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Abstract: Grid platforms federate large numbers of resources across several
organizations. While their promises are great, these platforms have proven
challenging to use because of inherent heterogeneity and dynamic character-
istics. Therefore, grid application development is possible only if robust dis-
tributed services infrastructures, e.g. for resource and data discovery, resource
monitoring or application deployment, are available. These infrastructures,
which are large-scaled distributed loosely-coupled applications, are very dif-
ficult to design, develop and tune.This paper presents the Grid Reality And
Simulation (GRAS) framework that allows grid developers to first implement
and experiment with such an infrastructure in simulation, benefiting from a
controlled and fast environment. The infrastructure can then be deployed in
sttu without code modification.

We first detail the design goals and the implementation of GRAS, and con-
trast them to the state of the art. We then present a case study to highlight the
fundamentals of GRAS and illustrate its ease-of-use. In addition, we quantify
the complexity of a code example using either GRAS or several other com-
munication solutions. We also conduct tests over LAN and WAN networks
to assess the performance. We find that the code using GRAS is simpler and
shorter than any other solution while achieving better performance than most
of the other solutions.
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GRAS : un environnement de recherche et
développement pous les services sur la grille

Résumé :

Les plates-formes de grilles fédérent de nombreuses ressources mises a dis-
position par des organisations différentes. Bien que le potentiel de ces solutions
soit important, ces plates-formes se sont révélées difficiles & utiliser & cause de
leurs caractéristiques hautement hétérogénes et dynamiques. Le développe-
ment d’applications pour la grille est impossible sans de solides infrastructures
pour la découverte des ressources et des données disponibles, pour le monito-
ring des ressources ou encore pour le déploiement des applications.

Ces infrastructures (qui sont des applications distribuées a large échelle et
faiblement couplées) sont elles-mémes trés difficiles & concevoir, & développer
et & optimiser. De plus, ces infrastructures posent la plupart du temps des
difficultés algorithmiques complexes.

Cet article présente ’environnement GRAS (Grid Reality And Simulation).
Il permet aux développeurs d’implémenter et d’expérimenter de telles infra-
structures sur simulateur dans un premier temps afin de leur offrir un environ-
nement controllé et rapide. Les infrastructures peuvent ensuite étre déployées
in situ sans modification de code.

Nous détaillons tout d’abord les objectifs et 'implémentation de GRAS
avant de comparer ce projet a 1’état de ’art du domaine. Nous présentons
ensuite un exemple de programime utilisant cet environnement pour en illustrer
la simplicité d’usage. Par ailleurs, nous quantifions la complexité d’un autre
programme selon qu’il est implémenté avec GRAS ou d’autres solutions de
communications. Enfin, nous présentons une campagne d’expériences visant a
mesurer 'efficacité des applications ainsi obtenues. Nous montrons que GRAS
simplifie ’écriture des services distribués tout en garantissant de meilleures
performances que la plupart des autres solutions existantes.

Mots-clés : Calcul distribué & grande échelle, Développement de services
distribués, Outils de développement.



A RED framework for grid services 3

1 Introduction

Grid computing consists in federating heterogeneous and distributed comput-
ing resources in order to aggregate their computational, communication and
storage capacities. A platform resulting of the sharing of local resources be-
tween several organizations is called a grid [TT]. Such platforms are very
promising but are very challenging to use because of their intrinsic hetero-
geneity in terms of hardware capacities, software environment and even system
administrator orientations. That is why any application developers has to rely
on distributed services infrastructures such as the Globus MDS and GIS [12]
for resource and data discovery, the Network Weather Service (NWS, [26])
for resource monitoring, NETSOLVE [2] or DIET [6] for application deploy-
ment. These infrastructures, which are large-scale distributed loosely-coupled
applications, are in turn challenging to develop and to tune. Furthermore,
the underlying distributed algorithms are generally extremely complex and
difficult to study.

Most of the currently deployed infrastructures rely on lightweight com-
munication libraries. For instance, the NWS uses a specific portability and
communication library perfectly fitted to its use; the first NETSOLVE ver-
sions used raw sockets and a basic application protocol; many projects of the
former AppLeS group (like the Effective Network View [21| or A Parameter
Sweep Tool [8]) rely on the AppLeS Multi-Protocol Interprocess Communica-
tion (AMPICH). These facilities are application-specific, and hence likely to be
difficult to reuse in a more general context. The key problem here is that none
of the classical standards of parallel computing is suited to the development
of distributed service infrastructures.

Another difficulty posed by grid platforms is their dynamic characteristics
that prevent reliable reproduction experiments and hinder faithful algorithm
comparisons. As a result, developers typically spend inordinate amount of time
and energy to establish stable development and evaluation environments. A
solution to alleviate these problems is to use simulation. However, the resulting
implementations are typically confined to proof-of-concept prototypes. Such
implementations would need a complete rewrite before being useable in situ.

LURL: |http://grail.sdsc.edu/projects /ampic/
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This paper introduces the Grid Reality And Simulation (GRAS) framework,
which aims at easing the development of distributed event-oriented applica-
tions. It constitutes at the same time a convenient development framework
and an efficient grid runtime environment, allowing the same unmodified code
to run both on top of a simulator and on real distributed platforms (using
two specific implementations of its API). This solution combines the better of
both worlds: developers benefit from the ease-of-use and control of the sim-
ulator during most stages of development cycle while seemlessly producing
efficient real-life-enabled code. While GRAS does not pretend to address all is-
sues pertaining to grid computing, we believe that its combined simulation/in
situ approach is the key to the rapid and easy development of effective grid
infrastructures.

The remainder of this article is organized as follows: §2 details the goals
and the approach of GRAS. §8 compares our work to the state of the art in
the field. § presents a case-study to illustrate the use of GRAS. §0 provides
some experimental results, both in term of communication performance and
code complexity. §6l concludes the paper.

2 The GRAS project

2.1 Targeted Applications

GRAS is designed to build well-tested distributed infrastructures offering a
specific service to grid applications and middlewares. For instance, one could
use GRAS to build grid computational servers comparable to NETSOLVE [2]
and DIET [6], or platform monitoring sensors like the NWS ones [26]. Such
infrastructures are constituted of several entities dispatched on the various
hosts of the platform and collaborating with each other using some specific
application-level protocol. The primarily targeted application class is thus
the class of loosely coupled collections of communicating processes using an
application-level protocol.

Such applications are more easily described using an event-driven model
than with a SPMD model [23]. The GRAS framework relies on the active
message paradigm and a high level message passing interface. After an initial-
ization phase where message types are declared and callback functions attached

INRIA



A RED framework for grid services 5

to the arrival of given message types, the GRAS typical main loop polls for in-
coming messages and dispatches them to the corresponding callbacks. It is
still possible to explicitly wait for a given message (for instance an answer
to a previous message). Any message arriving in the meantime is queued for
further use.

We now detail our design goals and their implications on the framework
implementation.

2.2 Development Framework for Distributed Applications

It is well known that the development of distributed applications is much
more difficult than for centralized and sequential applications. Concurrent al-
gorithms introduce specific difficulties like race conditions or deadlocks. More-
over, usual development techniques do not apply because the application is
split in several entities interchanging messages. This process multiplication
makes it very difficult to conduct step-by-step execution in a debugger to un-
derstand why the program does not behave as expected.

This situation is even more complicated in a typical grid setting for two
reasons. First, the processes are usually distributed over several sites introduc-
ing different hardware and administrative orientations. Thus, the programing
environment is likely to be different on each site, and getting each process
compiled on each site taking the library location and compiler settings into
account can become difficult. The second main issue comes from the scale of
typical grid platforms, which can range from a dozen of hosts to several hun-
dreds (or even more). Naturally, increasing the number of hosts dramatically
increases the probability that at least one host is out of order at a given time.
The resulting technical difficulties often distract the developers from the algo-
rithmic challenges posed by grid applications, making the development even
more challenging.

Under such conditions, a classical answer is to develop and tune the appli-
cations on one single host before deploying it at large on real platforms. This
approach may induce a limitation on the number of processes co-located on
the same host due to application specific constraints. For instance, the NWS
sensors test the available bandwidth using active measurements. It is thus
difficult to place more than one such sensor per machine.

RR n° 5789



6 Martin Quinson

Another challenge is then to reproduce the platform heterogeneity. To as-
sess for instance how the application behaves when a node is placed on a node
slower than the other ones, it is possible to use classical UNIX process priority
mechanism with nice(1). This only works for processing capacity hetero-
geneity, and simulating communication heterogeneity implies to use emulation
solutions such as MicroGrid [27] and ModelNet [24].

Both projects aim at emulating a grid or an internet-like environment while
enabling repeatable results. They allow to run applications on a virtual plat-
form by trapping every relevant library call (socket-related calls, gethostname,
etc.) and mediating them. In MicroGrid for instance, the computing resources
are simulated using a local scheduler, which allocates CPU time slices to each
process according to a predetermined simulation rate. The network is simu-
lated through the DaSSF simulator [I6] which mediates all communications.
In ModelNet, communications are not simulated but emulated. They are sent
to a router core constituted of specific nodes running a modified version of
FreeBSD to emulate the behavior of a configured target network: it offers the
same rates, delays and losses as the target network.

We expect GRAS users to run their applications quite frequently during the
debugging cycle, and therefore need a very fast evaluation scheme. Since they
precisely simulate the whole architecture, the emulation solutions presented
above, or complete simulators such as SimOS [T4] (for complete machine sim-
ulation, down to instruction level) or NS [E] (for complete network simulation,
down to packet movement) do clearly not fit our needs.

Instead, we decided to base our work on the SIMGRID [7] environment.
This toolkit provides core functionalities for the simulation of distributed ap-
plications in heterogeneous distributed environments. It is built upon an effi-
cient trace-based discrete event simulation kernel. Thanks to the rather simple
models used, SIMGRID allows to simulate up to some thousand processes on
a single workstation and is several orders of magnitudes faster than complete
simulators or emulators.

Another interesting feature of SIMGRID in our context is that all the pro-
cesses constituting the application are changed to threads of a single process
during the simulation, and that they are run one after the other in an exclusive
manner. This can be seen as a problem limiting the simulation performance,

INRIA
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but this is an advantage in our context since it greatly eases the application
debugging by allowing the step-by-step execution approach.

To allow the same unmodified code to run both on top of a real platform
and in a simulation mode, GRAS needs to virtualize the operating system and
its system calls. For instance, time calls should return the current simulated
time rather than the current real time on the machine running the simulation,
which is meaningless within the simulation.

In this view, GRAS defines explicit wrappers to system calls such as time
and sleep. These wrappers also act as portability layer. Indeed, the sys-
tem calls’ prototypes and semantics may change from one operating system
to another, forcing the user code to take these variations into account to re-
main portable. The GRAS system call wrappers thus provide a consistent and
portable interface masking the specificity of each OS to the programmer.

Another difficulty is to report the computation sequence durations into the
simulated reality. For instance, when the user code executes a computation
lasting W Mflop, the corresponding simulated process has to be blocked for
W/p virtual seconds if the virtual host on which it runs delivers a constant
throughput of p Mflop/s. GRAS thus provides a way for the user to specify
whether the duration of a given sequence of code should be reported in the
simulated world or not. W is either provided by the user or automatically
benchmarked.

This mechanism can be used to completely virtualize some code sections
in the simulation. For instance in an application achieving a distributed ma-
trix product, the simulator purpose is only to validate the interactions of the
distributed processes while the actual product result does not matter. In such
cases, some specifically marked code sequences will be skipped and the simu-
lated process will be blocked for the corresponding amount of simulated time,
allowing for an even better simulation acceleration factor.

2.3 Efficient Grid Runtime Environment

Performance concerns. As our goal is to allow the development of real
programs, not only simple algorithmic prototypes, the associated runtime en-
vironment has to be suitably optimized. The communication layer deserves a
lot of attention because of the distributed settings of the targeted applications.

RR n° 5789



8 Martin Quinson

The Native Data Representation (NDR) constitutes an efficient data repre-
sentation first demonstrated by PBIO [10] and used in GRAS. This methodol-
ogy (sometimes described as “The receiver makes it right”) consists in sending
the data structures as they are represented in memory on the sender side.
Then, if the receiver architecture matches the sender one, the data can be
placed in memory without any analysis, completely avoiding the encoding
costs. If the architectures do not match, this is the receiver responsibility to
convert the remote data representation to the local one. The performance of
GRAS is discussed in §0l

Portability. Any decent grid runtime environment has to address the oper-
ating system and hardware heterogeneity issue. In this view, the system call
virtualization mechanism discussed above is used as a portability layer over
the different operating systems, ensuring that any user code built on top of
GRAS remains portable across architectures.

Thanks to a plain C ANSI implementation using tools like autoconf for
compile-time configuration, the GRAS framework is itself highly portable. It is
known to run at least on the following platforms: Linux (X86, AMD64, 1A64,
ALPHA, SPARC, HPPA and PPC); Mac OS X; Solaris (SPARC and X86); Irix
and Aix.

The only platforms on which GRAS is known not to work are the Win-
dows operating system family and the ARM processor family. Both issues are
currently worked on.

Ease of use. As discussed in § the provided API aims at remaining simple
and easy to use. In addition, GRAS provides the grounding features needed by
any advanced distributed application such as logging facilities (in the spirit of
the log4j projectﬂ), error handling and exception raising primitives, advanced
data containers (dynamically sized arrays, hash tables, etc.), as well as basic
configuration support.

2URL: |http://jakarta.apache.org/log4i
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3 Related Work

The duality of our design goals (from ease of development to efficient execution)
naturally connects the GRAS framework to different literature domains, which
we shall present now.

3.1 Development Framework for Distributed Applications

Solutions such as Vampir [T5] and TotalViewl] allow the programmer to
explore the communication patterns of MPI applications to identify the per-
formance bottlenecks and other problems. These solutions provide a graphical
representation of captured data to ease their understanding. The main draw-
back stands in the volume of data provided. Since they do not suppose any
semantic on the sent bytes, they have to show all of them. In contrast, GRAS
can use its high-level messaging infrastructure to provide a synthetic and po-
tentially preferable view of the run. Moreover, these tools are designed to work
with MPI, which is neither suitable for grid computing nor for the development
of loosely coupled collections of communicating processes.

The main advantage of GRAS compared to these solutions stands in the
use of a simulator, allowing to reproduce the experiments under controlled
conditions. Due to the changing nature of grid platforms, two subsequent
execution of the same code will necessary face different conditions, possibly
triggering different behaviors of the application. It is thus not possible to
thoroughly and reliably test a grid application without using a simulator.

Dimemas [3] is the performance predictor associated with the VAMPIR
tool. This tool aims at the so-called "what if analysis": given the application
trace as recorded by VAMPIR, it tries to interpolate what the application ex-
ecution would be on another (possibly larger) platform. This may give some
hints about the scalability of the code, but does not help to develop and debug
the application.

Macedon [19)] aims at providing a unified framework to compare large-scale
overlay algorithms and thus help developing large-scale overlay services. It
allows to specify distributed algorithms in a concise domain-specific language,

3URL: |http://www.etnus.com/
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which enables fair comparisons of the merits of individual algorithms rather
than artifacts of particular implementations [19]. This specification can then
be used to generate a code that runs unmodified in live Internet setting or
on top of ModelNet [24]. Therefore, even though algorithms encoded within
MACEDON lead to working implementations, they remain prototypes which
efficiency is arguable. Lastly, computation times are not taken into account by
the simulator, limiting this approach to communication bound applications.

GRAS can be considered as an evolution of the Direct Execution Simulators
such as LAPSE [9] or MPI-SIM [I8]. These systems allow to evaluate and
tune (in a simulated environment) parallel programs using MPI. The sequen-
tial code sections are timed by direct execution and their effect is then reported
into the simulator. GRAS follows the same approach and extends it to het-
erogeneous platforms and to applications presenting irregular communication
patterns.

3.2 Efficient Grid Runtime Environments

We now present some classical communication libraries and solutions dis-
tributed application. Note that they only compare to a subpart of GRAS since
none of these solutions allow the users to develop and debug their applications
easily using a simulator.

The classical message passing communication libraries like PVM [22] or
MPI [17] were designed for high performance computing on clusters. They are
thus particularly adapted to applications presenting a regular communication
and synchronized execution patterns. On the opposite, GRAS aims at loosely
coupled applications with potentially highly irregular communication and ex-
ecution patterns. Moreover, GRAS aims at offering efficient communication
of structured data while PVM or heterogeneous implementations of MPI use
XDR for data encoding, impacting badly the performance. The MPICH im-
plementation of MPI (against which GRAS is compared in §0l) is homogeneous
on Linux.

The AppLeS Multi-Protocol Interprocess Communication library
(AMPiC) constitutes a simple solution to exchange messages between loosely

INRIA
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coupled applications and attach callbacks to their arrival in processes. It can
convey fixed C structures (without dynamic arrays or other sort of pointers)
over the socket, using secure connexion or on top of the MPI and Globus
communication libraries. This only lacked the Native Data Representation to
become an appealing grounding layer for the GRAS runtime environment.

The Portable Binary Input/Output library (PBIO — [10]) constitutes a
very efficient data encoding solution. It allows to send traditional C structures
in the native representation of the sender along with meta-data allowing the
receiver to convert them to its own native representation if it differs from the
sender one. Moreover, PBIO optimizes further the conversion by generating
the needed routines in assembler at run time.

CORBA|27] is the standard of Remote Method Invocation (RMI), which
allows to let several objects to interact. It is typically used in multi-tier en-
terprise applications and for applications integration. One of its advantages in
this setting is to provide access to services regardless of their actual location.
In our setting, this may become a disadvantage since the process location is
very important to us. In other words, the applications targeted by CORBA are
so different from our targets that the facilities provided do not really match our
needs. For sake of implementations interoperability, the CORBA wire protocol
is also less efficient than ours.

Nowadays, XML constitutes the de facto standard for interoperability,
used in technologies such as XML-RPCJI| and SOAP[5]. One of its main
advantages is to be a human-readable protocol, allowing for easy debugging
and parsing. However, XML does not clarify the messages semantic by itself.
There is currently a tremendous research effort in the web ontology field, but
the conclusions are still unclear to us. Another huge disadvantage of XML
from our point of view is the systematic data conversion to and from a textual
representation which greatly impacts the performance of such solutions. This is
why we decided to rule XML out in favor of an efficient binary representation.
The benefits are discussed in §5.

RR n’ 5789



12 Martin Quinson

4 Example: a Simple Matrix Multiplication RPC
Tool

This section provides an example illustrating the effectiveness of GRAS. We
present a simple system allowing to compute matrix multiplication remotely.
It is composed of a client and a server: the client creates the matrices and send
them to the server for computation. The server performs the multiplication
and returns the result to the client. The whole example is about 100 lines long
(accounting for memory management, error handling and the actual computa-
tion, omitted here because of space limitation). The presented example code is
fully functional and can be run on top of GRAS as is. We now briefly comment
the source code.

Data and messages description Concerning the data exchanged over the
network, our example only uses matrices. Declaring this structure to GRAS is
as easy as including the actual C struct statement in a GRAS_DEFINE_TYPE
macro call (see Figure[L[(a)]). The structure definition is then saved to a string
variable for further parsing and use at run time. This statement is also left
unchanged for the compiler and there is no need of manual duplication.

There is no limitation on the datatype conveyed as message payload. It
can be a structure, as in this example, or any other valid C type such as enum,
union or pointers. Thanks to classical garbage collecting mechanisms, GRAS
can deal with cycles of pointer references. They can be detected automatically
on the sender side and reconstituted on the receiver side.

When the datatype contains pointers, as in this example, the user needs to
provide additional semantic information. This is done with the GRAS_ANNOTE
macro on lines 5-6. Here, it specifies that ctn is an array (and not a simple
reference), which size is the result of the operation rows * cols (with rows and
cols being the other fields of the structure).

Once the data types are declared, we need to describe the messages which
may be exchanged over the network. Enclosing the data in messages allows
to attach some semantic to them. For instance, the client sends to the server
a "mm request" message containing the matrices to multiply instead of the

INRIA
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data directly. This helps the server to differentiate between the several request
types.

Our tool declares two new messages conveying respectively a matrix multi-
plication request and the result of such a request. The first message accepts an
array of two matrices as a payload while the second conveys an unique matrix.
These declarations figure in

On line 3, the macro gras_datadesc_by_symbol retrieves the structure
statement definition saved by GRAS_DEFINE_TYPE and parses it automatically.
The result is stored in the matrix_d variable. Lines 6-7 uses it to build the
description of a 2 matrices long array. Line 5 declares the "mm request"
message type using this description. Line 8 declares the "mm answer" message:
it can convey one matrix.

Client side The function presented in Figure B acts as the main() of our
client. On line 5, the GRAS infrastructure is initiated using the command line
arguments. A new socket is opened on line 6. It will be used to contact the
server. All known messages are then registered on line 7. The line 8 stands
for the matrix creation. Being less relevant, this code is omitted. On line 9, a
request conveying the prepared matrices is sent to the server, and the answer
is awaited on line 10 up to 600 seconds.

Server side We now discuss the code of our server, presented in Figure Bl
The function server () (lines 13-24) acts as the main() function for the server.
After the needed initializations, it registers the function request_cb() as a
callback to the incoming "mm request" messages on line 20 and waits for an
incoming message on line 21. The callback code presented on lines 1-12 is also
relatively straightforward.

The request payload is casted and stored in a variable on line 3. Lines 7-9
allocate the needed memory to store the result. Line 10 stands for the actual
matrix multiplication, which code is omitted for sake of clarity. The result is
sent back to the expediter (passed to the callback as argument) on line 11.

Deployment Once the code of all system components is written, GRAS has
to be instructed about how to glue them together. FigureH constitutes a simple
deployment file. It specifies that the program server has to be launched with

RR n’ 5789



14

Martin Quinson

W N U W N

GRAS_DEFINE_TYPE(s_matrix, void register_messages(void) {

struct s_matrix { gras_datadesc_type_t matrix_d
int rows; = gras_datadesc_by_symbol(s_matrix);
int cols; gras_msgtype_declare("mm request",

double *ctn GRAS_ANNOTE(size,
rows*cols);
s

typedef struct s_matrix matrix_t;

W N U W N

gras_datadesc_array_fixed("matrix_t[2]",
matrix_type,2));
gras_msgtype_declare("mm answer", matrix_d);

© 00 N DU A W N

-
=]

© 0N U AW N

O T e T =
N H O © 00N U W N = O

(a) Data type definition. (b) Message type definitions.

Figure 1: Data types and message types definitions.

int client(int argc,char *argv[]) {
gras_socket_t from, toserver=NULL;
matrix_t request[2], answer;

gras_init(&argc, argv);

toserver=gras_socket_client(argv[i], atoi(argv[2])); /* host port */
register_messages();

/* Prepare the request for the server (omitted) */
gras_msg_send(toserver, gras_msgtype_by_name("mm request"), &request);
gras_msg_wait(600,gras_msgtype_by_name("mm answer"),&from,&answer);

Figure 2: Client side.

int request_cb(gras_socket_t expediter, void *payload_data) {
/* 1. Get the payload into the data variable */
matrix_t *data=(matrix_t*)payload_data;
matrix_t result;

/* 2. Make some room to return the result */
result.rows = datal[0].rows;
result.cols = data[l].cols;
result.ctn = xbt_mallocO(sizeof(double) * result.rows * result.cols);
/* 3. Do the computation (code omitted), and send the result back */
gras_msg_send(expediter, gras_msgtype_by_name("answer"), &result);
}
int server (int argc,char *argv[]) {
gras_socket_t sock;

gras_init(&argc,argv) ;
sock = gras_socket_server(atoi(argv[1])); /* first arg: port */
register_messages();

gras_cb_register(gras_msgtype_by_name("mm request"),&server_cb_request_handler);
gras_msg_handle(600.0);

Figure 3: Server side.

INRIA
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1 <7xml version=’1.0’7>

2 <!DOCTYPE platform_description SYSTEM "surfxml.dtd">

3 <platform_description>

4 <process host="Tremblay" function="server">

5 <argument value="6000"/> <!-- port number -->
6 </process>

7 <process host="Fafard" function="client">

8 <argument value="Tremblay"/> <!-- server host -->
9 <argument value="6000"/> <!-- port number -->
0 </process>

1

=

</platform_description>

Figure 4: Deployment description file.

the string "6000" as unique argument on a machine named Tremblay, and
that the program client has to be launched with the provided arguments on
the machine Fafard.

This is used to do the actual deployment on top of the simulator, but
unfortunately, GRAS cannot deploy the code automatically on real platforms
yet, requiring the user to deploy its code manually using tools like ssh. Nev-
ertheless, it uses this file to get the name of the components to build, and
write the corresponding main() function calling the right user function after
initialization.

5 Experimental Evaluation

This section aims at evaluating more quantitatively the GRAS framework. In
that view, we implemented a simple communication example using several
communication libraries. The code simplicity was then measured using clas-
sical metrics and the communication performance was compared in different
settings.

The chosen message is involved in the Pastry [20] application protocol. It
is returned by all contacted nodes when a new node joins the system. Figure
presents the C definition of this data type. This structure mainly contains one
array of integers and one array of sub-structures, which themselves contain an
array of integer. All arrays sizes are fixed at compilation time. The whole
structure is 84 bytes long.

In this experiment, we compare GRAS to the following solutions: the
MPICH implementation (version 1.2.5.3) of the MPI standard; the OmniORB
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typedef struct {
int id, row_count;
double time_sent;
row_t *rows;
int leaves[MAX_LEAFSET];
} welcome_msg_t;

typedef struct {

int which_row;

int row[COLS] [MAX_ROUTESET];
} row_t;

W N e
D TR W N

Figure 5: C definition of the exchanged message.

implementation (version 4.0.5) of the CORBA standard; PBIO, which is pre-
sented in §8.2 and a hand-rolled solution using the expat XML parser. To our
knowledge each of these implementations are amongst the best solutions in
their categories.

User code complexity. In this section, we compare the complexity of the
code that the user has to write to exchange this message. This comparison,
presented in Table [l uses two classic code complexity metrics: The McCabe
Cyclomatic Complexity shown on the first line is the amount of functions plus
the occurrence count of for, if, while, switch, &&, ||, and ? statements
and constructs. This metric assesses the code complexity and its maintenance
difficulty [T3]. The second line reports the number of lines of code (not counting
blank lines and lines that contain nothing but comments).

The OmniORB column presents two series of numbers because CORBA
prevents the developer from using the arrays from the standard library and
forces them to use its own representation of data collection. Thus, the modifi-
cation when distributing an existing sequential code is more consequent with
CORBA than with other solutions. To recap this, the first number is the
code for the actual exchange over the network while the number in parenthesis
also accounts for the mandatory conversions from and to the CORBA data
collection types.

GrAs | MPI | PBIO | OmniORB | XML

McCabe Cyclomatic Complexity 8 10 10 12 (20) 35

Number of lines of code 48 65 84 92 (195) 150

Table 1: Complexity and size of the different implementations.

INRIA
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MPT is quite simple, the main difficulty being that it requires manual mar-
shalling and unmarshalling of data. PBIO exempts the user of these error-
prone tasks, but requires the declaration of data type description meta-data.
OmniORB requires the user to override several methods of classes automat-
ically generated from an IDL file containing the data type description. The
CORBA initialization is also a bit longer that of other solutions. Interestingly
enough, the XML solution is by far the most complicated one. It may be an
artefact of our use of the expat parser, but since it is usually considered as the
fastest XML parser, we decided to use this solution anyway.

GRAS automatically marshals the data according to the type description,
which is also automatically retrieved from the C structure declaration (cf.
§)). This allows GRAS to be the less demanding solution from the developer
perspective, according to both metrics.

Communication performance. To quantify communication performance,
we conduct some experiments involving computers of different architectures
(PPC, SPARC and X86), and at different scales. Figure [l presents the timings
measured when the data is exchanged between processes placed onto the same
host. Figure[d presents the timings measured on a LAN. The sending architec-
ture is indicated on the row while the receiving architecture is shown by the
column (for instance, the most down left graphic was obtained by exchanging
data from a PPC machine to a X86 one). Figure B presents the timings mea-
sured in an intercontinental setting: data is exchanged from the previously
used hosts located in California, to an X86 host placed in France. The X86
machines are 2GHz XEONs, the SPARC are UltraSparc II and the PPC are
PowerMac G4. The SPARC machines are notably slower than the other ones
while X86 and PPC machines are comparable. All hosts run Linux. The LAN
is connected by a 100Mb ethernet network, and both sites are connected to a
T1 link.

Each experiment were run at least 100 times, for a total of more than
130 000 runs. Moreover the different settings were interleaved to be fair and
equally distribute the external condition changes over all the tested settings.

The first result of these experiments is the relative portability of communi-
cation libraries. This version of PBIO does not work on the PPC architecture
while MPICH fails to exchange data between little-endian Linux architectures
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Figure 6: Intra-machine performance.
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Figure 7: LAN performance (column: sender; row: receiver).
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Figure 8: Wide Area Network (WAN) performance.

and big-endian ones. We were also unable to exchange data on the WAN using
MPICH.

The most expected result is that the XML based solution suffers from bad
performance. The systematic conversion from and to a textual representation
of the data induces an extra computation load on the machines while the
verbosity of this representation loads the network. The performance is thus
worse by at least one order of magnitude.

Another general trend is that when MPICH is usable, it is about twice
as fast as the other solutions. Unfortunately, it is only usable in half of the
settings, as discussed previously.

One can also remark that the results are not symmetric: it is twice as
long to exchange the data with GRAS from PPC to SPARC than from SPARC
to PPC. This is naturally due to the NDR data representation (cf. §23)): the
receiver is the one doing the conversion, and SPARC hosts are much slower
than PPC ones. The same effect can be observed with OmniORB and PBIO.
Finally, the differences between solutions tend to be attenuated on WAN.
Indeed, the latency becomes more important, masking the optimization done
in each solution.

These results are quite satisfying for us: beside of MPICH, GRAS is the
fastest solution in all settings, but the X86,/X86 setting (where PBIO is faster
by 0.1ms — 4%) and the SPARC intra-machine setting (where both OmniORB
and PBIO are faster by 2.5ms — 25%). This performance, added to the porta-
bility of our solution and its simplicity of use shown above constitute strong
arguments for the quality of the GRAS framework.
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6 Conclusion

This paper introduces a new grid programming framework allowing develop-
ers to evaluate and tune their applications easily thanks to a simulator. The
resulting code can then be deployed on the target platform without code mod-
ification.

We detail the project design goals, and locate GRAS in the state of the
art through a quick survey. In addition, we comment a basic example of a
remote matrix multiplication tool to show the ease of use of this framework.
We then compare several versions of code exchanging one message (part of the
Pastry application protocol) on the network using either GRAS or MPICH,
OmniORB, PBIO or an XML representation using the expat parser. Finally,
the performance of each version are assessed. We find that GRAS is the less
demanding solution to the user, and that MPICH outperforms by far every
solutions. GRAS offers the second best performance of our test sets. On the
other hand, MPICH does not allow to exchange data over the WAN neither
between little- and big-endian Linux hosts.

We thus claim that GRAS is an easy to use distributed application devel-
opment framework resulting in efficient yet portable applications suited to a
typical grid platform. It shorten the development cycles by simplifying the
user code and allowing the debugging phase to take place on the simulator.
We believe that its combined simulation /in-situ approach is the key to effective
grid infrastructures and applications.

The GRAS source code represents 15,000 lines of C code. It was recentl
merged in the SIMGRID project, which is freely available from its web pageﬁ
and comes with all relevant information as well as with several example pro-
grams.

GRAS currently enables to easily build a distributed application on UNIX
platforms. That is fine when designing a distributed services infrastructure
for a grid platform. However, we believe that our framework could also be
used to develop peer-to-peer applications such as the PASTRY data location
overlay. We are therefore working on getting a version that would also run on
WINDOWS platforms. This would moreover allow to test peer-to-peer applica-

“http://gforge.inria.fr/projects/simgrid/
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tions against a much more realistic simulation model than the ones that are
generally used. Indeed, most simulations used in the peer-to-peer community
use over-simplified network models that do not account for network outage or
contention, which may be a problem when large file transfers are taken into
account.
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