
HAL Id: inria-00070239
https://hal.inria.fr/inria-00070239

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal QoS Validation Approach on a Real-Time MAC
Protocol for Wireless Sensor Networks

Thomas Watteyne, Isabelle Augé-Blum, Stéphane Ubéda

To cite this version:
Thomas Watteyne, Isabelle Augé-Blum, Stéphane Ubéda. Formal QoS Validation Approach on a Real-
Time MAC Protocol for Wireless Sensor Networks. RR-5782, INRIA. 2005, pp.16. �inria-00070239�

https://hal.inria.fr/inria-00070239
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
57

82
--

F
R

+
E

N
G

appor t
de r ech er ch e

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Formal QoS Validation Approach on a Real-Time
MAC Protocol for Wireless Sensor Networks

Thomas Watteyne — Isabelle Augé-Blum — Stéphane Ubéda

N° 5782

Décembre 2005

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Formal QoS Validation Approach on a Real-Time MAC

Protocol for Wireless Sensor Networks

Thomas Watteyne∗ , Isabelle Augé-Blum∗ , Stéphane Ubéda∗

Thème COM — Systèmes communicants
Projet ARES

Rapport de recherche n° 5782 — Décembre 2005 — 27 pages

Abstract: Several wireless sensor network applications are currently popping up, in various
domains. Their goal is often to monitor a geographic area. When a sensor detects a moni-
tored event, it informs a sink node using alarm messages. The area surveillance application
needs to react to such an event with a finite, bounded and known delay: these are real-time
constraints. The network being linear, routing becomes unnecessary. This work proposes a
new real-time MAC protocol with realistic assumptions on sensor networks. We present a
formal validation of this protocol, and explicit the worst case times for the services offered
by the protocol (initialization and alarm transmission using different modes).

Key-words: Wireless sensor networks, MAC protocol, hard real-time constraints, formal
modeling and validation.

∗ CITI Laboratory, INSA Lyon, France.

Protocole temps-réel pour réseaux de capteurs: une

approche de validation formelle de QdS

Résumé : De nombreuses applications pour réseaux de capteurs sans fils émergent actuelle-
ment dans de nombreux domaines. Leur but est souvent de surveiller une zone géographique.
Lorsqu’un capteur détecte un évènement redouté, il informe un noeud puits en utilisant des
messages d’alarme. L’application de surveillance de la zone géographique doit répondre à
cet évènement avec un temps borné et connu à l’avance: ce sont des contraintes temps-
réel. Le réseau étant linéaire, le routage devient non nécessaire. Ce travail propose un
nouveau protocole MAC temps-réel avec des hypothèses réalistes sur le réseau de capteurs.
Nous présentons une validation formelle de ce protocole et explicitons les temps pires pour les
services offerts par ce protocole (initialisation et remontée d’alarmes selon différents modes).

Mots-clés : Réseaux de capteurs sans fils, protocole MAC, contraintes temps-réel dur,
modélisation formelle et validation.

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 3

1 Introduction

Sensor networks are used in many application areas, ranging from Defense and surveillance
[1] to Health or intelligent homes [2] [3]. In a surveillance application, a possibly large
number of sensors are deployed inside the area that needs to be covered. In a forest fire
detection scenario, a fire is detected by one or more nodes, the resulting alarm is sent to a
sink node. This node collects all the alarm messages and is able to launch the appropriate
action.

A sensor is an embedded component capable of doing three complementary tasks: sensing
a physical phenomenon (temperature, noise . . .), processing the sensed value and communi-
cating with other sensors using wireless technologies [4, 5]. It therefore needs to cope with
the performance limitations of embedded systems, mainly processing power, memory size
and available energy.

Sensor networks are to be deployed rapidly over the area that needs to be covered. Using
the example of a volcanic eruption surveillance scenario, a random deployment can be done
by dropping the sensors from a helicopter. Due to the dangerous nature of the covered area,
human intervention on the sensors can not be count on. This is especially constraining for
energy, as battery replacement is not possible [6].

Due to the random nature of the deployment, no fixed infrastructure is present in the
network. What’s more, even though the sensors do not move, sensor loss due to battery
failure for example can result in topological changes. Communication between node and
sink is performed in a multi-hop way. Indeed, the node’s embedded radio interface is not
powerful enough for its signal to reach the sink in one hop, so intermediate nodes are used
to relay the message. Ad-hoc networks answer those three constraints; sensor networks are
an application domain of ad-hoc networks.

Sensor networks need to address many constraints. Quality-of-Service constraints im-
portance is growing, and among various parameters, guaranteeing a timeliness behavior is
considered as a key challenge for research on wireless sensor networks [7]. Indeed, with se-
curity related applications (e.g. monitoring of forest fires), the system’s reaction time needs
to be bounded and guaranteed. These real-time constraints depend on the application’s
nature.

To take the application’s real-time constraints into account, not only do the hardware
and the software need to provide bounded delays, but so does the underlying communication
network [8]. We focus on the communication part of the problem.

For critical applications to function correctly, a formal validation of those guarantees
needs to be given. To our knowledge, no formal validation has been presented so far for
real-time sensor networks.

As an application class, we consider linear monitored areas. The peculiarity of this ap-
plication class is that as the monitored area is linear, the underlying network is linear too.
This way, as finding a path from source to destination is trivial, we free ourselves from rout-
ing considerations. Linear application examples include highway accident detection, train
positioning on a railway, or production line monitoring. Network linearity is constraining,
but our approach is to work gradually, a two-dimensional extension being considered future

RR n° 5782

4 Watteyne, Augé-Blum & Ubéda

work. Even though linearity is assumed, no assumptions are made on the deployment, so
random linear deployment is possible.

This paper’s goal is to propose a novel MAC protocol and to formally validate both its
behavior and its timeliness characteristics

The remainder of the paper is organized as follows: We provide an investigation of
current proposals in Section 2. Section 3 presents a detailed description of our novel MAC
protocol. The protocol’s formal validation is given in Section 4, we obtain the Quality-
of-Service parameters of our protocol, especially worst case transmission times. Section 5
concludes this paper and presents work that still needs to be done.

2 Related Work

Two different definitions of real-time are commonly used: hard-real time and soft real-time
[9, 10, 11]. A hard real-time communication system needs to guarantee that all messages
reach destination before their deadline. The deadline is the end of the validity interval of the
sensor data. Worst case times are therefore determined; they need to be known a priori, and
to be bounded and guaranteed. Two worst case times are used in communication systems:
Worst Case Execution Time (WCET) and Worst Case Transmission Time (WCTT).

In soft-real time systems, the application is loose enough to accept that a given portion of
the sent messages reach destination after their deadline. This portion is commonly expressed
in percentage and is called "miss ratio".

2.1 Soft Real-Time Solutions

In a soft-real time sensor network, two flows of messages are present: "normal" messages and
so-called "real-time" messages [12]. The goal of the network’s communication mechanisms
is to deal with real-time messages with a higher priority than normal messages, in order to
reduce the miss ratio. Real-time constraints can be taken into account at each OSI layer
[13], so different works focus on different layers.

At the MAC layer (part of network layer 2), a differentiation mechanism is needed.
Existing MAC protocols can be adapted to support differentiation. In 802.11’s MAC protocol
(DCF), backoff and IFS timers are used to regulate medium access. By reducing those
timers for real-time messages, differentiation is achieved. Besides, nodes can be asked to emit
synchronously a signal proportional to the priority of the message they want to transmit. If
the node still senses an occupied medium after it has stopped transmitting this signal (i.e.
another node is still emitting its priority signal), it can not transmit. This way, only the
message with the highest priority will be transmitted [14].

RAP [15] presents a communication architecture covering network layers 1, 2 and 3.
The overall idea is not to use timeliness proximity of a message’s deadline as its urgency
metric, but to assign a required velocity to each message. Information velocity is defined
as deadline over approximate geographical distance. Based on the message’s destination, a
required velocity is calculated at the source and attached to the message. Routing decisions

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 5

Figure 1: Communication using I-EDF.

during multi-hop transmission are taken in order to keep this velocity. If the velocity can not
be kept, the message is discarded. No real guarantees are given. If a message has traveled
too fast up to a certain node, it has gathered some spare time, the node can then re-affect
this spare time to other messages.

It is important to consider real-time constraints (thus message urgency) in routing pro-
tocols. SPEED [16] adds a field to the routing tables which represents the approximate
velocity of a path. This velocity is determined using probe messages. A message will use a
given path if the approximate velocity of this path is higher than the velocity the message
needs to travel at to reach its destination on time. Due to the use of information velocity,
SPEED can be used as a routing protocol in the RAP communication architecture [17].

Apart from fully distributed solutions, medium access can also be regulated using a
centralized scheduler [18, 8, 19]. The scheduler needs to know the positions of all other
nodes, and take into account the number of hops a message needs, to reach destination.
Due to inherent scalability limitations, this type of solution is well suited for collaborative
robots [20, 1, 21].

All these solutions’ aim is to reduce the number of messages that reach destination late,
but they don’t avoid late arriving of messages. As a late message is useless, message can be
lost. Depending on the application, a message arriving late can be unacceptable, and hard
real-time communication systems, that guarantee on-time delivery, are needed.

2.2 Hard Real-Time Solutions

Even though soft real-time solutions minimize miss ratio, no messages can arrive late for
critical applications. Transmission times need to be guaranteed and bounded; hard real-time
solutions are thus needed. New solutions are needed since it is nearly impossible to modify
an existing non-real-time protocol [22] and turn it into hard-real time. What’s more, for a
communication architecture to be hard real-time, all layers need to be hard real-time [23].

To our knowledge, only [24] presents a true hard real-time solution: Implicit Earliest
Deadline First (I-EDF). This MAC protocol is based on Earliest Deadline First scheduling
[24]. The message with the closest deadline is scheduled first. As depicted in Fig. 1,

RR n° 5782

6 Watteyne, Augé-Blum & Ubéda

assumptions include a two-dimensional network with nodes organized in hexagonal cells.
Each cell has 6 neighboring cells, and a router node is present in the center of each one.
Communication and interference radii are assumed to be equal to the distance between two
neighboring router nodes. I-EDF differentiates inter- and intra-cellular communication. As
for intra-cellular communication, each cell is assigned a different frequency; 7 frequencies
are sufficient to avoid inter-cell interference during intra-cellular communication. Inside a
cell, each node knows its neighbors and the characteristics of all messages that need to
be exchanged (frequency, deadline, duration). Using the EDF scheduling algorithm [24], all
nodes of a cell construct the same scheduling table. Collisions are therefore avoided for intra-
cellular communication. As for inter-cellular communication, the six direction of the hexagon
are numbered A, B, C. . . and intra-cellular communication slots alternate with inter-cellular
communication slots in a given direction. A cell’s router emits using the frequency of the
destination cell, resulting in directional inter-cellular communication. Thus, within the same
inter-cellular communication slot, all routers will emit in the same direction (e.g. C). This
direction is changed in a round-robin manner at each new inter-cellular communication slot.
Using time-based scheduling together with multiple frequencies guarantees the collision-free
nature of I-EDF.

Even though I-EDF is hard real-time [25], the assumptions are hard to satisfy. The rigid
cell-based organization of the network does not seem compatible with a random deploy-
ment. What’s more, equality between communication and interference radii is physically
impossible. Finally, due to the large number of embedded components (GPS-like dynamic
synchronization, multiple frequency transceivers) the sensor’s individual cost would be too
high for large-scale use.

We have proposed in [26] a first version of this hard real-time MAC protocol for linear
wireless sensor networks. Even though some ideas are kept in the protocol we present in
Section 3, initialization phase of the protocol presented in was not satisfying. What’s more,
no formal validation with QoS parameter extraction of the protocol has been proposed so
far in .

3 Proposition

Our goal is to present a novel hard-real time MAC protocol with lower assumptions than
I-EDF. We have decided to focus our attention on the MAC layer because, as hard real-time
needs to be dealt with at each layer in communication architectures, a hard-real time routing
layer for example would need a hard real-time MAC layer.

3.1 Hypothesis

The node’s individual price needs to be as low as possible, on one side because a network
can have a large number of nodes, on the other side because sensor loss is possible. To
minimize production costs and to simplify deployment, all sensors are considered identical
(no router nodes). The radio interface can only function at a single frequency, with a

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 7

Figure 2: The network after deployment.

predefined, constant power. Processing power will not be considered high enough to use a
CDMA scheme (Code Division Multiple Access), a technique where different logical channels
are created by using orthogonal coding of information [27]. As nodes will not move, GPS-
like dynamic positioning is considered useless. Synchronization on a global clock (which is
possible using GPS) is therefore also excluded. Each node needs to know a certain number
of global variables. It has to know its absolute position A, its maximum range maxrange,
and its radio interface’s bandwidth BW . The node can know learn its absolute position
during deployment, or it can be determined during a pre-initialization phase.

The monitored area needs to be linear, so as to free ourselves from routing considerations.
A network is considered linear when a node’s emission is heard at least at each border of
the monitored area, i.e. communication range needs to be larger than the monitored area’s
width. Node position can then be represented by their projection on a line. Two neighboring
nodes need to be able to communicate; they should therefore be within communication range.
The distance between the two closest neighboring nodes distmin needs to be known by all.
Finally, a sink node needs to be placed at one end of the network.

The wireless link is considered bidirectional: when A hears B, B assumes A can hear him.
If node C is located between A and B, if A and B can communicate, C can communicate
with either one of them. We consider a fading propagation equation, but no errors are taken
into account (message loss for example).

Finally, alarms can be generated by any node, all of the alarms having the same priority.
They need to reach the sink node in a multi-hop way before a deadline dictated by the
application. Our goal is to propose a protocol that can guarantee a known and bounded
transmission time. This time needs to be compatible with the application’s deadline.

The network is represented in Fig. 2. The square represents the sink node, circles
represent nodes.

3.2 General Idea

The network is organized into cells during an initialization phase. Cells are created so that
each node of a cell can communicate with each node of a neighboring cell. Thanks to the cell
creation mechanism, a certain level of reliability is guaranteed during this communication.
Alarm transmission during run-time is done using two modes: protected mode and un-
protected mode. Run-time starts in unprotected mode with a near optimal transmission
speed, but several messages can collide. In case of collision, the network switches into a

RR n° 5782

8 Watteyne, Augé-Blum & Ubéda

protected mode which is slower but collision-free (thus with a guaranteed delay). The sink
decides when to switch back to unprotected mode.

3.3 Initialization

The initialization phase’s goal is to organize the network nodes into cells. Each node will
have two unique identifiers: its absolute position A and its identification with respect to the
cells. Two types of signaling messages are used: CREATION and END_INIT . Each
message contains the sender’s absolute position Asender. A message is considered received
if and only if it has been received with a Signal-to-Noise Ratio (SNR, [28]) higher than a
threshold we will explicit. This guarantees a certain reliability in cell-to-neighboring-cell
communication.

3.3.1 Medium access

For two messages not to collide during initialization, a backoff scheme is used. When a node
emits, all nodes that have received the message determine a backoff time proportional to
the difference between the node’s position A and the position of the emitting node Asender.

backoff =
A − Asender

Winitialization

(1)

The node can access the medium only when its backoff expires. Winitialization is called
"wave speed" because the overall view of expiring backoff timers forms a wave. Winitialization,
in meters per second, is bounded. Indeed, if x and y are two neighboring nodes, with Ax <

Ay, y needs to have received x’s message entirely before its backoff expires. Winitialization

therefore needs to take into account the following parameters: the message’s propagation
time Tpropagation, the time needed for the radio interface to switch between receiving and
emitting modes Tinversion, and the message’s length in bits lengthCREATION over the band-
width BW .

Winitialization ≤
distmin

Tpropagation + lengthcreation

BW
+ Tinversion

(2)

3.3.2 Initialization algorithm

1. The sink node emits CREATION(1), creating cell 1. All the nodes that receive this
message determine their backoff. During the backoff time, each node records the
number of CREATION messages it has received, the time of reception of the last
one, and the number of the last created cell.

2. When a node’s backoff expires and it has only received one CREATION(i) message,
it emits CREATION(i + 1) and is part of cell i + 1.

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 9

3. When a nodes backoff expires and it has received CREATION(i) and
CREATION(i + 1), it is part of cell i + 1. It starts a timererror (to be explained)
from the moment it receives CREATION(i + 1). If timererror expires before it has
received any other message, it emits CREATION(i + 2) and is part of this new cell.

4. When emitting a CREATION message, a node also starts timerlast. If it expires
before receiving any new message, the node knows it is the last node of the network,
and sends out an END_INIT (1) message

5. A node that receives END_INIT (i) sends out END_INIT (i+1) if it has sent out
a CREATION message before.

timererror is used to detect the situation when CREATION(i+1) has not been heard by
more nodes than CREATION(i). In this case, none of the nodes that have heard both will
emit a new CREATION message, resulting in an uncompleted initialization. To overcome
this problem each node starts timererror on receiving the second CREATION message
CREATION(i + 1). When timererror elapses, the node emits CREATION(i + 2). Of
course, all timererror have different values (depending on the nodes’ locations) so as to elect
only one emitting node (the one with the highest absolute position A).

timererror =
2 × maxrange − (A − ACREATION(i+1))

Winitialization

(3)

timerlast is used for a node to determine if it is the last node of the network. This timer
is started by a node when it sends out a CREATION message, and is aborted whenever
another CREATION message is heard. If none is heard and timerlast expires, the node
knows it is the last node of the network and sends out an END_INIT message to inform
the sink node in a multi-hop way the initialization phase has ended.

Figure 3: The cell creation mechanism.

Fig. 3 illustrates an example. CREATION and END_INIT are shortened to C and
E, respectively. Nodes are identified by their rank in the network, the nodes’ communication

RR n° 5782

10 Watteyne, Augé-Blum & Ubéda

Figure 4: Relationship between BER and SNR.

ranges are represented by the arrows. The sink node sends out CREATION(1), creating
cell 1. Nodes 1, 2 and 3 which hear this message set their backoff timers. Nodes 1’s backoff
elapses first, it sends out CREATION(2). When the backoff timers of nodes 3 and 4 elapse,
they have received 2 CREATION messages, and therefore take no action. The process
goes on with node 4 which sends out CREATION(3) when its timer elapses. timererror

is useful at node 5. When its timer elapses, it takes no action, but as CREATION(3)
is not heard by more nodes than CREATION(2), timererror will elapse and node 5 will
send out CREATION(4) not to stop the initialization process. Finally, node 6 sends out
CREATION(5) and after timerlast, it knows it is the last node of the network and sends
out END_INIT (1) which is relayed in a multi-hop way until it reaches the sink node.

3.3.3 Identification

Each node is uniquely identified by the 2-tuple [I,R], I being the node’s cell number, R its
relative position inside the cell. Relative position is calculated using the absolute positions
of the node, its cell head and the next cell head. R is expressed in percentage.

3.3.4 Reliability

The protocol assumes that a message emitted by cell i is to be received by any node at cell
i − 1 or i + 1 with a reliability higher than a threshold. We therefore need to construct our
cells so that their length is small enough for communication between neighboring cells to be
reliable.

Physical reliability metric is Bit Error Rate (BER): the ratio between the number of bits
received with errors over the total number of bits received. BER can not be measured by
nodes directly. Nevertheless, as depicted in Fig. 4, there is a one-to-one relation between
BER and Signal-to-Noise Ratio (SNR) which is measurable by a node.

As depicted in Fig. 5, for a node to consider it has received a message, it needs to receive
it with a SNR higher than a threshold corresponding to the BER threshold defined. This
way, communication reliability is guaranteed, equal to the BER threshold known a priori by
all nodes.

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 11

Figure 5: Realiability.

Figure 6: Unprotected mode.

3.4 Run-time in unprotected mode

This transmission mode is used as long as no collisions occur. Transmission speed towards
the sink is near-optimal.

As depicted in Fig. 6, when a node sends out a message, the nodes that hear it start
backoffunprotected calculated using the nodes absolute position A, the absolute position
of the sender node Asender, maxrange, and Wemission (which we will explicit). When no
message has been received and backoffunprotected expires, the node is elected relaying node.
The relaying node is the one closest to the sink which has heard the message. Apart from
the relaying node election process (thus duration), the transmission speed is optimal.

backoffunprotected =
A − (Asender − maxrange)

Wemission

(4)

Wemission is the wave speed used in the election process, and needs to be bounded.
Indeed, we want a node to be able to detect its neighboring node has started emitting before
its backoffunprotected expires (thus it needs to relay the message). The speed can be very
high, propagation and detection of a signal times (Tpropagation and Tdetection, respectively)
being very low.

RR n° 5782

12 Watteyne, Augé-Blum & Ubéda

Wemission ≤
distmin

Tpropagation + Tdetection

(5)

3.5 Switching from unprotected to protected mode

Run-time starts in unprotected mode. Nevertheless, if a node does not hear its alarm
reemitted during a certain time period, it has detected that its message has collided. It
then sends out a JAM signal. When a node hears such a message, it reemits it once. This
way, the complete network will be jammed. It is worth nothing that if a JAM message
collides with an alarm message, this collision will be detected and a new JAM message will
be generated; the overall jamming process is not stopped. After sending the JAM message,
all nodes wait for the worst case execution time of this process (WCETjam, to be detailed),
the messages that collided and any new message is sent in protected mode.

3.5.1 Synchronization

As no GPS-like chips are embedded, synchronization on a global clock is not possible. Nev-
ertheless, protected mode needs network-wide synchronization to avoid collisions. We have
created the novel concept of "synchronization wave", which are waves of expiring timers. We
associate to each one of them a virtual wave speed. We propose to synchronize the network
using a continuous series of synchronization waves.

After waiting WCETjam, the sink node sends out a SY NC message that will be heard
by a group of nodes. These nodes start backoffsync, equal to the difference between their
relative position and that of the sender, using a wave speed Wsync we will explicit.

backoffsync =
R − Rsender + (A − Asender) × 100

Wsync

(6)

When backoffsync expires, the node starts a periodic timer T .

T =
600

Wsync

(7)

This time period corresponds to the duration a synchronization wave needs to travel 6
cells. Indeed, Wsync is expressed in percentage of a cell per second, and 600 = 6 × 100% of
one cell. The overall idea is to have a series of waves continuously traveling from the sink
node at the same speed, all separated by exactly 6 cells.

This process will be used to avoid collisions. Indeed, we have considered that a node
emitting at cell i will interfere with cells i − 1 and i − 2, thus 3 cells. For another node to
send at the same time it needs to be separated by at least 2× 3 = 6 cells for their messages
not to collide. A node needs to wait for its backoffsync to expire before starting to emit,
thus nodes starting to emit simultaneously are separated by 6 cells, their messages can not
collide.

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 13

Exactly as during initialization, Wsync is bounded. Wsync is equal to Winitialization, the
only different being that distances are expressed in percentage of a cell.

Wsync ≤

distmin

maxrange

Tpropagation +
lengthsync

BW
+ Tinversion

(8)

3.6 Run-time in protected mode

The network switches from unprotected to protected mode as soon as a collision occurs.
This new mode needs to guarantee a collision-free functioning with finite and bounded
transmission times. The processes involved in guaranteeing those requirements slow down
the transmission speed. The overall idea is to reserve a portion of the network before sending
out the alarm message. Within this portion, no new alarms can be generated and thus
collision is avoided. Reservation is done using signaling messages. For those messages not
to collide either, the wave synchronization is used. Finally, not to loose signaling messages,
they are only exchanged between neighboring cells (where reliability is guaranteed). Three
types of messages are used (SILENCE, ACK_EXP , DATA) each one containing the
sending node’s unique identifier: [I,R] for the first two, A for DATA messages.

3.6.1 Protection algorithm

This algorithm is depicted in Fig. 7. SILENCE is shortened to S.

1. A node at cell i which wants to send out an alarm message waits for its backoffsync

to expire and sends out SILENCE(1). All nodes of cells i and i − 1 are then
reserved.

2. A node at cell i − 1 is elected and sends out SILENCE(2) in order to reserve the
nodes of cell i − 2 (load-balanced algorithm to be presented).

3. Steps (1) and (2) are repeated until cell i − 5 is reserved. The elected node at this
cell then sends out an ACK_EXP message.

4. This message is sent in a multi-hop mode to the initiating node using the
unprotected mode algorithm (no collisions can happen as the portion is reserved).

3.6.2 Relaying node election

Only one relaying node must be elected. The algorithm depicted in Fig. 8 is used; its
maximal duration is T . The idea is to keep the relaying node at a relative position closest to
that of the sending node for load-balancing purposes. This algorithm is robust as a relaying
node is elected as soon as there is a node in the cell. It is depicted in Fig. 8, where the
emitting node’s relative position is 50%.

RR n° 5782

14 Watteyne, Augé-Blum & Ubéda

1. All nodes of a cell hear a message from there neighboring cell and record the sender’s
relative position Rsender.

2. Knowing its relative position R, the instant when its backoffsync expires, and Wsync,
it calculates the instant a synchronization wave enters the cell, and waits for that
instant.

3. If R < Rsender (i.e. the node is closer to the sink, relatively), it waits for a time
proportional to (R-Rsender), relatively to Wsync.

4. If Rsender < R, it waits for a time proportional to R, relatively to Wsync.

5. The first node which timer elapses is elected relaying node and sends out the
corresponding message (SILENCE or ACK_EXP). This aborts the other nodes’
timers.

We argue that, by giving the opportunity to talk first to nodes further away from the
sender, we compensate the natural phenomenon where a signal is heard better closer to the
sender. This solution thus avoids over-utilizing cell extremity node, which would reduce
their lifetime.

3.6.3 Transmission

After this protection phase, the message can be transmitted. As the reserved portion is long
enough for an alarm issued at cells further away not to collide with our alarm message, this

Figure 7: Protected mode.

Figure 8: Relaying node election.

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 15

message can be sent in unprotected mode. The relaying node will start a new protection
phase by sending out a SILENCE(1) message. Alternation between protection and trans-
mission causes the protected portion to be shifted, and the alarm to be sent to the sink with
no collisions.

In order to absorb the flow of alarm messages, the sink will need to have the same
behavior as the first node of cell 1 and as all the nodes of virtual cells 0, -1 . . . This way, the
sink node absorbs the flow in a transparent way for the network.

We here consider that reserving 6 cells is enough. Nevertheless, it is possible to adapt
to different ratios between communication and interference radii by reserving more (or less)
cells and increasing (or decreasing) T .

3.7 Switching from protected to unprotected mode

No external event forces the network to switch back from protected to unprotected mode.
Nevertheless, staying in protected mode implies reducing the multi-hop transmission speed.
The sink is responsible for determining the switching back instant, which should be chosen
in order to have a small collision probability. The sink node therefore waits for an idle period
equal to the worst case transmission time (to be explicated in Section 4), and sends out a
JAM signal. As for switching from unprotected to protected mode, the complete network
is jammed. After waiting for WCETswitch, nodes send out their collided or new messages
(if any), in unprotected mode.

Our MAC protocol regulates medium access based on the nodes’ geographical position.
Run-time is divided into two modes: an unprotected mode prone to collisions but with a
near-optimal transmission speed; and collision-free yet slower protected mode. Initialization
and run-time have bounded execution and transmission times (as validated in Section 4).
It is therefore possible to re-launch initialization during run-time to cope with changes in
transmission range for example (in case of rain).

4 Modeling and Validation

The protocol needs to guarantee a given Quality-of-Service. For our application class, the
key parameter is bounded execution and transmission times. These times together with the
protocol’s behavior need to be formally validated. Roughly, we first analytically determine
worst times for all phases of our protocol, and then validate those times using a formal
model of the protocol’s behavior.

4.1 Validation methodology using a formal model

To validate our protocol, it first needs to be modeled using a modeling formalism. The choice
of this formalism depends on three criteria: expression power (can the model express all the
protocol’s characteristics?), modeling power (can these characteristics be easily expressed?)

RR n° 5782

16 Watteyne, Augé-Blum & Ubéda

Figure 9: Model-checking methodology.

and analyzing/ verification power (can this model be used to efficiently analyze the protocol
it represents?).

As for the expression power, our needs include communication protocol needs (paral-
lelism and concurrence). What’s more, concurrently executing instances need to be able to
communicate. This communication can be done by signals. Finally, it should be possible to
express both choice and timeliness constraints. As for analysis power, it should be possible
to use the resulting model for validating time bounds.

To validate given time bounds, we chose to use exhaustive exploration of all execution
paths by model-checking [29]. Even though this is not the only formal validation approach,
[30] and [31] shows that model-checking is particularly suited for validation of real-time
communication protocols. The model-checking methodology is depicted in Fig. 9. The
properties that need to be verified by the protocol and the scenarios on which these prop-
erties need to be verified are extracted from the protocol specification (properties include
behavioral and timeliness). A model-checking tool exhaustively explores the execution tree
in order to validate a given property over a given scenario, using the protocol’s formal model.
The protocol is formally validated when all properties are validated over each scenario.

UPPAAL [32] is a complete modeling and formal validation architecture, which answers
all criteria; it will be used in this work. We will briefly describe UPPAAL, for a more de-
tailed description, see [33]. UPPAAL’s embedded modeling formalism is TSA (Times Safety
Automata) which is an extension of timed automata [34]. The system is represented by a set
of concurrent state-transition automata. Local and global variables can be defined; numer-
ical variables and clocks are defined in the same way. synchronization between automata is
done by signals.

An automaton is composed of states and transitions. The system can stay in a state
only if the associated invariant is satisfied. For passing a transition, the associate guard

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 17

Figure 10: Modeling methodology.

needs to be satisfied, and it is possible on passing this transition to update a variable, or
to send/receive a signal. Transitions are passed instantaneously. Different concurrently
executing automata can communicate using signals; a signal can only be sent if another
automaton is waiting for the signal.

Properties to be verified are expressed in a formal timed logic called TCTL (Timed
Computation Tree Logic, [35]). Verification is done by exhaustively exploring all paths of
the system’s execution graph; properties are therefore expressed on execution paths.

4.2 Modeling methodology

The system can be described using components. Modeling such a component with UPPAAL
is done in object oriented logic: automata are used to create different instances. This way,
modeling the complete system is reduced to modeling four automata, describing the behavior
of a node, the sink node, the medium and the alarm generation. It is to be noted, as depicted
in Fig. 10, that the node’s behavior is really modeled by four different automata, one four
each phase of the protocol (initialization, unprotected mode, protected mode, switching).
A complete topology is generated by creating a series of node instances, and by tuning the
medium automata by injecting the ranges of each node’s communication.

Communication between automata is done by synchronous signals (new, start, end in
Fig. 10). With synchronous signals, an automaton needs to be willing to receive the signal
for it to be sent, and signal transmission is instantaneous. Two modeling problems arise from
using synchronous signals for communication. First, it is not possible to affect a variable
to a signal, so message passing is not straightforward. This problem is nevertheless solved
by using a global variable: the emitting node writes the passed message into this variable,

RR n° 5782

18 Watteyne, Augé-Blum & Ubéda

and informs the receiver using a signal that it needs to read this variable. What’s more
signal passing being instantaneous, message duration modeling is not straightforward, and
it is necessary to model both starting and ending instants of a message being transmitted
(start and end, respectively).

When a message is emitted by a node, it is received by the medium automaton which
will retransmit the message to the appropriate nodes, depending on the emitting node’s
transmission range.

4.2.1 Modeling example

By lack of space, we can not describe all automata, but chose to show a simplified version
of the automaton modeling the behavior of a node in unprotected mode (Fig. 11). Even
though it is the smallest one, this automaton is representative. Emission and reception of a
message start is written start? And start!, respectively.

The automaton starts in the initial state (double circled). It waits in that state until it
starts receiving a message (start?). When reception is completed (end?) it determines and
waits for its backoffunprotected = A−(message[1]−maxrange) to elapse, and then sends out
the message it has received. This transmission lasts for a duration called durationdata. After
relaying the message, the automaton goes back in the idle initial state. If the node receives a
message while it is waiting for its backoffunprotected to elapse, it aborts its waiting and goes
back to initial state (another relaying with a smaller backoffunprotected has been elected).
Finally, the node can receive a new signal. This signal comes from the alarm generation
automaton, and means that the sensor part of the node has detected a monitored event, so
a new alarm needs to be generated and sent to the sink node.

4.3 Formal validation of our protocol

Formal validation is done in two phases: analysis of the protocol and formal validation of
the bounds found during the analysis. Validation is done using a formal model.

We first analyze our protocol and identify the worst case scenarios in terms of execution
or transmission times. We then explicit those WCET (initialization, switching) and WCTT

(unprotected mode, protected mode) using the protocol parameters. A formal validation of
those analytically-based worst times needs to be done. A UPPAAL model of the protocol’s
behavior is constructed, and a formal validation of the protocol’s behavior and its timeliness
characteristics is then performed using the methodology presented in part 4.2 (above). Both
methods are complementary. Analysis of our protocol gives parameterized WCET and
WCTT formulas; model-checking offers a formal behavioral and timeliness validation and
lets use verify the time bounds found during the analysis of our protocol.

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 19

Figure 11: Simplified model of the node’s behavior in unprotected mode.

RR n° 5782

20 Watteyne, Augé-Blum & Ubéda

4.3.1 Analytical worst case times

In this part, we will explain the analysis done for determining the worst case transmission
time of an alarm in unprotected mode (WCTTunprotected), protected mode (WCTTprotected),
initialization (WCETinitialization) and switching between modes (WCETswitch).

As for WCTTunprotected, worst case transmission time is obtained when the alarm needs
to travel the longest distance, thus be generated by the last node of the network. What’s
more, transmission time is maximized when each node needs to relay the message, i.e. hop
distance is equal to the inter-node distance of the sender and the next-hop node. At each
hop, we will have a total time equal to the sum of transmission time and relaying node
election time. Transmission time is calculated using the message length in bits lengthdata

and the available bandwidth BW . Relaying node election only takes place when the emit-
ting node’s cell number is higher than 2; at cell 1, the node can send the alarm in one
hop to the sink, so relaying node election is not needed. Election duration is calculated
using Wemission. The "virtual wave" will need to travel for a mean distance equal to
maxrange-(lengthnetwork/numbernodes). Those observations are assembled in the equation
of WCTTunprotected.

WCTTunprotected = numbernodes ×
[

lengthdata

BW
+

(

maxrange −
lengthnetwork

numbernodes

Wemission

)

ifI>2

]

(9)

To construct WCTTprotected, a different approach is taken. Worst case transmission
time is still obtained when the last node emits the alarm (thus the last cell), but at each
hop, the alarm will be sent to the neighboring cell. We sum the total transmission time
with the total protection phase duration. One-hop transmission time is calculated using
lengthdata over BW , which is then multiplied by the number of hops (numbercells − 1).
The next summed up terms refer to the duration of the protection phase. It is to be
noted that protection phase is carried out completely (i.e. cell reservation is done until cell
i − 5, i being the alarm emitting node’s cell number) when cell number is higher or equal
than 7. In case the sender’s cell number is smaller, the sink will reproduce the behavior
of cells 0, -1, . . . but will instantaneously acknowledge the reservation of those cells. This
explains why total protection phase duration summed up terms are increasing with cell
number (numbercells ≥ 2, . . . , numbercells ≥ 7). A complete protection phase (possible if
numbercells ≥ 7) lasts for a time equal to the sum of the duration of 5 ACK_EXP message
emissions and 6 waiting times for a synchronization wave to pass.

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 21

WCTTprotected = (numbercells − 1) ×
lengthdata

BW
+ (10)

(3 × T +
lengthack_exp

BW
)ifnumbercells≥2 +

(3 × T + 2 ×
lengthack_exp

BW
)ifnumbercells≥3 +

(4 × T + 3 ×
lengthack_exp

BW
)ifnumbercells≥4 +

(5 × T + 4 ×
lengthack_exp

BW
)ifnumbercells≥5 +

(6 × T + 5 ×
lengthack_exp

BW
)ifnumbercells≥6 +

(6 × T + 5 ×
lengthack_exp

BW
)ifnumbercells≥7 × (numbercells − 5)

WCETinitialization is determined by summing up the worst case times of each phase in the
initialization process: the initialization wave traveling from sink node to last node, the error
case happening on half of the nodes (worst case), determination of the last node, and multi-
hop transmission of the END_INIT message from last node to sink node. The initialization
wave travels at a predetermined constant speed Winitialization, over a length of networklength.
An initialization error case occurs when a node should send a CREATION message in order
not to stop initialization when it already received two CREATION messages. Protocol
analysis shows that this process takes up to the duration the initialization wave takes to
travel for a distance of 2 × maxrange. Finally, at each hop, the END_INIT message
changes cells, so numbercells-1 hops are needed to reach the sink node.

WCETinitialization =
networklength

Winitialization

+ (11)

⌈

numbernodes − 1

2

⌉

×
2 × maxrange

Winitialization

+

2 × maxrange

Winitialization

+

(numbercells − 1) ×
lengthend_init

BW

As for WCETswitch, worst case time is obtained when the last node of the network detects
a collision. The JAM message reaches the sink after a maximum of numbernodes hops, one
hop lasting for the transmission time of a JAM message. The synchronization wave travels
at a constant speed of Wsynchronization expressed in percentage of a cell per second, and it

RR n° 5782

22 Watteyne, Augé-Blum & Ubéda

Figure 12: The studied deployment.

needs to travel numbercells-1 cells of 100%. Finally, the SY NC message is emitted one last
time by the network’s last node.

WCETswitch = numbernodes ×
lengthjam

BW
+ (12)

(numbercells − 1) × 100

Wsynchronization

+

lengthsync

BW

As shown by this analysis, all worst case times depend on the network length, be it in
meters, number of cells or number of nodes. A larger network implies larger initialization
and transmission times. Scalability can be achieved, but it is necessary to validate that
the worst case times at a given network size are acceptable by the application. If not, a
large network can be subdivided in smaller ones, a sink node then needs to be place at one
extremity of each portion.

4.3.2 Detailed scenario

Formal validation of the analytical worst case times is done by using the formal model. As
presented in the model-checking methodology (Part 4.2, above), validation is done using
scenarios. These scenarios are complementary and should put the protocol in all behavior
cases. All scenarios are different in term of number of nodes, node positions, ranges and
alarm generation.

In this part, we describe in detail one scenario, and the behavioral and timeliness valida-
tion it offers. It is to be noted that a large number of other scenarios have been used in order
to validate all the aspects of the protocol detailed in Part 3). We use the deployment de-
picted in Fig. 12, where the square represents the sink and the circles the nodes (identified by
there absolute position); the horizontal bars represent the nodes’ ranges. maxrange = 100,
Winitialization = 1, BW = 1, lengthcreation = lengthEND_INIT = 3, lengthdata = 10.

We will study the alarm’s multi-hop transmission in unprotected mode. As duration
increases with the distance to travel, we consider that the alarm is generated at the last

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 23

node (A = 180). We will note t the absolute time. Node at 180 sends out the alarm from
t = 0 to t = 10. It is received by the node at 100 which determines backoffunprotected = 20.
Node at 100 relays the alarm between t = 30 and t = 40. Multi-hop transmission lasted for
40. This value is confirmed by UPPAAL.

We now use the analytical formula WCTTunprotected: WCTT = 3× (10 + (100− 60)) =
150. The difference between this case and the worst case is that node at 60 does not need to
relay the message. UPPAAL has proven in this scenario that the protocol’s behavior is what
we expected it to be, and that the WCETunprotected is larger that the effective transmission
time.

4.3.3 Behavior cases validated by the scenarios

We have so far detailed one scenario, by validating the behavior and timeliness characteristics
of our protocol "by hand" and using UPPAAL. Validating all scenarios by hand would
of course be time-consuming and error-prone; therefore UPPAAL is used for systematic
validation of behavioral and timeliness characteristics.

By confronting UPPAAL and the analytical formulas of WCET and WCTT , we have
formally validated the following characteristics of our protocol:

• Initialization phase:

- Determination of backoffinitialization

- Error case during initialization, when a node should emit a new CREATION

message not to stop initialization, even though it has already received two
CREATION messages

- Detection by a node that it the last one in the network

- Initialization of the network, and identification of the nodes

- WCETinitialization

• Unprotected mode:

- Multi-hop alarm transmission

- WCTTunprotected

• Switching between modes:

- Switching between modes

- WCETswitch

RR n° 5782

24 Watteyne, Augé-Blum & Ubéda

• Protected mode:

- Relaying node election

- Switching between protection and transmission phases

- Shifting of the protected area

- Multi-hop alarm transmission

- WCTTprotected

We argue that all characteristics of the protocol have been covered and formally validated
thanks to the set of scenarios we have used.

5 Conclusion and Future Work

The originality of our work is that we have considered applications that need a network
Quality-of-Service in term of guaranteed transmission times.

We proposed a novel MAC protocol with assumption as realistic as possible. Our solution,
based on alternation between two modes, offers both a near-optimal multi-hop transmission
time towards the sink in unprotected mode, and a deterministic collision-free protected
mode. Radio link reality is taken into account, using a cell based organization, cells being
constructed in order to achieve reliable transmission.

A behavioral and timeliness validation of our protocol has been presented, using a
model-checking methodology, and UPPAAL. The WCET (Worst Case Execution Time)
and WCTT (Worst Case Transmission Time) of our protocol have been determined and
formally validated.

Currently, we have considered only one alarm generated per cell. It would be interesting
to determine the number of alarms per cell and per time unit the network can support. The
system of course always needs to provide hard real-time characteristics.

What’s more, at the physical level, we have considered a fading link with distance to
the sending node, but we have not considered message loss in a communication between two
in-range nodes. Node loss has not been taken into account. It would be interesting to study
this aspect and add fault-tolerance mechanisms to our protocol.

Even though one dimensional applications exist, a two-dimension extension of the pro-
tocol would greatly widen the spectrum of possible applications. This extension would
nevertheless imply adding a routing layer that needs to offer hard-real time guarantees for
the overall communication architecture to be hard real-time.

Finally, it would be interesting to compare our protocol’s mean time performances to
performances of other, possible non real-time, existing protocols. A formal prove that the
other protocols do not guarantee hard real-time constraints could be given.

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 25

References

[1] R. Lin, Z. Wang, and Y. Sun, “Wireless sensor networks solutions for real time monitor-
ing of nuclear power plant,” in World Congress on Intelligent Control and Automation,
June 2004.

[2] I. F. Akyildiz and I. Kasimoglu, “Wireless sensor and actor networks: research chal-
lenges,” in International Conference on Mobile Ad Hoc and Sensor Systems (MASS).
Fort Lauderdale, Florida, USA: IEEE, December 2004.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-
works: a survey,” Computer Networks (Elsevier) Journal, vol. 38, no. 4, pp. 393–422,
March 2002.

[4] “Crossbow, inc., berkeley mote,” last visited on 16/11/2005. [Online]. Available:
http://www.xbow.com/Products/Wireless_Sensor_Networks.htm

[5] “Smart dust research project homepage,” last visited on 16/11/2005. [Online].
Available: http://robotics.eecs.berkeley.edu/~pister/SmartDust/

[6] V. Rajavavivarme, Y. Yang, and T. Yang, “An overview of wireless sensor network
and applications,” in Southeastern Symposium on System Theory. Auburn, AL, USA:
IEEE, March 2003.

[7] J. A. Stankovic, “Research challenges for wireless sensor networks,” SIGBED Review:
Special Issue on Embedded Sensor Networks and Wireless Computing, vol. 1, no. 2, pp.
1–4, July 2004.

[8] T. Facchinetti and G. Buttazzo, “Integrated wireless communication protocol for ad-hoc
mobile networks,” in International Workshop on Real-Time Networks (RTN), Catania,
Italy, June 2004, pp. 43–46.

[9] P. Boone, “Real-time communication and coordination in wireless embedded sensor
networks,” April 2004, unpublished.

[10] T. F. Abdelzaher, S. Prabh, and R. Kiran, “On real-time capacity limits of multi-hop
wireless sensor networks,” in Real-Time Systems Symposium (RTSS). Lisbon, Portugal:
IEEE, December 2004.

[11] J. A. Stankovic, T. F. Abdelzaher, C. Lu, L. Sha, and J. C. Hou, “Real-time commu-
nication and coordination in embedded sensor network,” in Proceedings of the IEEE,
vol. 91, no. 7, July 2003, pp. 1002–1022.

[12] K. Akkaya and M. Younis, “Relocation of gateway for enhanced timeliness in wire-
less sensor networks,” in Workshop on Energy-Efficient Wireless Communications and
Networks (EWCN). IEEE, April 2004.

RR n° 5782

26 Watteyne, Augé-Blum & Ubéda

[13] A. S. Tanenbaum, Computer Networks, Fourth Edition, A. S. Tanenbaum, Ed. Prentice
Hall, August 2002.

[14] J. Sheu, C. Liu, S. Wu, and Y. Tseng, “A priority mac protocol to support realtime
traffic in ad-hoc networks,” ACM Wireless Networks, vol. 10, pp. 61–69, January 2004.

[15] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He, “Rap: A real-
time communication architecture for large-scale wireless sensor networks,” in Real-Time
Technology and Application Symposium (RTAS). San Jose, CA, USA: IEEE, September
2002.

[16] T. He, J. A. Stankovic, C. Lu, and T. F. Abdelzaher, “Speed: a stateless protocol for
real-time communication in sensor networks,” in International Conference on Distribued
Computing Systems (ICDCS). Rhode Island, USA: IEEE, May 2003.

[17] T. F. Abdelzaher, J. A. Stankovic, S. Son, B. Blum, T. He, and A. Wood, “A com-
munication architecture and programming abstractions for real-time embedded sensor
networks,” in International Conference on Distributed Computing Systems (ICDCS)
Workshops, Rhode Island, USA, May 2003.

[18] T. Facchinetti, L. Almeida, G. Buttazzo, and C. Marchini, “Real-time resource reserva-
tion protocol for wireless mobile ad-hoc networks,” in Real-Time Systems Symposium
(RTSS). Lisbon, Portugal: IEEE, December 2004, pp. 382–391.

[19] T. Facchinetti, G. Buttazo, M. Caccamo, and L. Almeida, “Wireless real-time commu-
nication protocol for cooperating mobile units,” in Euromicro Conference on Real-Time
Systems, Belek near Antalya, Turkey, July 2003.

[20] H. Li, P. Shenoy, and K. Ramamritham, “Scheduling communication in real-time sen-
sor application,” in Real-Time and Embedded Technology and Applications Symposium
(RTAS). Toronto, Canada: IEEE, May 2004, pp. 10–18.

[21] “Sebastian thrun’s homepage,” last visited on 16/11/2005. [Online]. Available:
http://robots.stanford.edu/

[22] A. Chandra, V. Gummalla, and J. Limb, “Wireless medium access control protocols,”
IEEE Communications Surveys and Tutorials, vol. 3, no. 2, pp. 2–15, 2000.

[23] H. Li, P. Shenoy, and K. Ramamritham, “Scheduling messages with deadlines in mul-
tihop real-time sensor networks,” in Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS). San Francisco, CA, USA: IEEE, March 2005.

[24] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo, “An implicit prioritized access
protocol for wireless sensor networks,” in Real-Time System Symposium (RTSS). IEEE,
December 2002.

INRIA

Real-Time MAC Protocol for Wireless Sensor Networks: Formal Validation 27

[25] M. Caccamo and L. Y. Zhang, “The capacity of implicit edf in wireless sensor networks,”
in Euromicro Conference on Real-Time Systems (ECRTS). IEEE, 2003.

[26] T. Watteyne and I. Augé-Blum, “Proposition of a hard real-time mac protocol for wire-
less sensor networks,” in International Symposium on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems (MASCOTS). Atlanta, GA, USA:
IEEE, September 2005, pp. 532–535.

[27] G. Orfanos, J. Habetha, and L. Liu, “Mc-cdma based ieee 802.11 wireless lan,” in Inter-
national Symposium on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS). Volendam, The Netherlands: IEEE, October 2004,
pp. 400–405.

[28] S. Saunders, Antennas and propagation for wireless communication systems, S. Saun-
ders, Ed. Wiley, 1999.

[29] R. Alur, C. Courcoubetis, and D. D.L., “Model-checking in dense real-time,” Journal of
Information and Computation, vol. 104, no. 1, pp. 2–34, 1993.

[30] K. Godary, “Validation temporelle de réseaux embarqués critiques et fiables pour
l’automobile,” Ph.D. dissertation, CITI Laboratory, INSA de Lyon, France, Novem-
ber 2004.

[31] K. Godary, I. Augé-Blum, and A. Mignotte, “Sdl and timed petri nets versus uppaal
for the validation of embedded architecture in automotive,” in Forum on Specification
and Design Languages (FDL), Lille, France, September 2004.

[32] “Uppaal home page,” last Visited on 16/11/2005. [Online]. Available: http:
//www.uppaal.com/

[33] G. Larsen, P. Petterson, and W. Yi, “Uppaal in a nutshell,” International Journal on
Software Tools for Technology Transfer, vol. 1, no. 1, pp. 134–152, December 1997.

[34] J. Bergson and W. Yi, “Timed automata: Semantics, algorithms and tools,” Lectures
on Concurrency and Petri Nets, vol. 3098, pp. 87–124, 2004.

[35] R. Alur and D. Dill, “Automata for modeling real-time systems,” in International Col-
loquium on Automata, Languages and Programming (ICALP), M. Paterson, Ed., vol.
443. Warwick University, England: Springer, July 1990, pp. 321–335.

RR n° 5782

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

