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Un modéle de mélange pour graphes aléatoires

Résumé : Le modéle de graphe d’Erdos-Rényi est simple et des expressions explicites de
ses caractéristiques moyennes ou asymptotiques sont disponibles, mais il s’ajuste mal aux
réseaux observés dans la réalité. Les sommets de ces réseaux sont fréquemment structurés
en groupes a priori inconnus (protéines liées fonctionnellement, ou communautés sociales)
et ayant des propriétés de connectivité différentes. Nous définissons une généralisation du
modéle d’Erdos-Rényi appelée ERMG pour “Erdos-Rényi Mixtures for Graphs”. Ce nou-
veau modéle est fondé sur des lois de mélange. Nous étudions certaines de ses propriétés,
proposons un algorithme d’estimation de ses paramétres et appliquons cette méthode pour
révéler la structure modulaire d’un réseau de réactions enzymatiques.

Mots-clés : Graphes aléatoires, modéles de mélange, réseaux d’interaction
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1 Introduction

The Erdos-Rényi model of a network is one of the oldest and best studied model and possesses
many explicit expressions for average and asymptotic properties such as subgraphs, degree
distribution, connectedness and clustering coefficient. However this theoretical model does
not fit well to real-word, social, biological or internet networks. For example the empirical
degree distribution may be very different from the Poisson distribution which is implied by
this model. Moreover empirical clustering coefficients of real networks are generally higher
than the value given by this model. Some generalizations of the Erdos-Rényi model have
been recently made in order to correct these shortcomings. For a review of these works see
? or 7. A special attention has been paid recently to the study of biological networks (see
?or?).

One research direction is to incorporate clustering in the model. Assortative mixing or
mixing patterns (see ? and (2004)) postulate that the vertices may be classified into clusters
with different connectivity properties. The key element is the mixing matrix which specifies
the probability of connection between two clusters. ? gives some theoretical properties of
such networks and an algorithm similar to Metropolis-Hasting for simulating networks for
a given mixing matrix. The inference of the mixing parameters is quite easy if clusters can
be defined using external information such as language, race or age. However the inference
is more difficult when clusters and mixing parameters have to be inferred when the network
topology is the only available information. A first step is the greedy optimization algorithm
proposed by ?. In this article we propose a new statistical method to infer the clustering
of vertices and the parameters of the mixing model using a maximum-likelihood approach
based only on the network topology.

Notations. In this article, we consider an undirected graph with n vertices and define the
variable X;; which indicates that vertices ¢ and j are connected:

Xij = in = ]I{’L<—>j}7

where I{A} equals to one if A is true, and to zero otherwise. Furthermore, we assume that
no vertex is connected to itself, meaning that X;; = 0. In the following we note K; the
degree of vertex i, i.e. the number of edges connecting it:

Ki:ZXij.

J#i

Erdés-Rényi model. This model assumes that edges are independent and occur with the
same probability p:

RR n° 5840



4 Jean-Jacques Daudin, Franck Picard and Stéphane Robin

In this model, the degree of each vertex has a Binomial distribution, which is approximately
Poisson for large n and small p. Noting A = (n — 1)p we have:

K;~B(n—1,p) = P(\). (1)

2 Mixture model for the degrees

In many practical situations, the Erdos-Rényi model turns out to fit the data poorly, mainly
because the distribution of the degrees is far from the Poisson distribution (). The scale-
free (or Zipf) distribution has been intensively used as an alternative. The Zipf probability
distribution function (pdf) is

Pr{K; = k} = c(p)k~ P+ Y, 2)

where £ is any positive integer, p is positive, c(p) = 37, k=) = 1/¢(p+1) and ¢(p+1)
is Riemann’s zeta function. Nevertheless, we will show in Section @ that this distribution
may have a poor fit on real datasets as well.

First of all, it is important to notice that the Zipf distribution is used to model the tail
of the degrees’ distribution. Consequently it is often best suited for the tail than for the
whole distribution. In particular this distribution has a null probability for & = 0 whereas
some vertices may be unconnected in practice. Moreover the lack-of-fit of the Erdds-Rényi
model may be simply due to some heterogeneities between vertices, some being more con-
nected than others. A simple way to model this phenomenon is to consider that the degrees’
distribution is a mixture of Poisson distributions.

In the mixture framework we suppose that vertices are structured into @) clusters, and
that there exists a sequence of independent hidden variables {Z;,} which indicate the label
of vertices to clusters. We note a, the prior probability for vertex ¢ to belong to cluster g,
such that:

ag =Pr{Zj =1} =Pr{i € ¢}, with Y a,=1.
q

Remark 1. In the following, we will use two equivalent notations: {Z;; = 1} or {i € ¢}
to indicate that vertex i belongs to cluster g. We suppose that the conditional distribution
of the degrees is a Poisson distribution :

Kil{i € g} ~P(Aq).

Then the distribution of the degrees is a mixture of Poisson distributions such that:

Q e—/\q)\lg
q=1 '

INRIA
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Remark 2. Because vertices are connected between them, degrees are not independent
from each other. However, in the standard situation where n is large and where the A;s are
small with respect to n, the dependency between the degrees is weak.

In Section Bl we will show that this model fits well to several data sets. Nevertheless,
we claim that modelling the distribution of the degrees provides little information about
the topology of the graph. Indeed, this model only deals with the degrees of vertices, but
not explicitly with the probability for two given vertices to be connected. However, the
observed number of connections between vertices from different groups may reveal some
interesting underlying structure, such as preferential connections between groups. The mix-
ture model for degrees is not precise enough to describe such a phenomenon. This motivates
the definition of an explicit mixture model for edges.

3 Erdos-Rényi mixture for graphs

3.1 General model

We now propose a mixture model which explicitly describes the way edges connect vertices,
accounting for some heterogeneity among vertices. In the following, we denote this model
ERMG for Erdos-Rényi Mixture for Graphs.

The ERMG model supposes that vertices are spread into @) clusters with prior proba-
bilities {a1,...ag}. In the following, we use the same indicator variables {Z,,} defined in
section @I Then we denote my the probability for a vertex from group ¢ to be connected
with a vertex from group ¢. Because the graph is undirected, these probabilities must be
symetric such that:

ag =Pr{Z; =1} =Pr{i € ¢}, with > oy =1.

q

Remark 3. In the following, we will use two equivalent notations: {Z;; = 1} or {i € ¢}
to indicate that vertex ¢ belongs to cluster g.

Then we denote 74, the probability for a vertex from group ¢ to be connected with a
vertex from group ¢. Because the graph is undirected, these probabilities must be symetric
such that:

Tge = Tiq-

We finally suppose that edges {X;;} are conditionally independent given the groups of
vertices ¢ and j:
Xij [ {i € q.j € £} ~ B(mqe).
The main difference with Model @) is that the ERMG model directly deals with edges.
More than describing the clustered structure of vertices, our model describes the topology
of the network using the connectivity matrix IT = (mg).

RR n° 5840



6 Jean-Jacques Daudin, Franck Picard and Stéphane Robin

3.2 Examples

In this section we aim at showing that the ERMG model can be used to generalize many
particular structures of random graphs. Figure [ll presents some typical network configura-
tions. The first one is the Erdés-Rényi model. We present here some more sophisticated
ones.

Example 1. Random graphs with arbitrary degree distributions.

The Erdos-Rényi random graph model is a poor approximation of real-word networks whose
degree distribution is highly skewed. A random network having the same degree distribution
as the empirical one can be built as follows: n partial edges (with only one starting vertex
and no final vertex) are randomly chosen from the empirical degree distribution. These
partial edges are randomly joined by pairs to form complete edges (see 7). A permutation
algorithm is also proposed in ?. This model assumes that the connectivity between two
vertices is proportional to the degree of each vertex so it coincides with the independent
case of the ERMG model presented in Section B4l

The scale-free network proposed by ? is a particular case of random graphs with arbitrary
distribution. To this extent, we can propose an analogous model in the ERMG framework.
Suppose that the incoming vertices join the network in groups of respective size na, (¢ =
1..Q, nay being the number of original vertices). Assuming that the elements of a new group
connect preferentially the elements of the oldest groups:

Tg,1 Z Tq,2 Z T Z Tg,q—15

we get the same kind of structure as the scale-free model.

Example 2. Affiliation network.

An affiliation network or bipartite graph, is a social network in which actors are joined by
a common participation in social events, companies boards or scientists’ coauthorship of
papers. All the vertices participating to the same group are connected. This model has
been studied by ?. This type of network may be modelled by an ERMG with ones in the
diagonal of II.

Example 3. Star pattern.

Many biological networks contain star patterns, i.e. many vertices connected to the same
vertex and only to it, see interaction networks of S. Cerevisiae in ? for instance. This type
of pattern may be modelled by an ERMG with extradiagonal ones in II.

4 Some properties of the ERMG model

4.1 Distribution of the degrees

Proposition 4.1 Given the label of a vertex, the conditional distribution of the degree of
this vertex is Binomial (approzimately Poisson):

K;|{i€q}~B(n—1,7,) =~ P(N)

INRIA
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Table 1: Some typical network configurations and their formulation in the framework of the
ERMG model

. Clustering
Description Network Q II coef.
Random 1 P P
Product
conn.ectlv1ty N o ab (az +b2)2
(arbitrary 2 b NPEAAEE
degree  dis- “ (a+0)
tribution)
NI T
1 01 0
Stars /\ 4 4 01 0 1 0
0 010
Clius"cers (af- 1 - 14 3e2
filiation net- 2 1 1 3
works) (1+¢)
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8 Jean-Jacques Daudin, Franck Picard and Stéphane Robin

where Tq =Y aymge and Ay = (n — 1)7,.

Proof Conditionally to the belonging of vertices to groups, edges connecting vertex i be-
longing to group ¢ are independent. The conditional connection probability is:

Pr{it—jlieq} = Pr{i—jlieqjel}Pr{jecl}= Ty = Tq.
q q
£

The result follows. W

4.2 Between-group connectivity

Definition 4.2 The connectivity between group q and ¢ is the number of edges connecting
a vertex from group q to a vertex from group £.

Ag = D> ZigZjX;.
i j>i
Aqq s actually the within-connectivity of group q.
Proposition 4.3 The expected connectivity between group q and £ is:

E(Ag) = n(n — 1)agaumge /2.

Proof According to Definition BLY, A,/ is the sum over n(n — 1)/2 terms. Conditionally
to {ZiqZ;s = 1}, X;; is a Bernoulli variable with parameter mg. Thus E(Z;;Z;X;;) =
E(ZigZji)mqe. The Z;;s are independent, so we have E(Z;; Z;,) = ogay. The result follows.
|

4.3 Clustering coefficient.

This coeflicient is supposed to measure the aggregative trend of a graph. Since no proba-
bilistic modelling is usually available, this coefficient is empirically defined in most cases. ?
propose the following definition of the empirical clustering coefficient for vertex i:

K;(K;—1
oy, JKLE=D

where V; is the number of edges between the neighbors of vertex i: V; = ijk Xii XuXin/2,
whose minimum value is 0 and maximum value equals K;(K; — 1)/2 for a clique. A first
estimator of this empirical clustering coefficient is usually defined as the mean of the C;s:

INRIA
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Denoting V the ’triangle’ configuration (i < j < k < i) and V the "V’ configuration
(j « i@ < k) for any (i,7,k) uniformly chosen in {1,...,n}, the definition of C' can be
rephrased as ¢ = Pr{V | V}. Because V is a particular case of V, we have:

c=Pr{VnV}/Pr{V} =Pr{V}/Pr{V}. (4)

This property suggests another estimate of ¢ proposed by ?:

EORIONT
where V; is the number of Vs in i: V; = Zj>k,(j7k#i Xi; Xik. In the following we propose a
probabilistic definition of this coefficient.

Definition 4.4 The clustering coefficient is the probability for two vertices j and k con-
nected to a third vertez i, to be connected, with (i, j, k) uniformly chosen in {1,...,n}

c=Pr{XiX;x X = 1| Xi; X, = 1}

Proposition 4.5 In the ERMG model, the clustering coefficient is

c= g Qg Oy T g Tgm Tom g Qg QU T Tgm
q,¢,m q,¢,m

Proof For any triplet (i, 7, k), we have

Pr{V} = Z g0 Pr{X;; X;s X, =11 €q,j € L,k € m},

q,l,m

= g Qg Uy T T T -

q,l,m
The same reasoning can be applied to Pr{V} recalling that the event V in (i, j, k) means
that the top of V is i. The result is then an application of (). B

4.4 Independent model

The model presented in Section Bl can be rephrased as an independent version of the ERMG
model. Indeed the absence of preferential connection between groups corresponds to the
case where

Tge = TgTe- (5)

The properties of the independent model are as follows.

RR n° 5840



10 Jean-Jacques Daudin, Franck Picard and Stéphane Robin

Distribution of degrees. The conditional distribution of the degrees is Poisson with
parameter A, such that:

Aq = (n = 1)ngTl, (6)

where 77 = ), ayne, s0 \q is directly proportional to 7.

Beween group connectivity. We get :

E(Aqe) = n(n — 1)(agng)(cene) /2,

so the rows and columns of matrix A = (A4)q,¢ must all have the same profile. We will see
in Section @ that the observed number of connections between groups may be quite far from
expected values.

Clustering coefficient

For the standard Erdds-Rényi model (Q = 1, oy = 1,7 = m = /p), we get the known

result: ¢ = nt/n? = p.
Considering the independent case presented in Figure[M with a; = a = 1/2 and a = 0.9,

b= 0.1, we get ¢ = (0.9 + 0.1%)2 ~ 0.67. The corresponding Erdds-Rényi model with
p = (a1a + azb)? = 1/4 would lead to a strong underestimation of ¢ since ¢ = p = 0.25.

4.5 Likelihoods

In order to define the likelihood of the ERGM model, we use the complete-data framework

defined by ?. Let us denote X the set of all edges: X = {X;;}i j=1.n, and Z the set of all

indicator variables for vertices: Z = {Ziq}‘f::lly’f .

Proposition 4.6 The complete-data log-likelihood is

log L(X, Z) ZZZlqlogaq—l—ZZZZ Ziologb(Xj; mqe)-

A q j>t

Proof We have log L(X, Z) =1log L(Z) + log L(X | Z) where
logL(Z) = ZZZW log ag,
ZZZZZWZJZ log b(Xij; mqe),

[ q j>i

log L(X | 2)

INRIA
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and b(z;m) = (1 — )% A

The log-likelihood of the observed data is obtained by summing the complete-data log-
likelihood over all the possible values of the unobserved variables Z. Unfortunately, it
seems that no simple form of this function can be derived. Then we define the conditional
expectation of the complete-data log-likelihood such that:

Q(X) = E{logL(X,Z)|X}
= Z an log avg + Z Z ZZ Oijqe log b(Xij; mqe), (7
i q A q 3>t /£
where
Tiq = PI‘{Ziq =1 | X} = E(Ziq | /Y), (8)
Hiqu = PI‘{Ziqug =1 | X} = E(Ziqug | X)

This log-likelihood involves the joint posterior probability for vertices ¢ and j to belong
to groups ¢ and /. Clearly, we have for i and j:

Zﬁ'q =1, Oiiqe = Ojieq, ZZ Oijqe = 1. 9)
q a ¢

5 Estimation

In this section we propose an (approximate) E-M algorithm to estimate the parameters of the
ERMG model by maximum likelihood. Since the EM algorithm uses the hidden structure
of the data, it is crucial to determine the dependency among observed and hidden variables.

Since the data under study are represented as a graph, the ERMG model may look like
a hidden Markov Field model. However, it is important to note that it is not. The main
reason for this is that when using a hidden Markov model the topology of the graph needs
to be known, whereas it is precisely the random object under study in the ERMG framework.

5.1 Dependency graph.

The X;;s are independent conditionally to the Z;;s, but are marginally dependent. For
estimation purpose, it is important to know if Pr{Z,, = 1 | X'} is equal to Pr{Z;, = 1| A;},
where X; is the set of all possible edges connecting i. X is often called the set of neighbors
of vertex i. In the following, we give a counter example to show that the notion of neigh-
borhood can not be used in the ERMG framework.

Assume that the vertices are divided in two groups, whose connectivity matrix is di-

agonal with m; = 1 and m2 = a and 0 < a < 1. Let us consider 3 vertices i, j, k with
Xij = Xy = 1. The vertices ¢ and j are in the same group because no connection is possible

RR n° 5840



12 Jean-Jacques Daudin, Franck Picard and Stéphane Robin

between vertices pertaining to two different groups. The same is true for vertices ¢ and k.
Therefore the three vertices are in the same group and we have Pr{Z;; =1 | X;, X} > 0 if
Xk =1and Pr{Z;1 =1 | X;, Xjx} = 0if X;; = 0. Therefore Pr{Z,; =1 | X'} depends on
all the network and not only on edges connecting to the vertex .

This counter example clearly shows that no neighborhood can be considered in the
ERMG framework since unconnected vertices provide as much information as connected
vertices. This is why the likelihood can not be simplified for computation.

5.2 Approximate E step

The most difficult part of the estimation algorithm is the calculation of the 7;,s and 6;;4¢s.
Because of the strong dependency between edges, these posterior probabilities seem very
difficult to derive. We propose a two step approximation.

Approximate joint distribution. In the first step, we approximate the joint distribu-
tion of the Z;;s by the product of their respective conditional distributions given the other
coordinates. Denoting Z; = {Z;1,... Z,o} and Z* = Z\ Z;, we set

Pr{Z | X} ~[[Pr{2i| X, 2'}. (10)
These approximate distribution can be caculated thanks to the folowing proposition.
Proposition 5.1 Denoting N}, = > i Zim and Ci = 37 Zym Xir, we have

Pr{Zig =1| X, 2"} o ag [ [ b(Cim; Ny, mgm)-

Predicting label variables. Approximation () can not be used as such since Z’ is
unknown and has to be predicted. The second step of the approximation is hence to fix all
Zjes (j # 1) to their conditional expectations: Zj; = 7;,. The posterior probabilities 74
must therefore satisfy the following fix point relation:

Tig = Pr{Zi,=1] X, Z'}.
The 7,4 are obtained by iterating the equation given in Proposition Bl until convergence.
According to approximation (I{), we then get 0,40 = TiqTje-

5.3 M step
At this step, we maximize the function Q(X) given in (@) subject to 3° g = 1. We get

Q= Fafn R =33 BaX / D2 b
i i g i

INRIA
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5.4 Choice of the number of groups

Our purpose here is not to derive a specific criterion to select the number of groups in the
ERMG model. This problem seems difficult to tackle, especially because the log-likelihood
of the observed data log £L(X) is not calculable.

We propose a heuristic criterion inspired from the Integrated Completed Likelihood (ICL,
?). The ICL criterion uses the same penalty as BIC, but applies it the complete-data log-
likelihood, which is the only likelihood we can calculate in this case. The first term of ()
deals with @) proportions a,s and involves n data. The second term deals with Q(Q + 1)/2
probabilities m4¢s and involves n(n—1)/2 terms. Hence the Fisher information matrix derived
from Q(X) is proportional to n for the cys, while it is proportional to n(n — 1)/2 for the
T qeS.

We therefore propose the following heuristic criterion:

—29(X)+(Q — 1) logn+ [Q(Q + 1)/2] log[n(n — 1)/2]. (11)

6 Application to biological networks

We apply the methodology developed in this paper to an interaction network of bacteria Es-
cherichia coli: the small molecule interaction metabolism network. In this network, vertices
are chemical reactions. Two reactions are connected if a compound produced by the first
one is a part of the second one (or vice-versa). This network is available at 0*biocyc.org; it
is made up of n = 605 vertices and the total number of edges is 1782. We first analyse the
distribution of the degrees of edges and then apply the ERMG model.

6.1 Fit of the empirical distribution of the degrees

Zipf distribution. Many papers claim that the Zipf pdf (@) fits well the degrees of graphs,
but these claims are rarely based on statistical criteria. Generally only a log-log plot is given.
If we consider the log-log plot on our data (Fig. B (a)) we can see that a linear fit does
not work for low degrees (e.g. < 4). In order to see how the Zipf pdf fits to the tail of the
empirical distribution we compute the usual chi-square statistics for different thresholds.
The minimum chi-square estimate of p are computed for each threshold (see Table B).

We can see that the fit is not good even for the tail distribution with a high value of
the threshold. One can say that the Zipf distribution is only a rough approximation of the
true one. It is often better suited for the tail than for the whole distribution. Note that the
fit seems better for the tail because we have less data when the threshold increases, so that
the power of the chi-square test is downsized. We would like to have a model which is well
suited for the whole distribution of degrees.

Poisson mixture. Using a mixture of Poisson distributions we obtain the following re-
sults. The BIC criterion selects three groups. Parameter estimates are given in Table Bl and
chi-square statistics in Table &

RR n° 5840
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Figure 1: Fit of the Zipf pdf on the E. Coli data. Top: log-log plot. Center: PP plots
with threshold values equal to 1 and 6. Bottom: histogram of degrees with adjusted poyer
distributions (threshold 1 — o — and 6 —vV—).
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Table 2: Fit of the power law and Poisson mixture: Chi-square statistic, degree of freedom
and p-value for several thresholds.

Power law Poisson mixture
Threshold n p+4+1 x%stat. df p-value x2?stat. df p-value

0 593 - - - - 6725 29 7107°
1 549 1.79  96.22 32 210°Y 58.5 28 6107
2 399 1.93 75.83 31 11076 32.3 27 0.22
3 315 2.08 59.70 30 0.001 30.6 26  0.24
4 252 219  53.07 29 0.004 27.0 25  0.36
5 200 224 5237 28  0.003 27.0 24 0.30
6 172 237 4544 27 0.014 25.0 23 0.35

Table 3: Parameter estimates for the Poisson mixture model on degrees with 3 groups.

group 1 2 3
a(%) 89 197 713
A 215 91 3.0

Note that the same values of the parameters of the mixture distribution have been used
for all threshold values. One can see that the fit is better than the fit of the power law.
The lack of fit for the two first lines is due to an unexpectedly high number of vertices with
two connections: 12 vertices have no connection, 44 have one connection and 150 have two
connections.

6.2 Erdos-Rényi mixture modeling

Number of groups and parameter estimates. Using the heuristic criterion defined in
([, we select @ = 21 groups.

Table Hl gives the estimates of proportions oy and connection probabilities m4. Among

the first 20 groups, 8 are actually cliques (74, = 1) and 6 have within probability connectivity
greater than 0.5. It turns out that all this cliques or pseudo-cliques gather reactions involving
a same compound (as an substrate or a product). We also see that the clique structure
strongly increases the mean degree A, of its elements.
The connection probability between groups 1 and 16 is 1, so these 2 groups actually constitute
a clique together which again correspond to a single compound. However, they are separated
in two sub-cliques because of their very different connectivities with reactions of groups 10
and 11. This distinction is due to the use of two secondary compounds involved in reactions
of group 1 (and 10 and 11) but not of group 18.

RR n° 5840
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Figure 2: Fit of the Poisson mixture pdf on the E. Coli data. Top: empirical and fitted
distributions with @ = 3 groups (—V—) and @ = 21 groups (—o—). Bottom: PP plots with
no threshold. INRIA
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Table 4: Parameter estimates of the ERMG model with @ = 21 classes (values smaller than
.5 % are masked for readability).

a(%) 0.7 1.0 1.2 1.3 1.3 1.5 1.5 16 1.8 1.8 20 2.1 2.3 2.6 2.7 2.8 3.0 3.0 3.3 5.8 56.8
100 64 11 43 2 100
100
100 4 7 1 1
71
100 28 1 18 16
28 100 6
64 58 10 4 7 5 5
63 5 3
11 10 65 1 2 2
43 1 4 67 1
T 62 7 4
(%) 4 7 5 28 5 5
2 7 5 1 5 100 1
6 7 25
1 40
100 18 5 1 5 1 100
2 4 100 6
1 3 2 21
16 19
6 11
1
Ag 33 7 9 6 17 13 12 7 10 10 10 8 17 6 7 25 21 5 6 5 3

In this example, it turns out that the within connection probabilities 74, are always
maximal, although the modeling does not require this. Simulation studies (not shown)
prove that it is not an artifact of the method, which can detect a group with no within
connection.

Between group connectivity and clustering coefficient. The graph showing 1782
edges connecting 605 vertices is of course unreadable. Figure B presents the graph as a
dot-plot where a dot at row ¢ and column j indicates that the edge ¢ < j is present. To
emphasize the connections between the different groups, we reordered the vertices within
groups. The limits between groups are obtained using a maximum a posteriori (MAP)
classification of vertices: the vertex i is classified into group ¢ for which 7, is maximal.

The bottom plot in Figure Bl gives the estimated posterior probabilities 7;,. We see that
the first groups are quite well defined. The last one (21) has more fuzzy limits: is actually
made of very isolated reactions having not much in common.

Figure Hl compares the expected mean degrees A, and connectivities A4 between the
groups with the ’observed’ ones. Because the true group to which each vertex belongs is
not known, the observed values are not available. We propose to classify vertices using the
MAP rule to get an estimate of

e the mean connectivity: K, = >, Ti,Ki />, Tig
e and of the between group connectivity: qu =>.>

G>i TiqugXij .
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Figure 3: Top: Dot plot representation of the graph after classification of the vertices into
the 6 groups. Bottom: Posterior probabilities 7.
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Figure 4: Connectivities between groups (Aqe: left) and mean degree (\,: right). z-axis =
expected, y-axis = ’observed’

Indeed this comparison is not completely satisfying since both the expected and the ’ob-
served’ values are derived from the modeling. Therefore, the very good fit obtained in Figure
A is partly artificial.

To end, we also compare the expected clustering coefficient ¢ given in Proposition
with the observed one. The expected value for () = 21 groups is 0.544, while the observed
one is 0.626. The ERMG model therefore slightly underestimates this coefficient. On the
same dataset, the Erdos-Rényi model would give ¢ = 7 = 0.0098.

Acknowledgments. The data and the original biological problem have been provided by
V. Lacroix and M.-F. Sagot (INRIA-Hélix, INRIA, Lyon). The authors also thank C. Matias,
E. Birmelé (CNRS-Statistic and Genome group, Evry univ.) and S. Schbath (INRA-MIG,
Jouy-en-Josas) for all their helpful remarks and suggestions.

RR n° 5840



/<

Unité de recherche INRIA Futurs
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



	Introduction
	Mixture model for the degrees
	Erdös-Rényi mixture for graphs
	General model
	Examples

	Some properties of the ERMG model
	Distribution of the degrees
	Between-group connectivity
	Clustering coefficient.
	Independent model
	Likelihoods

	Estimation
	Dependency graph.
	Approximate E step
	M step
	Choice of the number of groups

	Application to biological networks
	Fit of the empirical distribution of the degrees
	Erdös-Rényi mixture modeling


