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Analyse et homogénéisation numérique des opérateurs
elliptiques monotones et des énergies quasiconvexes

Résumé : De nombreuses méthodes ont été proposées ces derniéres années pour homogé-
néiser numériquement des opérateurs elliptiques linéaires ou non linéaires. Ces méthodes
sont souvent définies au niveau discret. La plupart d’entre elles consiste & calculer numéri-
quement un nouvel opérateur, qui approxime, en un sens 3 préciser, I’opérateur homogénéisé
du probléme. L’objectif de ce travail est de clarifier la construction de cet opérateur numé-
rique dans le cas convexe en introduisant une version continue de ’opérateur, de généraliser
I’approche au cas quasiconvexe et d’en faire ’analyse. Ce nouvel opérateur peut alors étre
discrétisé de différentes fagons, retrouvant ainsi différentes méthodes comme les éléments fi-
nis multiéchelles ou la méthode HMM. En outre, nous introduisons un correcteur numérique
dans le cas convexe général.

Mots-clés : homogénéisation, I'-convergence, opérateur elliptique, quasiconvexité, HMM,
MsFEM, correcteur, coarse graining



Analytical framework for numerical homogenization 3

1 Setting of the problem and statement of the main re-
sults

For the sake of simplicity and in order to relate the present work to existing approaches,
we first consider a scalar elliptic partial differential equation that is the Euler-Lagrange
equation of a problem of minimization of an energy. The energy density is assumed to be
convex and to vary at a scale small with respect to the size of the domain, which makes
direct numerical simulations impossible to perform in practice. OQur purpose is to introduce
an averaged energy density which does not vary as much as the original energy density and
prove that the associated minimization problem is a correct approximation of the original
minimization problem in the sense of I'-convergence.

Although strict convexity ensures the existence and uniqueness of the solution to the
Euler-Lagrange equation and allows to use a more direct approach (e.g. G-convergence), our
arguments are based on variational principles. Most of the existing works (see e.g. [9], [10],
[8]) actually treat the PDE. Qur approach allows to deal with the case of nonlinear elasticity,
as will be seen. The first Section is dedicated to the introduction of the averaged energy
density in the framework of the homogenization theory for convex energies. Theorem 1
states the I'-convergence of the averaged energy to the homogenized energy and Theorem 2
introduces a new general corrector result, which describes the fine scales features of the
solution of the original minimization problem without assumption on the heterogeneities.
This corrector is called a numerical corrector in reference to [10], where it was first derived in
the stochastic and stationary case. Section 2 is dedicated to the proofs of the main theorems.

Besides the analysis of convex problems, a generalization of this approach is introduced
in Section 1.3 to deal with nonconvex energy densities. Definition 10 and Theorem 3 are the
natural counterparts of Definition 3 and Theorem 1 for quasiconvex energy densities. The
proof of Theorem 1 is adapted to the quasiconvex case in Section 2.3.

Finally, Section 3 relates the present work to some well-known numerical methods such
as the MsFEM and the HMM to which the present analysis applies both in the convex and
quasiconvex settings.

We assume the reader is familiar with the basic properties of the I'-convergence theory.
Should the need arise, [5] provides with a good introduction and [6] gives a more systematic
study of the subject. For consistency, let us recall some notation and properties of the
I'-convergence in Sobolev spaces. In the sequel, 2 denotes an open bounded subset of R™
(n > 1), WHP(Q) denotes the Sobolev space for p > 1 and p’ denotes the conjugate exponent
defined by & + - = 1.

Definition 1 Let F. : W'P(R") — R be a family of functions. We say that F. T'(LP)-

converges (resp. T'(W1P)-converges) to FF : WHP(R") — R on Q if and only if the two
following properties are satisfied.

RR n° 5791



4 Gloria

(i) Liminf inequality: for every u € WYP(Q) and every sequence u. such that u. — u (resp.
ue — u) in WHP(Q),
F(u) < liminf F,(u).

(i) Recovery sequence: for every u € W1P(Q)) there exists a sequence . such that i, — u
(resp. . — u) in WHP(Q) and

limsup Fe(te) < F(u).
€
Definition 1 is also refered to as the sequential I'-convergence since it is stated using the

convergence of sequences. We refer to [5, Section 1.4] for equivalent definitions.

The T'-convergence implies the convergence of minima and minimizers of functions as
stated in the following

Lemma 1 Let F. : WP(R") — R be a family of functions that T'(LP)-converges to F on
Q. If F. is lower semicontinuous for the weak topology of WP(R") and equicoercive in the
following sense

3 >0, YoeWhP(Q),Ve>0, CHVUHZD(Q) < F.(v)
then for every ug € WHP(Q)

lim (inf{Fe(v +ug),v € WOLP(Q)}) = inf{F (v + up),v € WP (Q)}

and for every sequence u. of minimizers of inf{F.(v + ug),v € Wy (Q)} there exists a
subsequence (not relabeled) and a minimizer u of inf{F(v + ug),v € Wy *(Q)} such that
ue — u in WHP(Q).

In the following, I" denotes the I'(LP)-convergence. For all open bounded subset O of R"
and v € L'(O), we denote

1
<u>p= W /OU,(J?)d.CC

1.1 Homogenization of convex energy densities

Let us first recall classical homogenization results for convex energy densities (see [4], [6]
and [18]).

Definition 2 A function W : R™ x R"™ — R is a Carathéodory function if for every & € R™,
W (-, &) is measurable and if for almost all x € R™, W (x,-) is continuous.

A Carathéodory function on R™ x R™ is a Borel function on R™ x R™.

Lemma 2 Let W, : R” x R" — [0,400) be a set of functions satisfying the following
conditions:

INRIA



Analytical framework for numerical homogenization 5

o Hi: W is a Carathéodory function;
e H2: for almost every v € R™, W (z,-) is convez;
e H3: there exist 0 < ¢ < C and p > 1 such that
gl < We(z,§) < C(1+[¢]7)
for almost all x € R™ and for all £ € R™.
Consider Q) a bounded open subset of R™ and set for all € > 0,

Fg(u):/ﬂWE(x,Vu(x))dm (1)

for all u € WHP(Q,R). Then, up to extraction, there exists a function Whon, satisfying HI,
H2 and H3, such that we have

D(LP) ~ lim Fi(u) = /Q Wiom (2, Vau(x))dz,

for all u € WHP(Q,R).
Lemma 3 In addition to H1, H2 and H3, let assume that p > 2, that

o Hjy: W(x,-) is continuously differentiable for almost all x € Q and a.(-,0) = ——
is bounded;
and that the following monotonicity and continuity properties hold:
F30<a<p—1,C>0 | for almost all x € R", for all £&,& € R™
|ac(z,&1) = ac(z, &)| < CA+|&]+ &P 6 — &I 2)

32< B <+00,¢>0 | for almost all x € R™, for all &,& € R™
(ac(@,€1) = ae(x, &), & — &) = c(L + [&1| + &P Ple - &7 (3)
Then, given f € LP (Q), the solution u. € W, *(Q) to
—div (ac(z,Vue)) = f
weakly converges in Wy P (Q), up to extraction, to the solution u € Wy (Q) to
—div (apom(z, Vu)) = f,
where apom : R™ x R™ — R™ is related to Whonm, defined in Lemma 2 by

a o aWhom
hom — 8{ .

In addition apom satisfies (3) with the same coefficient ¢ and exponent 3, and (2) with the
same coefficient C and the exponent a/(8 — «) instead of .

RR n° 5791
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1.2 Main results

Let (We) be a family of energy densities satisfying the assumptions H1, H2 and H3. The
problem we consider is

inf {/Q We(x, Vu),u € WHP(Q) + BC} : (4)

By W1P(Q) + BC in (4), we mean any subspace of WP () associated to usual boundary
conditions. In particular, we will consider

(1) ¢+ WyP(Q) for any ¢ € WHP(Q),

(2) {u e WHP(Q)|u(z) = £ -2+ v(z),v € W;p(Q)} for any ¢ € R", with W;p(ﬂ) =
{valve Wllocp (R™), v is Q—periodic} if R” can be obtained by the periodic replication
of ,

(3) {ue WhP(Q)| < Vu >q= ¢} for any £ € R™.

These three boundary conditions indeed do not influence the energy density of the I'-
limit of (4), as briefly recalled in the Appendix. This is why we do not make them specific
in the sequel.

Up to extraction, problem (4) T'-converges to

inf {/Q Whom (2, Vu),u € WHP(Q) + BC’} : (5)

The density Whom is not explicitly known. Lemma 2 only provides with an existence result.

For brevity, we denote by

L(u) = /Q W, (2, Va),
Ihom(u):/QWhom(xavu)7

for u € WHP(Q).
We now introduce a notion of energy averages on balls.

Definition 3 For any n > 0, denoting by B(xz,n) the ball of radius n centered at point
x € R™, we define the energy density

Why.e(z,€&) = inf {< We(-,Vo(-)) >Ban v € WP (B(z,1n)), < Vo > Bz = 5} (6)

from R™ x R™ to R and the associated energy functional

Iy.(u) = /Q W, (2, V), for all u € WP(Q).

INRIA



Analytical framework for numerical homogenization 7

Remark 1 We have used balls B(x,n) for defining averaged energies. All the results pre-
sented throughout this work hold for generic open neighborhoods N(x,n) satisfying that for
every x© € S, there exist 0 < ¢ < C such that for every n > 0, ¢|B(x,n)| < |[N(z,n)| <
C|B(z,n)|-

Let us introduce the concept of "equi isolated minimizers" before stating the first main
result.

Definition 4 Given a family of energy functionals Fn on the metric space (V,d), we say
that a family un of minimizers of Fx on (V,d) is equi isolated if there exists a ball B CV
such that uy € B and uy is the unique minimizer of Fiy on B for every N > 0.

Our first result is the following

Theorem 1 For p > 1, the energy densities W, . satisfy H1, H2 and H3 and the energy
L, T(LP) and T'(W1P)-converges to Inom as € and n go to 0. Therefore, for any sequence
Up,e of minimizers of inf{I, (v) |v € WHP(Q,R) + BC}, there ezists a minimizer upom of
inf{Ihom (v) |v € WHP(Q,R) + BC} such that

lim liH(lJ Upe = Uphom weakly in WhP(Q,R), (7N

n—0e—

up to extraction.
Correspondingly, for any minimizer unom of inf{Inom(v)|v € WHP(Q,R) + BC} there
ezists a sequence u, . of minimizers of inf{l, .(v)|v € W1P(Q,R) + BC} such that
111% lin% Upe = Unhom  Strongly in wWh?(Q,R). (8)
n—0e—
In addition, if u,.. is a family of equi isolated minimizers in the sense of Definition 4
then wpom 1s also isolated and (8) holds.

In particular, if We(x,-) is strictly convex almost everywhere on R™, the unique sequence
of minimizers u, . strongly converges in W1P(Q,R) to the unique minimizer upom.

Remark 2 The order of the limits in (7) is important and cannot be changed in general.
We can also define a set of numerical correctors to approximate Vu, in LP(€2).

Definition 5 Let {Qmi}ic[1,1,,] be a partition of Q in disjoint subdomains of diameter of
order H. We define a family (My) of approximations of identity on LP(Q) associated to
Qu,i: for every w € LP(Q?) and H > 0,

Iy

MH(w) = Z <W >Qp,; 1QH,’£'
=1

RR n° 5791
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Keeping the notation of Theorem 1, we define the numerical correctors U,Iif for a strictly
convex energy density as the unique minimizers of

inf{ We(z, Vo) |[v € WHP(Qpui), < Vo >q,,= MH(VU’?’E)lQHi} i (9)
QH,i '

Theorem 2 Assume p > 2, H1, H2, H3, H}, (2) and (3) with 3 < p. We keep the notation
of Lemma 8, Theorem 1 and Definition 5. We have

Iy
. . H,i _
dim T [ Ve — ‘E_l Vuy i1, e = 0. (10)

Remark 3 The order of the limits in H and 7 in (10) is not important and we may take
e.g. H =n — 0. However we have to first let € go to zero.
Remark 4 Theorem 1 holds if W, (x,§) is replaced by

inf {< We(-, Vo(*)) >pn |v € W'P(B(z,n)),v(y) =&y on dB(z,n)} .

Theorem 2 also holds if v is replaced by the unique solution in W'P(Qm.;) of

inf{ We(z, Vo) |v(z) = Mu(Vuy.e) g, , -2 on 6QHJ} .
Qmu,i "

The proofs of Section 2 can be easily adapted to these cases.

Remark 5 If the neighborhood N(xz,n) is such that R™ can be obtained by the periodic
replication of N(xz,n) then Theorem 1 holds with

Wye(,€) = inf { < We(, €+ V() > [0 € WP (N(@,m) }- (11)

From a theoretical point of view, u, . has the advantage to strongly converge to upom
in W1P(Q), whereas u. only converges weakly. This has an important consequence on the
practical numerical computation of u, . and u.. As u, . strongly converges to upom, the
gradient of u, . does not oscillate at order 1 at the period ¢ when 1 and e are sufficiently
small if Vupom does not oscillate at small scales. This may allow to take a meshsize larger
than e to approximate u, . with a finite element method. This is not the case for u.. In
fact, state of the art multiscale methods for elliptic equations usually compute numerical
approximations of u, ., as will be seen in Section 3.

1.3 Extension to the quasiconvex case

Let us briefly recall the corresponding version of Lemma 2 for quasiconvex energy densities.

INRIA



Analytical framework for numerical homogenization 9

Definition 6 Given p > 1, n > 1 and d > 1, a function W : R"*4 — [0, +-oc] is WP-
quasiconvex (or simply quasiconvex in the sequel) if for all A € R"*¢, there erists an open
bounded subset E of R™ with L™"(OF) = 0 such that:

W(A) = min {ﬁ /E W (A + V(x))dz | 6 € Wol’p(E;R3)} .

Remark 6 A quasiconvex function is rank-one convez, that is for every rank-one matriz
&€ € R™? and for every ¢ € R™*9, the function R > t s W (( + t£) is convex.

The characteristics of quasiconvexity is to ensure the weak-lower semicontinuity of inte-
gral functionals.

Lemma 4 If1 < p < oo, and W : R"™? — R is a quasiconvex function satisfying

0<W(A) <CA+|AP) for all A € R™*4,
then the functional J : u — / W (Vu) is weakly lower semi-continuous on WP(Q).
Q

Definition 7 [5, Section 12.1] Given a continuous function f : R™*% — R ¢ s f(£) that
satisfies (12), its quasiconvexr envelop Qf is defined as the greatest quasiconvex function
lower or equal to f. In particular, it is given for all £ € R"*¢ by

ane) = wtd [ fe Vutyu e w0 1" R

— inf /(OM F(6+ Vu(y))dy |u € WE((0,1)", RY)

Definition 8 Let (z, A) — W(x, A) be a Carathéodory function defined on R™ x R"*¢  for
which there exist an integer p > 1, positive constants ¢ and C, such that for almost all
z € R" and for all A € R"¥4,

AP < W(z,A) < C(1+ |A]) (12)
The function W is then said to satisfy a standard growth condition (of order p).

Definition 9 The function W : R" x R"*¢ — R, (z, A) — W(x, A) is a standard energy
density if W is a quasiconvex Carathéodory function, that is:

e W (-,-) is measurable in its first variable and continuous in its second variable
e W(x,-) is quasiconvex for almost every x € R™

and if W satisfies (12).

RR n° 5791
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We are now in position to recall the homogenization result for quasiconvex energy den-
sities.

Lemma 5 [/, Theorem 12.5] Let W, : R" x R"*¢ — [0, 4+c0) be a set of standard energy
densities satisfying the growth condition (12) of order p > 1 uniformly in ¢. For any bounded
open subset Q of R", for all u € W'P(Q,R?) and ¢ > 0, we set

Ie(u):/QWE(x,Vu(x))dm.

Then, there exists a homogenized standard energy density Wyom @ Q x R4 — [0, 4+00)
satisfying (12) and such that, up to extraction, I'(LP) — liH(lJ I. = Iom on WHP(Q,RY) where

Ihom(u):AWhom($,vu($))d$.

Contrary to the convex case, quasiconvexity is not preserved by the averaging of Defi-
nition 3. Therefore we have to use quasiconvex envelops to obtain results corresponding to
Theorem 1.

Definition 10 For n > 0, C(z,n) is the hypercube of R™ centered in x € R™ and of length
1. We then define the averaged energy density by

Wl ) = inf {< We(-, €+ Vo() >can |0 €W (Cla R} (13)
from R" x R"*4 to R, and the energy functional associated to its quasiconvez envelop QW,

Inc(u) = /QQWW,E(% Vu), for all u € WHP(Q,R%).

Remark 7 For d = 1, quasiconvezification reduces to convezification and formula (13) is
equivalent to formula (11).

Theorem 3 For p > 1, the energy densities QW . are standard energy densities satis-
fying (12) and I, . T'(LP) and T(W'P)-converges to Inom as € and n go to 0. Therefore,
for any sequence u, . of minimizers of inf{I, (v)|v € WLP(Q,R?) + BC}, there ezists a
minimizer Unom of inf{Ipom (v) |v € WLP(Q,RY) + BC} such that
lin% 111% Upe = Unom weakly in WLP(Q,Rd), (14)
n—0e—
up to extraction.
Correspondingly, for any minimizer upom of inf{Inom(v)|v € WP(Q, R?) + BC'Y}, there
exists a sequence u, . of minimizers of inf{I, .(v)|v € WHP(Q,R?) + BC} such that
lir% lirr(l) Up,e = Uhom Strongly in whr(Q,RY). (15)
n—0e—
In addition, if u,. is a family of equi isolated minimizers in the sense of Definition 4,
then upom 18 also isolated and (15) holds.

INRIA



Analytical framework for numerical homogenization 11

Theorem 3 is abstract since quasiconvexification is not explicit in general and very hard
to compute in practice. However, an alternative consists in considering the energies W, . on
a finite dimensional space first and passing to the limit on the dimension in a second step
as stated in the following

Theorem 4 Let consider a set of finite dimensional subspaces of WP(Q,R?) and an asso-
ciated equi-continuous family of projectors (Vir, Py), such that Vi C Ve for 0 < H? < H'

and UHVHl’p = WP(Q). We then define the following integral functionals on WP (2, R%):
I8 (u) = /Q W (z, V Pru). (16)

Under the assumptions of Theorem 3, Ife T (WhP)-converges to Ijom as €, n and H go to
0.

There exist minimizers wl, € Vi of inf{Il' (v)|v € WhP(Q,R?) + BC}, and for any
such sequence there exists a minimizer Upom of inf{Inom(v)|v € WHP(Q,RY) + BC} such
that

C e H - 1p d
}111310 %13% 113(13 Uy ¢ = Unom weakly in WP (Q,R?), aan
up to extraction.

Correspondingly, for any minimizer unom of inf{Inom(v)|v € WHP(Q,RY) + BC}, there
exists a sequence ull. of nf{IF_(v)|v € WP (Q,R?) + BC} in Vi, such that

fllimo lir% lirr(l) uf;{ﬁ = Upom  strongly in WP (Q,RY). (18)
—0n—0e—

In addition, if uﬁ{e is a family of equi isolated minimizers in an extended sense of Defi-

nition 4 (for which B shoud be replaced by B NVy ), then (18) holds.

The idea behind Theorem 4 is that the compactness of minimizers is due to the finite
dimension of the minimization space at finite € and 1 and to quasiconvexity at the limit.

Remark 8 If W is convex then, for all £ € R"*¢,

inf { W (€ + Vu),u € W,P((0,1), R”)}
(0,1)4

= inf W (€ + Vau),u € WHP((0,1)%,R™), < Vu > (g 1= 0} .
(0,1

This equality does mot hold for quasiconvex energy densities as can be easily seen on the
polyconvex function & — |det(&) — 1| on R?*? at point &€ = 0. Therefore the averaged energy
density of Definition 8 is not a suitable definition in the quasiconvex case, for which periodic
or Dirichlet boundary conditions have to be considered.

RR n° 5791
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Remark 9 The convergence of the minimizers for quasiconver energy densities in The-
orem 3 is only weak in WP, as opposed to the strictly convex case. This limitation 4s
not technical and the hypothesis of "equi isolated minimizers" (which cannot be checked in
practice) is in a way optimal. A counter example is given by shear band instabilities for a
homogenized energy which is not strictly rank-one convez, as considered in [13] and numer-
ically explored in [14].

2 Proof of the main results

For the sake of illustration, we first consider in Section 2.1 the one-dimensional linear version
of (4). In this simple case, all the computations may be performed analytically. We thus
get some useful insight on the interest of u,, . and on the ingredients needed for the proof of
Theorem 1, which is in turn performed in Section 2.2 and adapted to the quasiconvex case
in Section 2.3. The proof of Theorem 2 is then the purpose of Section 2.4.

2.1 The one-dimensional linear case

In the one-dimensional linear case, problem (4) reads
1
inf {/ We(z, v (z))dz,u € H'(0,1),u(0) = 0,u(1) = 1} , (19)
0

where We(z, &) = %aﬁ (z)€?, and a. is a family of functions in L°°(0, 1) such that

0<c<ac(r) <C <+

for almost every = € R. To fix the ideas, we have made the boundary conditions specific
in (19). This choice is arbitrary and plays no essential role.

The unique minimizer of (19) is:

ro1
’U/E(it) = CEA ?(y)d:%

wenc.= ([ T)

1 1
Extracting a subsequence, we may assume that — weakly converges to some b in L°°.
Qe
-1

1
Consequently, C. converges to C' = ( /
0

1
b*(y)

@) dx) in R. Thus u. weakly converges in

HY0,1) t0 Upom :  — C’/ dy.
0

INRIA



Analytical framework for numerical homogenization 13

In this one-dimensional case, the definition (6) of an averaged energy density reads

1 . z+n
W%4%£%=Zfﬁ{/‘ Wely, o' 1))y, v € B (2 — n, + 1),
z—n

L[ )
- vydy:&}-
21 Jooy

Straightforward calculations give the explicit form

e S

(z—n,z+n)

It follows that the minimizer of

inf {/01 Wy.e(z, 4 ())dz,u € H'(0,1),u(0) = 0,u(1) = 1}

is the function

* 1
uﬁx:C’,E/ <—> dy, 20
n ( ) n o ae(') () Yy ( )

L —1 L -1
where C), . = / L dz . Let C), = / L dz . When
’ o \ac() z—n,2+n o \0*() (z—n,z+n)

n is kept fixed, u, . strongly converges in H'(0,1) (for the previous extraction in €) to

r 1

Un,hom () = Cy / <b*—> dy by the dominated convergence theorem. Let now
0 ) (y—ny+n) )

1 go to zero. For every Lebesgue point y of b € L'(0,1) (thus almost everywhere on

1 1
(0,1)), <b*—()> — ) The dominated convergence theorem then shows that
1 (y=n.y+n)
Up,hom — Unom in H'(0,1). Consequently
%ii% lm wy ¢ = wnom in H(0,1). (21)

1
Since the convergence obtained is strong in H'(0, 1), the energy /0 W.e(x,uy ) also

1
converges to / Whom (T, u),pp,) in R.
0

The convergence of u, ¢ t0 upom is strong, in contrast to that of u..

Remark 10 Remark 2 can be advantageously related to formula (20), where we can see that
the compactness of translations allows to miz the limits in € and n as pointed out in [10]
and illustrated below.
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Let us make the above one-dimensional problem even more specific by considering the
x

example of an operator of the form a.(z) = a(—) where a(+) is 1-periodic on R. In this case,
€

z+n
1 1 /Z“i 1 < 1 1 €
N e R S W T
<a6(-)>(zn7z+77) 2n J.—y aly/e) 21 ) z=n a(y) a(-) (0,1) n
This shows that lin% Upy(e),e = Uhom in H'(0,1) if liH(lJ n(e) = 0 and liH(lJ % = 0, which is
e— €— €—> ’r] €

more precise than (21). The same property holds for stochastic homogenization for which
we refer to the preliminaries and the Section 4 of [10].

In the proof of Theorem 1 for the one-dimensional case, the main ingredient is the
pointwise convergence of integrands due to the averaging of weakly converging functions
on balls. Since the expression of the minimizer in (20) is analytical, the conclusion is
achieved by using the dominated convergence theorem. This specific expression is linked
to the dimension and to the linearity. When dealing with the multi-dimensional case, no
such analytical formula holds for the minimizer. Following the line of the proof for the one-
dimensional case, we can focus on the Green formula for the solution and use the abstract
G-convergence theory. In the present work however, we focus on the minimum instead of the
minimizer and use I'-convergence arguments to link the convergence of the energies to the
convergence of the minimizers. This approach illustrates that in a way the modified energy
of Definition 3 is a relaxed energy, in the spirit of the homogenization of multiple integrals
dealt with in [4].

2.2 Proof of Theorem 1

The following three lemmata relate the pointwise convergence of energy densities to the
I'-convergence of the associated energy functionals.

Lemma 6 [6, Proposition 5.11] Let X = R"™, Br = B(xo, R) for xo € X and R > 0, and let
F : Br — R be a convex function. Suppose that sup,cp, F(r) = M < +oo. Consequently
infpep, F(xr) =m > —oco. Let 0 <r < R and K = (M —m)/(R—r). Then

|F(z) = F(y)| < K|z —y] (22)
for every x, y in the closure B, of B,.

Lemma 6 is a classical result of convex analysis. The reader is refered to [6] for a proof.
It is used in the Appendix to prove the first of the following lemmata, which are crucial for
the sequel, and also stated and proved in [6].

Lemma 7 [6, Proposition 5.14]. Let W, : R"xR" — R be a set of Borel functions satisfying
the growth condition ~
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Analytical framework for numerical homogenization 15

and such that for almost every x € R™, W, (z,-) s convex on R". Let us assume that there
exists an open bounded subset w of R", such that for all £ € R™, W(-,§) converges pointwise
almost everywhere on w to a function W(-,&). If W is a Borel function that satisfies (23)

and for almost every x € w, W (x,-) is convex on R", then I, : u / W.(z, Vu)dx T(LP)-

converges to I : u s / W (x, Vu)dz on WP (w).

Lemma 8 [6, Theorem 5.9]. Let (X,d) be a metric space. Let (F,) be a sequence of func-
tionals from X to R. If (F.) is equi-lower semicontinuous on (X, d), then F, I'(d)-converges
to F in X if and only if F. converges to F pointwise in X .

Lemma 8 uses the notion of I'-convergence in metric spaces. Provided the right extension
of Definition 1 (see [5, Section 1.4] e.g.), its proof is rather direct. We refer to [6, Proposition
5.9] for details.

Finally we recall a particular case of a theorem of [6] which relates the convergence of
minimizers to the I'-convergence for non-coercive functionals. To this aim, let us introduce
the following notions.

Definition 11 Let F be a functional from the metric space (X,d) to R. We denote by
M(F) the possibly empty set of all the minimizers of F' on X. Let now (F) be a sequence
of functionals from (X, d) to R. We denote by K — lin% M(F,) the possibly empty set of the

limits of all the sequences of minimizers ue € M(F,) in (X, d).
We refer to [6, Sections 4 and 7] for details on these notions and on the following

Lemma 9 [6, Theorem 7.19] Assume that (F.) is a sequence of functionals which I'(d)-
converges on the metric space (X,d) to a functional F that is not identically +oco. If

lin%igl(f F. = igl(fF and the infima are attained on X (that is M(F.) # 0), then M(F) =

K- lir% M(F.). In particular, for any minimizer w € M(F), there exists a sequence
ue € M(Fe) such that lirr(l)uE =u in (X,d).

The sketch of the proof of the Theorem 1 is the following. We study separately the limits
in € and in 7. The arguments are however the same. First, using Lemma 7 and the pointwise
convergence of the integrand, we prove the I'(L?)-convergence of the sequence of functionals.
Since these functionals are equi-coercive in the weak topology of W (), Lemma 1 implies
the convergence of the infima, and the existence and the weak convergence of the minimizers.
In addition, the hypotheses of Lemma 8 are also satisfied on (W7 (), | |w1.»(q)), thus the
sequence of functionals also I'(W!P)-converges to the same limit. Finally we can apply
Lemma 9 and deduce the strong convergence of the minimizers in the strictly convex case.
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Limit ¢ — 0 Up to extracting a subsequence in € (not relabeled), Lemma 2, applied to
W, on the open bounded subset U,cqB(x,n), implies that there exists an energy density
Whom whose associated energy Ij,opm, is the T-limit of I, on WP (U,eqB(z,n)). The locality
of I'-convergence (i.d. the energy density of the I'-limit does not depend on the domain of
integration), the irrelevance of boundary conditions for the I'-convergence (Appendix 4.1)
and the equi-coercivity (Lemma 1) imply

lim <inf {/ We(y, Vo) |v € WHP(w), < Vo >,= 5})
0 w (24)
= inf {/ Whom (y, Vv) |v € WHP(w), < Vv >,= 5}

w

for every open subset w C UyeqB(z,n) and for all £ € R™. Equality (24) with w = B(z,7)
reads

lii% Wie(,8) = Wy hom (2, ), (25)

for every £ € R", where

Wmhom(xaé-) = inf {< Whmﬂ(" VU()) >B(z,7]) |
v e WIP(B(,0)), < Vo() >y =€}

The energy densities W, (-, &) and W), pom (-, &) are measurable for all € and 7 anf forall

¢ € R™ as the limits of the following measurable functions, x +— We(y, Vuy,(y)) and
B(z,n)

T — Whom (y, Vun(y)) where u,, and v, are minimizing sequences of these integrals on
B(z,mn)

the set {v € W'P(Q) | < Vv >p.n= &} To prove that W, . and W, jorm are Carathéodory

functions, it remains to prove that for almost every x € Q, Wy, (z,-) and Wy, pom(z,-) are

continuous on R™, which is actually a consequence of convexity (property H2).

We now show that the energy densities W, . and W, o, satisfy the properties H2 and
H3. For almost every z € 2 and for all £ € R"”,

Wy e(z,€) inf {< We(-,€+ V(")) >p@ny | < Vv>=0}
< We(a&) >B(z,n)

C(1+ (&), as W, satisfies H3.

INIA I

Let ve denote a minimizer of inf {< W(-,£ + Vu(+)) > gz | < VU >p,n= 0}, we then

have
Whe(z, &) > e<|E+Vue()P >Bam), as W, satisfies H3
> cinf {<[£+ Vo()]P >p,) | < Vo >=0}
= cle.
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Analytical framework for numerical homogenization 17

Consequently W, . satisfies H3. The same calculations hold for W, som. The convexity of
Wy.e(x,-) and of W, pom(x,-) is a consequence of the following calculation. Let £, ¢ € R”,
A€ (0,1) and vy, vy € WHP(Q) such that < Vv, >=< Vuvy >= 0. As W, is convex,

< W, ME+ Vur (1) + (1 = X)(C + V2()) >B(am
<AL WE('?&"’ V’Ul()) >B(ac,77) +(1 - /\) < We('vc + VUQ()) >B(m7n) .

Let now 07 and v3 be respectively minimizers of the first and second terms of the right-hand
side above. We have

<We(5 A€+ VoL () + (1= A€+ V2(4))) > B
S >\Wn7e(x7€) + (]- - )‘)Wn,E(va <)

And consequently
Wie(z, A+ (1= A)Q) < AW (2,£) + (1 = M)Wy e(z, ).
It is worth noticing that if W, is strictly convex, then W, . is also strictly convex.

Since W), and W), om satisfy HI, H2 and H3, we can use Lemma 7 and the pointwise
convergence (25) to prove that

I‘(LP) - hH(l) Ime = Inhom

on WHP(Q) where Iy pom = u s / W, (z,Vu). Using Lemma 1, H3 also implies the
Q
convergence of the infima

lir%inf {Ie(u),u € W"P(Q) + BC} = inf {1, hom (u),u € W'P(Q) + BC}

and the weak convergence in W1?(Q) of any corresponding sequence of minimizers u,, . to
some minimizer uy rom, UP to extraction.

In addition, by the application of the dominated convergence theorem, for every u €
wir(Q), / W.e(x, Vu) converges to / Wi hom (2, Vu) as € goes to 0. As (W, ) is convex

Q Q
and satisfies H? for all € and 7, the associated energy functionals are equi continuous on
W1tP(Q). Thus Lemma 8 shows that I, . T'(W'P)-converges to I, jom-

Lemma 9 shows that for every minimizer wu, nhom there exists a sequence of minimizers
Uy, such that u, c — Uy pom in WHP(Q). In addition, if W, is strictly convex, then W, . is
also strictly convex and there exists a unique sequence of minimizers u, .. As M (I, hom) is
non empty, (u, ) strongly converges to some uy hom € M (I hom) (Without extraction) in
W1tP(Q) as € — 0, and the minimizer u, yom is also unique.

If a sequence of minimizers u,, . happens to be equi isolated on B C W(Q) in the sense
of Definition 4, then the previous argument holds applying Lemma 9 on (B, | - |1,p) since
the T'(WbP)-convergence on W1?(Q) implies the I'(W1P)-convergence on (B, | - |1,). We
thus obtain the strong convergence of the sequence.
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Limit n — 0 For every £ € R"”, let us first determine the pointwise limit on Q as 7 goes
to 0 of

W hom(2,€) = inf {< Whom (-, Vv(-)) >pny |v € WHP(B(z,n)), < Vo >pn= &}

_ inf{/ Wiom(@ + 1y, Vo(y)), v € W(B(0,1)),
B(0,1)
1
<V >pon=¢}- 2 BO.1) (26)

To this end, let denote by W (y,£) = Whom(z + ny, &) for almost every z € Q, y € B(0,1)
and ¢ € R”. Lemma 2 implies that the energy densities W/ (-, ) and Wyom(z, -) satisfy H1,
H2 and H3. In addition, for all £ € R™, every Lebesgue point z € Q (and consequently
almost everywhere on Q) of Wy (+,€) € L'(Q,R) and almost every y € B(0,1),

7172% Whom (33 + 1y, 5) = Whom (33, f)

We now apply Lemma 7 to obtain the I'(LP)-convergence of the associated integral func-
tionals. Property H3 then implies the convergence of the infima (26) by the application
of Lemma 1. For every £ € R", this proves the following pointwise convergence almost
everywhere on (2

%{% Wmhom(xag) = Whom(iv?f)‘ (27)

Lemma 2 and the same arguments as for W, . show that W), 1om and Wiy, also satisfy
H1, H2 and H3. By the application of Lemma 7, the pointwise convergence (27) implies the
I'(LP)-convergence of I, pom t0 Inom on WHP(Q) as n goes to 0. Consequently, minimizers
Up, hom converge weakly in WLP(£) to some minimizer wyom, up to extraction, by Lemma 1.
Using Lemmata 8 and 9 as for the limit ¢ — 0, we obtain the three last statements of
Theorem 1.

2.3 Proof of Theorem 3
The proof of Theorem 3 exactly follows the lines of the proof of Theorem 1. We indeed have

Remark 11 The conclusion of Lemma 7 is unchanged if we replace the hypothesis of con-
vezity on R™ by the hypothesis of quasiconvezity on R"*?.

This version of Lemma 7 is more general and is the one proved in the Appendix. For the
sake of clarity, we will still refer to Lemma 7, even in the quasiconvex setting for which it
should be understood in the sense of Remark 11.

In contrast to the proof of Theorem 1, the hypotheses of Lemmata 7 and 8 are more
technical to check in the quasiconvex case, especially the pointwise convergence of the inte-
grands. To do that, we will make use of the following results of the calculus of variations: a
characterization of quasiconvex hulls and a decomposition lemma.
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Lemma 10 [2, II1.7] Let f be a Carathéodory functional satisfying the growth condition (12)
for p > 1 on R™ x R"*?. Let Qf denotes the quasiconvex envelop of f. Then for all Q
open bounded subset of R™ and for all u € WHP(Q,RY), there exists a sequence {¢p}r €
Whr(Q,R?) such that ¢p, — u in WIP(Q,R?) and

[ @t vy = i [ s 00,

Lemma 11 [12] Let p > 1 and assume that OX) is Lipschitz. Let uj, — vo in WHP(Q,R?).
Then there exists a subsequence uy, of uj, and a sequence v; € W1 (R™ R?) such that

(i) v = vg in WIP(Q,R?),
(#1) vy = vy in a neighborhood of 09,
(iii) {Vui}; is p-equi-integrable, that is for all p > 0, there exists § > 0 such that for all

measurable subset A C sup/ |Vu|Pdz < p whenever L™(A) < 4,
leN J A

(i) llir(r)lo LM{z € Q:u(x) # ug, (x) or Vu(x) # Vug, (2)}) = 0.

We finally state a lemma that relates the pointwise convergence of Lipschitz Carathéodory
functions to the pointwise convergence of their quasiconvex envelops. The proof of this
lemma is posponed until the Appendix.

Lemma 12 Let f and f. be Carathéodory functions satisfying (12) on R™ x R"*?, We
assume that for all R > 0, there exists K > 0 such that for almost every x € R™ and for
all e > 0, f.(z,") and f are K-Lipschitz on B(0,R) = {¢ € R"*4 : |¢| < R}. If fe(x,€)
converges to f(x,&) for almost every x € O (open bounded subset of R™ with Lipschitz
boundary 0O) and for all £ € R™"*? then Qf.(z,£) converges to Qf(x,£) for almost every
x € O and for all £ € R™*?,

We are now in position to prove Theorems 3 and 4. We only treat the limit ¢ — 0, the
one for 7 being essentially the same as for € provided the same adaptations as in Section 2.2.

Proof of Theorem 3 We first introduce the following energy density defined for almost
every € R™ and for all ¢ € R"*¢ by

Wonom(@,6) = inf {< Whom(y, € + V0) >c(e) |0 € WyP(Cla,m) RY ). (28)
Arguing as for the previous Section, we can prove that W, . and W, hom satisfy (H2) and

(H3). Thus QW and QW; hom are standard energy densities satisfying (12) with the
same coefficients as for W,. Provided that

lim QW) (. €) = QWy hom (@, €) (29)
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for almost every x € R” and for all £ € R"*?, Lemma 7 implies the I'(LP)-convergence of
L.c t0 Iy hom on WHP(Q,RY), defined by

Imhom(u) :AQWU7hOm(mavu)-

Let us prove the pointwise convergence (29). The energy densities W, . and W, hom
actually satisfy the hypotheses of Lemma 12.

Arguing as in Section 2.2, we have

. 111% W.e(%,€) = Wy hom(, &) for almost every x € R™ and for all £ € R"*4,

e W, and W, pom satisfy (12).

It remains to prove that Wy (z,-) and W, hom(z,) are equi locally Lipschitz (and thus
continuous) on R"*? to fullfil the assumptions of Lemma 12.

Let us recall that standard energy densities W are locally Lipschitz in the following sense:
there exists C > 0 only depending on p, ¢ and C in (12) such that for almost every z € R™
and for all &;,&, € R"*4,

W (2,&) = W(z,&)| < CA+ & +[&P7)l6 - & (30)

Convex functions such that (12) holds satisfy inequality (30) using Lemma 6. It can be
proved for rank-one convex functions (and thus for quasiconvex functions) by introducing a
decomposition of £; — & in a sum of rank-one matrices.

For every fixed x € R", let u¢, and u¢, be minimizers of (28) for W, . and { = & and &
respectively. The following four inequalities hold:

1
Wnyé(xﬂgl) - 7/ Wé(y7vu§2 +§1) <0,
" JC(am)

Wmé(mva) I We(yvvu& +€2) < 0,
771 C(z,m) (31)
Waelo&) =3 [ Wl Vg 461 OO+ 6™+ el e 6o,
x,n
1 _ _
W,e(x,&2) — — We(y, Vg, + &) < C(1+ &P + (&P 6 — &l

" JC(am)
The first two inequalities of (31) are direct consequences of the definitions of u¢, and wue,.
The last two inequalities are obtained by integrating (30) over C(z,n) with W = W, and
noting that (12) implies / [Vue, [P <p(C+1)(1+ |&]|P)n"™ by the triangle inequality

C(w,m)
(see the proof of (47) in Section 2.4 for details). The combination of these four inequalities
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shows that W, . satisfies (30) for some C > 0 which is independent of € and 1. The same
result and proof hold for Wy, nom.

Lemma 12 then implies the pointwise convergence (29). We can obtain the T'(LP)-
convergence of I, . to I hom by applying Lemma 7. The functionals QW, . and QW hom
are equi locally bounded by (12), and thus equi locally Lipschitz and equi continuous on
WhP(Q,R?). Therefore, as in Section 2.2, Lemma 8 proves the I'(1W *P)-convergence of these
energies. From Lemma 9 we then deduce the existence of strong converging sequences of
minimizers, and the strong convergence of sequences of equi isolated minimizers if they exist.

Proof of Theorem 4 The proof of Theorem 4 is based on two arguments. At fixed H,
the energies are equi locally Lipschitz because of the equi continuity of the projections Pj.
Therefore the pointwise convergence on W1 (Q) of I ,fﬁ to IL  which is a consequence of the
dominated convergence theorem, implies the I'(W!?)-convergence of the energy functionals
at fixed H when € and 7 go to 0.

In addition, the infimum inf{Ife(v)m € WhP(Q,R?) + BC} is attained on Vg. It suf-
fices indeed to consider the projection of any minimizing sequence in W'?(Q,R?) on V.
This new sequence is still a minimizing sequence since the energy is not changed by the
projection and it is bounded in the finite dimensional space V. Therefore it converges
up to extraction in (Vi,|| - ||1,p). The continuity of the energy (it is locally Lipschitz)
then allows to pass to the limit and proves the existence of minimizers uf;fe € Vg of
inf{I,fE(v)m e WhP(Q,RY) + BC}. A following direct argument also shows the conver-
gence of the infima

lim lim inf {1 (v),v € W"P(Q,R?) + BC} = inf{[}}, (v),v € W"P(Q,R?) + BC}.

n—0e—0

Let us detail this direct argument by considering a sequence uf;{e € Vg of minimizers of
inf{]fe(v),v € WhP(Q,RY) + BC}. This sequence is bounded in W1P(Q, R?) using the
growth condition (12) and thus compact in W1?(Q) since Vy; is finite dimensional. Therefore
there exists ufl € Vi such that 71)13}) 113% uf’e =l in WHP(Q). We then have

|I’I§_,I€(u’llj]{,€) - Iﬁ)m(ul{{om” < |I’I$_,I€(u7]]_[76) - Ige(ul{{om” + |Irl;716(ul]z{om) - Iﬁ)m(ul{{om”

The second term of the right-hand side goes to 0 thanks to the pointwise convergence of the
energy as € and 1 go to 0, whereas the first term goes to 0 thanks to the equi local Lipchitz
property of I :

|Irile(u’7}){e) - I’)fe(u’}i[om” < C(l + ”vurf){e "g_l + ”vufom”g_l)"vu'g[,e - vufom"?v

which also vanishes since uf_e converges to ufl in WLP(Q,RY). It remains to prove that

ufl is a minimizer of inf{I}Z (v),v € W'P(Q,R%) 4+ BC}. For all v € WP(Q,R?), for all
nand e, I (ulf) < I (v). At the limit, we obtain I}7 (ufl ) < I/ (v), which proves
the statement since v is arbitrary.
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At fixed H, we have proved the I'(W'?)-convergence of I} to Il ~on Wh?(Q,R%)
when € and 7 go to 0, and the existence and the strong convergence of any sequence of
minimizers ul, € Vi of inf{I}.(v),v € W'P(Q,R?) + BC} to some minimizer ufl, € Vg

of inf{IfZ (v),v € WHP(Q,RY) + BC}, up to extraction.

The limit H — 0 can be dealt with as follows. Since the sequence ull = is bounded
in W1P(Q) by the growth condition (12), we can extract a subsequence (not relabeled)
weakly converging to some o, € W1P(2). We now prove that e, is a minimizer of
inf{ Iom (v),v € WHP(Q,R?) 4+ BC} and that I (ufl ) — Inom(tnom). The quasicon-
vexity of Wi and (12) imply the lower semi-continuity of I, for the weak topology of
WLP(Q), which shows

Ihom (uhom) S 11{1210 Ihom (uhHom)'

Next, as a consequence of the continuity of Ij,,, for the strong topology of W(Q), for
all v € W1P(Q) + BC and for all p > 0 there exists H > 0 and vy € Vg + BC such
that Tnom(v) > Ihom(ve) — p > Ihom(uhHom) —p> Igimo Ihom(ufom) — p, which exists as a

decreasing sequence of positive numbers. Thus o, is @ minimizer of Iy, on WP (Q)+BC.

The convergence of the infima, is also obtained by this continuity argument. The pointwise
convergence of the sequence I} and its equi local Lipschitz property allow to use Lemma 8
and show the T'(W'P)-convergence of I1  to Inom on WP(Q). Using the convergence of
the infima, we can then apply Lemma 9 and prove that, with obvious notation, for any
minimizer w0, € WHP(Q2) there exists a sequence of minimizers vl € WP(Q) such that
g{igo ull = Upom in WP(Q). These minimizers may not belong to any V. Moreover, due

to the projection Py in the energy, the minimizers of inf{I}  (v),v € W'P(Q,R?) + BC}
are never isolated, therefore the argument used to prove the strong convergence in Theorem 3
has to be slightly modified to apply here.

To this aim, let consider a sequence of minimizers u}. € Vy which is equi isolated in
the following extended sense. We suppose that there exists a ball B ¢ W1?(Q) such that
ufl  is the unique minimizer of inf{I{ (v),v € W'P(Q,R%) + BC} on BN Vy. Let upom
be a weak limit of this sequence. Because of the weakly lower semicontinuity of the norm,
Unom € B. In addition, there exists another sequence vf =~ WP(Q) of minimizers of
inf{IT (v),v € W"P(Q,R%) 4+ BC} such that v}l — wpem in WHP(Q). Because of this
strong convergence, it is not restrictive to suppose vf. =€ B, and Py (vil ) € B as well.
Since Py (vil ) € Bis aminimizer of inf {7 (v),v € W"P(Q,R?) + BC} and the sequence
ufl s equi isolated in the sense above, ull == Py (v ).

By the triangle inequality we then have |ufl =~ — upomli,p, < [Pa(vE,, — tnom)|1,p +
| P (Uhom) — Uhom|1,p- The first term of the right hand-side goes to 0 because of the equi
continuity of the family of projections (Pp) and the strong convergence of v/l = t0 upom,
whereas the second term goes to 0 by definition of the family of spaces V. This shows the
strong convergence of ul and concludes the proof of the theorem.
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2.4 Proof of Theorem 2

The proof of Theorem 2 extensively uses the following consequences of the properties of
equi-continuity (2) and equi-monotonicity (3) of the elliptic operators.

Lemma 13 We keep the notation of Lemma 3. For almost all x € Q) and for all £&1,& € R,
property (2) implies

(We(z,61) = We(2,&)| < Clér — |1+ &P~ + [&P7). (32)

For all convex subset K C WP(Q), if u minimizes inf {/ We(z, Vv)|v € K}, then prop-
Q
erty (3) implies

/Q(WE(Vu) — We(Vv))

> c|Vu — Vv||1£p(m (33)
for allv e K if 5 <p.

The proof of Lemma 13 is classical (see [19]) and postponed until the Appendix.

Let us introduce:

ue = Argmin {/ (We(x, Vu) — fu) |u € WHP(Q) + BC’} (34)
Q
Uhom = Argmin {/ (Whom (2, Vu) — fu) |u € WHP(Q) + BC’} (35)
Q
Upe = Argmin {/Q(Wn,e(w, Vu) — fu)|u € WHP(Q) + BC’} (36)
u' = Argmin {/ We(z, Vu)| < Vu>q,,=< Vu. >QH,i} (37)
QH,:
vi{j = Argmin {/ We(z, Vu)| < Vu>q, =< Vu,. >QH,7;} (38)
ulht = Argmin { o We(x, Vu)| < Vu>q,,=< Virom >QH,1‘} (39)

Let denote by Iy the cardinal of the partition of 2. We have

p Iy
J =3[ Vue- vty
Q i Qm,i
Iy
o3 ([ v [ o)
i=1 QH,i QH,i

Iy
—py (A + B

i=1

Iy
Vu, — Z va?’:lQH’i
i=1
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In In

We now separately examine the limit (H,7,¢) — 0 in the two sums Z ASH and Z Bot,
i=1 i=1

We show that both terms vanish in the limit in the following sense:

Iy
. . e, H _
}111310 hr?j(‘)lp;Ai = 0, (41)
Iy
lim limsup Y ~ B = 0, uniformly in H. (42)
n—0 ¢0 im1
Iy
Limit of Z A" Since u!' is defined as a minimizer on the convex set
i=1

K={uecW"(Qnu,)| <Vu>q,,=< Vue >0, }

property (33) implies

1 )
AT < We(z, Vue) — We(z, Vuh)| . (43)
C1JQu,
In view of Lemmata 1 and 2,
lim We(z, Vue) = Whom (T, Vithom). (44)
e—0 Qm.i QH.i
H,i H,i
Actually, as the locality of I'-convergence and the liminf inequality imply
lim WE (:U, VUE) S / Whom (iC, vuhom)a
=0 Q—Qm,: Q—QH,i
lim We(z, Vu) < Whom (x, Vupem) would contradict the convergence of the in-
=0 QH,i QH,i
fima lin%/ We(z, Vu,) = / Whom (2, Vupom ), which shows (44).
e=0Jq Q
Let us prove that
lim , W, (z, Vull) = inf{ g Whom (z, Vu) | < Vu >, ,=< Vinom >QHJ}. (45)
H,i H,i

We have < Vue >q;, =< VUnom >qQyu., +xm.,i(€), where xp,; is a function that satisfies
lin% Ixm.i(e)| = 0 since Vu, weakly converges to Vupom in LP(€2).
€E—
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In view of (37), we have

We(@, Vs + xm.i(€) > We(z, Vull) (46)
QH,i QH,i

since < Vupom + Xm,i(€) >Qu, =< Ve >y ;-
Next we show:

We(z, Vuys! 4+ xm.i(€)) — We(@, Vugor )
QH,i
< ClQumillxmi()|(1+ | < Vthom >qu., P71+ Ixmi(e)P1).

(47)

To this end, let us start from (32):

We(w, Vg, + Xm,i(€) = We(z, Vg, )| ,

< Clxaa(€)|(1+ Vg, + xara(€) ) + [V, [7)

< Clxmi()l(1 + [xmi()PH + [Vauyg, [P,
where C denotes various constants depending only on c and C in H3. Integrating on Qg ;
yields

H,i H,i
[ Wela, Tk, xini©) = Wela, Tl )|
QH,i

< | il + [xaa(@)F " + [Vagg, [P (48)

QH,i
|Vuf;fn|p1).

Successively using Holder inequality, the minoration in H3, the definition (39) and the
majoration in H3, we have

< Clxm,i(e)] <|QH,z‘|(1 + Ixmai(e)Ph) + /Q

H,i

S
T
<
<
=
S -~
)
L
IN
7N
S
=
4
<
g
3 .
=
~—
"
VR
S
T
—_
~_—
LS|

P
< ClQul? ( We(z, VuhHéfn(x))> (49)
QH,i
p—1
1 Hi !
< C|QH,i|p Wf(ma < vu’ho’rn >QH,7;)
QH,i
1 H.i %1
< ClQual? (IQual(1+] < Vul, >qu. 1)
<

ClQm il (1 < VU >q,, |p71) :
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Inserting (49) into (48) shows (47).
Then we remark, in view of (39), that

We(w, Vuyl ) < We(z, Vul"' = xmi(€))) (50)
QH,i QH,i

since < Vue — Xm,i(€) >Qu, =< VlUhom >Qu.;-
Arguing as above for (47), we obtain:

We(z, Vu?i —xm,ie) — We(z, Vuf“)
QH,i
< COlQuillxmi(€)|(1+] < Vue >q,

The combination of the four inequalities (46), (47), (50) and (51) yields

P74 Ixai(e) P

W, (z, VuhHO:n) — We(z, Vuf’i)’
QH,i (52)
< ClQuillxmi()(1+ | < Vtnom >qu, P
+ < Vue >qu, P71+ Ixaa(o)]P ).

Letting € go to zero in (52) proves inequality (45) since Lemmata 1 and 2 imply that

e—0

lim [ inf We(z, Vu)| < Vu >q,,=< Vihom >Qu.,
QH,i
= inf Whom (2, Vu) | < Vu >q, =< VUnom >Qu. (-
QH,i
The combination of (43), (44) and (45) then shows

0 S hm sup A?H S C Whom (xv vuhom) - Whom (33, vufo:n) .

e—0

QH,i
We thus obtain

IH IH
lim sup Z A:’H <C Z
i=1

=0 i—1

Whom (xv vuhom)
QH,i (54)

— inf{ W}wm(l’, Vu) | <Vu >Qui—< Vuhom >QH,7;} .
Qmu.i

It remains to prove that the right hand side of (54) tends to 0 when H goes to 0.
Let W be the energy density defined by

Iy
W (z,6) = inf {@ Whom(x, Vu) | < Vu >= 5} 1Qu. ().

QH,i
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Arguing as in the proof of (27), for almost all z € Q and for all £ € R, it can be shown
that Pllimo WH (z,6) = Whom(z,€). Since every argument of the absolute values in the right

hand side of (54) is positive, inequality (54) can be rewritten as

Iy
limsupZAf’H < C

0o

/ WH(it, MH(Vuhom)) — WH(:T, vuhom)'
Q (55)

+C

/ WH (33, vuhom) - Whom (37, vuhom)‘-
Q

Let denote by Rhsi’ and Rhsk respectively the first and second terms of the righthand side
of (55). Since Wj,,,, satisfies properties (2) and H3, we can argue as in the proof of (47)
and obtain:

(WH(z,6) = WH(2,8)| < Clér — LA+ [&P" + &P,
which is independent of H. Thus, using Holder inequality, Rhs{’ is dominated by
C"MH (Vuhmn) — VUpom "LP(Q)(1 + "MH (Vuhmn)”i;gg)) + ”vuhom ”22(19))

which converges to 0 as H goes to 0 since Igimo My (Vupom) = Vipom in LP(Q).

Next, the dominated convergence theorem implies that RhsZ also tends to 0 as H goes
to 0, since the integrand pointwise converges to 0 and is dominated independently of H
using H3.

This finally shows (41).

Iy
Limit of ZBE’H”’ Remark first that < Vue >q,,=< Vurom >qu, +Xxm,i(€) and <
i=1
Vuge >Qu, =< VUhom >qQu, +¢m,i(e,n) where xg,; and ¢g, are functions satisfying
lin% xm,i(€) =0 and lir% lin% om,i(e,n) = 0. Consequently, arguing as for (47), we obtain:
€e— n—0e—

e, H, —
B < ClQuil(lxma(@)] + lomilen) - (4] < Voo au P70 oo
+ < Vue >qpu, P77+ Ixma ()P + |omale,n)P).

Letting € go to 0 in (56) yields

e,H,n
i

limsng < ClQmu.ill < Vunhom >Qu; — < VUhom >Qu., (57)
e—
(14| < Voghom >0 P71+ < Vihom >0u, [P71)

The summation of (57) for ¢ from 1 to Iy exactly reads

I
; eHn _
hrenj(t)lp E_l B; < C'/Q | M (Vg hom — Vihom)| (58)

(L M (Vog hom) [P+ [ M (Vanom)P71).
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Using Holder inequality, we obtain

Iy
lim sup Z By < CIMu (Vg hom — Vunom)|zr @)
0= (59)

( [ 1+ M (Tl + |MH(Vuhom)|p)
Q

P

Let us now prove that the right hand side of (59) converges to 0 uniformly in H when 7 goes
to 0. Using Holder inequality, for every w € LP(2) and every H > 0, we have

p

N I
/Q | Mg (w)]P = ;5 (@na) | o /QH

. 1/p (r-1)/p\ ?
< Z:E”(QH,Z-) Q) < / y le”> ( /Q » 1)

_ P
% o,

= "w”ip(g)-

This calculation shows that (Mp) is an equicontinuous family of operators on LP(Q2). By
the application of Theorem 1, vy nom converges strongly to upom in W1P(). This strong
convergence and the equicontinuity of My show that there exists D > 0 such that

p—1

( /Q 1+ [ M (Vo pom) P + |MH(Vuhom)|”> " <p
for every n and H, and that
i | M7 (V0 om — Vo) o ey = 0
uniformly in H, which proves (42).

The combination of (40), (41) and (42) concludes the proof of Theorem 2.

3 Relation to some existing numerical approaches

The analytical developments of the previous sections may serve as a theoretical framework
for both the heterogeneous multiscale method (HMM) and the multiscale finite element
method (MSFEM), when applied to the homogenization of elliptic operators. Indeed, as
will be shown in Sections 3.1 and 3.2 respectively, the HMM and the MsFEM for elliptic
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equations can both basically be re-written as approximations by a quadrature rule of the
energy functional

Tyelw) = [ f {< W T00) >0 |
v e WP (B(z,1n)), < Vo > Baey)= Vu(x)} dx

introduced in Definition 3. This explains why the two methods give similar results as
illustrated on some examples in [15].

A third existing methodology can be related to the theoretical framework developed
in Sections 1 and 2, but it will not be detailed as much as the above two here. It is
commonly used in mechanics, when dealing with linear composite materials. The method
consists in introducing a small volume (namely a cube), called the representative volume
element (RVE), and which represents the material at the macroscopic scale. The macroscopic
stress-strain relation o(x) = A(x) - Vu(z) of the material can then be approximated by the
averaged response < o(y) > gy g of the RVE under the homogeneous displacement Vu(z) -y
of its boundary. In the present paper, the domain B(z,n) plays the role of the RVE.
As already mentionned, several boundary conditions can be associated to W, .: at least
periodic boundary conditions and Dirichlet boundary conditions. Other formulations can
be developed using the Legendre transform of the energy and periodic or Dirichlet boundary
conditions. In the limit € and 7 go to zero, all these energy densities converge to the same
homogenized energy density. A huge body of literature in mechanics is devoted to the choice
of 1 and of the boundary conditions that best fit the behavior of the original material (see
[17] for a review).

3.1 HMM

We first assume that W, is a strictly convex energy density and we describe the method

within this context, for which minimizing the energy and solving the Euler-Lagrange equa-

tion are equivalent. The case of quasiconvex energies is the object of the end of this Section.
If we assume that W), . is perfectly known, then the finite element approximation of

inf {/Q W.e(z, Vu) — fulu e WHP(Q) + BC} (60)

coincides with the method described in [7, Section 3] as an application of the HMM method-
ology to elliptic operators. Indeed, problem (60) is approximated at the discrete level by

N7nesh Ngp
inf Z Z q; (Wn,e(xij, VUH(ﬁlJ)) — f(xij)uH(xij)),uH e Vg + BC (61)
=1 =1

where N,,.sp is the number of mesh elements, Ngp is the number of Gauss points per
element, z;; are the Gauss points, ¢; the weights and Vy a finite element space. Then
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the computation of the FE minimizer of (61) only requires evaluations of derivatives of
Wi e(xij,€) for particular £ at Gauss points x;;. The first derivatives are needed for writing
the Euler-Lagrange equation, the second derivatives if the latter is nonlinear and a Newton-
type algorithm is used for the solution procedure. This is detailed in [14] where an explicit
formula is given for periodic homogenization (the cell-problem is posed on (0,1)™). The
setting of [14] can easily be generalized replacing the periodic cell (0,1)™ by B(z,n).

The details of this general procedure may depend on the specific choice of 7, of the shape
of B(x,n) (see Remark 1), and of the boundary conditions in the definition (6) of W, . (see
Remark 4). Many variants of the method follow.

The works [15] and [8] report some numerical experiments, where B(x,n) is replaced by a
cube and for which better numerical results are obtained using periodic boundary conditions
instead of Dirichlet boundary conditions, even for the non-periodic problems tested.

Let us go back to the case for which W), . is not analytically known but also numerically
evaluated. We define a finite element approximation of W, .(x,&) by

W) (2,8) = inf {< We(y,€ + Vor) > |va € Vi, (62)

where Vj, is a finite element subspace of W'?(B(x,n)) such that < Vv, >p(,,)= 0 for
all vy, € V. On the theoretical side, the difference between the minimizer up,,, to the
exact homogenized problem (5) and the finite element approximation uZ;I, defined as the
minimizer of

inf{/ W,;L’E(x,VuH)—quWHEVH—i—BC}, (63)
Q

may be decomposed into three components. Let denote by u;, the minimizer of (60) and by
u; g the minimizer of

inf {/ Wh.e(x,Vun) — fum |ug € Vi + BO}. (64)
Q

Denoting by errl(n,€) = [unom — uplwir(), err2(n,e, H) = |uy, —uy glwir (o) and by
err3(n, €, H, h) = |ug i — UZ:;"WLP(Q), we then have by the triangle inequality

h,
||Uhom - unJEL["WLP(Q) < ||Uhom - U;||W1,p(g) + ||uf, - u:;7H||W1vP(Q)
e e (65)
+||un7H un7H”W1’p(Q)
= errl+err2+ errd.

The first component errl has been studied in [7], [15] and [8] by Weinan E and collab-
orators in the framework of the HMM. The error analysis has been performed for elliptic
operators linear in the gradient, that is operators of the form u — a(x,u)Vu. Under this
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assumption, the error, called e(HM M), has been estimated in the periodic and stochastic
cases.

The second component err2 is the difference between the minimizer of (60) and its nu-
merical FE approximation, the functional W, . being considered as explicitly known. This
analysis is more classical and can be performed without any assumption on the hetero-
geneities. This has also been addressed in [7], [15] and [8], where it is shown that err2 and
e(HM M) can interact nonlinearly.

The third component err3 is the error due to the approximation of the energy density
W, itself. In contrast to the difference between Wi, and W, . which cannot be estimated

in the general case, the error between W, . and its numerical approximation W#”: can be

estimated. This is also the case for the difference between the minimizers u; ; and quq

In the nonlinear case, the contribution to err3 of the difference between Ww(x,f) and
W#)E(a:, £) can be magnified by the nonlinearity as shown in [14].

Except in the specific case of linear periodic homogenization (see [1]), a complete analysis
of the global error |u. — UZ;I" Lr(Q) seems out of reach.

Let us highlight the contribution of the present work in this setting. Theorem 1 shows
that 111% lin% errl(n,e) = 0 in the strictly convex case. It does not provide with quantitative
n*) €—

estimates though. In addition, Theorem 2 shows that the reconstructed solution proposed
in [8] is a numerical corrector. No further estimate can be derived without making more
specific hypotheses on the dependence of W, upon the space variable.

Let us now make some remarks on the quasiconvex case. The numerical practice for such
energy densities has been addressed in [14] in the setting of periodic homogenization. The
method and results therein hold mutatis mutandis for non-periodic homogenization using
the framework of Section 1.3. From a theoretical point of view, Theorem 4 is weaker than
Theorem 1 since we have only proved the weak convergence of minimizers: ug’e — Upom I
WP(€). However, there exist examples for which this convergence cannot be strong and
that are linked to the possible loss of strict rank-one convexity by homogenization (see [13]).

3.2 MsFEM

Let {Qm,i}i be a triangulation of Q of size H. At each mesh element Q; we associate a
point x; € Qg ;. Given u € WHP(Q), we can approximate the integral I, .(u) by

Z Qi Wh.e (i, V(). (66)

To obtain the MSFEM starting from (66), we have to make specific the value of 7, the
boundary conditions in (6) and the finite element space V. The specificity of the MSFEM
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with respect to the HMM is the link between n and H: 7 is taken to be H. The energy
density used in the MSFEM is defined at z; by

inf 1 We(y, Vu) |v(y) =& -y on 0Qm (67)
|QHZ| QH,i

and denoted by Wis##M(z; ¢) in the following. Taking Vi as the space of Pl-finite
elements on the triangulation {Qp ;}:, we obtain the discrete version of the MSFEM:

Nmesh
inf & > 1Qual WM (s, Vuy (24))
=1

Numesn Nap

- Z Zij(xij)uH(mij),uHGVH—FBC ,

i=1 j=1

(68)

where the second term of the energy has been integrated by a quadrature rule associated to
the triangulation. Problem (68) is to be compared to problem (61).

To prove the convergence of the MsFEM, Theorem 1 is not sufficient since both the finite
element space Vp and the numerical energy density W} sFEM depend on H. However an
easy adaptation of the arguments of the proof of Theorem 1 allows to conclude. The rest
of this section is devoted to such a proof in the general quasiconvex case, which has not
been addressed by the authors of the method in their series of papers ([9],[10],[11] e.g.).
Before we get to this, let us mention that we demonstrate convergence, but do not provide
with any estimate of the error, even in the strictly convex case. This has been performed
in [9] by Y. Efendiev and collaborators in a nonlinear setting for the specific case of periodic
homogenization of monotone operators.

The following proof makes use of arguments that have been developed in other parts of
the present work. They will only be sketched here. The new arguments are mainly linked
to the convergence of the infima. We have also chosen to treat together the convergence in
e and H in the presentation.

Adaptation of the proof of Theorem 3 The original nonlinear MsFEM (that is without
the quadrature rule) can indeed be rewritten in the form:

inf{/ W%ESFEM(x,VuH)—quWHGVH+BC’}, (69)
Q
if we extend the definition of W'*¥#M on Q by

WHEFPM (2,6) =y WHETPM (01,61, (),

since Vuy is constant on each Qg ;.
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Let denote by (Pp) an equi continuous family of projectors in W1P(Q) associated to a
family of P1-finite elements spaces (Va, | - |1,p)- In particular, there exists C' > 0 such that
for all u € WHP(Q), Il{imo lu — Pa(w)]1,p =0 and |Pa(uw)]1,p, < Clul1,p.

The same arguments as for the proof of Theorem 3 show that the family of energy func-
tionals I7/sFEM : u — / W SEEM (4, ¥ Py (u)) — fPp(u) is equi locally Lipschitz since
(Py) is equi continuous on W1P(Q). Tt converges pointwise on W1P(€) to the functional

Thom : u — / Whom(x,Vu) — fu as € and H go to 0, by application of the dominated
Q ~
convergence theorem. Thus I7/s¥#M T (W'?)-converges to [nom by Lemma 8.

Next we prove the convergence of infima

lim Tim (mf{/ WMSFEM (37 Py (w)) — Py (u)|u € WP (0 )+BO})

H—0e—0 (70)
1nf{/ Whom(z, Vu) — fu|u € WHP(Q )—i—BC’}

Denoting by Vi; = {v € W'P(Q)|vjaq,,, is linear for every i}, (67) implies
mf{/ MSFEMxVu)—quEVH—i—BC}
= 1nf{/QWe(x,Vu) — fPu(u)|ue Vg + BO}.
Consequently,
mf{/ MSFEMxVu)—fu|uEVH+BC}
> inf {/QW (z,Vu) — fPy(u)|u € WHP(Q) +BC’},
which implies

l1gl1nfhm1nf <1nf{/ WHSFEM (3 u) — fu|u € Vi —|—BC’}>

(71)
> inf {/ Whom (2, Vu) — fu|u € WHP(Q) + BC’},
Q

since u — Pg(u) is a continuous perturbation with respect to the topology of the I'(L?)-
convergence (the liminf and the limsup inequalities still hold with the perturbation).
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Conversely, we have, for any minimizer up,,, of the homogenized problem,

lim sup lim sup <1nf {/ WHSFEM (3, N Py (u)) — fPg(u)lu € WHP(Q) + BC’})
H—0 e—0

< lim sup lim sup/ WMSFEM(QJ, V Py (thom)) — fPu(thom) (72)
H—0 e—0 Q

= inf {/ Whom (2, Vu) — fu|u € WHP(Q) + BC’}.
Q

The combination of (71) and (72) shows (70).

From this point of the proof, we have to distinguish two cases: the strictly convex case
and the general case.

In the strictly convex case, the same arguments as for the proof of the strong convergence
of the equi isolated minimizers in Theorem 4 directly show the uniqueness of the minimizer
for the homogenized energy and the strong convergence of the unique sequence of minimizers
up,e € Vu + BC of

inf {/ MsFEM 33 VPH(U)) . fPH(u) |u c WLP(Q) + BC} (73)

t0 Upom when € and H go to 0.

For the general quasiconvex case, let us consider a sequence of minimizers ug . € Vg +BC
of (73) and prove that it weakly converges, up to extraction, to some minimizer o, of the
homogenized problem. We skip the convergence in € since the difficulty does not lye there.
It remains to prove, with obvious notation, that the weak limit of ug pom € Vi + BC), still
denoted by upom, is a minimizer of the homogenized problem. We already know that

Jim IEEM (g o) = inf{Tuom (), w € W'9(Q) + BC} (74)
We have:
I]A{/[,ZETEM(UH,hom) - f(uhom) = ]I\J{ZETEM(UH,hom) - j(uHJLom) + j(uHJLom) - j(uhom)'

Provided that }
lim (IEEEM (g om) — H(itnom)) = 0, (75)

the weakly lower semicontinuity of I hom implies that

hm 1nf I%Z{;EM (uH,hom) 2 I(uhom)a
H—0 ’

which, combined with (74), shows that upem, is a minimizer of the homogenized problem.
Actually, we do not exactly prove (75) for wm nhom but for a p-equi-integrable sequence

VH,hom Still weakly converging to upom and given by Lemma 11. Such a proof for a p-equi-

integrable sequence is detailed twice in the Appendix (Sections 4.2 and 4.3) and not recalled
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here. We thus have ligl ir(}f I 1{\14 Z?ff;M (VH hom) > I (Uhom)- In addition, outside a set By such

that Igimo L"(Bg) =0 given by Lemma 11, Vg hom and Vug nhom coincide, thus

MsFEM MsFEM
/ WH fszom (33, V’UHJlOm) = / WH iSLom (33, qu,hom)
Q BH Q BH
MsFEM
< W H,hom (xa qu,hom)'

Q

The p-equi-integrability of vy pom and the growth condition (12) imply that

S MsFEM WMsFEM (
hmbup/ W hom (x, VUH hom) = hmsup/ Hhom (T, VUH hom)-
H—0 Q—By H—O0

Thus, lim sup/ %ﬁfrfM (, VUH hom) < hm / ;‘I/I,SLE,EM(;U, VU hom) and
H—0

Ihom (uhom) S lim inf II]-\I/IfLi‘gM (UH7h0m)
H—0 ’

. MsFEM
< dim [ Wiiom ™ (2, Vur hom)
H—0 Q

inf{ Iom (1), u € WHP(Q) + BCY,

which proves that uje., is @ minimizer of the homogenized functional.

As for Theorem 4, we can also prove the strong convergence of the equi isolated mini-
mizers. This concludes the extension of the proof of Thereom 3 to the MsFEM.

Concerning the numerical practice, as pointed out in [9], the multiscale finite elements
can be computed on smaller domains than the macroscopic mesh elements and be extended
by periodicity for instance. We refer to the bibliography for details. As far as general conver-
gence results are concerned the MsFEM and the HMM for elliptic operators are equivalent
in the present framework. We do not discuss here the practical implementation and the
specificities of each method, for which we refer to the bibliography.

Conclusion

The setting of the present work is the minimization of an energy which depends on the gra-
dient of a function. The prototypical example is hyperelasticity, for which the mechanical
energy density of the material only depends on the gradient of deformation. More specif-
ically we have considered an energy density that varies a lot spatially, which makes direct
numerical simulations rather impossible to perform in practice. We have then introduced
an alternative energy density, which is a kind of averaged or effective energy density. This
energy density should have the advantage not to vary as much as the original one and is
therefore easier to simulate numerically. These analytical developments have allowed us
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to recover some convergence results for the MSFEM in the convex case and to prove the
corresponding results for the HMM. We have also extended the approach to nonlinear elas-
ticity, by considering quasiconvex energy densities. Finally, we have proved that the usual
reconstruction procedure to recover the fine scale features of the solution is indeed valid for
general heterogeneities under classical monotonicity hypotheses.
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4 Appendix

Besides a remark on the effect of boundary conditions on the I'-limit, the present appendix
contains, for consistency, the proof of Lemma 7 in the quasiconvex case, which is essentially
the same of the one for the convex case in [6, Theorem 5.14], and the proof of the classical
inequalities of Lemma 13. We also prove Lemma 12.

4.1 TI'-limit and boundary conditions

To prove that the I-limit on the spaces associated to (1), (2) and (3) is the same as the I'-
limit on W1P(Q), it suffices to exhibit a recovery sequence which belongs to the variational
space associated to the boundary conditions considered since Lemma 2 implies the liminf
inequality is valid on the whole space W1?(Q)). We refer to [4, Proposition 11.7] where
this issue is addressed for (1). The case (2) is a direct adaptation of the proof for (1) since
as contructed in [4, Proposition 11.7], the recovery sequence can indeed by periodized if
the limit u is periodic. The case (3) can be dealt with as follows: given any u € {v €
WhP(Q)| < Vo >q= ¢}, there exists a sequence (u.) such that uc — u in WP(2) and

lin% / We(z, Vu,) = / Whom (z, Vu) by the definition of I'-convergence. Let then consider
€E— Q Q

the following sequence: .(z) = uc(z) + ({— < Vu. >q) - . This sequence belongs to
{v e WhP(Q)| < Vv >q= &} and weakly converges to u in WP(Q). In addition, as a
consequence of Lemma 6, [Vue — Viic|rr (o) = [{— < Vue >q [£"(Q2) — 0 implies that

lim =0
e—0

/QWT(x,vue)—/QWT(m,vae)

uniformly in 7. Therefore,
lim [ W.(z, Vi) = / Whom (z, Vu),
Q

e—0 Jo

which proves that (@) is a recovery sequence in {v € W1P(Q)| < Vv >q= &}.
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4.2 Proof of Lemma 7 [6, Theorem 5.14]

This proof requires some basic properties of I'-convergence, which can be read in the first
chapter of [5]. We recall that Lemma 6 also holds for rank-one functions on R"*¢ with a
different constant K since any two matrices of R”*¢ are connected by at most nd rank-one
matrices.

By the dominated convergence theorem, 111% We(x, Vu)dz = / W (z, Vu)dz for ev-

ery u € WhP(w). Thus, I — limsup/ W (z, Vu)dx < / W (z, Vu)dz. The conclusion is

e—0

achieved if we prove that
/ W (z, Vu)de <T — hm 1nf W (x, Vu)dz (76)

Let us fix u € W1P(Q). By the absolute continuity of the integral for every 6 > 0 there
exists 6 > 0 such that

/ (IVul? +1)dz < 6 (77)
A

for every mesurable subset A of w with LV (A4) < §. Moreover, there exists R > 0 such that
LY({|Vul > RY) < 6.
Let K =C((R+1)? 4+ 1) and let &1, ...,&, be points in the ball B(0, R) such that
B(0, R) C U B(&i, €/ K). (78)

By the Egorov theorem, the sequences (W (-, &;)) converge to W (-, &;) quasi-uniformly on w.
Therefore, there exist a measurable subset A of w, with LV (A4) < §, and a constant k such
that |W6(x,§i) —W(z,&)| <Oforeveryzew\ A, i=1,...,m, and e < 1/k. By (78) and
by Lemma 6, we obtain y R

We(z,§) = W(x,£)| <30 (79)

for every x € w\ A, for every € € B(0,R) and € < 1/k.
Let B=AU{|Vu| > R}, let g : w x R” — R be the function defined by

_ ] W(,¢), ifz¢B,
9(9”’5)_{ 0, if € B,

and let G : W1P(w) — R be the corresponding integral functional, defined by

G(u) = / g(x, Vu)dz
If ¢ = 3LY (w), (79) implies / We(z, Vu)dz + cd > G(u) for every e < 1/k. As G is lower
semicontinuous for the weak tgpology of WHP(w), we conclude that

(I‘ —lim i(glf W (z, Vu)dac) +cf > G(u).
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Since / W (z, Vu)dz < G(u) + cl/ (IVu|P + 1)dz, from (77) we get
w B

/ W (z, Vu)de < G(u) + 2¢10 < <I‘ —lim i(I)lf W.(z, Vu)dx) + (¢4 2¢1)9,
so that (76) can be obtained by taking the limit as 6 tends to 0.

4.3 Proof of Lemma 12

We divide the proof in two steps. For almost every z € O and for all ¢ € R"*?, we first
prove

limn sup Qfe(x,8) < Qf(x,8). (80)
Then we prove the converse inequality
liminf Qfe(x,€) > Qf(z, €). (81)

Proof of inequality (80) For all € > 0, almost every z € O and for all £ € R™*? we
have

Qf(x,6) = inf / fo(a, € + Tu())dy |v € WE((0,1)", RY)
1) (82)

< / Lo, € + Vu(y))dy
(0,1)m

for every u € Wy?((0,1)",R%). Using the growth condition (12) and the dominated conver-
gence theorem, we have

i sup Q1. (,€) < / (€ + Tuly))dy. (83)

(071)71

Since equation (83) holds for every u € W, *((0,1)", R%), we obtain

)™

limsup Qf(x,€) < inf { /( f(@, &+ Vo) v e WEP((0, 1)",Rd)} = Qf(2.6).
e— 0

Proof of inequality (81) Let us prove first that for all € > 0, for all ¢ € R"*? and for
all Lipschitz open subset w of O, there exists a sequence {¢};, € W!P(w, R") such that

[ @rteo = jm [ 1290,

#5, — ug in WHP(w,R™), with ug(z) = € - on w, and satisfying the following properties:
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(a) there exists C € R such that for all € > 0 and for all k, V5[ 1) < C(1+ [£[P),

(b) for all € and k, |¢f, — ue|Lr(w) < e
To this aim, we show that the sequence ¢, given by Lemma 10 satisfies (a) and (b) up
to extraction. Property (b) is a direct consequence of the convergence of ¢f to ug in

LP(w,R™). Using the growth condition (12), we have /f6 (z,Vo5,) > | Vi | ey and

/ Qfc(x,8) < / fe(z, &) < C(1 + [€]P) L™ (w), where the constants ¢ and C do not depend
on ¢, which implies property (a) for some C € R.

As Q. satisfies (12) uniformly in e (the lower bound in (12) is a convex function lower or
equal to f. thus it is also lower or equal to its quasiconvex envelop), there exists a subsequence

¢; and L € R such that lim / Qfe,;(x,€) = L. Therefore, lim klirn / fe;(x,V¢;’) exists
J— J, Jj—o0 k—oo J,
and a diagonal extraction argument shows there exists an extraction function 7 such that
lim 7(k) = 400 and
k—o0
hm /feﬂ(k) {E v¢€ﬂ'(k))

As the sequence ¢,"* satisfies properties (a) and (b), it is bounded in W'?(w,R") and
it satisfies klirn ¢Z"(’“) = u¢ in LP(w,R™). Up to a further extraction, we may suppose that
—00

¢, converges weakly to ug in W'P(w,R") by the uniqueness of the limit in the sense of
distributions.

Applying now Lemma 11, we obtain the existence of a sequence yj € W1 (w,R") such
that Vi is p-equi-integrable, x; weakly converges to u¢ in WP (w,R™) and satisfies

klim LY {z € w: Vxi(z) # Vo, ™ (2)}) =0, (84)
up to a further extraction.
Since f. > 0,
hm / feriw (2, (2,V,” ™) > lim sup/ . ferio (%, VX1)
k—o00 {wew:VXk(w):Vzi)k”(k) ()} (85)
> hllcnsuP/ feﬂ(k) (z, VX)),

the last inequality being a consequence of the p-equi-integrability of Vxy, the growth con-
dition (12) and equation (84).

Next we prove that

tim [ 1@ V) = / £, Vxi) (86)

e—0
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uniformly in k. From (86), we will deduce

L> limsup/ fe.,,(k) z, Vxi) > hmlnf/ flx, Vxe) > / Qf(x,§), (87)

k—oo

since v — / Qf(x,Vv) is the lower-semicontinuous envelop of v — / f(x, Vo) for the weak
topology of W'?(w,R") and xj — uge in WHP(w, R™).

The proof of (86) follows the first part of the proof of Lemma 7, it relies on the p-equi-
integrability of Vx and on the fact that (f.) are equi-Lipschitz functions.

The p-equi-integrability of Vx implies that for all § > 0 there exists 6 > 0 such that
for all k£ > 0, /(|VXk|p + 1)dz < 6 for every measurable subset B of w with £V (B) < 6.
A

Moreover, as Vyy is a bounded sequence in LP(w), there also exists R > 0 such that for all
k>0, LNz cw: |Vxu(z) > R|} <.

By assumption, there exists K > 0 such that for all ¢ > 0, f. and f are K-Lipschitz on
B(0, R) for almost every = € w. Let &1, ..., &, be points in the ball B(0, R) such that

B(0,R) € ULy B(&i ¢/ K). (88)

By the Egorov theorem, the sequences f(-,&;) converge to f(-,&;) quasi-uniformly on w.
Therefore, there exist a measurable set A of w, with LV (A) < §, and an integer x such that
[fe(x,&) — f(x,&)| <O foreveryx e w\ A,i=1,...,m, and ¢ < 1/k. By (88) and by the
K-Lipschitz properties of f. and f, we obtain

[fe(@,8) = f(z,6)] <30 (89)

for every z € w \ A, for every £ € B(0,R) and ¢ < 1/k.

The dominated convergence theorem, inequality (89), the majoration in (12) with the
constant C and the definition of A and R imply that for all § > 0, there exists k € N such
that for all e < 1/k and k > 0,

/ e, V) — Fle. V)] < 3L (@) +20)6, (90)

which proves (86).

Finally, as (87) holds for any converging subsequence of / Qfe;(z,&) and for any Lips-
chitz open subset w of O, we obtain (81). This concludes the L;)roof of Lemma 12.
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4.4 Proof of Lemma 13

This proof is based on elementary calculus.

1
‘/o a(z,§1 +t(§2 —&1)) - (S —&1)dt

Cle — &l + &P~ + 16 — &P
Clé — &I+ &P~ + &P

Wz, &) = W(z, &)l

IAIN

for all &« > 0 in (2).

We now prove inequality (33). Let u minimize inf { / W(x,Vv)|ve K } Since for
Q

every v € K, / a(z, Vu) - (Vv — Vu) > 0 holds, (33) is a consequence of the following
Q
inequality:

/ W(x,Vu) — / W(z,Vv) — / a(z,Vu) - (Vv = Vu) > ¢|Vu — VvHip(Q). (91)
Q Q Q
For every v € K, let us introduce a function

g:[0,1] = R, t+— g(t) = /Qa(@Vu + (Vv — Vu)).

This function is real, differential and convex. As
J(t) = / a(z, Vu + H(Vo — Va) - (Vo — Va),
Q
we have
W(z, Vu) — / Wz, Vv) — / a(z,Vu) - (Vv — Vu)
Q Q Q
9(1) = g(0) = 4'(0)
[ o -gonat

01
/ / (a(z, Vu + (Vv — Vu)) — a(z, Vu)) - (Vv — Vu)ﬂ
0 Jo

t

Y

c/ V0 = Vul}, "t

0
| Vo = Vulf, o,

V

since property (3) also implies (a(x,&1) — a(x,£2)) - (&1 — &2) > ¢|&1 — &P for 8 < p. This
proves (91) and consequently (33).
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