariant iff ∀(σ, τ) ∈ G2, dlσ(τ)X(τ) = X(στ), with df denoting the differential of
the function f . The Lie algebra –of left-invariant v.f.– of the group G is denoted as g.
The adjoint representation of G is denoted as Ad, i.e. ∀σ ∈ G, Ad(σ) := dIσ(e), with
Iσ : G → G defined by Iσ(g) := σgσ−1. By extension of the definition of Ad, we define
Ad(σ)X(g) := dlg(e)Ad(σ)X(e). If X ∈ g, exp(tX) is the solution at time t of ġ = X(g)

INRIA



Control of underactuated mechanical systems 5

with the initial condition g(0) = e. A driftless control system ġ =
∑m

i=1 Xi(g)ξi on G
is said to be left-invariant on G if the control v.f. Xi are left-invariant. Given a family
Y := {Y1, . . . , Yp} of vector fields on G and a vector ξ ∈ R

p, we denote by Y (g)ξ the vector
field

∑p

i=1 Yi(g)ξi (this notation is already used in Eq. (1)).
Let X = {X1, . . . , Xn} denote a basis of g. If (ga(t), ξa(t)) and (gb(t), ξb(t)) (t ≥ 0) are

two solutions to ġ = X(g)ξ, then (by omitting the time index)

d

dt
(gag−1

b ) = X(gag
−1
b )AdX(gb)(ξa − ξb) (2)

with AdX the (invertible) matrix-valued function defined by ∀σ ∈ G, ∀ξ ∈ R
n, Ad(σ)X(e)ξ =

X(e)AdX(σ)ξ. According to this definition, AdX(e) = In, with In the identity matrix asso-
ciated with R

n. We have also

d

dt
(g−1

a gb) = X(g−1
a gb)(ξb − AdX(g−1

b ga)ξa) (3)

Let dG : (ga, gb) 7→ dG(ga, gb) denote a distance on G, left-invariant w.r.t. the group
operation , i.e. such that ∀ga,b,c ∈ G, dG(gb, gc) = dG(gagb, gagc). Then, for any γ ≥ 0, we
denote by BG(γ) := {g ∈ G : dG(g, e) ≤ γ} the closed ball of radius γ centered at e.

2.3 Transverse Functions

Let

_ T
k denote the k-dimensional torus, with T = R/2πZ,

_ X = {X1, . . . , Xn} denote a basis of g,

_ f denote a smooth function from T
n−m (m < n) to a neighborhood U ⊂ G of e.

Then, there exists a matrix-valued function C such that, along any differentiable path α(t)
on T

n−m, one has

ḟ(α) = X(f(α))C(α)α̇

= X1(f(α))C1(α)α̇ + X2(f(α))C2(α)α̇
(4)

with X1 = {X1, . . . , Xm} and X2 = {Xm+1, . . . , Xn}. The function f is said to be transver-
sal to the v.f. X1, . . . , Xm iff C2(α) is invertible ∀α ∈ T

n−m. The transverse function
theorem given in [16] asserts the existence of such functions, whatever the size of U , pro-
vided that the Lie algebra generated by the family X1 is equal to g. It also provides a
general expression for a family of such functions.
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6 Morin & Samson

3 Asymptotic stabilization in the full-actuation case

Before presenting a solution for the stabilization of trajectories in the case of underactuated
systems, let us first recall a control solution to this problem in the simpler case of fully
actuated systems. The system’s equations are then given by

{

ġ = X(g)ξ

ξ̇ = u
(5)

Consider a trajectory of reference configurations gr(t), and denote by ξr(t) the associated
velocity vector (assumed differentiable), i.e. ∀t > 0, ġr(t) = X(gr(t))ξr(t). The element
g̃(t) := gr(t)

−1g(t) characterizes the tracking error at time t. By using (3) one obtains the
following error system:

{

˙̃g = X(g̃)(ξ − AdX(g̃−1)ξr)

ξ̇ = u
(6)

and (g̃, ξ) = (e, ξr) is a solution to this control system, associated with the control input
u = ξ̇r. The control problem consists in stabilizing this solution. Let V denote a twice
differentiable positive function on G, such that for some constants γ, αm, αM , βm, βM > 0,
and for any g ∈ BG(γ),

P1 : αmd2
G(g, e) ≤ V (g) ≤ αMd2

G(g, e)
P2 : βmV (g) ≤

∑n

i=1(dV (g)Xi(g))2 ≤ βMV (g)
(7)

Such a function always exists, for instance in the form of a quadratic function when working
with a system of coordinates.

Proposition 1 Let

u := − k(ξ − AdX(g̃−1)ξr − ξ?(g̃)) + AdX (g̃−1)ξ̇r

+ d(Fξr
+ ξ?)(g̃)

(

X(g̃)(ξ − AdX(g̃−1)ξr)
) (8)

with k > 0, Fξr
(g̃) := AdX (g̃−1)ξr, and

ξ?
i (g̃) := −kidV (g̃)Xi(g̃) (ki > 0; i = 1, . . . , n) (9)

Then, the feedback control (8) applied to the system (6) exponentially stabilizes the solution
(g̃, ξ) = (e, ξr).

The proof consists in verifying that Ṽ (g̃, ν̃) := V (g̃) + µ‖ν̃‖2, with µ > 0 large enough and

ν̃ := ξ − AdX (g̃−1)ξr − ξ?(g̃) (10)

is a Lyapunov function for the controlled system (see [17] for more details).

INRIA



Control of underactuated mechanical systems 7

4 Practical stabilization for a class of underactuated sys-

tems

Let us assume that for some basis X = {X1, . . . , Xn} of g, and by a proper choice of both
the velocity variable ξ and the control variable u, System (1) can be written as:







ġ = X(g)ξ

ξ̇1 = u1

ξ̇2 = ξ1Aξ2 + Bu2 + P (ξ2)

(11)

with ξ = (ξ1, ξ
′

2)
′, ξ1, u1 ∈ R, ξ2 ∈ R

n−1, u2 ∈ R
m−1, P a quadratic function of ξ2, and A, B

matrices such that:

Assumption 1 The pair (A, B) is controllable, i.e. Rang(B, AB, . . . , An−2B) = n − 1.

One of the reasons for studying this class of systems is stated in the following proposition,
the proof of which is given in the appendix.

Proposition 2 If Assumption 1 is satisfied, then System (11) (and thus System (1)) is
STLC (i.e. Small Time Locally Controllable) at any equilibrium point (g, ξ) = (g0, 0).

Furthermore, for Lie groups of dimension three, a stronger result can be stated:

Proposition 3 When n = dim(G) = 3 System (1) is STLC at any equilibrium point (g, ξ) =
(g0, 0) if and only if it can be written as System (11) with Assumption 1 being satisfied.

Proposition 3, which is also proved in the appendix, shows that System (11) is a generic
model, in dimension three, for STLC underactuated systems whose drift term Q(ξ) is
quadratic. Many examples previously studied in the literature belong to this class, like
e.g. the 3-d second-order chained systems on R

3, the underactuated planar PPR manipula-
tor and the planar rigid body (hovercraft) on SE(2), and the underactuated satellite with
two thruster control torques on SO(3) (see [17] for more details).

In [17], we have proposed a control design method for the trajectory stabilization problem
here considered, in the specific case of Lie groups of dimension three, and when

A =

(

0 0
a 0

)

, B =

(

1
0

)

, P = 0 (12)

with a some non-zero constant. Let us remark that, even in dimension three, there exist
STLC underactuated mechanical systems which do not belong to this sub-class. Such is
the case, for example, of the satellite with two control torques on SO(3) when the torque
axes are not aligned with principal axes of inertia. We show below that the control design
proposed in [17] can be extended to all systems of the form (11) that satisfy Assumption 1.

RR n° 5847



8 Morin & Samson

Remark: The particular role played by the one-dimensional variable ξ1 in (11) will be used
in the forthcoming control design. Such a variable, which is not unique in general, is here
called a “generator”.

With the notation of Section 3, the error system associated with (11) is







˙̃g = X(g̃)(ξ − AdX(g̃−1)ξr)

ξ̇1 = u1

ξ̇2 = ξ1Aξ2 + Bu2 + P (ξ2)

(13)

and the problem consists in determining a feedback control law which (practically) stabilizes
the point g̃ = e for this system. To this end the following lemma will be used.

Lemma 1 Let Y1, . . . , Ym denote the vector fields on R
n defined by

Y1(y) =

(

1
Ay2

)

, Yi(y) =

(

0
Bei

)

(i = 2, . . . , m) (14)

with y = (y1, y
′

2)
′, y2 ∈ R

n−1, and ei the i-th unit vector in R
n−1. Then,

i) R
n, endowed with the composition law ◦ defined by

y ◦ ȳ =

(

y1 + ȳ1

eAȳ1y2 + ȳ2

)

(15)

is a Lie group, denoted as H, and Y1, . . . , Ym are left-invariant vector fields on H,

ii) if Assumption 1 is satisfied, then the Lie algebra generated by {Y1, . . . , Ym} coincides
with the Lie algebra h of H, and there exist vector fields Yj , (j = m + 1, . . . , n), of the

form Yj = adk
Y1

(Yi) with i ∈ {1, . . . , m}, such that {Y1, . . . , Yn} is a basis of h.

The proof is straightforward and left as an exercise to the willing reader.
It follows from this lemma, by application of the result recalled in Section 2.3, that there

exist functions f : T
n−m −→ U , with U an arbitrary small neighborhood of the origin in

R
n, which are transversal to the v.f. Y1, . . . , Ym. Let us decompose f as f = (f1, f

′

2)
′ with

f1 (resp. f2) a R-valued (resp. R
n−1-valued) function. One can verify that the condition of

transversality is equivalent to the invertibility of the (n − 1) × (n − 1) matrix

D(α) :=

(

B − (
∂f2

∂α
− Af2

∂f1

∂α
)(α)

)

(16)

for any α ∈ T
n−m.

Define1

z2 := e−Af1(α)(ξ2 − f2(α)) (17)

1Note that z2 corresponds to the second component of y ◦ f(α)−1 with y = (y1, ξ′
2
)′.

INRIA



Control of underactuated mechanical systems 9

For any smooth time-function α(.), the time-derivative of z2 along the solutions of System
(13) is given by

ż2 = e−Af1(α)
(

ξ̄1Aξ2 + D(α) ( u2

α̇ ) + P (ξ2)
)

(18)

with
ξ̄1 := ξ1 − ḟ1(α) (19)

Note how the derivative of the variable α on which the transverse function f depends appears
as an extra control variable in (18).

Define
ḡ := g̃h1(α)−1 with h1(α) := exp(f1(α)X1) (20)

Since ḣ1(α) = X1(h1(α))ḟ1(α), it follows from (2), (13), and (19), that

˙̄g = X(ḡ)AdX(h1(α))
(

ξ̄ − AdX(g̃−1)ξr

)

(21)

with ξ̄ = (ξ̄1, ξ
′

2)
′. Finally, define (compare with (10))

ν̄ :=

(

ξ̄1

z2

)

− AdX (ḡ−1)ξr − ξ∗(ḡ) (22)

with ξ∗(ḡ) denoting any smooth feedback law which exponentially stabilizes the point ḡ = e
for the system ˙̄g = X(ḡ)ξ. An example of such a feedback is given by relation (9) in
Proposition 1. It follows from (17) that

ξ̄ = T (f1(α))(ν̄ + AdX (ḡ−1)ξr + ξ∗(ḡ)) +

(

0
f2(α)

)

with

T (f1) =

(

1 0
0 eAf1

)

From there, the idea for the control design is as follows. When ν̄ is close to zero and
the transverse function f is “small” (i.e. f(Tn−m) is included a small neighborhood of e), it
follows from the above expressions that ξ̄ is close to AdX(ḡ−1)ξr +ξ∗(ḡ) and, from (20), that
h1(α) is close to e whatever α. Therefore, System (21) behaves approximately like the system
given by ˙̄g = X(ḡ)(ξ̄−AdX (ḡ−1)ξr) or, in view of the abovementionned approximation of ξ̄,
like the system ˙̄g ≈ X(ḡ)ξ∗(ḡ), with ḡ(t) (locally) converging to zero exponentially. This in
turn yields, from (20), the convergence of g̃ to h1(T

n−m), and thus the ultimate boundedness
of the tracking error, with a tracking precision directly related to the size of f . In order to
justify this control strategy more rigorously, one must i) design control laws that ensure the
convergence of ν̄ to zero, and ii) prove the ultimate boundedness of the tracking error when
using these control laws.

Stabilization of ν̄ = 0: By using (18)–(22), one verifies that the derivative of ν̄ along the
solutions to System (13) is given by

{

˙̄ν1 = u1 − f̈1(α) + r1 + ν̄1s1

˙̄ν2 = e−Af1(α)D(α) ( u2

α̇ ) + r2 + ν̄1s2

RR n° 5847



10 Morin & Samson

with ri, si (i = 1, 2) denoting some functions which depend on ḡ, ν̄2, α, ξr, and ξ̇r, but not
on ν̄1. From there it is not difficult to derive (dynamic) feedback laws that make ν̄ = 0
exponentially stable:

Lemma 2 Consider the smooth feedback control defined by







(

u2

α̇

)

= D(α)−1eAf1(α)(−kν̄2 − r2)

u1 = α̇′ ∂2f1

∂α2 (α)α̇ + ∂f1

∂α
(α)α(2) − kν̄1 − r1 − ν̄1(s1 + ν̄′

2s2)

(23)

with k > 0, α(0) equal to any value, and α(2) the function depending on ḡ, ν̄, α, ξr , ξ̇r, and
ξ̈r, whose value coincides with the time-derivative of the control input α̇ along the controlled
system. Then, along the trajectories of the controlled system (13)-(23),

1

2

d

dt
‖ν̄‖2 = −k‖ν̄‖2

so that ν̄ = 0 is exponentially stable.

The proof is straightforward.

Ultimate boundedness of the tracking error: The following proposition, the proof of
which closely follows the proof of [17, Prop. 2], establishes the ultimate boundedness of the
tracking error associated with the feedback law (23).

Proposition 4 Choose α(0) such that ∂f1

∂α
(α(0)) = 0, and let η denote a class-K function

such that maxα(‖f(α)‖+dG(h1(α), e)+‖I3 −AdX(h1(α))‖) ≤ η(ε) with ε := maxα(‖f(α)‖.
Then, for any constant Kr, there exists ε0, γg , γv, β > 0 such that, for any reference trajec-
tory gr such that ‖ξr‖ ≤ Kr, and for any ε ∈ (0, ε0],

dG(g̃(0), e) ≤ γg

‖(ξ − ξr)(0)‖ ≤ γv

}

⇒ dG(g̃, e) is u.b. by βη(ε) (24)

where “u.b.” means “ultimately bounded”. Moreover, if ‖ξ̇r(t)‖ and ‖ξ̈r(t)‖ are bounded, then
‖ξ(t)‖ and the control inputs u1(t), u2(t), and α̇(t), are bounded.

The important points of this proposition are i) the existence of an ultimate bound for
the closed-loop tracking error, ii) the (theoretical) possibility of reducing this bound as
much as desired by choosing a “small” enough transverse function, and iii) the insurance
that the attraction domain contains an open set whose size depends neither on the reference
trajectory (given an upperbound of ‖ξr‖) nor on ε ∈ (0, ε0].

INRIA



Control of underactuated mechanical systems 11

5 Example: the rigid body in SE(3)

By Proposition 3 the proposed control design approach applies to any STLC system on a
Lie group of dimension three. In order to illustrate its application to systems of higher
dimensions we consider here the example of a rigid body on SE(3) immersed in a perfect
fluid. The control inputs are three forces f1, f2, f3 applied at a point C located at a distance
h from the center of mass G (see Fig. 1). We assume that these forces are aligned with

the three principal axes of inertia and that
−−→
CG is aligned with the first one. The body’s

classical kinematic equations are given by

Ṙ = Rω̂ , ṗ = RvG (25)

with R the rotation matrix representing the body’s attitude (w.r.t. an inertial frame), ω the
angular velocity vector expressed in the body’s frame, p the position vector of the center of
mass, and vG the velocity vector of G expressed in the body’s frame. By denoting,

g :=

(

R p
0 1

)

, ξG :=

(

ω
vG

)

the equations (25) are equivalent to the following left-invariant system on the matrix Lie
group SE(3):

ġ = g
ˆ̂
ξG = XG(g)ξG (26)

with XG,i(g) := g ˆ̂ei, (i = 1, . . . , 6). As for the dynamic equations, they are given by (see
[4] for more details )

{

Jω̇ = Jω × ω + MvG × vG + h(0, f3,−f2)
′

Mv̇G = MvG × ω + f
(27)

with J = Diag(j1, j2, j3) the inertia matrix, and M = Diag(m1, m2, m3) the mass matrix.

f3

f1 G

f2

C

Figure 1: Rigid body in SE(3) with three force controls

The following result, whose demonstration involves elementary calculations, asserts that
the rigid body equations can be transformed into System (11) with ω3 as a generator.
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Lemma 3 Define2 v := vG−c3e1×ω = (vG,1, vG,2+c3ω3, vG,3−c3ω2)
′, with c3 := j3/(hm2).

Then, System (26)–(27) can be written as (11) (with A, B, and P (ξ2) specified in the
appendix), by setting

{

X1 = XG,3 − c3XG,5, X2 = XG,1, X3 = XG,2 + c3XG,6, Xi = XG,i (i = 4, 5, 6)
ξ1 = ω3, ξ2 = (ω1, ω2, v1, v2, v3)

′

and










u1 = − h
j3

f2 + j12
j3

ω1ω2 + m12

j3
v1(v2 − c3ω3)

u2 =

(

f1 + m2ω3(v2 − c3ω3) − m3ω2(v3 + c3ω2)
f3

)

with jik := ji − jk and mik := mi − mk. Furthermore, Assumption 1 is satisfied provided
that

h2m2m3j23 − j2j3m23 6= 0 (28a)

h2m1m2 + j3m12 6= 0 (28b)

The choice of ω3 as a generator is not unique. For instance, by the system’s symmetry, ω2

is also a possible choice:

Lemma 4 Define v := vG − c2e1 ×ω, with c2 := j2/(hm3). Then, System (26)–(27) can be
written as (11) (with A, B, and P (ξ2) specified in the appendix), by setting

{

X1 = XG,2 + c2XG,6, X2 = XG,1, X3 = XG,3 − c2XG,5, Xi = XG,i (i = 4, 5, 6)
ξ1 = ω2, ξ2 = (ω1, ω3, v1, v2, v3)

′

and










u1 = h
j2

f3 + j31
j2

ω1ω3 + m31

j2
v1(v3 + c2ω2)

u2 =

(

f1 + m2ω3(v2 − c2ω3) − m3ω2(v3 + c2ω2)
f2

)

with jik, and mik, defined as in Lemma 3. Furthermore, Assumption 1 is satisfied provided
that

h2m2m3j23 − j2j3m23 6= 0 (29a)

h2m1m3 + j2m13 6= 0 (29b)

It is not difficult to show that if (28a) is satisfied, then either (28b) or (29b) is satisfied.
Therefore, by Proposition 2, (28a) is a sufficient condition for the Small Time Local Con-
trollability of System (26)–(27). Note that this condition is weaker than the one stated in [4,
Sec. III] where only “symmetric products” of order at most equal to two are used to derive
it.

2Note that v is the velocity vector of the point P defined by
−→

GP = c3~e1.
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Once System (26)–(27) is written as (11), the control design method of Section 4 applies
directly, eventhough the calculation of some of the terms in the control expression (like the
matrix eAx involved in the group law (15) and a function f transversal to the v.f. Y1, Y2,
Y3, depending, in this case, on 6− 3 = 3 variables) is a little tedious. For the determination
of a transverse function, one can use the expression [16, Eq. (10)] which gives f in terms of
the group law (15). The analytic expression of eAx, for the matrix A associated with the
generator ω3, is given in the appendix.

6 Choice of the generator: a case study

The previous example illustrates that there may be many ways to write System (1) as (11),
in relation with the choice of the velocity variable used as a generator. While the ultimate
boundedness of the tracking error is obtained independently of the chosen generator, other
issues intervene when making this choice. For instance, we have observed in simulation that
the asymptotical behavior of the controlled system’s solutions can be very sensitive to this
choice. In this respect, a meaningful criterion is the convergence, or non-convergence, to zero
of the velocity variables when the reference trajectory is a fixed point. Let us examine this
issue more closely. By Lemma 2, the control law (23) makes ν̄ tend to zero exponentially.
On the zero-dynamics ν̄ = 0 one deduces from (17)–(22) and (23) that, when ξr = 0,

˙̄g = X(ḡ)AdX(h1)ξ̄ (30a)

ξ̄ =

(

ξ∗1(ḡ)
eAf1ξ∗2(ḡ) + f2

)

(30b)

(

u2

α̇

)

= D(α)−1

(

eAf1
∂ξ∗2(ḡ)

∂ḡ
X(ḡ)AdX(h1)

(

ξ∗

1
(ḡ)

ξ̄2

)

− P (ξ2) − ξ∗1(ḡ)Aξ2

)

(30c)

with the argument α being omitted at several places to lighten the notation. A question
of interest concerns the convergence, or non-convergence, of ξ̄ to zero along the solutions
to this system. Indeed, since ξ̄1 = ξ1 − ḟ1(α) and ξ̄2 = ξ2, the convergence of ξ̄ to zero is
equivalent to the convergence of the velocity vector ξ to zero –a clearly desirable property in
practice. This is a very challenging question in general. The answer depends, among other
things, on the system, the chosen generator, and the feedback law ξ∗. In this section, these
general considerations are made more precise by studying the special case of the second
order chained system







ẍ1 = u1

ẍ2 = u2

ẍ3 = u1x2

(31)

which can be used to model several underactuated mechanical systems evolving in a three-
dimensional configuration space. This system can be written as (11) with g = x = (x1, x2, x3)

′,
A, B, and P defined by (12) with a = −1. The group operation on R

3 is defined by
xy = (x1 + y1, x2 + y2, x3 + y3 + y1x2). From there, a possibility consists in choosing ẋ1 as
the generator. This corresponds to setting X1(x) = (1, 0, x2)

′, X2 = (0, 1, 0)′, X3 = (0, 0, 1)′,
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and ξ = (ẋ1, ẋ2, ẋ3 − x2ẋ1)
′. Another possibility consists in choosing ẋ2 as the generator.

Then X1 = (0, 1, 0)′, X2(x) = (1, 0, x2)
′, X3 = (0, 0, 1)′, and ξ = (ẋ2, ẋ1, ẋ3 − x2ẋ1)

′. Note
that the respective roles of u1 and u2 then commute. We show below that, for a specific
choice of ξ∗, this second solution yields a convergent zero-dynamics.

First, one easily verifies that a family of functions f transversal to the v.f. Y1, Y2 (i.e.
such that the matrix D(α) is invertible for any α) is given in this case by

f(α) = exp(ε1 sin(α)Y1 + ε2 cos(α)Y2)
= (ε1 sin α, ε2 cosα,−ε1ε2

sin 2α
4 )′

(32)

with ε1, ε2 > 0. Furthermore, since X1 = (0, 1, 0)′, it follows from (20) that h1 = (0, f1, 0)′.
By calculating the matrix AdX(h1) or, more simply in this case, by differentiating the
equality ḡ = g − (0, f1, 0)′, Eq. (30a)–(30b) yield







˙̄g1 = ξ̄2,1 = ξ∗2,1 + f2,1

˙̄g2 = ξ̄1 = ξ∗1
˙̄g3 = ξ̄2,2 + g2ξ̄2,1= ξ∗2,2 + ḡ2ξ

∗

2,1 +f2,2 +g2f2,1

(33)

Now, in view of the v.f. X1,2,3, the origin of the system ġ = X(g)ξ is clearly exponentially
stabilized by the kinematic feedback ξ∗(g) = −kg, with k > 0. Let us thus make this choice
for ξ∗. Then, by differentiating the equality ˙̄g1 = ξ̄2,1 = −kḡ1 + f2,1, one obtains

˙̄ξ2,1 = −kξ̄2,1 + ḟ2,1 (34)

It follows from the second equation of (33) and the definition of ξ∗ that ḡ2 tends to zero
exponentially and, subsequently, that ξ̄1 and ξ∗1(ḡ) also tend to zero exponentially. From
now on, let us set these three variables equal to zero. This corresponds to studying the
system’s zero-dynamics given by (ν̄ = 0, ḡ2 = 0). By using (16) and (33), one deduces from
(30c) that

α̇ =
2k

ε1ε2
ξ̄2,2 (35)

Since ˙̄ξ2,2 = −ξ1ξ̄2,1, and ξ1 = ḟ1 on the zero-dynamics, one has ˙̄ξ2,2 = −ḟ1ξ̄2,1 and, by (35),

α̈ = − 2k

ε1ε2
ḟ1ξ̄2,1

= −
(

2k

ε2
2

f2,1(α)ξ̄2,1

)

α̇

(36)

where the second equality follows from (32). We claim that (34) and (36) imply that ξ̄2,1

converges to zero. Let us make a proof by contradiction and assume that ξ̄2,1 does not
converge to zero. Since ξ̄ and α̇ are bounded along the system’s solutions (because ḡ is
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bounded), ξ̄2,1 is uniformly continuous. By multiplying both sides of Eq. (34) by ξ̄2,1, and
by integrating the resulting equation, one obtains

∫ t

0

ξ̄2,1(s)ḟ2,1(α(s)) ds −→ +∞ as t −→ +∞

By integrating this equation by part, and by using (34) again

I(t) :=

∫ t

0

ξ̄2,1(s)f2,1(α(s)) ds −→ +∞ as t −→ +∞ (37)

By (36),

α̇(t) = α̇(0) exp

(

−2k

ε2
2

I(t)

)

and it follows from (37) that α̇ tends to zero. Therefore, in view of (34), ξ̄2,1 also tends
to zero, i.e. a contradiction with our starting assumption. Now, since ξ̄2,1 tends to zero, it
comes from (35) that α̇, ξ̄2,2, and ξ1 also tend to zero. In other words, all velocities tend to
zero. Although the above analysis is limited to the system’s zero-dynamics, it is not very
difficult to show that the same conclusion extends to the original system. This is done by
incorporating exponentially vanishing terms in the right-hand sides of Eq. (34), (35), and
(36).

Now, do the system’s velocities also vanish asymptotically when choosing ẋ1 as the
generator? Let us first indicate that the system’s zero dynamics associated with this choice
yields a set of deceptively little more complicated equations (as the interested reader can
verify) which, in fact, underly a much more complex situation which cannot be simply
summarized by asserting either convergence, or non-convergence, of the system’s velocities.
However, all simulations that we have conducted tend to indicate that zero velocity is not
stable in this case and, moreover, that non-convergence to zero is the generic situation. It
is thus clear to us that, on the basis of the above elements, ẋ2 is a “better” generator than
ẋ1. However, it is also clear that this issue deserves to be studied further.

References

[1] N.P.I. Aneke. Control of underactuated mechanical systems. PhD thesis, Department of
Mechanical Engineering, Eindhoven University of Technology, The Netherlands, 2003.

[2] A. Behal, D.M. Dawson, W.E. Dixon, and Y. Fang. Tracking and regulation control of
an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. on Auto-
matic Control, 47(3):495–500, 2002.

[3] R.W. Brockett. Asymptotic stability and feedback stabilization. In R.W. Brockett,
R.S. Millman, and H.J. Sussmann, editors, Differential Geometric Control Theory.
Birkauser, 1983.

RR n° 5847



16 Morin & Samson

[4] F. Bullo, N.H. Leonard, and A.D. Lewis. Controllability and motion algorithms for
underactuated lagrangian systems on Lie groups. IEEE Trans. on Automatic Control,
45:1437–1454, 2000.

[5] C.I. Byrnes and A. Isidori. On the attitude stabilization of rigid spacecraft. Automatica,
27:87–95, 1991.

[6] J.-M. Coron. Stabilization in finite time of locally controllable systems by means of
continuous time-varying feedback laws. SIAM Journal on Control and Optimization,
33:804–833, 1995.

[7] J.-M. Coron and E.-Y. Kerai. Explicit feedbacks stabilizing the attitude of a rigid
spacecraft with two control torques. Automatica, 32:669–677, 1996.

[8] E. Kerai. Analysis of small time local controllability of the rigid body model. In IFAC
Conf. on System Structure and Control, pages 645–650, 1995.

[9] H.K. Khalil. Nonlinear systems. Prentice Hall, 2002.

[10] K. Kobayashi. Controllability analysis and control design of nonholonomic systems.
PhD thesis, Department of Mechanical Engineering, Kyoto University, Japan, 1999.

[11] A.D. Lewis and R.M. Murray. Configuration controllability of simple mechanical control
systems. SIAM Journal on Control and Optimization, 35:766–790, 1997.

[12] D.A. Lizárraga. Obstructions to the existence of universal stabilizers for smooth control
systems. Mathematics of Control, Signals, and Systems, 16:255–277, 2004.

[13] D.A. Lizárraga, N.P.I. Aneke, and H. Nijmeijer. Robust point stabilization of underac-
tuated mechanical systems via the extended chained form. SIAM Journal on Control
and Optimization, 42:2172–2199, 2004.

[14] D.A. Lizárraga and J.M. Sosa. Vertically transverse functions as an extension of the
transverse function approach for second-order systems. In IEEE Conf. on Decision and
Control (CDC), pages 7290–7295, 2005.

[15] P. Morin and C. Samson. Time-varying exponential stabilization of a rigid spacecraft
with two control torques. IEEE Trans. on Automatic Control, 42:528–534, 1997.

[16] P. Morin and C. Samson. Practical stabilization of driftless systems on Lie groups: the
transverse function approach. IEEE Trans. on Automatic Control, 48:1496–1508, 2003.

[17] P. Morin and C. Samson. Control of underactuated mechanical systems by the trans-
verse function approach. In IEEE Conf. on Decision and Control (CDC), pages 7508–
7513, 2005.

INRIA



Control of underactuated mechanical systems 17

[18] P. Morin, C. Samson, J.-B. Pomet, and Z.-P. Jiang. Time-varying feedback stabilization
of the attitude of a rigid spacecraft with two controls. Systems & Control Letters,
25:375–385, 1995.

[19] H.J. Sussmann. A general theorem on local controllability. SIAM Journal on Control
and Optimization, 25:158–194, 1987.

Appendix

Proof of Prop. 2:

System (11) can be written in the classical control affine form

ẏ = Y0(y) +

m
∑

i=1

uiYi(y) (38)

with

y =





g
ξ1

ξ2



 , Y0(y) =





X(g)ξ
0

ξ1Aξ2 + P (ξ2)



 , Y1(y) =





0
1
0





and

Yi(y) =





0
0

Bei



 (i = 2, . . . , m)

Let 〈Yi : Yj〉 := [Yi, [Y0, Yj ]] (see [11] for more details on the special role played by this type

of Lie bracket), and define inductively ads0Y1
(Yi) := Yi and adsk

Y1
(Yi) := 〈Y1 : adsk−1

Y1
(Yi)〉

for k > 0. Then, one easily verifies from the above equations that

adsk
Y1

(Yi) = (−1)k





0
0

AkBei



 (i = 2, . . . , m)

It follows from this equality and from Assumption 1 that the vectors obtained by evaluating
the vector fields

Y1, adsk
Y1

(Yi), [Y0, Y1], [Y0, adsk
Y1

(Yi)] (39)

at any point y, with i = 1, . . . , m and k = 0, . . . , n − 2, span the tangent space (i.e. R
n)

at this point, so that System (38) satisfies the Lie Algebra Rank Condition at any point.
Furthermore, all the Lie brackets associated with these v.f. are “good”3 in the sense of [19].
In order to prove that System (38) is STLC at y = (g0, 0, 0) it is sufficient, according to [19,
Sec. 7.3], to find positive weights (w0, w1, . . . , wm) with w0 ≤ wi (i = 1, . . . , m) such that

3To be rigorous, one should introduce here the notion of formal brackets; this distinction is here omitted

due to space limitations.
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all “bad” brackets (i.e. containing an odd number of Y0 and an even number of each Yi (i =
1, . . . , m)) can be expressed, when they are evaluated at (g0, 0, 0), as linear combinations
of lower-degree brackets, where the degree of a bracket is defined by deg(Yi) = wi and,
recursively, by deg([B1, B2]) = deg(B1) + deg(B2). We claim that this property is satisfied
with (w0, w1, . . . , wm) = (1, 1, 2n, . . . , 2n). One only has to check that

i) Each bad bracket containing one of the v.f. Y2, . . . , Ym is of degree strictly larger than
the degrees of the v.f. in (39),

ii) Each bad bracket containing none of the v.f. Y2, . . . , Ym is equal to zero when evaluated
at y = (g, 0, 0).

The proof of i) is straightforward, and the proof of ii) readily follows from the following
property:

Property: Let Y := [Yi1 , [· · · , [Yik−1
, Yik

] · · · ]] with each ij ∈ {0, 1} and k > 1. Let us
denote by n0(Y ) (resp. n1(Y )) the number of integers ij equal to 0 (resp. equal to 1).
Consider the following decomposition of Y : Y = Y g ∂

∂g
+ Y ξ1 ∂

∂ξ1

+ Y ξ2 ∂
∂ξ2

. Then,

1. Y ξ1(y) = 0,

2. Y ξ2(y) does not depend on g, and vanishes for ξ2 = 0,

3. Y g(y) (resp. Y ξ2(y)) is a vector of homogeneous polynomials in the components of ξ
of degree n0(Y ) − n1(Y ) (resp. of degree n0(Y ) − n1(Y ) + 1).

The proof of this property is easily obtained by induction on the length k of the Lie bracket
Y , starting from k = 2.

Proof of Prop. 3:

In view of Prop. 2, it is sufficient to prove that if System (1) is STLC, then it can be written
as (11) with Assumption 1 being satisfied. When m = 1, it can be shown, as in [8, Sec. 3],
that System (1) is not STLC. Therefore nothing else needs to be proved in this case. When
m = 2, let P denote any matrix such that Pb1 = e1 and Pb2 = e2. Such a matrix clearly
exists since b1 and b2 are, by assumption, independent vectors. By making the linear change
of variable ξ 7−→ ξ̄ = Pξ, and by a change of control input u 7−→ ū, one transforms System
(1) into a system



















ġ = X̄(g)ξ̄
˙̄ξ1 = ū1

˙̄ξ2,1 = ū2

˙̄ξ2,2 = Q̄3(ξ̄)

(40)

with X̄i (i = 1, 2, 3) being left-invariant on G, and Q̄3 a quadratic form in the components
of ξ̄. This quadratic form can be decomposed as

Q̄3(ξ̄) = Q̄3,1(ξ̄1, ξ̄2,1) + ξ̄2,2L(ξ̄)
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with Q̄3,1 a quadratic form in ξ̄1, ξ̄2,1, and L a linear form in ξ̄. We claim that Q̄3,1 can
be neither non-positive nor non-negative. Indeed, suppose for instance that Q̄3,1 is non-

negative. Then ˙̄ξ2,2(t) is non-negative when ξ̄2,2(t) = 0. By application of the comparison
lemma [9, Lem. 3.4], it results that ξ̄2,2(t) can never be negative if ξ̄2,2(0) = 0, thus yielding
a contradiction with the assumption of Small Time Local Controllability. Since Q̄3,1 is
neither non-positive nor non-negative, it has to be of the form

Q̄3,1 = a1(ξ̄1 + a2ξ̄2,1)(ξ̄2,1 + a3ξ̄1) (41)

with a1 6= 0 and a2a3 6= 1. By the new linear change of coordinates ξ̄ 7→ ¯̄ξ := (ξ̄1 +
a2ξ̄2,1, ξ̄2,1 + a3ξ̄1, ξ̄2,2)

′ and the change of control inputs ū 7→ ¯̄u := (ū1 + a2ū2, ū2 + a3ū1)
′,

System (40) is tranformed into










ġ = ¯̄X(g) ¯̄ξ
˙̄̄
ξ1 = ¯̄u1

˙̄̄
ξ2 = ¯̄ξ1A

¯̄ξ2 + Bu2 + P ( ¯̄ξ2)

with

¯̄X(g) =
1

1 − a2a3
X̄(g)





1 −a2 0
−a3 1 0
0 0 1 − a2a3





A =

(

0 0
a1 l1

)

, B =

(

1
0

)

, P ( ¯̄ξ2) =

(

0
¯̄ξ2,2(l2

¯̄ξ2,1 + l3
¯̄ξ2,2)

)

for some numbers l1, l2, and l3. Moreover, since a1 6= 0, the pair (A, B) is controllable.

Expressions of A, B, and P (ξ2) with ω3 as the generator:

A =

















0
j23−c2

3
m23

j1
0 0 − c3m23

j1
j31
j2

0 0 0 0

0 0 0 0 0

0 0 −m1

m2

− c2

3
m12

j3
0 0

c3m2

m3

− c3j31
j2

0 0 0 0

















, B =













0 0
0 h

j2
1

m1

0

0 0

0 1
m3

− c3h
j2













and

P (ξ2) =













m23

j1
v2(v3 + c3ω2)

m31

j2
v1(v3 + c3ω2)

0
m3

m2

ω1(v3 + c3ω2) + c3

j3
(j12ω1ω2 + m12v1v2)

m1

m3

ω2v1 − m2

m3

ω1v2 − c3m31

j2
v1(v3 + c3ω2)
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Expressions of A, B, and P (ξ2) with ω2 as the generator:

A =

















0
j23−c2

2
m23

j1
0 c2m23

j1
0

j12
j3

0 0 0 0

0 0 0 0 0
c2m3

m2

+ c2j12
j3

0 0 0 0

0 0 m1

m3

− c2

2
m31

j2
0 0

















, B =













0 0
0 − h

j3
1

m1

0

0 1
m2

− c2h
j3

0 0













and

P (ξ2) =













m23

j1
v3(v2 − c2ω3)

m12

j3
v1(v2 − c2ω3)

0
m3

m2

ω1v3 − m1

m2

ω3v1 + c2m12

j3
v1(v2 − c2ω3)

−m2

m3

ω1(v2 − c2ω3) − c2

j2
(j31ω1ω3 + m31v1v3)













Expressions of eAx, with ω3 as the generator:

Let ∆ :=
√

a12a21 + a15a51 with aij the (i, j) element of A, and note that ∆ 6= 0 if Condition
(28) is satisfied. Let ch(x) := cosh(∆x), sh(x) := sinh(∆x). Then,

eAx =















ch(x) a12sh(x)
∆ 0 0 a15sh(x)

∆
a21sh(x)

∆
a15a51+a12a21ch(x)

∆2 0 0 a15a21(ch(x)−1)
∆2

0 0 1 0 0
0 0 a43x 1 0

a51sh(x)
∆

a12a51(ch(x)−1)
∆2 0 0 a12a21+a15a51ch(x)

∆2
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