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Abstract: In the Fast Multipole Method, most of the far field computation is due to the multipole-to-local
(M2L) operator. In this report we distinguish two different expressions for this operator: while the first one is
natural and efficient, and thus commonly used, the second one, unlike the first, respects a sharp error bound,
which is proven here. Two schemes, that reduce the operation count of the M2L operator, are detailed: the
(block) Fast Fourier Transform and the rotations. We then present a matrix approach that uses BLAS (Basic
Linear Algebra Subprograms) routines to speed up the M2L computation. In order to use the more efficient
level 3 BLAS (for matrix products), we require recopies, but this additional cost can be avoided thanks to special
data storages. Finally all these schemes are compared, theorically and practically with uniform distributions,
which validates our BLAS version.
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L’opérateur «multipole-to-local» dans la méthode multipodles
rapides : comparaison des améliorations avec FFT, rotations et BLAS

Résumé : Dans la méthode multipodles rapides, la majeure partie du temps de calcul du champ lointain est
due & Popérateur «multipole-to-localy (M2L). Dans ce rapport, nous distinguons deux expressions différentes
pour cet opérateur: alors que la premiére est naturelle et efficace, et donc couramment utilisée, nous prouvons
ici que la second respecte, & la différence de la premiére, une borne d’erreur précise. Deux méthodes sont
d’abord détaillées pour réduire la complexité de 'opérateur M2L : la Transformée Rapide de Fourier par blocs
et les rotations. Nous présentons ensuite une approche différente pour accélérer le calcul de cet opérateur gréace
a l'utilisation de routines BLAS (Basic Linear Algebra Subprograms). Afin d’appeler les BLAS de niveau 3,
qui correspondent aux produits matriciels, et qui sont plus efficaces, nous avons recours & des recopies, mais
ce surcolt peut &tre évité grace i une organisation appropriée des données en mémoire. Enfin, toutes ces
ameéliorations sont comparées, sur un plan théorique et sur un plan pratique avec des distributions uniformes.
Ces comparaisons valident notre approche matricielle basée sur la bibliothéque BLAS.

Mots-clés : méthode multipole rapide, distribution uniforme, borne d’erreur, Transformée Rapide de Fourier,
rotation, BLAS
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1 Introduction

1.1 FMDM presentation

The N-body problem in numerical simulations describes the computation of all pairwise interactions among N
bodies. The Fast Multipole Method (FMM) solves this N-body problem for any given precision with O(N)
runtime complexity against O(NN?) for the direct computation. This method has been developed by Greengard
& Rokhlin in [GR&7| for its 2D uniform version, in [GRKY| for its 3D uniform version, and in [CGR&]| for
its adaptive version. First introduced for gravitational potentials in astrodynamics or electrostatic (coulombic)
potentials in molecular dynamics [GR&7], it has then been extended with different mathematical bases to
electromagnetism [Dar99], VLSI capacitance [NW91], radiosity [SHT95|, object modeling [CBCT01] and many
more: we will consider here gravitational and electrostatic potentials.

For these potentials the 3D FMM has the drawback to present a linear complexity with an underlying factor
in O(P*) where P is the maximum degree in the expansions. In contrary the 2D FMM constant is in O(P?).
As this limits the use of FMM in 3D simulations, some schemes have been introduced in order to reduce this
cost such as: Fast Fourier Transform (FFT) in [EB96|, rotations in [WHG96| and more recently plane wave
expansions in GR97] and in [CGR99]. All these schemes reduce the O(P*) factor to a O(P?) or O(P?).

We propose here a different approach: we will use highly efficient implementation techniques such as BLAS
(Basic Linear Algebra Subprograms) [LHKK79| [DCHHS&K| [DCHDY(] to improve the runtime of FMM. Thanks
to optimal use of the different layers of the hierarchical memory of the computer, so that the pipelines of the
floating point units are filled at best, they indeed offer substantial runtime speedup on superscalar architectures.
This speedup only affects the constant in the O(P*) notation and we keep the O(P*) operation count but since,
in molecular dynamic simulations for example, P usually ranges from 3 to 15, which is quite low in terms of
operation count, the speedup obtained with BLAS can exceed the one obtained with a lower operation count.

We also distinguish two different expressions of the M2L operator. Indeed, the error bound of the 3D
FMM has been historically ([GR&7] [Gre&8]) presented for the evaluation of potential with either finite multi-
pole expansions or finite local expansions. But, as mentioned by several authors ([SP97|, [WHG94]), we have
also to consider, when implementing the FMM, that the M2L operator acts on finite multipole expansions,
which means that both multipole and local expansions are finite. When denoting P the maximum degree of
the expansions, and n (respectively j) the degrees of the multipole (respectively local) expansion terms, two
different kinds of M2L expressions can then be used. In the first one, both n and j fully range between 0 and
P, whereas in the second M 2L expression we use only terms with: n+j < P. While the first one is natural and
commonly used ([PSS95], [SP97|, [WHG94]), no sharp error bound has yet been found, to our knowledge, for
the corresponding summations. We will prove that the second one, though generally less efficient, respects such
sharp error bound. For these two expressions, we will present the principles and the implementation features
for two improvements of the M 2L operator, namely FFT and rotations, as well as for our BLAS approach. We
will then propose a detailed comparaison of the memory requirements, numerical precisions and runtimes, for
uniform distributions sequentially computed, between these three schemes depending on the M2L expression
used.

Before that, we here briefly describe the FMM: we refer the reader to the articles of Greengard & Rokhlin
for a complete presentation of the FMM and a definition of the following terms. The FMM uses a quadtree
or an octree in order to divide the computational space. The potential field in each point is then decomposed
in a near field and a far field part: the near field is directly computed whereas the far field is approximated
thanks to multipole and local expansions. The multipole expansions are built at the leaf level and we deduce
the local expansions in each leaf after an upward and a downward pass. During the downward pass all multipole
expansions in the interaction list of a given cell ¢ are converted to local expansions for ¢: this operation is valid
since c is well-separated from each member of its interaction list. We here use the same definition as Greengard &
Rokhlin [GRI7| for the notion of well-separateness: two cells are well-separated if they do not share a boundary
point. More precisely, when denoting ws the well-separateness criterion, with ws = 1 only the nearest neighbors
are considered as not well-separated while with ws = 2 both nearest neighbors and second nearest neighbors are
considered as not well-separated. We use ws = 1 in this paper which implies 189 members in each interaction
list.

We denote by P2M the operator that determines the multipole expansion of a leaf due to the particles it
contains. M2M denotes the translation of a multipole expansion, M 2L the conversion of a multipole expansion
into a local expansion, and L2L the translation of a local expansion. We consider the root of the octree (or

RR n° 5752



6 P. Fortin

computational box) to be at level 0. The height of the octree is defined as its maximum level: an octree with
only one root have a height of 0, just like an empty octree.

We focus in this paper on uniform distributions sequentially computed. The uniform octree has been mainly
implemented as in the DPMT A (Distributed Parallel Multipole Tree Algorithm) code (see [EII95] or [Ran99]):
we use Morton ordering for the indexing of cells and, given a cell index, all indexes of the interaction list of this
cell can be quickly computed thanks to bit operations. This is also valid for accesses to the father of a cell, to its
children and to the cells located in the near field of a leaf. Moreover as in DPMT A all M2L transfer functions
(see section [LZTl) are precomputed at each level during the downward pass: when we need to perform one M2L
operation the corresponding M2L transfer function is retrieved from an adequate data structure thanks to the
corresponding M2L vector.

The rest of this paper is organised as follows: in the rest of this section we will introduce the formulae used
in our implementation of the FMM. We will also discuss one error bound issue and present the two different
expressions of the M2L operator. We will expose and discuss the FFT enhancement in section B, the use of
rotations in section [}, and the introduction of BLAS in sectionEl All these improvements have been implemented
in a code named FMB for Fast Multipoles with BLAS (or Fast Multipole in Bordeaux) thus allowing precise
comparisons among them as presented in section

1.2 The error bound in the Fast Multipole Method

We introduce here the formulae used in our implementation of the Fast Multipole Method. We especially focus
on the conversion of a multipole expansion to a local expansion (M2L operator), its two different expressions
and their implications on the error bound of the method.

1.2.1 Formulae for the Fast Multipole Method

The original formulae of the Fast Multipole Method for the evaluation of Coulombic or gravitational interactions
of particles with an uniform distribution in a 3D space were first given by Greengard & Rokhlin in [GR&S].

However since the M 2L operations are the most time-consuming part of the far field computation, modifi-
cations of the original formulae have been introduced in order to simplify the M2L operator: we can here cite
Epton & Dembart [ED95], White & Head-Gordon [WHG94], and the works done at Duke University (see for
example [EII95]). One important requirement in the choice of these formulae is the observance of the symmme-
try property among the multipole and local expansion terms of opposite order (see equation ([(A3)) in appendix
[A): hence only terms with positive orders need to be computed.

We have choosen the formulae of Epton & Dembart, mainly because of the clarity of the underlying theorems
and their proofs.

FMM operators. With the associated Legendre functions P/ and the spherical harmonics Y, defined in
appendix [Al we can describe the operators that handle the multipole and local expansions. Like Epton &
Dembart [ED95], we first respectively define the Outer and Inner functions by:

. —1)kilm 1 ‘
om(r,0,¢) = %Yl ( ,¢)m Y (I,m) € N* with 0<|m| <], (1.1)
and:
I (r,0,¢) =i ™ APY ™0, ¢)r' VY (I,m) e N* with 0<|m|<I, (1.2)
where: l
AT — (_1)

L= m)l+m)l

As for the spherical harmonics, we emphasize that the O;-“ and [ j’“ functions are considered as identically null
for j < 0 or |k| > j. They can also be written as:

.—|m m .m 1
O (r,0,0) =1 I ‘(l — |m|)'Pl‘ |(cos 6)etm-¢ mEEl (1.3)
—1)klmt .
I (r,0,¢) = mﬂl ‘(cos g)etm-pl, (1.4)

INRIA



FFT, rotations and BLAS improvements for the FMM 7

And the relations among opposite orders are:

0" = (-1)"0;", (1.5)

I = (-1)™T". (1.6)

Letting X and X’ be two position vectors in 3D space, we now give the main theorems that the FMM
requires: their proof can be found in [EDI5).

Theorem 1 (Classical translation theorem). Under the assumption ||X|| > || X'||, we have:

R - 4 3 000

n=0Il=—n

This formula is obtained by a decomposition of the potential with Legendre polynomials which are themselves
decomposed thanks to the Addition Theorem for spherical harmonics.
The next theorem is used to establish M2M (Outer-to-Outer) and M2L ( Outer-to-Inner) operators.

Theorem 2 (Outer-to-Outer, Outer-to-Inner Laplace translation theorem). Let
X[ > [IX7[], then:

O\ (X — X') ZZ XNOME(X) V¥ (n,1) e N? with 0<]|l| <n.

n+j
J=0k=—j

The last theorem corresponds to the Third Addition Theorem in [GreR8|, and it is used for L2L (Inner-to-
Inner) operator:

Theorem 3 (Inner-to-Inner Laplace translation theorem).

n J
LX-=X)=>" Y (- IpX)HX) V() eN® with 0< | <n.
=0 k=—j

We now give the operators P2M, M2M, M2L and L2L that are needed for the FMM, as expressed in [ED95].
We also give the formulae that are used to deduce the potential and the forces from the local expansions.

Definition 1.1 (P2M operator). Given m charges (q¢;)icp1,m] located in Q; = (pi, i, 3;) whose relative
coordinates according to a center zg are: Qi — zo = (p}, o, B)), we define:

17> i (p,0f,8) Y (j, k) €N with 0 < |k[ < j.

The potential is then given by the following multipole expansion:
S 3) TS
j=0k=—j

M j’? are denoted as multipole expansion terms. The symmetry property ([LH) among opposite orders is also
valid for these multipole expansion terms:

-k _ ks
M;* = (—1)FM;.

' (1.7)

Definition 1.2 (M2M operator). M’il (with n > 0, |I| < n) being the former multipole expansion terms,
whose center is zg, we have for the new multipole expansion terms, whose center is z :

Z Z M I (o, )V (k) EN? with 0 <[kl <j
l=—n,

\k I<j—n

where (p, v, B) are the spherical coordinates of the vector: z1 — zg.

RR n° 5752



8 P. Fortin

Definition 1.3 (M2L operator). M! (withn >0, |I| < n) being the multipole expansion terms, whose center
is z1, we have for the local expansion terms, whose center is zg :

ZZMZO lp,a,B) Y (4,k) e N2 with 0<|k|<j

Jtn
n=0I]l=—n

where (p, v, 3) are the spherical coordinates of the M2L vector: za — 21.

The potential is now given by the following local expansion:

Z Z LEIF(x — 2z3). (1.8)

J=0k=—j

L? are denoted as local expansion terms. The symmetry property (CH) among opposite orders is also valid

for these local expansion terms:

—k _ kTF
L% = (-1D)*L..

i (1.9)

This can be proved by considering that ®(x) € R and that the L? are unique. Therefore only the terms with
positive orders are computed when implementing M2L, which save half of the computation.

Definition 1.4 (L2L operator). L'il (with n > 0, |I| < n) being the former local expansion terms, whose
center is zo, we have for the new local expansion terms, whose center is zg :

—+o00 n

h=3%" 3 (a8 ¥ (k) €N with 0< [k <
n=j l=—n,
jllfklﬁnfj

where (p,«, 3) are the spherical coordinates of the vector: zs — za. When dealing with finite expansions of
mazimum degree P, the local expansion terms of degree strictly greater than P are null and the infinite sum is

then written as: Zn -

With M2M, M2L and L2L operators we always converte or translate an old (multipole or local) expansion
to a new (multipole or local) expansion thanks to some O;? or some [ jk These latters are named M2M, M2L
or L2L transfer functions.

Evaluation of potential and forces. We first consider the evaluation of the potential. For a finite local
expansion with maximum degree P given by Lé’?, 0<j <P, |kl <j, we can evaluate the potential at a point Z

with (CF):
Z Z LETE(r,0,0). (1.10)

Jj=0k=—j

However due to the properties ([CH) and ([C3), we have: LK%+ L7*I* = Lk1* +L I = 2 Re(L¥IF), where
Re denotes the real part of a complex number. The potentlal may thus be evaluated in thls faster way:

P J
= |L)(r,0.4) + Y 2 Re(LFIf(r,0,9))
=0 k=1
For the evaluation of the force, we start with equation (CI0), and we want to compute:
F(Z) = —grad 9(Z),

that is to say, in the local base of the spherical coordinates:

P (Z P (Z 9% (P
F(Z)=-2%2) Fp(z)=-1222 F,(z) =L, 220
The gradient in spherical coordinates (with our agreement of 6 being the colatitudinal coordinate and ¢
being the longitudinal coordinate) can be expressed as:
0 f 10 f 1 of

gradf = 7oer + _% 1"sint98_¢e¢>

INRIA



FFT, rotations and BLAS improvements for the FMM 9

where (er,eq,€,) is the local base of the spherical coordinates. This formula is due to the fact that the
elementary move in spherical coordinates is: dl = dre, + rdfey + rsin 0dpe,. Since:

¥ (r0.6) _ j 1k I (r0,6) (k| sk, 0¥ (0.6)  OIF(r0.9) _ . 1k
e :%Ij (r,0,0), —Lgg— =1 | |Ajr3 TR 5 = ikl; (r,0,9),

we have, in the local base of the spherical coordinates:

P J
F(z)=-> %" ZL’“I’“(T,0,¢)
j=1h=—j "
1 P J
= —— [ 25L9100,0,0) + > 2) Re (1412 (r,6,0))
r j=1 k=1
1 I, L 01F0,9)
B@) == X
1 o 10(7« 0,9) alk(r 0,¢)
Ty (J_ZOLJ 2:: T
F,(Z) Ly i ik LR I%(r, 0, $)
¢ _rsiné' Ok__JZ J m0,¢
- ii( 2%) I (Lklk( eqs))
__1”sir10J:Ok:1 B m "

where I'm denotes the imaginary part of a complex number.

k m
Remark 1.1. The 2 ja(;’qb) are computed thanks to the following equation: 42 {c°5%) 55059) =
m _ m . ] ‘ , ‘
— (Cose)sin(leJrM)Pl_l(cose) v > 1,V m|<l—1. And for m =1 : & Eicgobe) = lcosi}i?l(ec%g)' This can be

proved with: P/"(z) = (22 - 1)72 ((l —m) zP™(z) — (L+m) P/, (2)) (see JAS7Y], chapter 8 about Legendre
Functions, page 333).

1.2.2 Error bound analysis

As exposed in the introduction, the M2L operator concretely uses finite multipole expansion to compute (finite)
local expansions. When denoting P as the maximum degree of the expansions, whose terms have degrees
therefore ranging from 0 to P, two different kinds of M 2L expressions can then be used.

The first and the most common M2L expression is:

Z Z Mle_fnl (p,a, B).

n=0[=—n

We use here all the multipole expansion terms M}, (which vanish outside the range n > 0, |I| < n) and we also
use Of erms with degrees up to 2P. Even if some interesting works have been done to estimate the behavior
of the error induced by such M2L expression (see [PSS95)] [SP97]), no sharp error bound has been found yet.
We name this M2L expression M2L kernell with double height or UpTo2P.

A second M2L expression is:

Z Z MO (p, o, B).
n=0[0l=—n

We here limit the maximum degree of the O;-“ used to P: we thus name this M2L expression M2L kernel with
single height or UpToP. This has been used for example in the DPMTA code developped at Duke University but
the proof in the error bound given in [EI95] is wron@. We however recommend the reading of this appendix

1The kernel name has been inspired by [EI95].
2The equation (C.23) in appendix C of [EII95)] is wrong because the composition of differential operators differs from the product
of the derivatives.
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10 P. Fortin

since it presents a worst case error analysis similar to the one used hereafter. In particular it shows that no
additional error is introduced by the M2M operation. As explained in [Gre88| the L2L operation does not
introduce any error at all. We can thus focus on the M2L operation.

In the following we prove that an M2L operator with single height kernel respects a sharp error bound
(similar to the one presented in [EI95]). It has to be noted that this error bound for single height M2L kernel
was briefly presented by [WHG94], but they have used double height kernel in their implementation.

In order to prove this error bound, we study the potential in point Z due to one single unit charge located
in Q as pictured in figure 11 We denote by B; (respectively B3) the ball centered in X; with radius r;

Figure 1.1: Our problem configuration.

(respectively Xo and r3). Z is enclosed in By, Q in By. Moreover, denoting R = || X; — X2||, we assume that:
R >ry +rs.
Denoting « the angle between “vectors” Q and Z, r~ (respectively r.) the maximum (respectively minimum)
between the norm of Q and the one of Z, and P, the Legendre polynomials, we have:
1 X
<
=—— =Y —=_P,(cosq). (1.11)
Zq 2wl

Defining ® p(Z) the potential with finite summation up to P, we have:

o(2)

+o00 n
T

1®(Z) — Dp(Z)]| = Y 57 Palcosa).
n=pP41 >

As for all n > 0 and for all z € [-1, 1], we have |P,(z)| < 1, we can write:

X 1 ro\
D(Z) — dp(Z)| < —<=7<—<) . 1.12
[®(Z) — p(Z)| n:ZpH TR (1.12)

This leads to the following error bound:

Proposition 1.1. V Q € By, and ¥V Z € By, we have, under the condition R > r1 + ry:

1 ri+ 1y P+1
||<1><Z>—<I>P<Z>IISR_<T1+T2>( R ) |

Proof. Since: ||Z - Q| = || ((Z — X2) + (X1 — Q)) + (X2 — Xy) ||, this results directly from the inequality
(C12).

We now decompose the potential in the same way the FMM does while maintaining this error bound, and
prove the following theorem.

Theorem 4. The M2L operator with single height M2L kernel strictly respects the error bound in propo-
sition L1

INRIA
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Proof. In order to prove theorem H we consider a multipole expansion, centered in X4, and a local expansion,
centered in X5, to express the potential at Z due to the particle in Q. We start with:

1 1

MO Zql T TG X - (@ X - Z-Xa) |

Since the condition R > ry + ro, which guarantees the convergence of both multipole and local expansions,
implies ||(Q — X1) — (Z — X2)|| < || X2 — X1||, we can write with the classical translation theorem (theorem [):

ZZ (Q—X1) — (Z— X3)) O, (X3 — Xyq).

n=0[=—n

Since I (—X) = (—=1)"I}(X), we have:

+oo n
Z) = Z Z IN((Z — X2) — (Q — X1))0h (X2 — X4).

n=0[=—n

We then use the Inner-to-Inner translation theorem (theorem Bl), which does not require any condition on
X and X’, and obtain:

n n

Z > Z 1 I7(Q — Xq)I,'5H(Z — X3)0}, (X2 — Xy). (1.13)

n=01l=—n j=0 k=—j

We emphasize here that the equation (LI3]) is just a rewriting of equation (LII): that’s why when troncating
the series in equation (LI3) for n > P we obtain the same error bound as in proposition ([LI). Thus we have:

n n

Z > > Z 1)/ 15(Q — Xa)I;5H(Z — X2)OL (X2 — Xa).

n=01l=—n j=0 k=—j

We can inverse the two finite summations on the degrees n and j like:

p(Z) = D DD (-1 IHQ - Xa)I, (2 — X5)0L(Xs — Xy).
b b ,
op(2)=> > (1 I}(Q = X1) L' "(Z — X2)O} 4 (X2 — Xa1),

P J j
<I>P(Z)=Z Z (—1)I}(Q = X1)I,," (Z — X2) 0}, (X2 — X1).

We remember here that I;/l/ (x) imposes: —n' <1’ < n'. In the same way, IJ’-c (x) imposes: |k| < j, that is to
say: j+k >0, and: k — j <0. Moreover:

j+k>0 = n'+jij+k>n,
E—j<0 = —('+j)+k=-n"+((k—-j)<-

Under these conditions we have the following equality:

n'+j+k

S o

U'=—(n'+j5)+k U'=—n'

RR n° 5752
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Which means that the set of the terms which are indexed by the summation on the right side is included in the
set of terms which are indexed by the summation on the left side, and all the terms present on the left side, but
not on the right side, vanish.

With | = -1’ and n = n/, we finally have:

P
‘I’P(Z):ZZ Y (Y IHQ — Xa) [ (Z — X2)0, 1 (X2 — Xa).

Let’s remark that:

P P—j P P—-n
7=0 n=0 |_j|§P n=0 j=0
|n|<P,
0<n+j3<P

We obtain:

P n j
2-Y 3 [T 3 cvr@-xo, s - x| 1z -xa)
n=0l=—n \ j=0 k=—j
For all Q € B, the multipole expansions terms Mf, V (j, k) € N? with 0 < |k| < j, being defined by:
M} = (=1)IF(Q — Xy ), we have thus proved that:

J

n=0Il=—n

where the L! denote the local expansion terms, centered in Xz, due to the unit charge located in Q, and
obtained thanks to the M2L operator with single height M2L kernel applied to the multipole expansion terms
MF as:

J

O~k
Y Y Mo - X
J=0 k=—j
O
It has to be noted that the condition of well-separateness, with either ws = 1 or ws = 2, is in fact more

strict than R > 71 + ro in order to ensure a fast enough convergence. With ws = 1 for example, we have, for a
cell of side l: r{ =79 = @ and R > 2. Thus:

) 3 P+1 )
P(Z)-Pp(2)| £ =——— | — = (0.866)""".
12(2) P )||_R—(r1+r2)<2> R—(rl—i—m)( )

With ws = 2, (R > 3), we obtain:
P+l

1 V3 1 Pl
P(Z)-Pp(2)| < =—F—— | — = ——(0.577 .
19(2) P )||R—(T1—|—r2)<3> R—(ﬁ—i—rz)( )

P+1
This error bound is worst than the one presented in [Gre88| which looks like ( ) (ws =1 = (0.764)F+!

and ws =2 = (0.406)7*1).
As already remarked (see [GRO7]) the error due to M2L is also higher than the error due to the simple

-7

evaluation of the potential with multipole expansions which looks like (%)P+1 where R’ denotes the mini-
mal distance between the center of the multipole expansion and the point where the potential is computed

(ws =1 = (0.577)P*! and ws =2 = (0.346)7+1).
In conclusion, since the error in proposition ([I.TJ) is higher than the one due to the multipole expansion terms

(see [GRO7]), and since no additional error is introduced by the M2M and L2L operators, the error bound of
the FMM with a single height kernel M2L operator is therefore the same as in proposition (ITI).
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As a result, this error bound can safely be used in the case of single height kernel in order to determine the
value of P according to the required precision. Moreover since the double height kernel, compared to the single
height kernel, only adds terms in the M2L formula, it respects at least this error bound but even adds precision
with additional cost at runtime. The problem is that we cannot predict this gain in the accuracy of the FMM,
and therefore we cannot compare single and double height kernels according to the tradeoff between theoretical
accuracy and runtime. Only comparisons with practical accuracies will be possible as described in section
see also [EII95] (section C.3.1) for a brief comparison using theoretical operation count vs. accuracy.

1.2.3 Memory requirements

For comparison purpose with the other methods presented below, we detail here the memory requirements for
the original computation scheme of M2L, also named classic M2L. We here focus only on the memory used
by the expansions. We denote by ¢ the size of a complex number, in double precision we have: ¢ = 16 bytes.
As we only use in the expansions terms with positive or null orders, the size of a multipole (M) or local (£)
expansion according to P is (see definitions [Tl and [[3):

P
M(P) = L(P) :ZZC: WC.

- 2
5=0 k=0
The number of cells NV in an octree of height H is:

v N
H) = =2 _— -
=35 =
1=0

We need now to measure the size of the M 2L transfer functions which are precomputed for each level. Their
number corresponds to the number of all possible M 2L vectors, that is to say N7 = (2(2ws+1)+1)3— (2ws+1)3,
and thus with ws =1 :

N7 = 316.

With single height M 2L kernel the size of one M2L transfer function 7 equals M, but with double height kernel,
we have: 7(P) = M(2P). Therefore, the total memory requirements, Mem, for the classic M2L computation
is:

Mem(P,H) = N(H).(M(P)+ L(P)) + N7.T(P).
For single height kernel this gives:

P+1)(P+2)

Memgy(P,H) :N(H)(P+1)(P+2)0+NT( 5 ¢, (1.14)

and for double height kernel:

(2P +1)(2P + 2)C

Mempy(P,H) = N(H)(P + 1)(P + 2)c+ Nt (1.15)

1.2.4 M2L operator complexity

As a reference for coming comparisons we also present the difference of complexity between single and double
heights M2L kernel. We recall that only local expansion terms with positive or null orders are computed. For
single height, we have thus:

M2L = 11—2(13 +3)(P 4+ 1)(P +2)?,

while for double height this is:
1
M2L = 5(P +2)(P+1)3.

Let’s remember for the moment that the ratio among the two heights is roughly 6.
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2 Fast Fourier Transform

The use of Fast Fourier Transform (FFT) in order to speed up the computation of FMM operators (M2M,
M2L and L2L) has been developped at Duke University by William D. Elliott ([EB96] or [EII95]). This has
been included in a code named DPMTA.

This work was performed only for single height M 2L kernel and the block version used to prevent numerical
instability implemented in DPMTA has restricted the possible values of P to multiples of the block size.

In this section we generalize this FFT enhancement to both single and double height M2L kernel and the
block version presented here can be used for any P.

The FFT has been applied only to M2L operator since this is the most time-consuming operator in the
FMM, but it should be straightforward to derive FFT for M2M (see [ED95]) and L2L. However, as explained
in [ETI95], the full computation with the 3 consecutive operators cannot be directly performed in Fourier space.

The principle behind the use of FFT in FMM is to view M2M, M2L and L2L operators as convolution (or
correlation) between 2 periodic sequences. This convolution will take place in real space (also named coefficient
space by Elliott). After having been processed by a (forward) discrete Fourier transform, the 2 sequences are
considered to be in Fourier space. The convolution in real space corresponds to a point-wise product in Fourier
space, and a backward discrete Fourier transform gives the same result (thanks to the periodicity property) in
real space than the original convolution.

The theory of Discrete Fourier Transform is detailed in appendix we will now try to apply it to M2L
computation.

2.1 Discrete Fourier Transform theory applied to M2L operator

We first consider the M2L operator with single height kernel as defined in (T2ZZ). The degree of the expansion
terms ranges from 0 to P. We therefore consider:

P—j n

LE=3N" N MO (k) € N? > 0, (k] < (2.1)

n=0[l=—n

2.1.1 M2L operator viewed as a 2D convolution

We will rewrite the M2L operator as a 2D convolution. We could have choosen to rewrite it as a 2D correlation
but this would have led to an “inverse”’ point-wise product in Fourier space. We have preferred an inversion in
real space such as, for all (j,k) € N%:

k1 —k
ot S | (22)
O'; = 0%, (only degrees are inversed).

When inserted in M 2L, we have:
-k 1 —(k+1) . 2
2= > MO0 Y.k N,
neJ lek

and with j/ = —j and k' = —k :

ik 1 1k =1
=SS Mot

neJ lek

For simplicity, we redefine hereafter the Lf and the O;-“ so that they correspond respectively to L’ f and O’ f
and we obtain the following 2D convolution:

P—j n
b= 3 MOFT V(R €N > 0k <.

n=0[l=—n

let: I' = {(n,l) € N> with 0 <n < P,|l| <n}, describe the set of orders and degrees for which MF, O

and L? are defined. These terms are considered to vanish out of T'.
We define two sets J and K, as in section (B.f), by:

j:H_PVP]]a
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K =[-P,P],
and we extend the definition of X in the following way:

X Xy if (j,k) el _
k _ )
Xj_{oj if (j,k)e JxK\T V(j,k) e T xK

E_ sk k_ Nk
where Xj —Mj or Xj —Oj.

Let J =|J| and K = |K|, we now extend the definition of J\NJf and 5;“ to N? thanks to J periodicity for the
degrees and K periodicity for the orders.
Let L% be defined on J x K by:

LE=3"S"MOL V(G k) e xKk.
neJ lek
We have now the following lemma.

Lemma 2.1.
Tk _ 1k .
Lj —Lj, V(j, k) el

Proof. This is due to:
Mj =0 Y(j,k)/Ikl >,
MF=0 V(j.k)/j<O,
OF=0  V(jk)/j>P.

But Ef can be non-null for (j, k) ¢ I.

Once again, we redefine hereafter L¥, M and O} respectively by Z?, J\Aff and 5;“, and we finally obtain:

Lh=>"> MOl v(jk)eN.

neJ lek

Remark 2.1. The zero-padding used in the definition of J results in adding 100 % of zero in the degree
dimension. We cannot add less because of the “uncentered” type of the convolution (i.e. n ranges from 0 to
P —j in (Z1)) whereas a centered convolution have index ranging from —N +1 to N ). However for the definition
of K, i.e. in the order dimension, we do not need zero-padding (because of the nullity out of T').

2.1.2 Use of symmetry properties

The property (CH), valid for L% and M as well, will result in Fourier space, with a 1D DFT on the orders, in
half of the terms being equal to the complex conjugate of the other half.

Indeed when applying a 1D DFT on a sequence (X)'€N, N periodic, with X ! = (—l)lyl, we have:

Let X' = X" ¥n € N.
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That is to say :

Since: X/ = X~*, we have:

R_XE
As (X*)ren is periodic with period N, we can deduce:

% oXE

That’s why only one half of the array containing the terms in Fourier space need to be stored.

2.2 Fast Fourier Transform with blocks
2.2.1 Numerical instability
Due to definition [Tl and equations (L3)) (L), the O;? and the M j’“ grow, when j and k grow, as:

O%(r,0,¢) ~ w (2.3)
5(r.0,6) ~ (]+j|k|), (2.4)

As mentioned in [EIN95] this fast variation in the magnitude of the norm of the terms results in numerical
instability when using FFT above a critical value for P. Indeed when performing a DFT the terms with small
magnitude are added to terms with high magnitude and hence loose their precision: when the backward DFT
is performed the information contained in the small magnitude terms is no longer noticeable.

This problem depends on the machine precision used: with floating point computations performed in single
precision (4 bytes) the numerical instabilities appear for much lower values of P than with floating point
computations performed in double precision (8 bytes).

In double precision this problem does not appear with the classic M2L (i.e. with no FFT) for common values
of P (at least up to P = 40) since terms are rather multiplied before being added. However in single precision
problems can appear with classic M 2L but for values of P much higher than with the FFT improvement.

This issue has partly (see sections 26l and EZT)) been resolved in [EII95] with the use of a block FFT: in the
degrees dimension the terms are grouped according to their degrees, and hence according to the magnitude
of their norm, and the DFT is performed for every block seperately. The point-wise product has then to be
performed block by block while using a large grain convolution (named as in [EI95]) among the blocks.

We explain below the details of this block FFT.

2.2.2 Block decomposition
We denote:
e B: the number of blocks
e T: the “size” of the block (in the degree dimension, without zero-padding, see below)

We suppose first that P + 1 is a multiple of T' and we have thus: B = %. The block version of the FFT
deals only with the degrees dimension, the FFT in the order dimension being unchanged. We therefore consider

a 1D correlation as:
P—j

Li=> M,Ojn.

n=0

L;, M; and O; being defined on: [0, P].
For all I € [0, B — 1] we define the block M (I) by:

My Yie[o,T—1],
M(I); ={ 0 ie[—(T—1).0].
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We extend this definition to N thanks to (27" — 1) periodicity. The same is done for O(I), also extended to
N with (27 — 1) periodicity. For all (I,J) € [0, B — 1]?, and for all i € [—(T — 1), T — 1], we introduce the
block X (I, J) by:

X(Iv J)Z = Z M(I)nO(J)H—n- (25)

Due to the definition of blocks M (I) and O(J), the sum can be shortened as: X (I, J); = Z:;éﬂ M(I)nO(J)itn-

Block X (1,J) is thus the result of the 1D correlation of size 27" — 1 between block M (I) and block O(J).
Due to the definition of these blocks (periodicity and zero-padding), we can obtain exactly the same result with
the “ DFT / inversed point-wise product in Fourier space / backward DFT ” scheme.

We now wish to retrieve the L; coeflicients out of the X (I, J) blocks. The FFT for M2L is however not really
decomposable into different blocks (as a matrix-product is, for example) since the original result is widespread
among different blocks: each L; is computed as a sum over terms in the X (I, J) blocks. In order to determine
which terms to sum for a given L; we first point out that for all ¢ € [—(T' —1),T — 1], X (I, I + J); is part of
the sum for LJT+i.

More precisely:

Ljr_(r—1
Lyr_(r—2

block X (I,I+ J) “interacts” with Lr—1
Lyr

LT

Lyryr-1

When seen from L, since:
Vi € [0, P],3!(1,i") € [0, B—1] x [0, — 1] such that i =IT + 4/,

we have if i/ =0 :

Li= Y X(N,N+1I), (2.6)
N=0
and otherwise (i.e. i’ #0) :
B—-1-1 B—-1-1-1
Li= X(N,N+Dy+ > X(NN+T+1)i 7. (2.7)
N=0 N=0

As in [EII95] a large-grain convolution (here a correlation) appears at the blocks level in the equations (Z6)
and (): this can can be pictured as in figure 21

When P + 1 is not a multiple of T, the number of blocks used is Z2! + 1 (integer division). The last block
has then null rows in addition to those used for zero-padding.

In [ED95] the block version enables the use of shorter blocks in the order dimension for the first blocks: this
has not been used here since all FFT computations are precomputed (see section [LTl), which reduces the gain
of such enhancement.

2.3 Implementation details

We use FFTW [EI05] for the efficient implementation of a DFT. This avoids the writing of our own efficient
FFT (Fast Fourier Transform) but it has the drawback not to allow the direct use of the symmetries on the
orders (see ZI2)): we need a full array for the order dimension (i.e. with negative and positive orders) for
FFTW while a hand-made special FFT would require an halved array.

More precisely we cannot use the 2D FFT of FFTW but we have to split the 2D FFT in two sets of 1D
FFT: the 1D FFT in the orders dimension are first performed on a full array which contain both positive and
negative orders, and then only one half of this array is kept for the 1D FFT in the degrees dimension. After
that, the point-wise product is performed with halved arrays and the backward DFT take place in the reverse
order.
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L T M L T M L T M

Step 1. Step 2. Step 3.

Figure 2.1: Large grain correlation of block FFT. Here M and L denote the blocks containing the multipole
and local expansions and 1" the blocks containing the M2L transfer function.

This implies some recopies from full to halved arrays when performing FFT, but this additional cost is small.
The main advantage of FFTW, other than its efficiency, is that it can handle arbitrary sizes for FFT: we are
here not restrained to power of 2.

2.3.1 Without blocks

With FFTW a 1D FFT of size N computes the array Yj:

N-1 o
Yi=Y X 8 Vke[o,N-1].
7=0

Up to now we have redefine our expansion terms on 7 x K = [—P, P] x [P, P] which are centered around
0: in order to use correct arrays as input of FFTW, the P + 1 first terms in each of the 2 dimensions have
to correspond to the terms with positive (or null) indexes while the P following terms correspond, due to the
periodicity used, to the negative indexes. This is the wrap-around order.

For a “theoretical” layout of the following expansion, with P = 4 (dimensions: 2P + 1 x 2P + 1)

X9 j = —4..4 (degrees)
XXy X
X, [ X, X5 X [ X3
X0 X xt XY x| x2 X3
X x; x| x| x| X X2 [ X | Xi

k=—4..4 (orders)
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We therefore have rather this storage in memory:

X5

X? | X] X!
Xy [ X3 [X7 X7 | X!
Xy 1 xi o[ xz | X3 X0 X7 Xt
X0 | X] X2 X3 X: [ xt x> XXt

However due to the redefinition of our O;? inZ2 the degree of the M2L transfer function are inversed which

gives:

k=0..8 (orders)

X5

X0 | X] X7 | x3 [ xi [ x;700 X7 x;] X
Xy X3 [ X3 | X3 Xy7 | X5® [ Xy
X) X3 [X3 X7 [ X7
X! ] X] X!

Null rows can here clearly be skipped when performing the FFT in the orders dimension (before the FFT

k=0..8 (orders)

j =0..8 (degrees)

j = 0..8 (degrees)

in the degrees dimension), but this layout is not favorable when “planing” the FFT with FFTW.

That’s why we have choosed not to use wrap-around order: this implies a shift in the indexes for the 2
dimensions (orders and degrees) in real space. With even sizes, the shift equals the half of the dimension and in
Fourier space such a shift results in each term being multiply by (—1)7**. And these factors are then canceled
during the point-wise product!

But in order to have even sizes we must add a null row and a null column, and the sizes of our FFT are now

2(P + 1) in each dimension.
We now have, without wrap-around order and without degree inversion, (i.e. for M 7’“)

j =0..9 (degrees)

Xo
XU XY X
X7 [ X [ X)X [ X3
X0 X [ xt XY x| x2 X3
XXX X XY X X2 X7 X7
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and with degree inversion (i.e. for Of):

XUl x; I xt Xt XY X X2 X7 | X
X0 X [ xt XY x| x:2X3
X7 X [ xY X X2
XXy x|

7 =0..9 (degrees)

k=0..9 (orders)

L% obtained with backward FFT are stored with wrap-around order and they have inverted degrees and
orders (see equation ([Z2)): they are stored in the same way as (Z8) but with inverted orders. And when
performing backward FFT in the order dimension we perform the 1D backward FFT only on the rows that will
be useful, i.e. the rows that contains degrees j with 0 < j < P.

Remark 2.2. The choice not to use the wrap-around order, for multipole expansion as well as for M2L transfer
function, was done in order to reduce the FFT runtime. However since the most time-consuming part is the
point-wise product (see section (24) , it could have been better to keep the wrap-around order (and hence odd
sizes as 2P +1 x 2P + 1 instead of 2(P + 1) x 2(P 4 1)) in order to have smaller array sizes for the point-wise
product.

2.3.2 With blocks

We have presented in section [Z2) a block decomposition of a 1D correlation. When applied to M2L operation
the order dimension treatment remains unchanged compared to the non-block version. For the degree dimension,
we consider a correlation as in (1), thus performing a large-grain correlation, but when considering ([Z3) we
perform the same inversion as (£22) inside each block: ([Z3) are hence converted into a convolution, thus resulting
in a non-inversed point-wise product in Fourier space.

We give here examples of the practical layout in memory for our blocks when considering P = 7: while a
non-block FFT would use arrays of size 16 x 16, a block FFT, with T' = 2 and with zero-padding (T' — 2T),

has blocks of size 4 x 16. We represent here block #2.
The theoretical layout would be:

j=-2.1
X1 x71 X7 X4_1 X% X} Xz X% X{{ (degrees)
= = 3 -3 v T :
XS XS X5 X5 XS X5 X5 X5 X5 X5 X55
k=—8..7 (orders)
For the multipole expansion (i.e. without wrap-around order, and without inversion):
j=0.3
X, X1 X/ X4_1 X% X% X‘z X‘Z X{{ _ (degrees)
XS XS X5 i X5 i XS X5 X5 X5 X5 X5 XS
k=0..15 (orders)
For the transfer function (i.e. without wrap-around order, and with degrees inversion):
GG G Gl X[ [ [ XX j=0.3
X1 x x7 x ] xXP X ] X3 X3 X (degrees)
k=0..15 (orders) INRIA
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For the local expansion (i.e. with wrap-around order, and with orders and degrees inversion):

X0 X, ] X, ] X, X, X | X[ X[ X)

j=0.3
(degrees)

X3 | Xo ] Xo] Xo] Xg] X Xl X[ X XE| X3

k=0..15 (orders)

As for the non-block version of the FFT, null rows are skipped when performing the forward FFT in the
order dimension, for the blocks of the multipole expansion as well as for the blocks of the transfer function.
However for the backward FFT in the order dimension (for the blocks of the local expansion), there is only 1
“useless” rows per block: all the other rows contain useful terms since the block decomposition spreads the local
expansion terms inside each block. In practice we do not skip any row in this case.

Remark 2.3 (BLAS usage study). The point-wise product, in block version as in non-block version, which
is the most time-consuming part of the M2L computation with the FFT improvement, does not match any of
the standard BLAS calls (see section[f)). In fact not much speedup can be obtained from such computation since
there is no data reuse: once the single loop has been written it is up to the compiler to provide code that can be
pipelined.

2.4 Complexity

We now study the complexity of the block and the non-block version of the FFT enhancement for M2L. First we
consider that the M2L transfer functions (Of) are precomputed for each level [ and their conversion to Fourier
space too. For growing [, the runtime cost of this precomputing becomes quickly insignificant. Secondly, the
M?2L computation with FFT proceeds like this: all multipole expansions are first converted to Fourier space,
then for each cell we add the results of all point-wise products in its interaction list, and convert this addition
to real space in order to retrieve its local expansion. As the size of the interaction list is 189 (for ws = 1), we
consider:

e 1 conversion to Fourier space for a multipole expansion
e 189 point-wise products
e 1 backward conversion to real space for a local expansion

This, when multiply by the number of cells at level [, gives a precise estimate of the number of operations needed
for all M2L at level [. The estimated operation count used for a 1D complex FFT of size N with FFTW is:
5N log,(N) (see online FFTW documentation at: http://www.fftw.org).

2.4.1 Without blocks
Operation count 2.1. For 189 M2L operations, the theoretical operation count of the FFT without block is:

189 M2L = 40(P + 1)%log, (2P + 2) + 378 % (P + 1)2.

Proof. With the use of symmetries for orders (as exposed in ([ZIZ)), the use of an extra row and column in
order to have even sizes like 2(P + 1) x 2(P + 1) (see section [Z31l)), and 1D (forward and backward) FFT
being performed only on the P + 1 “useful” rows, we have for the non-block version:

e for FFT on multipole expansion array, we count P + 1 FFT of size 2(P + 1) in the order dimension (full
array with null rows skipped) and P+ 1 FFT of size 2(P + 1) in the degree dimension (halved array), i.e.:

(P+1)5(2P +2)logy (2P + 2) + (P + 1)5(2P + 2) log, (2P + 2)
=20(P + 1)%logy(2P + 2),

e for backward FFT on local expansion array, we count P+ 1 FFT of size 2(P + 1) in the degree dimension
(halved array) and then P+ 1 FFT of size 2(P + 1) in the order dimension (full array with useless rows
skipped), i.e.:

20(P + 1)?log, (2P + 2),
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¢ 189 point-wise products between halved arrays (of size 2(P + 1) x (P +1)):
189 % 2% (P +1)%.

O

For usual values of P, the most time-consuming part of the FFT version of M2L is thus the point-wise
product.

2.4.2 With blocks

Operation count 2.2. For 189 M2L operations, the theoretical operation count of the FF'T with block is, with
B =L£fL.
T

P+1)>°
189 M2L =10 (P + 1)*log, (32 (P+1)? T2) +189 (% +(P+ 1)2> .

Proof. We count the same operations as for the non-block version and we here suppose that P+ 1 is a multiple
of T. The size of a block with zero-padding is then 27 x 2(P + 1) for FFT in the order dimension (full array),
and 2T x (P + 1) for the FFT in the degree dimension and the large-grain correlation (halved arrays).

e For FFT on the B multipole expansion blocks, we count 7" FF'T of size 2(P + 1) in the order dimension
(full array with null rows skipped) and P+ 1 FFT of size 27 in the degree dimension (halved array), i.e.:

B (5T'(2P 4 2)log, (2P 4 2) + (P + 1)5(2T) log,(2T"))
= 10BT(P + 1) log,(4(P + 1)T).

¢ For backward FFT on the B local expansion blocks, we count P41 FFT of size 27T in the degree dimension
(halved array) and then 27 FFT of size 2(P + 1) in the order dimension (full array but no blank row
skipped), i.e.:
B (5(P +1)(2T) log,(2T) + (2T)5(2P + 2) logy (2P + 2))
= 10BT(P + 1) logy(8(P + 1)T).

e 189 large grain correlations with point-wise products between blocks of size 27 x (P + 1):

B—-1B—-1-J
189 lz > @T(P+1))| =189B(B+1)T(P+1).
J=0 I=0

We thus finally have:
189 M2L = 10 (P 4 1)*log, (32 (P+1)? T2) +189(P+1)*(B+1).
O

We here see that the block version of the FFT for M2L has an operation count in O(P?), against O(P? log, P)
for the non-block version. We can also remark that the large-grain correlation / point-wise product part is even
more time-consuming than the FFT / backward FFT part, compared to the non-block FFT.

2.5 Memory requirements

We now compare the memory needed by the FFT improvement with the needs of the classic M 2L computation
as exposed in section [[2Z3 With the same notations we measure the needs for the non-block version. The block
version has the same memory requirements when P + 1 is a multiple of 7. Otherwise the size used is the same
as for the first greater multiple of 7' (minus 1).

Since the expansions in Fourier space are stored in halved arrays with complex numbers, their size is
2(P + 1)%¢c. This is valid for multipole and local expansions as well as for the transfer function. However
we only need one single halved arrays for the local expansions: this is used as an auxiliary array where all M2L
results of the interaction list are accumulated for the current cell being processed. The size of this single array
is neglected.

We have thus (here for single height kernel):

w> e+ Ny (2(P+1)%) e (2.9)

Memgy(P,H) = N(H) (2(P+ 1) + (
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2.6 Remaining instability

However tests have shown that the numerical instability remains for high values of P as shown in figure
for single height M2L kernel. This might be explain by the influence of the value of the order (i.e. k) in ([Z3)
and in ([Z3): the block decomposition is only performed for the degree dimension, but for high values of P,
numerical instability appears in the order dimension too.

|
(o))
I

Error

0 5 10 15 20 25 30
P

Figure 2.2: Logarithmic error for the potential (pot) and the force coordinates (fz, fy, fz) according to P for
single height M2L kernel with FFT with blocks of size 4. Tests performed on 10000 uniform distribution with
an octree of height 4. The error plotted is the maximum absolute error over all the particles.

This numerical instability can however be reduced with lower block size: while, for single height M 2L kernel,
the FFT with block size 4 becomes unstable for P higher than 14 (see figure Z2), a FFT with block size 3 is
stable until 27, but is of course slower.

Another severe drawback is that the numerical instability increases with the height of the octree. When
considering (23) and {ZZ)), we have also to take into account the influence of two distances:

e the distance between 2 cell centers (for Of in M2L for example),
e and the distance between a cell center and a particle location (for M j’? in P2M).

With increasing height of the octree, these distances decrease, since the cell size is divided by 2 between
two consecutive levels of the octree, hence resulting in numerical instability when their order of magnitude is
becomming too small. For example, as seen in figure 23] with an octree of height 6, the FFT with block size 4
is unstable for P higher than 10 (compared to 14 for height 4).

The values of P and heights above which numerical instabilities appear are summarized in tabldd 210 for
single height M2L kernel (for FFT of size 2, no influence of the octree height on the instabilities was detected,
but this will probably happen for higher heights that cannot be run here in sequential computation). Of course
these values depend on the size of the computational box that encloses all particles: our tests are performed
with all particle coordinates inside [0, 1.0] but with a bigger computational box the numerical instabilities would
appear for higher heights. Moreover the instability due to increasing octree height can be avoided with a simple
trick: when multiplying all particle cartesian coordinates, as well as the coordinates of the computational
box, with a scalar & > 1, the two kinds of distances mentioned above are then increased which can reduce the
numerical instability. The original potential and forces can be obtained afterward thanks to a multiplication
with respectively é and % For example with o = 4, the numerical instabilities with an height of 6 correspond
to the ones formerly obtained with an height of 4. And with « = 4 and an height of 4, no instabilities are
detected in our tests for P between 3 and 40 with block size 4. This drawback however still exists and restrains
the use of the FFT improvement for the FMM: the critical leaf size is a priori not known and depends on the

3 Tests run on IBM Power3 (2 GB) and Power4 (8GB) at the LaBRI, as well as on IBM Power3 (16 GB) and Power4 (32 GB)
at the CINES. See section B for more details on these machines.
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Error

Figure 2.3: Logarithmic error for the potential (pot) and the force coordinates (fx, fy, fz) according to P for
single height M2L kernel with FFT with blocks of size 4. Tests performed on 10000 uniform distribution with
an octree of height 6. The error plotted is the maximum absolute error over all the particles.

machine precision used. Moreover whether this scaling has to be used or not depends on the value of P, the
block size and the leaf size.

height =4 | height =5 | height =6
FFT with block size 4 14 14 10 (2.10)
FFT with block size 3 27 23 20 ’
FFT with block size 2 40 40 40

2.7 Comparison with DPMTA code

In order to check the exactness and the efficiency of our FFT implementation for the FMM, we have compare
our code (FMB) with DPMTA (version 3.1.2p3). We have been using DPMTA with the fixed interaction list
of Greengard & Rokhlin with ws = 1: i.e. no MAC (Multipole Acceptance Criteria, or §) was used. As in
our code, all M2L transfer functions were precomputed. And the Ppppra used in DPMTA differs from our:
Pppyra = P+ 1. Comparison was performed on IBM Power3d and Power4, thus requiring a few modifications
in the Makefiles so that it compiles with the IBM C compiler (xlc). The same compiler options were used
for DPMTA and FMB (namely for Power3: zlc -03 -gstrict -bmazdata:0280000000 -qarch=pwr3 -qtune=pwr3
-Q=150 -gstaticinline). Figure 24 shows that our implementation of the FFT improvement for the FMM is as
fast as the one DPMTA.

Moreover we have also found numerical instabilities when testing DPMTA on full FMM computations: these
appear for the same values of P and heights as with FMB (see section ZH).

2.8 Fast Fourier Transform for double height M2L kernel

With double height M2L kernel, the maximum degree of the Of is 2P. We therefore need J and K to be
defined by: J = [-2P,2P] and K = [-2P,2P]. But thanks to the use of symmetries (see (Z12)) we actually
use: K = [0,2P].

The same J and K have to be used for M j’“ and L?: this is obtained with zero-padding. This done, the FFT
for double height M2L kernel operates in the same way than for single height.

With double height M2L kernel, the numerical instability is even worst than with single height, and the
need for block decomposition of the FFT is higher: since Of have degrees up to 2P, the range of magnitude
is even greater and they become unstable for even lower values of P. As for FFT without block, it is rather
straightforward to derive block FFT for double height kernel from block FFT for single height kernel once J
and K have been defined. For a same T, we have roughly twice more blocks with double height kernel than
with single height kernel.
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140 T T | T T
DPMTA FFT with block of size4  x .
120 ~ FMB FFT with block of size 4 ----- <"
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Figure 2.4: Downward pass CPU times for DPMTA and FMB: the octree height is 4 and the uniform distribution
contains 100000 so that there is no empty leaf (these are skipped by DPMTA). All particle coordinates were
within [0, 1.0]. We use single height M2L kernel as imposed by DPMTA, and blocks of size 4 for FFT. The P
plotted is the one of FMB (Pppyra = P+ 1) and DPMTA accept for Ppparra only the multiples of the block
size.

But even with the block version, the range of values for P that lead to correct computations for double
height kernel is smaller than in the single height kernel case (unless some rescaling is performed as explained in
section Z8). For comparison with table 10, block FFT with block size 4 is here only stable for P < 8 (in an
octree of height 4 and a computational box of side 1.0). When trading runtime in for accuracy, we can reach
12 with block size 3, and 19 with block size 2. And as for single height kernel, this is even worst for growing
heights of the octree.

In order to establish the complexity for the double height kernel, we consider the same operations as in

section (ZZ).

For the non-block version, we just have to replace P by 2P:
189 M2L = 40 (2P + 1)*logy (2 (2P + 1)) + 378 % (2P + 1)°.

Remark 2.4. In practice, more than 2P + 1 rows can be skipped for FFT on multipole expansion arrays and
backward FFT on local expansion arrays since the mazimum degree of these expansions is P.

For the block version of the FFT, we consider that 2P + 1 is a multiple of T": this is certainly never the case
for T' = 4 for example, but the behaviour so described is close to reality. We replace then P by 2P and the
number of block is B = 22, The size of a block is now either 27" x 2(2P + 1) (full array) or 2T x (2P + 1)
(halved arrays), and we have:

2P +1)*
189 M2L =10 (2P + 1) log, (32 2P +1)? T2) + 189 <% + (2P + 1)2> .

Remark 2.5. As for the non-block version, more rows can be skipped in practice.

Finally we give the memory requirements for the double height kernel, proceeding in the same way as in
section ZZAl The size of all halved arrays is now 2(2P + 1)2, for multipole expansions and transfer functions,

and thus:

P+1)(P+2)

Mempy(P,H) = N(H) (2(2P + 1)2 + ( 5 ) c+ Nt (2(2P + 1)2) c. (2.11)

2.9 Comparison between single and double height kernels
We first recall that the ratio between single and double height kernels with classic M 2L computation is roughly

6: see section [LZ4
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For the FFT without blocks, we have, without considering the logs, a ratio of 4 which favors the double
height kernel. However due to its higher numerical instability, the double height kernel imposes even more the
block version. And for a block version of the FFT, the ratio is still 4 for the FFT / backward FFT parts but it
equals roughly 8 for the large-grain correlation / point-wise product part: this clearly does not favor the double
height kernel.
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3 Rotations

The use of rotations has already been introduced in several articles: see [CGR99|, [CIGR99]|, [GR97], [GD03]
and [WHGO6]. This improvement allows the computation of M2M, M2L and L2L operators in O(P?), against
O(P*) for their classic version.

We have chosen to use the formulae detailed by Gumerov and Duraiswami in [GD03| since: they use the
same definition for spherical harmonics, they use symmetries to speed up the computation and they focus only
on the needed rotations. Moreover the recurrence is performed on real numbers (and not complex ones) and is
simple to initiate. However no proof is given on the numerical stability of the formulae used.

We here present the principle of this scheme and the formulae used for both single and double height M2L
kernels. We give also tailored formulae for the Outer (Of) and Inner (I j’“) functions. Finally, we will outline
the fact that the M2L computation with rotations does not match standard BLAS calls and we will present
numerical stability checking.

3.1 Formulae

The general scheme for M2L computation with rotations is pictured in figure Bl We will here introduce the
required mathematical formulae and detail this scheme.

M2L
Vector

x©

Figure 3.1: M2L with rotations. 1: rotation of the coordinate system so that the M2L vector is along the z
axis. 2: M2L performed along the z axis. 3: inverse rotation back to the original coordinate system.

3.1.1 Methodology

Notations. We denote R;(a), Ry(c), R.(a) the rotations of the Cartesian system of coordinates by angle
« about respectively x, y z axes: rotations are considered to be performed in the counterclockwise direction,
when looking towards the origin from a location with positive coordinate on the corresponding axis of rotation.
Given a point P with spherical coordinates (r, 6, ¢) in the original coordinate system, the spherical coordi-
nates in the rotated system are denoted: (r, 9, a)
Generally, we first consider a rotation (of the Cartesian coordinate system) by angle y about z axis, followed

by a rotation by angle v about the y axis, and finally a rotation by angle # — w about the new z axis, i.e.:
Ra(m = w) Ry (7)- R (x)-

Remark 3.1. In [GD03] the second rotation is performed about the x axis.
Rotation of spherical harmonics. As shown in the cited papers, for the rotations R, (m —w). Ry (7). R (x)

there exists coefficients T;"k(w, v,%x), with j > 0,]k| < 4, |v| < j, such that the spherical harmonics ij(H, @) in
the original coordinate system can be written with spherical harmonics in the rotated system as:

J
YE0,8) = > T/ (w,7,x)Y) (0, 0). (3.1)

v=—j

The same T;”k apply on both normalized and unnormalized spherical harmonics.
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The Outer and Inner functions, as defined in (C3) and in (A, being based on these spherical harmonics,
there exists also coefficients TOJ”»’k(w, v, %), and TIJ”»’k(w, ~,X) such that:

k(r,0,¢) = ZTOJ (w, 7, %)04 (r,0,6), (3.2)
v=—j
and:
5(r,0,0) = ZTIJ (w7, )L (1,0, 9). (3.3)
v==j

These coefficients Tj”’k, TOJ”»’k and Tlg’k are considered to vanish for |v| > j or |k| > j. Hereafter they are
named rotation coefficients.

Rotation of multipole expansions. Let point P of spherical coordinates (r, 6, ¢) in the original coordinate
system. The potential evaluated at P with a multipole expansion is:

ZZ 10, (1,6, 0).

n=0[=—n

In the rotated system, the potential writes:

Z Z MYO; " (r,0,9),

n=0v=—n

with the new multipole expansion terms being defined by:

Z M. To " Hw, v, x). (3.4)

l=—n

Rotation of local expansions. With a local expansion, the potential at P in the original coordinate system

writes:
Z Z Ly, (r,6,9).

n=0[=—n

In the rotated system, the potential is given by:
-3 Y B )
n=0v=—n

where the new local expansion terms are defined by:

Z LT (w, v, x). (3.5)

l=—n

M2L along the z axis. The improvement in the use of rotations for M2L operator is based on the fact that
the cost of an M2L operation performed along the z axis is O(P?) against O(P*) for general M2L. Indeed the
associated Legendre functions verify:

P (1) = bm.o

where §; ; is the Kronecker symbol. We have therefore:

_1)7 A .
O;C (T7 O’ O) = % = rjjil lf k = (‘),
0 otherwise,

and:

0,5 — (DI o
(r,0,0) = Ajr! = *—5 if k=0,
/ 0 otherwise.
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When the M2L vector (defined by z — z; in definition [[3) has spherical coordinates in the form (r,0,0), the
M2L operator can then be computed by:

(=17

k0 k
ZM 09, ,(r,0,0) = ZMn AT (3.6)
n=0
Since M, * imposes n > |k|, we have for single height M2L kernel:
_ ( 1)]+7L
Z M (3.7)
n=|k| jtn
and for double height M2L kernel:
(=17
Z M, AO pitntl’ (3-8)
n=|k| Jtn

Regular M2L with rotations. We can now detail the scheme pictured in figure Bl for a general M2L
operation with cell center for multipole expansion z; and cell center for local expansion z. The M2L vector
V = zy — 2z, is considered to have spherical coordinates: (r, 0, ¢). We first rotate the coordinate system so that
the vector V is along the z axis. This can be done with the 2 following rotations: R,(6).R.(¢). However we use
a more general scheme with 3 rotations that can be use for the inverse rotation as exposed afterwards. Hence
we use R, (m —w). Ry(7). R:(x) with: w=m, y=0, x = ¢, i.e:

R-(0).R,(0).R.(¢).

The coordinates of V in the new coordinate system are: (r,0,0). The new multipole expansion is then given by

5;“ (see B4)). With &H) we compute Zf which represent the local expansion in the rotated coordinate system.
In order to obtain the local expansion in the original system, we have to use (BH) with the inverse rotation:

R.(m — ¢).Ry(0).R. ().
Indeed the inverse rotation for the general scheme is:
Ra(=X) Ry (=7) Rz (= (7 = w)) = Ra(m = x). Ry (7) Rz (w)- (3.9)
In conclusion we need to compute the following rotation coefficients: To;”k(ﬁ, 60,¢) and TIJ”»’k(qS, 6,m), for all

J =0, <j Kkl <5

3.1.2 Computing the rotation coefficients

Most of the following formulae are simply a rewriting of those presented in [GD03|. The complete method used
to compute the rotation coeflicients is given at the end of this section: all the mathematical background is first
presented.

Rotation matrix. Let V denote a vector with Cartesian coordinates (z,y, z) in coordinate system (i, iy, 1)
After some rotations of the coordinate system, we denote V = (7,7, %) its new coordinates in the rotated
coordinate system (iz,ig,iz). We then denote Q the following rotation matrix: V = QV, i.e.

iz, iziy, izi.
Q= igi, igi, igi. (3.10)
izi, iziy izi.
As exposed in section BTl we focus on the rotations: R, (7 — w). Ry (7). Rz (X)- In this case, we have:
—cosw sin w 0 cosy 0 —sinvy cosy sinyxy O
Q(w,v,x)=| —sinw —cosw 0 0 1 0 —siny cosy O

0 0 1 siny 0 cosy 0 0 1
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Or:
Q(w,7,x) =
—c9sw,cosv.cosx —sinw.s?nx —cgsw.cosv.s'inx—i—sinw.cosx Cf)sw.s'in’y (3.11)
—sinw.cosvy.cos x + cosw.siny —sinw.cos~y.sinxy —cosw.cosy sinw.sin~y
sin 7. cos x sin . sin x cos 7y

Q(w, ", x) is an orthogonal matrix and moreover we have (see equation (&H)):
Q' (w, 7. %) = Qlx, 7 w)-

Recursive computation of Tj”’k. We use the same definition of the spherical harmonics Y} (see [A2)) as
in [GDO3]. In their paper, Gumerov & Duraiswami use the equation (5.39) (with increasing degrees j for TJ'-”k)

as an example for a recursive computation of the Tj” *. we here prefer their equation (5.28) with decreasing
degrees.
With the matrix W defined by (with ¢ = /—1):

ig. (i — iig) ic. (iz + Zlg) —2i,.iz
W = iy (iz — Zlg) iy (iz + Zlg) —2iiy.iz
—%iz.(ig—iig) —%iz.(ig—Fiig) i,.iz

(5.28) in [GDO03) is:

2b, VT = (W + W )b 5 T 0™ o (Wag + Wao)bl T3 0™+ (Wag = Wag)an T

With the convention T%™ = 0,V(n,m)/|m| > n, we have the following equations (which correspond to
(5.30) and (5.33) in [GDO03]):

—m—1gmn+1l,m+1 __ —n—1gm,m
2bn+1 Tn+1 - (W171 +W2,1)bn+1 Tn )

—m—1mp—n—1,m+1 __ —n—1mp—n,m
2bn+1 TnJrl - (W1;2 +W2;2)bn+1 Tn .

With @I0) and @II), we obtain the following relationship between W with Q:
Wit +War=Qi1+ Qa2 +i(Qiaz— Qa1) = (cosy + 1)eXel™=),

Wig+Wao=Qi1— Qa2 +i(Qiaz+ Qa1) = (cosy — 1)eXe Hm=«),
W1,3 + W2,3 =-2 sin'y.eix.
Hence:

vym+l X
Tnli-l - b—vnl—l

n+ X )
{3 [(cosy + 1) e/m=)p ¥ T¥=1m 4 (cosy — 1)e={T=)py | THHLM] — sinyal TH™

This recursion is performed in C: we will now simplify it so that it will be held in R.

Recursive computation in R. When performing rotation R,(«) on the spherical harmonic ij(ﬂ,qﬁ) we

simply have: Yf(ﬁ, @) = eik"‘Yj’“(a, a) We can thus decompose TV (w, 7, x) as (once again we refer to [GD03]
for details and explicit proof):
Ty (w, 7y, x) = e™Xe ™ HP™ () (3.12)

with H;™(y) € R.
The recursive equation for H?™(v) is:

Hl/,m+1 _
_1 ?—‘il[_ (COS -V v—1,m __ _ v v+1lm] _ o3 v Iyv,m (313)
1—1 Y + 1) b H (COS’Y ]')b77,+1H77, } smrya Hn .

b;il 2 n+1""n n

The recursion is initiated with H%°(y) thanks to the following lemma:
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Lemma 3.1.
(n—[v)!

Pl"l(cos ).
Proof. We use the same scheme as [GD03| for their computation. Namely we consider R (7 — w). Ry (7). R-(0)

with V = (r,0,¢). 0 is here the angle between V et i.: it is also the angle between Vet iz. Moreover the
spherical coordinates of z in the rotated coordinate system (iz, iy, iz) are: (1,v,w). Applying the Addition
Theorem for (unnormalized) spherical harmonics (theorem B) between V and z in the rotated system thus
yields:

Pa(cost) = 3 Yo (7,w)Y2 (8, ).
We identify this equation with this one (obtained from (B)):

Py(cosn) =Y,)(0, ) = Xn: T3 %(w,,0)Y, (0, )

v=—n

which gives for all x:
T w7, x) = Y M ().

We deduce:
H;0(7) =Y, 7" (7,0) = Y,/ (+,0).
O
Finally, with (A3) and because the normalized spherical harmonics form an orthonormal basis, we have:
T, (v x0) =T ™ (7, %), (3.14)
and therefore with (BI2):
H, " (y) = Hp™ () (3.15)
Moreover (see (5.52) in [GD03]) we have also:
H™(y) = Hy" (7). (3.16)

These two equations, (B13) and @IH), are useful to fasten the computation of the H.™(7) (see below).

Computation of Toj’f’k and TI;’k. From the definition of the Quter and Inner functions, (L)) and ([C2), and
the definition of their corresponding rotation coefficients, 82) and B3), we deduce with &) :

v . — v AV 12
Toy* =ilt=WI—2 Tt (3.17)
J
and:
vk -k AS
Tk = I (3.18)
J

With BI4), we have also:

To; " " = (-)Mraol”,

T[;u,fk _ (—1)k+VT[?7k.
Computation procedure. Given the H?°(y) with lemma Bl and EIH) for n = [0..P] and |v| < n, we
use (BI3) and @I6) to compute the H:™(y) for n = [0..P], |v| < n and |m| < n. To;’k and TIJ’f’k are then
deduced from H:Z™ with 12), BT and BIF).

However there is no need for the computation of TOJ”»’k and TI;’k to be accelerated: it will indeed be part of
the precomputation of M2L transfer function for a given level (see section [[I)) and its runtime is not critical
at all. It is here more important to focus on the numerical stability of the computation scheme used for these
rotation coefficients (see section BA).
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3.1.3 Complexity

As for the operation count study of the FFT improvement for M 2L, we here do not consider the precomputation
performed once for the each level. The To;-"k(ﬁ, 0,d), TIJ”»’k(qS, 6, 7) and Of(r, 0,0) are therefore not taken into
account.

For 1 M2L, we thus consider:

e 1 rotation for the multipole expansion
e 1 M2L along the z axis
e 1 rotation for the local expansion
Operation count 3.1. The theoretical operation count of one M2L operation with rotations and single height

kernel is:
(P +2)(14P% + 41P + 36)

24

M2Lgor =

Proof. We have, with Q = P/2 (integer division):

Q J
. (P+1) P +2)2 1,
A YA G VP =
ROT (Multipole) = Vg . jg y k_gj FRE

p .
QP +3)(P+4)(P+2) 1

z — = _P
ML =D, 2 B

P j_ Min(j.P—j) 2
(P+2)(P*+2P+2) 1,
ROT(L _ _ ~ —P°.
) VD S i [
j=0v=0 k=—Min(j,P—j)

O

Operation count 3.2. The theoretical operation count of one M2L operation with rotations and double height

kernel is:
(I0OP+9)(P+2)(P+1)

M2Lgorop = 5
Proof. We have:
P P
4P+ 3)(P+2)(P+1 2
ROT(Multipole):ZZ Z :( +3)( 6+ )P+ )z§p3’

P P
YT 5 3h I (2P+3)(P6+2)(P+1) N %Pg’

P 7 1
ROT(Local) = 33" 3 - (4P+3)(P6+ (P+1) gP?’.

~
<”:

N

Il
=]
>

——j

The ratio between single and double height kernels with rotation is then:

M2Lrorap . 4(10P+9)(P+ 1) - 20

M2Lgor  14P24+41P+36 7'

This ratio favors the double height kernel compared to classic M2L implementation (ratio of 6, see section
[C23) or block FFT (ratio of 8, see section ).
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3.2 Memory requirements

The implementation of the rotation scheme do not encounter specific problems except careful writing of the
loops in the single height M2L kernel case. The rotation coefficients are easily stored in three-dimensional
arrays. We now detail the extra memory required.

For each M2L preformed with rotations we need first two auxiliary arrays where are stored the multipole
and local expansions along the z axis. These arrays have the same size of an expansion with double height
kernel, and even less with single height: in both case their memory usage can be neglected. Instead of an
expansion, up to P or 2P, for the classic M2L computation, we now need for each M2L vector:

e the corresponding M2L transfer function along the z axis containing only terms with null order: its size
is therefore P+ 1 or 2P + 1 and each term is real number,

e the two arrays containing the corresponding To;-"k and TI;’k complex terms for 0 < j < P, |k|] < j and
n n

0 < v < j. Weindeed do not need terms with —j < v < 0. The size of each array is: Zf;o D0 Db =

w. This applies to both single and double height kernels.

Finally we thus have, for single height M 2L kernel:

Mems, (P, H) = N(H)(P +1)(P + 2)c + N7 (P . L UP+ 3)(P3+ 2P+ 1)) ¢, (3.19)
and for double height kernel:
Memps(P, H) = N(H)(P + 1)(P + 2)c + N <2P2+ L (Pt 3)(P3+ (P + 1)) ¢ (3.20)

When compared to equations ((LI4) and ([LIH), it is clear that, unless very low octree heights and very high
values of P, the extra memory storage needed for the rotation scheme is small.

3.3 BLAS usage study

We here consider the use of standard BLAS calls in order to speed up the computation of M2L with rotations
(see section Ml for an introduction on BLAS). We first study the double height kernel since this is the most
amenable case.

3.3.1 Double height kernel

When using rotations with M2L, we use 2 different kinds of computation: rotations of multipole and local
expansions on one side, and M2L along the z axis on the other side.

Expansion rotations. We focus on the multipole expansion rotation: the local expansion rotation is per-
formed likewise. We need to compute negative orders (see [BH)) like:

n
M;V = Z Mql’LTOZj_l(waaX)
l=—n
with: 0 < j < P and 0 < |v| < j for double height kernel. This computation does not lend itself to a
matrix-vector product since it looks like:
Cun = Z CLn,l/7l'bl7n
I=...

when we would need something like:
Cun = Z al/7l'bl,’l’b
I=...

for C = A.B, with J/W\n‘” stored in C, To;;’_l in A and M! in B. The dependency on n of Tomg,o;;’_l prevents
us from considering the rotation of multipole expansion as a matrix-vector product, and thus from using level
2 BLAS, and furthermore level 3 BLAS. .

It is however possible to use level 1 BLAS for the computation of one given M ¥, but the speedup with
level 1 BLAS is limited.
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M2L along z axis. When considering (X)), we can use the following matrix-vector product (represented for
P = 3) for its computation:

h

O

o
5050
S5 e 3

|

.

NOo

o

wo

Q

NG

QS

alo

=

o

S

5

(an)

But all the X terms in the local expansion matrix are uselessly computed and the 0 of the multipole expansion
matrix are uselessly used. We can avoid the use of 0 with triangular BLAS (like ZT'RM M, see [DCHD90)
with transposition:

Ly LY Ly LY Mg JAW?l JAWr?l LW??l oy 0 0§ 0§
X Ly Ly Ly | _| 0 M7" M, M oy 03 03 03 (3.21)
X X L LZ 0 0 My* M7 || Oy 03 O OF
X X X I3 o o o M*|LOs 07 O3 Of

The X terms in the local expansion matrix are however still uselessly computed. Moreover the speedup
offered by the BLAS is at best with level 3: this would require the concatenation of several multipole/local
expansion matrices in (821 as in section EE3 But then the matrix containing the multipole expansions would
not be triangular anymore: the use of level 3 BLAS is thus inappropriate. At last as shown in section B3]
the M2L along the z axis is the least time-consuming part in the M2L computation with rotations. All these
reasons lead us to foresee the gain in matching the M2L computation with rotations with standard BLAS calls
as too limited to justify its implementation.

The only way to speed up computations with rotations seems therefore to write special hand coded and
non portable loops including assembly level programming that optimize computations in the same way BLAS
implementations do.

3.3.2 Single height kernel

Since the computation for single height kernel does even less lend itself to a matrix-vector product (the triangular
matrices in the double height case being further “halved” along the secondary (or skew) diagonal), the BLAS
computation would be even less efficient.

We have therefore choosen not to use BLAS calls with rotations since we do not believe this would give
sufficient gain.

3.4 Numerical stability

The numerical stability of the recursive computation of rotation coefficients has been studied for example in
[CIGR99] and [WHGI6] but for other recursive formulae than BI3). To check our formulae we use numerical
tests on the whole FMM computation: as shown in figure no numerical instability is introduced with our
rotation improvement since both curves are identical. This is also valid for double height M2L kernel and for
higher octree height.
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Figure 3.2: Logarithmic error for the potential according to P for single height M2L kernel with and without
rotations for M 2L computation. Tests performed on 10000 uniform distribution with an octree of height 4. The
error plotted is the maximum absolute error over all the particles.
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4 Implementation with BLAS

The BLAS (Basic Linear Algebra Subprograms) (see [LHKK79] [DCHHSS8| [DCHD90|) are a standard interface
for some usual linear algebra operations such as a dot product of 2 vectors (level 1 BLAS), a matrix-vector
product (level 2 BLAS) or a matrix-matrix product (level 3 BLAS). In order to offer an efficient implementation
of these operations, the BLAS routines manage to fill at best the pipelines of the floating point units, thanks
to an optimal use of the different layers of the hierarchical memory of the computer. And the higher the level
of the BLAS used, the better the speedup they reach. The BLAS are moreover portable and widely available.

BLAS have already been used for hierarchical O(N) N-body algorithms by Hu and Johnsson [HJI96] with
Anderson’s method [And92] which uses different expansions than the FMM, and hence translation/conversion
operators, but has the same algorithm for the upward and downward passes.

Here we propose the first BLAS implementation for the M2L operator of the FMM for both single and
double height kernel. In order to achieve the highest efficiency, we also detail several ways to use level 3 BLAS
for M2L.

4.1 M2L operator viewed as a matrix-vector product

While the original FMM formulae of Greengard & Rokhlin (see [GR88|) do not allow a rewriting of their
corresponding operators (M2M, M2L or L2L) as matrix-vector products, this can be easily done with the
simpler formulae of [ED95], [WHG94] or [EII95]. The full FMM algoritm has also been rewritten with matrices
in [SPOT] (with different notations): we here only focus on the rewriting of the M2L operator as a matrix-vector
product.

We first consider the double height M2L kernel and contrary to [SPOI], we only deal with non-null terms in
multipole or local expansions, that is to say terms with degree j and order k such that 0 < j and |k| < j. We also
point out that when performing M2L operation, we compute only the terms with positive orders in the local
expansion. A lot of symmetry relations in the transfer matrix (see its definition below) or in its sub-matrices
could certainly be noticed when computing terms with negative orders too, but this would result in a slower
computation than just computing positive order terms and then using (L) as we do. Moreover we now only
consider linear algebra operations (such as those implemented in the BLAS): this is why we have to store terms
with positive orders as well as terms with negative orders for the multipole expansions. The symmetry property
(CD) can indeed not be used here in order to write M2L operator as a matrix-vector product while storing only
the multipole expansion terms with positive orders.

Given a local expansion L? for 0 < j < P, 0 <k <j, we define the corresponding local expansion vector, or

local vector, of length w by:

VL(il) = L?,

. (P+1)(P+2)
VZl S [[07 - 92 = 1Ha { il — ](];1) + k.

With P = 2, we have thus:

Given a multipole expansion M! for 0 < n < P, |I| < j, we define the corresponding multipole expansion
vector, or multipole vector of length (P 4 1)? by:

VM(ig) = M,ll,

Vig € [0, (P +1)% — 1], { is =n(n+1)+1.
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With P = 2, we have thus :

Given the M2L transfer function, i.e. O;-“ with 0 < j7 < 2P and |k| < j, we define the corresponding M2L

transfer matriz of size w x (P +1)? by:

Taror (i1,42) = Oj_.fn_l7

W(ir,iz) € [0, TP ] [0, (P+1)% — 1], { 4y = 46D 4
io=n(n+1)+1.
With P = 2, we have thus :
oy |or o) ot|oz 0y 0y o7t 072
0?1 O% og1 0;; 0% 0% ogl 03—; 03—2
Loy ot o2l o 0Y o5t 0% 0
T — 1 2 2 2 3 3 3 3 3 4.1
M2L oy [ol 0y o;7]03 of 0y 0,7 0,° (41)
o;t| 0y o3t oz*|o0} o0y ot o o
02|03 032 0520y oY o o ot

The M2L operator can now be computed as the following matrix-vector product:

VL

Tharar -

VM

With single height M2L kernel we have to consider the Of in the M2L transfer matriz that vanish for

j> P,ie. for P=2:

0y o 0 o7t|o3 of 0y o0;' 072
oY oy o o;'lo o0 0 0 0
o'oYy o7 00 0 0 0 0
Tarzr = o0 0 o000 0 0 0 0 (42)
o;'1 0 0 0 /0 0 0 0 0
0,210 0 00 0 0 0 0

Remark 4.1. We can of course also write M2M and L2L operators as matriz-vectors products.

4.2 Level 2 BLAS

Now that we have presented M2L operator as a matrix-vector product, it is simple to use level 2 BLAS calls
to implement it: the speedup achieved by the BLAS is then directly exploitable.

Our matrices are stored in column storage mode, and we use the transfer matrix in its transposed form: it is
indeed generally more efficient to compute C + AT.B in row storage mode for A, than C' «+ A.B with column
storage mode for A, since when considering the BLAS implementation (see [BLA] for a default implementation)
the first solution leads to less writings, with however more readings, than the second one.

4.2.1 Double height M2L kernel

The matrix Ty is dense: the use of level 2 BLAS ZGEMYV routine is therefore obvious. In order to

differentiate it from the other BLAS methods that will be used later, we name it full blas.
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Remark 4.2. Another possibility is to split T yor in a square matriz T' o5, of size (PH)Q(PJFQ) X (PH)Q(PJFQ)

that correspond to terms with positive (or null) order in the multipole expansion vector, and a matriz T" pror,
of size (P+1)2(P+2) X P(P;rl) that correspond to terms with strictly negative order in the multipole expansion.
The interest here is that T/ yr21, is a symmetric matriz, but the use of a “symmetric BLAS” such as ZSY MV
or ZSY MM routines does not speed up the computation compared to the corresponding call to ZGEMYV or
ZGEMM routines: the main interest when using these symmetric BLAS is that only half of the matriz need to
be written, which does not interest us here since the building of M2L transfer matrices is precomputed and has
thus very few impact on the CPU times. Tests done with level 3 BLAS (see section [{.3) and the corresponding
block decomposition for T' yror, and T" arar (see [f-3-3), have confirmed that such alternative does not improve
the performances over the original ones.

4.2.2 Single height M2L kernel

The matrix T oz is now sparse: clearly the use of a level 2 BLAS call such as ZGEMYV routine would result
in too many useless computations. We therefore have to split the sparse matrix-vector product in several dense
block products.

Let’s recall first techniques used in the BLAS implementation that lead to high performance (see [DDSvdV98g]).
The ultimate goal is here to fill at best the pipelines of the floating point execution units in order to reach peak
performance of the processor. When writing loops corresponding to the BLAS operation, care is first taken in
the order between the different loops so that spacial and temporal locality among data are maximized. Then,
a first level of blocking is introduced to provide cache reuse in order to prevent multiple loads of the same
data. When considering a multi-level cache memory and/or the TLB (Translation Lookaside Buffer), additional
levels of blocking can be introduced. Unappropriate “leading dimensions” of the matrices (see BLAS routine
interfaces) can cause unnecessary traffic in the memory hierarchy and an underused cache: local arrays are
thus used to temporarily store sub-matrices. Other techniques such as loop unrolling, register blocking, data
prefetch, etc. are also used depending on the machine. All these techniques are controlled by machine-dependent
parameters.

In [KLyL98| it has been shown that level 3 BLAS routines can efficiently be implemented only with the
GEM M level 3 BLAS routine and a few level 2 BLAS routines. For portability purpose, as well as for simplicity,
we prefer to adopt such approach. We will thus decompose the sparse matrix-vector product corresponding to
M2L operator in several ZGEMYV block products in the most efficient way. ZGEMYV routine is used here
since we treat a matrix-vector product, but in section {3J) we will see how to use matrix-matrix products, and
ZGEM M routine will then be used as in [KLyL98|. All the optimizations recalled above will be used but left
as much as possible to the underlying (and machine dependent) ZGEMV /ZGEM M BLAS routine called. We
point out now one important fact: in our implementation of the FMM, we are free in the memory storage of
the blocks of Tjso7 since its construction is precomputed at each level of the octree in the downward pass of
the FMM. Therefore, most of problems that arise when considering the leading dimension of a matrix will be
irrelevant with our blocks. Moreover, we also recall that the values of P are limited: in practice they often
range from 3 for low precision to 15 for high precision. We can therefore not include too many additional zeros
in the block decomposition of the M2L transfer matrix with single height kernel since every additional cost is
amplified by the very high number of uses of the M 2L operator and especially costly for low values of P.

Before presenting the three block decompositions used, we first expose the underlying structure of Tsor. As
suggested in its representation given in (EIl), this matrix can in fact be viewed as a “concatenation” of several
sub-matrices denoted as By, j,-

Block structure of Tjypop. For all (11, I2) € [0, P]?, let By, ;, denotes a matrix of size (I; + 1) x (215 + 1)
defined by:

By, 1, (i1,i2) = O 1127 (i1, i) € [0, 11] x [0, 213].

For a double height kernel the T ;o1 matrix would have the following block structure:

Boo | Boa Bo,p
Bio | Bis B p

Trr2r =
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Since we deal here with single height kernel, the block By, ;, is considered to vanish for I; + I, > P.

For P = 2 we have thus:
Bo,o | Bo,1 | Bop

Tarer = | Bio | Bia | O3x5 (4.3)
B2 | O5x3 | Os5x5

where 057« v denotes the null matrix of size M x N.

It can be noticed that when considering a block decomposition of the multipole vector too, we obtain a
simple block product version of M2L operator for single height kernel. Indeed when denoting by v} for all
I € [0, P] the following vector of size 21 + 1:

vil(i)= M1 Vie[o,2I],

we have (for P = 2):

and: My o My
Bo,ovy' + Bo,1vy" +Boa2vy

M M M

Trror, - V'V = Bl,OVQ +B1,1V1
M
BQ’QVO

Because of the greatly different sizes of the blocks By, j,, this simple block decomposition, with one BLAS
call (ZGEMYV routine) for each product between 2 blocks, would however not lead to the best efficiency.
Therefore we present now 3 possible decompositions that can be efficiently combined with BLAS calls.

band blas decomposition. Our first decomposition is strictly based on the underlying structure of T /21,
as exposed in [E3): this structure looks like upside-down stairs, each step having a different size (height and
depth). For each step corresponds one single band.

The first choice to consider is to split Tpsor in bands either in the row (or horizontal) direction or in
the column (or vertical) direction. Our matrices are stored by columns for BLAS calls, but since we use the
transposed transfer matrix (see introduction of section E2), this one is stored by rows. Thus it seems at first
better to consider bands in the row direction. Moreover, bands in the row direction imposes several traversals
of the multipole expansion vector (one for each band) against one single traversal of the local expansion vector.
In other words, with bands in the row direction, the resulting blocks of the local vector are updated one after
the other, whereas the corresponding data of the multipole vector may be reloaded several times during the
block matrix-vector product. On the other hand, bands in the column direction imposes several traversals of
the local expansion vector against a single one on the multipole expansion vector. Since the local expansion
vector is traversed for updating (i.e. both reading and writing) and the multipole expansion vector for reading,
it is more efficient to use bands in the row direction.

There is P + 1 bands and the first one is thus the concatenation of blocks By o, Bo,1 ... Bg, p, the second
one the concatenation of blocks B1 g, B1,; ... Bi p_1, and so on until the last band which corresponds to block
Bp, only (see figure ETI).

Each band is then stored separately and treated with one call to ZGEMYV routine. We store the band by
rows and use its transpose for the BLAS call. The leading dimension is here the height of the band. It can be
noted that the first band leads to a simple dot product while the last band leads to a point-wise product between
2 vectors: both do not offer substantial speedup.

One obvious problem with such decomposition is that, as P grows, the first bands are too thin and too long
while the last ones are too thick and too short. This prevents the BLAS routine to fully decompose internally
the given band according to the hierarchical memory of the computer. We will thus try to use bands with higher
“height” (i.e. greater number of rows) in order to relax these constraints on the BLAS efficiency.

cband blas decomposition. In [KLvIL98|, triangular matrix-matrix product was performed with ZGEM M
routines thanks to decomposition of the triangular matrix in “strips”. These strips could be vertically or hori-
zontally oriented leading to respectively block columns or block rows. The choice between these 2 orientations
must favor the one that minimizes the number of updatings (i.e. both writings and readings) of data against the
number of readings. As mentioned page B this is realized in our case with strips in the horizontal direction (i.e.
block rows). We are thus left with a decomposition of T /o7, in horizontal strips whose “height” is customizable
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Figure 4.1: band blas decomposition for P = 5: the different gray values show the different bands.

but constant among all strips. We name such strip cband for “constant band’ in reference to the bands used in
the band_ blas decomposition, and their common height is hereafter named dim cpand.

When a cband covers, fully or partly, 2 consecutive bands (as defined for band_blas decomposition), zeros
have to be added at the end of the lower band so that the width of the cband equals the width of the upper
band. We have thus implemented a better cband_blas version, as confirmed by performance tests, that skip
these zeros by using two BLAS calls: one for the cband with width equal to the lower band and another one for
the remaining data at the end of the upper band. When a cband covers 3 or more bands, only the zeros between
the first and the second band are skipped: this eliminates most of zeros while avoiding numerous BLAS calls
with few operations.

The upper-right block of T sz, namely the block By p whose height is 1, and the lower-left block Bp,
whose width is 1, are treated separately: they would indeed supply too many zeros otherwise.

This is represented in figure

Figure 4.2: cband_blas decomposition for P = 5: the different gray values show the different cbands. ¢ denotes
the dim penq height and the additional zeros are pictured with stripes. The upper-right block and the lower-left
block are treated separately.

As for band_blas decomposition, cbands are stored separately, with a leading dimension equal to their
constant height, and treated as transposed for ZGEMYV routine.

One drawback of cband_blas decomposition is that with high dimcpanqs we introduce some useless zeros in
the computation, while with small dimcpgnq we have thin and long rectangular blocks. That’s why, depending
on P and on the machine used, the right value for the height of our cbands have to be obtained experimentally.

block blas decomposition. Our last decomposition is based on the underlying structure of Tjps2r with
single height kernel imposed by Of =0, Vj > O. This structure can in fact be considered as recursive. More
precisely, we now denote Tjrar, as To o [P] where Ty, 1, [P], 0 < I; < P, 0 < I, < P, denotes the matrix of size
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(PLUPL2) o (p 1 1) defined by:

_ Bth B11,12+1 B117P—(11+1) B11713711
B Bri41,041 By 11, (141 0
TIl,Iz [P] =
Br_(11). | Bro(r,41).141 0 0
Br 1.1, 0 0 0 |

When I; + I, < P this matrix is dense: we therefore denote it by Dy, 1, [P]. More precisely:

B 1 Br, 1,41 Br.p
Brii,n | Brti,n41 Bryi,p
DIl,Iz [P] =
Bprr, Bp 41 Bppr |

We have now the following recursive decomposition for 0 < I) < P,0< I, < P:

o for odd values of P =2Q + 1:

D T
T [Pl=Tn,[2Q0+1] = [ T :gfl [IQ][Q] I 11’12+0Q+1 <] } , (4.4)
e for even values of P = 2Q):
D 1,12 T 1,12 -1
Tr.5 [Pl =T [2Q] = { T +Q-I&-£II [[%] — I L4041 (@ —1] ]

We can then further decompose Tp, 1,+¢q+1[.-.] and Tr,4o+1.1, [ - ], which are sparse matrices too, until a
terminal case determined by the value of Q.
For example, let’s consider P = 3, we have:

Tarar = To0 3] =Too[2x1+1]=

Oy | 0y o) of'|oi 0, 03 0yt 0,707 0F 03 05 058 057 O5° ]
oY [ o, oy o;7lo: of of o;F oo o o o 0 0 0
o' | 08 o' o;%|ol 0 o' 072 o;*|l o 0o 0o o0 0 0 0
03 o3 oy o;"l o o 0 0 0 0 0 0 0 0 0 0
o, | oY o' o0;%] 0 o0 0 0 0 0 0 0 0 0 0 0
0,20z 072 o] 0 o0 0 0 0 0 0 0 o0 0 0 0
07 0 0 0 0 0 0 0 0 0 0 o0 0 0 0 0
ozt | o 0 0 0 0 0 0 0 0o 0 0 0 0 0 0
0;% | o 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L o3| o 0 0 0 0 0 0 0 0 0 0 0 0 0 o |
which can be decomposed following 4] in Dy ¢ [1]:
0 1 0 -1
0y |0f 0) 0
—1
Doy 1] = 0(1)1 05 031 0, , :
— 0 — —
Oy |0z Oy7 O
and in Ty 2 [1] and T2 [1]:
2 1 0 -1 —2 3 2 1 0 -1 -2 -3
O; O, 0Oy 05 0O | O3 O3 O3 O3 O3 O5° Oy
Too(l]=| 02 O} 0O O;' O] 0 0 0 0 0 0 0
oy 03 O3' 03 030 0 0 0O 0O 0 0
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Tool]=| O | 0 0 0
o3t 0 0 0
032 0 0 0
L 032 0 0 0 |

The advantages of this decomposition is that we use as much as possible dense matrices (i.e. Dy, j,) which
are efficiently treated by ZGEMYV routine. We do not limit the BLAS efficiency by the height of the band as
in the band_ blas decomposition, and we do not compute useless zeros as in the cband_ blas one. The terminal
case are then treated as in band_ blas.

It has to be noted than the recursive call on the sub-matrix “on the right” is performed before the recursive
call on the sub-matrix “below”: this leads indeed to less traversals on the local vector (for reading and writing)
than on the multipole vector (for reading) as in page

4.3 Level 3 BLAS

A matrix-vector product requires O(N?) memory storage (supposing a square matrix) relative to O(N?) opera-
tion count. Since the computation speed of modern processors is much faster than their memory bandwidth, it
is generally not possible to continuously supply the floating point execution units with the needed data: these
execution units remain then regularly idle waiting for data to be loaded from low level caches or main mem-
ory. Performance of level 2 BLAS is therefore limited by the rate of data movement through the hierarchical
memory, and level 2 BLAS do not generally reach peak performance. On the contrary, a matrix-matrix product
requires O(N?) memory storage (supposing the matrices are square) relative to O(N?) operation count. It is
now easier to overlap memory latency with computation of the floating point execution units, and thus to reach
peak performance of the processor. More precisely a blocking level is introduced in the loops that computes
the matrix-matrix product C <+ AT .B, which corresponds to a block version of the product: all computations
involving one given block of A are thus performed before loading the new block of A. This cache reuse prevents
multipole loads for data of A that would arise in the non-block version of the product. We will therefore try to
group multiple M2L operations in one single operation that would correspond to a matrix-matrix product.

During the downward pass, at a given level of the octree, all M2L operations that have the same M2L
vector between the center of the source cell (containing the multipole expansion) and the center of the target
cell (containing the local expansion) share the same Outer functions (i.e. Of) and thus the same M2L transfer
matrix. When considering all pairs of multipole / local expansions that share the same M2L vector, it is
thus possible to concatenate all their multipole expansion vectors as columns of one single multipole expansion
matriz MM | also named multipole matriz. The local expansion vectors are also concatenated according to the
same order to form one single local expansion matriz M”, also named local matriz. The matrix-matrix product
M = Tyrer - MM computes then the corresponding M2L operations all at once as described in figure
It has to be noticed that the column storage of our matrices for the BLAS calls is clearly adapted for the
concatenation of vectors as matrix columns.

First, we will roughly consider that the best efficiency is obtained with level 3 BLAS when the maximum
number of multipole / local expansions are concatenated each time (see section for revisions of this
assertion). In the following, we will thus see how to concatenate the maximum number of multipole / local
expansions for one given M2L transfer matrix, and we will then present the implementation of this matrix-
matrix product thanks to level 3 BLAS calls.

When grouping expansions according to M2L vectors of the interaction list, we also have to take account
that some cells do not have a complete interaction list: with free-space boundary conditions (FBC), where all
the space outside of the computational box is considered as empty, this concerns the “border cells” in each level,
that is to say the cells located at the boundaries of the computational box. In order to ease their computation,
and for efficiency purpose, these cells with incomplete interaction list are computed separately when using level
3 BLAS for M2L computation. In the case of Periodic Boundary Conditions (PBC), where the computational
box is periodically replicated in each dimension, all cells , at each level, have a complete interaction list and
such differentiation is irrelevant.
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Figure 4.3: Concatenation of multipole and local expansions in order to use level 3 BLAS. The interaction list
of the cell in gray is marked with stripes. Each of its M 2L operations is computed here with 3 other M2L
operations, that share the same M2L vector, in one single matrix-matrix product: the corresponding multipole
and local vectors are therefore concatenated in one multipole matrix and in one local matrix, both with 4
columns. The transfer matrix represented here is for a single height kernel.

4.3.1 Computing the local expansions of cells with incomplete interaction list

With free-space boundary conditions, the “cells with incomplete interaction list” are all the cells whose parent

have at least one neighbor that is outside of the octree. See for example figure B4l
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Figure 4.4: Cells with incomplete interaction list (with stripes) for a quadtree of height 3 and a well-separateness
criterion ws = 1.

In order to treat all the M 2L operations for the local expansions of such cells, we use recopies of the multipole
and local expansion vectors. Concretely, the current local expansions are copied in the columns of the local
matrix, the corresponding multipole expansions are copied in the columns of the multipole matrix, and the M2L
computation is performed as: MY « Tpor . MM 4+ MY’ . The columns of the local matrix are then recopied
in the original local expansions. It could have been possible to use a null local matrix and to add the result
to the local expansions, but on modern processor such as PowerPC or IA-64 (Itanium) the fused multiply-add
instruction (FMA, or FMADD) allows computation of ¢ = a.b+ ¢ in the same number of cycles as ¢ = a.b . We
therefore prefer 2 copies against 1 filling with zeros plus 1 addition.

For a given well-separateness criterion ws (see section [L1]), the M2L vectors of the interaction list of a given
cell are determined according to the type of child of the cell: type of child describes here the location of the cell
center relatively to the center of its father. In 3D, the eight different type of child are: BDL, BUL, BDR, BUR,
FDL, FUL, FDR, FUR, with F, B, U, D, L, R corresponding respectively to “Front”, “Back”, “Up”, “Down”,
“Left” and “Right”. Two different types of child share some M2L vectors. Some M2L vectors are also shared by
all the types of child: for example, with ws = 1, among the 189 M2L vectors of the interaction list 53 — 3% = 98
are common to all types of child.

When grouping M2L operations according to the M2L vector, we treat M2L vectors one after the other.
Two loops are thus needed: one for the type of child and another one for the M2L vector. Vy o5, denoting the
set of all possible M 2L vectors, 7¢ the set of all different types of child and T yror (v) the M2L transfer matrix
corresponding to the M2L vector v, the first possibility is:
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-V vé€ VoL do:

-V te T¢ corresponding to v do:
- copy the local vectors in .Y ol
- copy the corresponding multipole vectors in MM
end do

- perform MY = Typnp,. MM

- copy back all the local vectors copied in the loop on ? ;

end do.

And the second possibility is:

-Vite T¢ do:

-V v € Vwmar corresponding to ¢ do:
- copy the local vectors in .Y
- copy the corresponding multipole vectors in MM
- perform ML = T, MM 5
- copy back the corresponding local vectors;
end do

end do.

The number of recopies is the same in both possibilities, but in the first one the number of vectors treated
per matrix-matrix product is higher than in the second one. Indeed in the first algorithm, for each M 2L vector
there is only one level 3 BLAS call that computes all the local vectors concerned by this M2L vector, no matter
the type of child of the cell they belong to. Whereas in the second algorithm, for one M 2L vector there is 8 level
3 BLAS calls: one for each type of child. Since the speedup obtained with the use of level 3 BLAS increases
with the number of vectors treated, we prefer to use the first algorithm. Moreover the first algorithm allows
the reuse of the same memory area to successively store all different M 2L transfer matrices: there is no need
to keep at the same time in memory all the M 2L transfer matrices.

It can be noted that the same algorithm could be used for an adaptive version of the FMM [CGRS&S].

4.3.2 Computing the local expansions of cells with complete interaction list

All cells with complete interaction list have the same interaction list size, and all cells of the same type of child
share exactly the same M2L vectors. This regularity allows well suited algorithms. We thus study 2 different
methods to concatenate in practice our multipole / local expansion vectors:

¢ a simple one that always uses recopies in order to treat altogether the maximum number of pairs of
multipole/local expansions;

¢ another one that avoids the additional cost of recopies thanks to a special data storage of our multipole
and local vectors. This implies a “rearrangement” of the storage in memory of these vectors: this is done
before the downward pass. The multipole and local vectors can be stored row by row, slice by slice or
even for the whole level, but it implies (except for row storage) the useless computation of some local
expansions belonging to what we will name blank bozes.

It has to be noted that for levels lower or equal to 2 there is no cells with complete interaction list.

Scheme with recopies. As in [HI96], we consider one M2L vector after the other, and for each we copy all
corresponding pairs of multipole / local vectors in the multipole and local matrices and then perform one single
matrix-matrix product. There is three possibilities:

1. -Vte T¢ do:

- copy all local vectors in M”

- V v € Vuyar corresponding to t do:
- copy the corresponding multipole vectors in MM
- perform ML = Tupor. MM :
end do

- copy back all the local vectors ;

end do.

2. - Vve VuyzL do:
-V te T¢ corresponding to v do:
- copy all local vectors in .Y
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- copy the corresponding multipole vectors in MM
- perform M* = Tppr. MY ;
- copy back all local vectors ;
end do
end do.

3. - copy all local vectors in Y
-V v € Vpoer common to all types of child, do:
- copy the corresponding multipole vectors in MM
- perform MY = Tupnr. MM ;
end do
- copy back all the local vectors;
-Vite T¢ do:
- copy all local vectors in ML
- V v € Vupar corresponding to t
(and non-common to all types of child), do:
- copy the corresponding multipole vectors in MM
- perform ML = T, MM R
end do
- copy back all local vectors ;
end do.

For the last algorithm, we recall that, among the 189 M2L vectors of the interaction list, 98 are common to
all types of child. The 91 remaining are used in the second loop (on t) of this last algorithm.

The second algorithm, compared to the first one, has the drawback to perform more copies for the local
vectors while having the same number of vectors treated each time. The third algorithm, compared to the
first one, presents the advantage to treat 8 times more vectors for 98 M2L vectors out of 189. But it has the
drawback to perform twice more copies for the local vectors than the first algorithm. Moreover, we believe that
the number of vectors treated in the first algorithm is already sufficient to gain enough efficiency with the level
3 BLAS. Indeed for a level [ with FBC, there is, in each dimension, 2!~ — 2ws cells of the same type of child
and with complete interaction list. (2!~ — 2ws)® vectors are thus treated all at once with the first algorithm,
which is 2744 for level 5, and is therefore high enough for most values of P. That is why we choose the first
algorithm.

However one drawback with the first algorithm is the need to keep in memory all the M2L transfer matrices
during the M2L computation of a level.

Row data storage. The first possibility in order to avoid recopies is to choose one given dimension and to
store consecutively in memory all the local vectors that belong to cells of the same type of child along a given
row in this dimension (see figure EEH)). This is done for each row of the level, and the same storage is also done
for the multipole vectors. Note however that for local expansion vectors, only cells with complete interaction
list have their local expansions rearranged in rows, while for the multipole expansions the rearrangement is
performed for all cells of the level: this is because local expansions of cells with complete interaction list may
require multipole expansions of cells with incomplete interaction list.

With such data storage we can call a level 3 BLAS routine starting at the local vector of the first cell of
each row, with the corresponding M2L transfer matrix and the corresponding multipole vector. Since the local
vector of the next cell in the row, which has same type of child, is consecutive in memory and because it is
the same for the multipole vectors, we can here use level 3 BLAS with local and multipole matrices stored by
columns.

With FBC, at level [, there is 8! cells of a given type of child. For each type of child, the multipole
expansion vectors are rearranged in (2/71)? rows of size 2!~!. There is (27! — 2.ws)? cells of a given type of
child with complete interaction list: the local expansions are thus rearranged in (2!=! — 2.ws)? rows of size
2!=1 _ 2.4ps. The number of local expansions treated in each matrix-matrix product is therefore: 2!=1 — 2.ws.

Remark 4.3. In order to implement the row storage, we have to be able to identify (and access to the content
of ) any cell thanks to the coordinates of its center. This is enabled in our implementation thanks to the Morton
ordering (see section L) and this is also required by slice and level storages.

Slice data storage. The main drawback of the row data storage is that the number of local vectors computed
each time might be quite small for the first levels of the octree: at level I = 4, this equals 6 which is not enough
to obtain the best efficiency with the level 3 BLAS.
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Local vectors

(1328 |37 49 1|5 |17 21 | 9]a3] 25 29 | 333749 53 |41 45] 57] 61
11426 |38 50| | 2| 6] 18 22x10] 14 26) 30| | 34| 38| 50| 54 | 42] 46 58] 62
15 2 | 39] 51] | 3] 7] 19 23 |11] 18] 27 31] | 35| 39| 51] 55 | 43| 47| 59] 63

Figure 4.5: row data storage (2D, ws = 1, level 3). The cells are indexed according to Morton ordering. Each
of the 4 types of child has a different gray value. The expansions of the cells with same type of child along a
given row are concatenated: the four M2L operations, whose M2L vectors are represented on the quadtree,
can then be directly computed with matrix-matrix products (level 3 BLAS) without recopies.

That’s why we propose here to store consecutively the rows in memory in order to form a “slice” and then to
treat several rows with one level 3 BLAS call. In order to have a correct correspondence between slices of local
expansions and slices of multipole expansions, we have however to insert “blank cells” (or blank bozes) between
rows of local expansions: these correspond to cells not belonging to the octree whose local vectors are computed
uselessly. With ws = 1, there is 1 blank boz at the beginning and 1 at the end of each row (see figure ELf). We
can however skip the first blank boz of the slice (that is to say, the first blank boz of the first row), and also the
last one.

As for row storage, rearrangement of local expansion vectors only concerns cells with complete interaction
list while rearrangement of multipole expansion vectors concerns all cells. Moreover, there is only blank boxes
between rows of concatenated local expansion vectors. There is no need for such blank bozes for the rows of
multipole expansion vectors: we just have to concatenate all multipole expansions of the whole slice in order to
have a correct correspondence between the slice formed by the local expansions and the blank boxes, and the
slice formed by the multipole expansions.

With FBC, at level I, and for each type of child, the multipole expansion vectors are rearranged in 2!~!
slices of size (2!71)2. The local expansion vectors are rearranged in 2/~! — 2.ws slices of size (2/~! — 2.ws)? +
2% (2171 —2.ws) =2 (i.e. the number of cells of a given type of child with complete interaction list in 1 slice,
plus 1 blank bozx at the end and at the beginning of each row, minus the first and the last blank boz of the slice),
which equals the number of local expansions treated in each matrix-matrix product.
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Local vectors Multipole vectors
Z o] a[16]20] 8] 12] 24/ 28] 32/ 36] 48] 52] 40] 44] 5] 60
Z
Z | 1[5 [ 17] 21| 9]13] 25 29| 33 37| 49| 53| 41] 45 57 61

Z Z Z 2 Rt8L22]10 | 14 26] 30| 34| 38| 50| 54| 42] 48] 58] 62

15 21 39 s | 3] 7] 19 23 11 15| 27] 31] 35 39 51] 55 43| 47| 59 63

Figure 4.6: slice data storage (2D, ws = 1, level 3): see also figure Each type of child has a different
gray value. The rows of the row data storage mode are concatenated with blank bozes (marked with stripes)
in between: the matrix-matrix product now involves multipole and local matrices with 6 columns, against 2
columns with row storage (see figure ELHl).

If slice data storage allows a better efficiency with the level 3 BLAS, its clear drawback is that it also
performs useless extra work due to the blank boxes.

Level data storage. In the same way that we have concatenated rows to form slices in order to obtain better
level 3 BLAS efficiency, we can concatenate slices in order to have the whole level stored in one single memory
block and computed with one single level 3 BLAS call. This is called level data storage.

In addition to the blank bozx at the beginning and at the end of each row, we have to add for level storage a
row of blank bozes between each slice of local vectors (no need for the multipole vectors). The first row of blank
bozes of the level, as well as the last one, can be skipped.

The level 3 BLAS efficiency is higher, especially for low levels, but the number of blank bozxes uselessly
computed is clearly increased too. This has not yet been implemented.

4.3.3 Implementation with level 3 BLAS calls

As in section B2, the matrix-matrix product for double height M 2L kernel can be directly implemented with
one single BLAS call, while for single height M2L kernel the sparse transfer matrix has to be decomposed in
blocks. The discussion of section is here also valid when replacing ZGEMYV routine by ZGEM M one.

However, with single height M2L kernel, we have to face a new constraint when decomposing the matrix-
matrix product in several level 3 BLAS calls. Indeed we have assumed at the beginning of this section that
the more the number of columns in the multipole / local matrices, the best the efficiency we obtain for the
corresponding level 3 BLAS call. If only one single level 3 BLAS call is performed for the matrix-matrix product,
as for double height M2L kernel (see section @ZI), this is mainly true: tests have confirmed that even if
some higher performance can be obtained when splitting the local and multipole matrices (as below), the gain
in performance is relatively small since the single level 3 BLAS call performs its own splitting.

But with single height kernel, we have several level 3 BLAS calls per matrix-matrix product. If all the
columns of the multipole or local matrix cannot be stored in a level of the hierarchical memory (level 1, 2 or
even 3, of cache), or need more memory pages than the TLB can address, the whole matrix would have to
be reloaded at each BLAS call. And in the original scheme with recopies or with slice storage the number of
columns increases strongly with the height of the octree. That’s why the multipole and local matrices also have
to be treated by blocks: we split them in sub-matrices with a constant number of columns, namely NoExpqaq,
and the same number of rows than the original matrix. As described in figure BT, the i*"* sub-matrix of the
local expansion matrix is computed by a matrix-matrix product between the M2L transfer matrix and the
it" sub-matrix of the multipole expansion matrix. A matrix-matrix product with NbExp expansions is then
computed as NOExp,qa,/NOExp matrix-matrix products with NbExp,,., expansions, plus the last columns
corresponding to the remainder of the division. This decomposition of the matrix-matrix product is hereafter
named “NbExp,,.. decomposition”.

Optimal values for NOExp,,q, will be experimentally determined in section
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max max
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Figure 4.7: NbExp.q, decomposition (max denotes NbEZp,q,). This matrix-matrix product is computed as
several matrix-matrix products with at most NbExp,,4, columns in the multipole and local matrices.

Remark 4.4. One can argue that the choice to browse once the local expansions and several times the multipole
expansions as explained page [T, combined with a column storage of our matrices, leads here to a leading-
dimension problem for the multipole and local matrices: we access these matrices mainly by rows while they
are stored by columns. It is certainly possible when considering the transposed matriz-matriz product with o
leading dimension equal to NbExp,q. for the multipole and local matrices to solve this problem but this was not
used since it prevents the easy concatenation of the expansions as columns of one matriz. Moreover this leading
dimension problem might not heavily affect the BLAS efficiency.

Remark 4.5 (BLAS for M2M and L2L operators). As exposed in [H.I96], M2M and L2L can easily
be computed with level 3 BLAS calls: when M2M and L2L are written as matriz-vector products between a
cell expansion and the expansion of its father, all cells of the same type of child share the same M2M and
L2L transfer functions. Several expansions can thus be computed all at once with level 3 BLAS calls when
grouping them either with recopies or with an appropriate memory storage that avoids recopies (row and other
data storages used for M2L cannot be used here because the storage cannot be the same at the father level and

at the child level).

4.4 Tests and comparisons

Performance tests have been performed in order to validate the BLAS implementation, along with its parameters,
that leads to the fastest M 2L computation. These tests have been performed on one processor: either one IBM
Power3-11 WH2+ (375 MHz, 1.5 GFLOPS, L1 cache size: 64 KB, L2 cache size: 4 MB, and 2 GB of memory),
or one IBM Powerd+ (1454 MHz, ~ 6 GFLOPS, L1 cache size: 32x2 KB, L2 cache size: 1.41 MB, L3 cache
size: 32 MB, and 8 GB of memory, thus requiring 64-bits compiler mode). These are located at LaBRIH. We
have also used Power3d NH2 processors (L1 cache size: 128 KB, L2 cache size: 8 MB, and 16 GB of memory) at
CINESH.

The number of particles used for the simulation is not usually precised since the runtimes here measured
depend only of the height of the unifom octree and of P, but of course the height used implies a range in the
number of particles that balances the near field and the far field computations.

First of all we emphasize on the use of level 3 BLAS instead of level 2 ones with figure & for an octree of
size 5 and double height M 2L kernel the use of recopies clearly improves the performances. This is also valid
for single height M2L kernel and for other heights. For the lowest values of P, no substantial gain is however
obtained but this will be done with row and slice storages as explained in section

We will now determine the best decomposition for the sparse M2L transfer matrix in the single height
kernel case, along with the optimal NoExp,,.. values, and then compare the different schemes that enable level
3 BLAS usage.

4.4.1 Decomposition for single height M2 kernel

In this section, we will first see how we have established, for each architecture (Power3 or Power4), the best
NbEZpmas value (see section EE33) for the band_ blas, cband_ blas and block_ blas routines that implement the

4Laboratoire Bordelais de Recherche en Informatique, Talence, FRANCE.
5Centre Informatique National de I’Enseignement Supérieur, Montpellier, FRANCE.
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Figure 4.8: Downward pass CPU times with an octree of height 5, full blas method (double height kernel),
with and without recopies.

level =4 | level =5 | level =6 | level =7
recopies 216 2744 27000 238328
row storage 6 14 30 62
slice storage 46 222 958 3966

Table 1: NbExp values according to our different schemes (with FBC, and ws = 1, see section EE32).

corresponding decompositions. For cband_ blas routine the best dim pqana value had also to be established, while
for block_blas routine we had also to determine the best threshold value, denoted by Spiock, that determines
the terminal case of the recursion (see section EEZZ). With these parameters, we will then be able to compare
the band_ blas, cband_blas and block blas routines, and finally emphasize on the interest of the NbExzp,q.
decomposition. All these tests have been performed on one single matrix-matrix product, corresponding to
M2L operation, for different values of P.

First we need to determine the optimal NbExp,,.. values. These are clearly machine dependent, and they
depend on P too since P determines the number of rows in the multipole matrix and in the local matrix.
Depending on the level 3 BLAS scheme used and on the level in the octree, the number of multipole and
local expansions concatenated, denoted by NbEzp, differs significantly. For performance tests with different
NbExpmq: values, we have only considered NbExp values for cells with complete interaction list: matrix-matrix
products for cells with incomplete interaction list have very varying values for NbEzp but they are outnumbered
compared to matrix-matrix products for cells with complete interaction list. The table [l shows NbExp values
according to our different schemes for cells with complete interaction list.

In practice tests for optimal NbEzp,,q. values will be performed, according to P, for one single “big enough”
NbEzxp value, denoted NbExp,.r. Indeed, as confirmed by more complete tests, these optimal values for
NbEzxp,.s will also be among the optimal values for higher NbExp values (corresponding to higher heights),
while the lower NbEzp values will not require any NbExp,., decomposition (unless P is great, and then best
NbEZDq, values found for NbExp,.; are also optimal). For Power3 architecture, search can thus be performed
for NbExp,.; = 958 (level = 6 and slice storage) while for Power4 optimal values for NbExp,,q, higher than
958 can be found thus requiring a greater NbExp,.s, namely 2744 (level = 5 and scheme with recopies). In
practice when P ranges from 3 to 30, optimal values found for NbExp,,,., usually range from several hundreds
for low values of P, up to a few dozens for high values of P: see for example figure 0.

For cband_blas and block _blas routines, this search is coupled with a search of respectively the best dimcpand
and the best spocr: all pairs are tested to find the best one. However results have shown that NbExp.,,q. is
mainly independent from dimcpand Or Spiock: When splitting both multipole and local matrices according to
NOExpmaz, the sub-matrices size depends indeed only on P (for the number of rows) and NbExp,q. (for the
number of columns): see figure 7
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For dimcpand, tests have also shown that one (or two close ones) values are optimal, and these are independent
of P. Once the optimal height of a band is determined, it corresponds indeed to the optimal size of the square
blocks used by ZGEM M routine and this remains unchanged when the M2L transfer matrix get bigger.

For the first values of P (roughly P = 7 in our tests) best spiock values equal P which means it is better not
to use the recursive decomposition: we are therefore brought back to the band_ blas decomposition. However
when P is higher, it is faster to use the recursive decomposition and fastest computations are then found for
low values of spocr (between 2 and 5 in our tests): see figure O

Now that the optimal values of these parameters have been found for each value of P, we can compare
band_blas, cband_blas and block blas routines. It appears that cband_blas is faster than band_blas only for
high values of P (P > 14 on the IBM Power3): the zeros added in the cband_blas decomposition are too much
costly unless the M2L transfer matrix is very big. For block blas routine the optimal values found for spock
make its computation as fast as band_ blas routine for low values of P and faster for higher values, as explained
above. And for these higher values of P, block blas routine is faster than cband_ blas routine.

In conlusion we thus choose the block blas routine for BLAS computation of M 2L operator with single height
kernel. However the gains and losses here mentioned are all lower than 5 % of the band_ blas routine runtime:
this does not really justify the implementation of the more complex cband_ blas and block blas routines.

Before comparing the different schemes used with level 3 BLAS in the next section, the relevance of the
NbExp,q: decomposition is shown on figure EE9 for the scheme with recopies: for each value of P, we show the
gain for the downward pass CPU times due to the NbExp,,, decomposition. With growing octree height, the
numbers of expansions NbFExp treated with one single matrix-matrix product increases, and the gain offered by
the NbExp,,q, decomposition increases thus too. With row and slice storages, NbExp,,q, decomposition will
be likewise relevant when the NbExp value exceeds the optimal NbEzp,,., value.

50 T T T T T T T T T
Height 5
45 Height 6 - b
P Sblock NbExpmax P Sblock NbExpmax
40 - 1 3 3 921 15 5 102
35 L T i 4 4 936 16 96
- 5 5 463 17 3 84
30 n T 6 5 403 18 3 84
S 251 L 7 5 307 19 4 102
2ol T 8 3 260 20 7 126
b - 9 7 210 21 3 120
15 |4 L 10 2 168 22 2 120
0k 11 10 156 23 5 132
12 10 126 24 6 120
5 | ( 13 1 138 25 11 120
oL 1 1 1 1 1 1 1 1 14 1 120
3 5 7 9 11 13 15 17 19 21 23 25 Sbiock and NOExpmqr values (Power4).

P
Gain in percentage.

Figure 4.9: Gain in percentage for the full downward pass CPU times offered by a computation with NbExp,,qx
decomposition relative to one without NbExp,,., decomposition. Tests performed on IBM Power4, using
the block blas routine (with optimal sp.cx) and the scheme with recopies for an octree height equal to 5
(NbExp = 2744) and 6 (NbExp = 27000). The corresponding values for spiock and NbExp,,q. are also given.

4.4.2 Recopies and special data storages

In order to compare the scheme with recopies with row and slice storages, CPU times have been measured on
the full downward pass of the FMM. Two combine effects appear:

e As mentioned in [HI96|, the cost of copying vectors relatively to the cost of the matrix-matrix product
decreases for growing values of P: copies of multipoles and local expansions are indeed performed in
O(NbExp x P?) while the matrix-matrix product requires O(NbExzp x P%*) operations. This is more
obvious with double height kernel than with single height kernel since the amount of computation for the
matrix-matrix product is much more costly with double height, while the cost of recopies is the same.
Figures 10 and LTI show the gain of row and slice storages relative to the scheme with recopies according
to different values of P for an octree height of 6: row and slice storages offer thus better gains relative to
recopies for low values of P, and these gains are always higher for single height kernel.
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e These gains are also influenced by the height of the octree: with growing heights of the octree, the number
of expansions treated with one matrix-matrix product increases for row and slice storages (see table [I)
and the proportion of blank boxes decreases for slice. In figure EETTl we have only NoExzp = 30 for row
storage which leads for double height kernel and P > 11 to worse performance than recopies and its
NbExp = 27000. For low heights such as 4, the use of recopies is even a little bit faster for all values of
P since it is the only one to allow enough NbEzp to be treated all at once.

Slice storage is here more efficient than row storage but this is mainly due to the too small NbEzp for row
storage at height 6 (i.e. NbFExp = 30) while for slice, NoExp = 958 allows better BLAS 3 efficiency: indeed
tests performed for H7 on IBM Powerd with 16GB memory (CINES) shows that row storage is a little bit
faster for this height. In fact slice storage does not usually offer gain relative to row storage and moreover slice
storage needs very long consecutive memory areas that cannot be allocated for too high values of P or too high
heights when memory allocation with row storage may succeed. For these reasons we favor row storage, and
since the NbEzp values enabled by slice storage seem to be high enough, level storage has not been implemented.

In conclusion row and slice storages offer both obvious gains relative to the scheme with recopies for low and
mean values of P and consequent heights. Moreover, we will generally prefer row data storage. We however keep
the implementation with recopies since it may be more suitable for the parallelisation on distributed memory
architectures as well as for the adaptive version of the FMM (in this last case it may however be rewritten in
the same way as for cells with incomplete interaction list, see section EEZT]).
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Row / Recopies
Slice / Recopies -
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fffffff
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0 1 1 1 1 1 1 1 1 1
3 5 7 9 11 13 15 17 19
p

Figure 4.10: Gain in percentage offered by row and slice storages relative to the scheme with recopies for downard
pass CPU times with an octree of height 6 and block_blas routine (single height kernel). Tests performed on
IBM Power4.

In summary, the best BLAS implementations are therefore block blas and full blas (depending on the M2L
kernel height), with row data storage.

4.5 Memory requirements

We here present the memory requirements for the BLAS computation of M2L. First of all, multipole expansions
need to be converted in multipole expansion vectors whose size is: Zf:o S je=(P+ 1)%¢, where ¢ denotes
the size of a complex number (see section [[2Z33)). Then the M2L transfer functions are converted in M2L
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Figure 4.11: Gain in percentage offered by row and slice storages relative to the scheme with recopies for downard
pass CPU times with an octree of height 6 and full blas routine (double height kernel). Tests performed on
IBM Power4.

transfer matrices. For double height M2L kernel, the size of these matrices is:

(P+1)(P+2)

5 (P+1)%

Znatm’z =
This can become quite big for high values of P since it grows as O(P*), against O(P?) for the classic M2L
computation. For single height kernel, we consider here matrices decomposed according to block_blas decom-
position. Their memory usage is however the same as with band_blas decomposition which can be computed
as follows: the bands being numbered from the top to the bottom of the matrix, the band with number M,
M € [0, P], has M + 1 rows and Zﬁ;ly(ZN +1) = (P — M +1)? columns, and the memory usage of all bands
is therefore:

P
_(P+)(P+ 2)%(P +3)
Tmatrm - ]V[ZO M + ]-)(P M + 1) 12 =

The memory usage for cband blas decomposition is a little bit higher due to the presence of some zeros in the
bands.

With level 2 BLAS no other memory is needed. But with level 3 BLAS, we need extra memory. First of all
for the cells with incomplete interaction list, we need two temporary buffers: one for the multipole matrix and
the other for the local matrix. The number of expansions recopied in such buffer varies greatly and can become
great with growing heights of the octree: for example with a height of 6, it ranges from 1 to 37952. However
the computation can be as efficiently performed with smaller buffers than the maximum needed: if the size
of the two buffers enables Nz, expansions to be treated alltogether in one single matrix-matrix product and
if n pairs of multipole / local expansions share the same M2L vector, with n > Np,, they are treated with
NB consecutive calls, plus one call for the remaining expansions. Pr0v1ded than N, is high enough to reach
optlmal level 3 BLAS efficiency, the performances will be the same as with buffers enabling n expansions. In
practice, N, s values are the same as the NbExp values discussed in section EZ2 that gives the best efficiency:
concretely a few thousands of expansions are enough for all values of P.

For cells with complete interaction list, we have to distinguish the scheme with recopies, row storage and
slice storage. With recopies the memory requirements are the same as for cells with incomplete interaction list:
we need two buffers for the recopies of the multipole and the local matrices. For optimal level 3 BLAS efficiency,
we only impose that they can at least contain a few thousands of expansions. We consider that these buffers
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can be the same as the ones used for the cells with incomplete interaction list and thus that the scheme with
recopies does not need supplementary memory.

The row storage does not require any temporary buffer but with growing octree heights, it necessitates
longer consecutive memory areas for each row. This is even more critical with slice storage since it needs even
longer consecutive memory areas for each slice. Moreover the blank bozes introduced with slice storage require
extra memory. Concretly each blank expansion has the same size as a local expansion and their number can
be computed as follows (see also section EE32): at level [, for cells with complete interaction list and for each
of the eight types of child, there is 2!~ — 2.ws slices with 2/~! — 2.ws rows in each slice. We have then 1 blank
box at the end and at the beginning of each row, minus the first and the last blank boz of the slice, which gives
2 % (2!=1 — 2.ws) — 2 blank expansions per slice. The number of all blank expansions N5 for an octree of height
H is therefore ZfiB 8(2* (271 — 2.ws) — 2)(2"7! — 2.ws) (there is no cells with complete interaction list for
levels | < 2), which results for ws = 1 in:

- -1 -1 16 u H 128
N =) 16(27" = 3)(2 —2) = A7 —80.27 + 96.H + —.

=3

To summarize, the scheme with recopies and row storage have the same memory requirement, namely:

Memsy(P,H) = N(H) ((P+1) + L) ¢ 4 Ny Ty

(4.5)
+Npup (P4 1)? + EEE

and with slice storage we have:

Mempy(P,H) = N(H) ((P F1)24 W) ¢+ Ny Tomatrin

(4.6)
AN B 4 N ((P+ 1)% + W) .

4.6 Study of recopies and special data storages for other M2L improvements.

One could argue that some speedup might be as well obtained for FFT and rotations when using recopies or
data storages such as those described above.

We have thus implemented the scheme with recopies and row storage for FFT. Tests were performed for a
block version of the FFT with the usual block size 4. First it appears that the use of recopies dramatically
degrades the performances: indeed the cost of recopies for block FFT is at least twice the one for BLAS
computation since the size of the arrays for the FFT is 2(P + 1)? (single height kernel), compared to (P + 1)?
for multipole vectors and w for local expansion vectors. Moreover this cost is not amortized by the
large-grain correlation in O(P3?) as it was with the BLAS computation due to the matrix-matrix product in
O(P*). At last besides longer pipelines, the only gain that might be expected when grouping several M2L pairs
is to avoid the reload of the array containing the M2L transfer function in Fourier space between two M2L
computations: potentially, there is here no great gain. It has also to be noted that such schemes imply one
array for the local expansions in Fourier space for every cell of the level which severely increases the memory
needs.

Nevertheless, we have also tested FFT with row storage which avoids the costful recopies. The cells with
incomplete interaction list which require more recopies for their local expansions were computed as usual. Here
no slowdown was measured, but no gain either.

As explained in section B33 we cannot use BLAS to speed up the M 2L computation with rotations. Without
BLAS calls it is then likely that no speedup will be obtained for rotations when grouping several M 2L pairs
with either recopies or row storage.
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5 Comparison of the M2L improvements

5.1 Memory requirements

We first compare the memory requirements of the different schemes since it may be the first choice criterion.
We here focus only on the memory used for the expansions: the memory used for the particles remains indeed
unchanged when computing M 2L operation differently. Using theoretical estimations established in ((LT4), and
(CI3) for the classic M2L computation, (Z3) and II) for the M 2L computation with FFT, (B19) and B20)
for the one with rotations, and ([@H) and ) for the BLAS computation, we have plotted in figure Bl for
each scheme, the ratio of its memory need to the classic M 2L memory need, using an octree of height 6 and
only multiples of the FFT block size. For BLAS computations, we have used Np,; = 5000 (see section EH)
which is surely big enough for optimal BLAS efficiency.

While the rotation requirements are almost unnoticeable, and the BLAS ones remain moderate, FFT extra
memory appear as problematic, especially for double height M 2L kernel. The same ratios apply for other FFT
block sizes. Moreover, the ratio of 2 for BLAS in the double height kernel with high values of P is due to the
dense M2L transfer matrices (see section EEH): for higher octree heights this ratio remains close to 1.5, since
the number of M2L functions is constant while the number of cells in the octree grows exponentially. At last,
the additional cost of the blank bozes in Slice rearrange over Row_rearrange is very small.

] Rotations

[ BLAS with re-
coples or rows

B BLAS with slices

B FFT with block
size 4

o = N W A OO O N © ©
| L

3 7 11 15 19 283 27 31 3 7 11 15 19 23 27 31
P P

Single height Double height

Figure 5.1: Memory requirements of the different M 2L computation schemes for an height of 6 (ratios to classic
M2L computation requirements).

5.2 CPU times for single height M2L kernel

Figure compares the different schemes for an octree of size 5. If the BLAS version outperforms the classic
M?2L version and the one with rotations, the block FFT is faster, especially for values of P higher than 10.
However we recall that, without rescaling of the particle coordinates, in this test the FFT with block size 4 is
unstable for P > 14, and the one with block size 3 for P > 23 (see table ZI0).

When focusing on low and medium precisions, we recall also that for growing heights of the octree the
BLAS computation with Row rearrange or Slice rearrange becomes more efficient since the length of rows and
slices increases at the leaf level which represents most of the runtime: the number of expansions treated in one
level 3 BLAS call thus increases, as well as the efficiency of the BLAS. Figure shows that BLAS is clearly
competitive with the FFT with block size 4, in an octree of height 7 and for low and medium precisions. The
memory requirements of the FFT improvement are problematic here, since on figure B33 the brutal increase in
runtime for FFT at P = 10 is due to swapping despite the 16 GB of memory available.

5.3 CPU times for double height V2L kernel

With double height kernel, the use of BLAS clearly outperforms all other methods. Figure compares the
different schemes for an octree of height 5. For the BLAS we have plotted only the row data storage, but slice
storage and the scheme with recopies have similar performances. For the FFT, the block version with blocks
of size 4 have been plotted; with our tests, it is only stable for P < 8 (see section EX), and more stable FFT
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Figure 5.2: Logarithmic downward pass CPU times of the different M 2L computation schemes, for an octree
of height 5 and with single height M2L kernel. Tests are performed on an IBM Power3 with 2 GB of memory.

with lower block sizes are slower. Moreover, we have stop the tests at P = 19 since on the IBM Power3 (where
the tests were performed), the 2GB of memory were insufficient for all FFT block sizes with P > 19. However
it must be noticed that at this octree height, the rotation scheme becomes faster than all the BLAS schemes
for P > 23: this is of course the aftermath of the lower operation count for the rotation scheme. Finally, as
for single height kernel, the BLAS computation with Row rearrange and Slice_ rearrange become even more
efficient for higher heights of the octree.

5.4 Computational efficiency

In order to illustrate the efficiency of the BLAS versions that makes them faster than the other schemes,
we present the table B that shows the MFLOPS (Millions of Floating Point Operations per Seconds) when
computing M2L. The results are shown as percentages of the peak performance of the IBM Power3 used: 1500
MFLOPS. They have been computed with the Hardware Performance Monitor (HPM) Toolkit (version 2.4.3)
as the average MFLOPS rate over all M2L computations of a full FMM computation. For level 3 BLAS, we
have used block_blas and full blas routines for respectively single and double height kernels, with an octree of
height 5 and with recopies (the additional cost of copying the expansions is not considered here since we focus
on the BLAS routine efficiency). It takes into account all cells, i.e. with and without complete interaction list.
The height of the octree does not matter for classic M 2L, rotations and FFT. These results can however not be
directly compared from one row to the other: we recall here that the operations count differs! However it clearly
illustrates how efficiently the processor is used in the different implementations and why BLAS computations
outperform the other schemes.

This table also indicates that our decomposition of the matrix-matrix product for single height kernel in the
block _blas routine, though satisfactory, is not optimal when compared to the full blas routine efficiency of the
double height kernel, especially for low values of P.
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Figure 5.3: Downward pass CPU times of the different M2L computation schemes, for an octree of height 7
and with single height M2L kernel. Tests are performed on an IBM Power3 with 16 GB of memory (CINES).

Single height M2L kernel || Double height M2L kernel
P=7 P=15 P=7 P=15
classic 9.4 % 16.3 % 145 % 18.3 %
rotations 54 % 7.8 % 84 % 10.9 %
FFT with block size 4 4.5 % 13 % 124 % 184 %
level 3 BLAS 46.4 % 74 % 85.9 % 89.2 %

Table 2: Computational efficiencies of the different M 2L computation schemes.

5.5 Single versus double height kernels

We have already seen (see theorem Hl) that a sharp error bound has been theoretically proven only for the single
M2L height kernel. The double height M2L kernel is certainly more precise, and for a given precision it would
therefore requires a lower value for P than the single height one. But since no precise error bound is available
for double height kernel, we cannot a priori know what this lower P will be.

We thus compare here CPU times with practical accuracies for both kernel heights. As already exposed
(see for example [WHG94] for double height M2L kernel, and [Ran99| for single height kernel), these practical
accuracies are better than the theoretical ones which correspond to worst-case errors. These worst-case errors
are indeed obtained with spherical regions, while we use in fact smaller cubical cells because of the octree.
Moreover, we use relative error instead of absolute one so that the results are problem independent, and these
relative errors are computed for the potential and not for the force components because these latters can be
almost null. Since some discontinuities appear in the potential error for particles crossing cell boundaries (see
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Figure 5.4: Logarithmic downward pass CPU times of the different M 2L computation schemes, for an octree
of height 5 and with double height M 2L kernel. Tests are performed on an IBM Power3 with 2 GB of memory.

[Ran99] ), we choose to study the more stable RMS average error instead of the maximum error. This RMS
average error £,,,s is computed as follows:

S ii Opir = Pruu |
™ms N N

b,
i—1 Dir

We consider here a gravitational potential computed for an uniform distribution with 100000 bodies and an
octree of height 4, which results in 25 bodies per leaf in the mean. We recall that when the number of bodies per
leaf increases, the part of the near field (directly computed) in the potential becomes higher and the potential
becomes thus more precise. Figure B2 presents, for each M2L scheme, the tradeoff between practical error and
CPU times (downward pass only) with both single and double height kernels. The scales are logarithmic, and
the values of P plotted for double height kernel range from 3 to 14 with a step of 1, while for single height
kernel they range from 3 to 29 with step 2: P = 14 in double height and P = 29 in single height correspond
indeed to the same accuracy (precisely the first accuracy below 1.0 x 1079 in our simulation).

As far as classic M2L is concerned, the single height kernel is more efficient for low precisions and the
double height one for high precisions. This slightly differs from the results of [EI95] (section C.3.1) where a
brief comparison using theoretical operation count vs. accuracy shows that both heights are theoretically as
efficient.

And as theoretically justified in sections [CZ4] P Bl and B4l while rotation and BLAS computations favor
the double height kernel, the FFT improvement is generally more efficient with single height kernel.

Therefore we still have to compare the best of each scheme: this is done in figure B8l where we present FFT
and BLAS versions on the same plot (classic and rotations have already been discarded in sections and B3)).
The BLAS in double height kernel are then clearly more efficient than the FFT with single height kernel: by
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Figure 5.5: Tradeoffs between practical accuracies and CPU times for single and double height kernels.

examples, for a practical error below 1.0 x 1076 (respectively 1.0 x 1078) the gain is 35% (respectively 30%).
This fully validates the relevance of our new BLAS version compared to the previous M2L improvements.
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Figure 5.6: FFT block size 4 vs. BLAS (block_blas / full_blas, row storage).
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6 Conclusion

In this paper, we have presented an overall study of the best implementation of the Fast Multipole Method for
the serial computation of gravitational or electrostatic simulations of uniform distributions. A detailed study of
the error bound has lead us to two expressions of the M 2L operator that converts a multipole expansion into
a local expansion: while double height M2L kernel is generally more efficient, only single height M2L kernel
ensures a sharp error bound.

For each M2L expression, we have efficiently implemented different schemes that speed up M2L computa-
tion: schemes such as FFT with blocks and rotations allow a reduction of the theoretical operation count from
O(P*) to O(P?), while the introduction of BLAS (Basic Linear Algebra Subprograms) greatly quickens the
O(P*) computation.

To our knowledge, this is the first implementation of the FFT enhancement for double height M2L kernel.
We have also gone into details of the implementation and we have shown that numerical instabilities remain
even in the block version of this improvement. The rotation scheme has been presented in details according to
the formulae used in our FMM implementation.

As an alternative, a BLAS (Basic Linear Algebra Subprograms) version has been proposed for the dense
matrices of the double height kernel as well as for the sparse matrices of the single height one. A scheme with
recopies has first made possible the use of level 3 BLAS resulting in impressive speedups. Special data storages
for the expansions either by rows or by slices have then enabled us to avoid the additional cost of recopies,
especially for low precisions.

Precise operation counts and memory requirements have also been given for each scheme and for both M2L
kernel heights. This as well as CPU times from practical simulations have been used to precisely compare all
these different versions. It appears that the BLAS version and the FFT improvement with blocks are the most
efficient versions. While the BLAS version is always faster in case of double height kernel, the block FFT is
faster with single height kernel for high precisions. However the memory requirements of the block FFT as
well as the remaining numerical instabilities, precisely for high precisions, limit severely the benefit it offers for
runtime in this case. This is reinforced when comparing the tradeoff between practical accuracy and runtime
among all versions: the BLAS with double height kernel is then always the most efficient, while introducing no
numerical instabilities and low extra memory requirements.

It has to be noted that in [GR97| and in [CGR99|, a new version of the FMM has been introduced. Based
on exponential or “plane wave” expansions, it leads to impressive speedup compared to the original formula-
tion of the FMM. This new version requires however more complex mathematical background and thus more
implementation work. Since no free code of this new version is currently available, we have not yet been able
to compare it with our BLAS version. Nevertheless, it has to be noticed that this new version imposes tedious
adaptation between the error introduced by the multipole and local expansions of the FMM and the error due
to the use of plane waves: only a few precisions are thus available. The use of plane waves is yet promising and
is still investigated (see [DHO4]).

In the future, we plan to apply BLAS to the adaptive version of the FMM (see [CGR8&8| or [NKLW94]), and
then to see how this will match its parallelization for both uniform and non uniform distributions on distributed
memory architectures.
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A Appendix: Spherical harmonics

We introduce here the spherical harmonics which are the basis of the multipole and local expansions used in
the FMM, and the associated Legendre functions they are themselves based on.

A.1 Associated Legendre functions.

In 3D space we use the following convention, commonly used in physics, for the spherical coordinates : 6 denotes
the co-latitudinal coordinate (with 6 € [0, 7]) and ¢ the longitudinal coordinate (with ¢ € [0, 27, ¢ corresponds
to the polar angle in polar coordinates) as shown in figure A1l

z

O 4 P(r,0,0)

0/ T
~
@

X

Figure A.1: Spherical coordinates of point P(r, 0, ¢).

We define the Legendre polynomials with Rodrigues’ formula:

1 d

l

The associated Legendre functions, F;™, are defined by:

P (x)=(-1)"(1 - xz)m/QCZC—mPl(a:) VY (I,m) € N* with 0<m<I.

We extend the definition of those functions to negative values of m (with still |m| <) as:

-m _(_ m(l_m)' m
B a) = (<) e P ). (A1)

The following properties allow an efficient computation of those functions:
(1 —m)Py™ = 2(2 = )P, — (1 +m — )P,
P™ = (=1)™(2m — 1)II(1 — 2%)™/2,
where n!! denotes the product of all odd integers equal or lower than n. And:

Pl =x(2m+1)P.

m

Here are the first associated Legendre functions:

Pl(z)=1 Plz)== ) on(z):%(?)xz—l) Lo
Pl(z)=—(1-22)2 P%l(ac) = 3x(1—22)? Pda)=-15(1—22)2 P}()=—105z(1 —a2)3
Py(z) =3(1 - 2?) Pi(z) = 105(1 — 22)?

Finally, we have the following property of parity:
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A.2 Spherical harmonics.

With the associated Legendre functions P/™ extended to negative values of m, as defined in ([AJ]), a common
definition of the spherical harmonic of degree | and order m, with [ > 0 et =l <m <[ is:

TP, 8) = \/ (214: 1) g - Z;: —————

However, as mentioned by [Gre8§|, the normalisation factor 4/ % can be discarded in the FMM compu-

tation. We therefore consider hereafter spherical harmonics defined without this normalisation factor. Moreover
in order to simplify the formulae for the operators used in the FMM (see section [LZTl), we introduce ¢, defined
by:
. { (=)™ if m >0,
™1 otherwise,

so that our (unnormalized) spherical harmonics are defined by:

Y (6,6) = em Ej . Z;Pl( 6)cm, (A.2)

which can also be written (without the P/™ with negative orders):

Y;"(0,¢) = (-1) mpz (cos@)e" ™.
Remark A.1. This definition corresponds to the one used by Epton & Dembart [K1I5].

When normalized, the spherical harmonics form an orthonormal basis for functions f(6,¢) € R. Moreover
we emphasize that our spherical harmonics are considered as identically null for [ < 0 or |m| > .

In particular we have:
Y,(6,¢) = Pi(cosb),

and also the following property among opposite orders:
Y=Y (A.3)

where Z denotes the complex conjugate of z € C.
When considering a vector Z of spherical coordinates Z = (r, 0, ¢) and its opposite vector —Z whose spherical
coordinates are —P = (r, 7 — 0,7 + ¢), we have then:

lem(ﬂ- - 97 T+ (b) = (_1)l}/2m(97 ¢)
At last we have the following well-known theorem (see [Gre88|):

Theorem 5 (Addition Theorem for spherical harmonics). Given 2 vectors P1 = (r1,01,¢1) and P2 =
(r2,02,$2) and v being the angle between the 2 vectors defined by: cosy = cos 61 cos 02 +sin 01 sin O3 cos(¢p1 — Pa),
the Addition Theorem for our spherical harmonics is:

!
Py(cosy) = Z Y™ (01, ¢1)Y, " (02, 02).

m=—1
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B Appendix: Discrete Fourier Transform theory
These are classical definitions and results of Discrete Fourier Transform (see for example [PTVE92| or [BxH95]).

In most case, we implicitely consider that the period N is even, so that % is an integer. It is straightforward
to derive the corresponding formulae for odd N.

B.1 Convolution

Let (fi)ien and (g1)ien, two periodic sequences with period N, we define the discrete convolution, h = f * g, of
these two sequences by:

N
Z N N
he=(fx9p= Y fger  Vkel-z+13] (B.1)
I=—5+1
This can also be written as:
hk = Z flgm (BQ)
m—+Il=k[N]

(m,)e[-&¥+1,4]?

where a = b[N] means that a and b are “congruent modulo m”.

A 2D convolution of 2 sequences ( ffl)(n,l)eNz and (gfl)(w)eNz, both periodic with respective periods J and
K, is defined by:

=(f>«<g)§?— > Z Indi =

B.2 DFT: Discrete Fourier Transform

Let (f;)ien denotes a periodic sequence of period N, we define the (forward) DFT of size N of f by:
N
2
T —nk
-7

where W), = e = (and i=+-1).
The sequence f is also periodic with period N.

B.3 BDFT: Backward Discrete Fourier Transform

Let (ﬁ)leN denotes a periodic sequence with period N, we define the BDFT of size N of fAby:

N
5
fn= Z Frwi¥ VneN.

B.4 The theorem of Discrete Convolution

Theorem 6 (Discrete Convolution Theorem). Let (fy,)nen and (gn)nen be 2 pemodzc sequences with period

N, we respectively denote (fk)keN and (gi)ken their DFT of size N. The DFT Ik of their convolution hj 1is
then equal to:

Ry, = N figs.

A proof can be found in [BvH93]. The i are periodic with period N.
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B.5 The theorem of 2D Discrete Convolution

The application to 2D convolutions is straightforward.

Theorem 7 (2D Discrete Convolution Theorem). Let (f )G kyen: and (gJ ). kyen: be 2 sequences defined
on J x K and extended with periodicity to N2,

We note J and K the 2 periods. For example: J = [—4 +1,%] and K =[-& + 1, £], where J and K are
even.

Their 2D (Forward) Discrete Fourier Transform of size J x K are defined by:

—ZZ LwiMw® Y (k) e T x K,

neJ lek

and their 2D Backward DFT as:

=3 Y [ Y (k) e xK.

neJ lek

We have then: .
=JKfrgf YV (j.k)eTxKk.

B.6 Non-periodicity and zero-padding

A convolution of size N between two non-periodic sequences ( f7) le[- ¥ 41,47 and
(gl)le[[—%JrL%]]a can be defined by:

N N
hk: lzk flgm Vkeﬂ—;-l-L?ﬂ
(tm)e[-&F+1,% 2

We can relate this back to (B-2) by defining 2 sequences (f;), €[~ 41,07 and
(gl)lEH*%+l7%ﬂ as:
MM = [ foifle[-Y 414,
e [[_7 b 7]]7 fr= { otherwise,

and likewise for g;.

We then extend the domain of these sequences to N thanks to M periodicity.
Now let:

~ ~_ M M
hy = E figm VEke [[—7-1—1,7]].
m-+1=k[N]
(me[-H+1,4]°

Remark B.1. The hy, with k € [ +1, 2]\ [-§ + 1, 5] are not necessary null.

By choosing M “big enough” we can have:

~ N N
hyp = hy Vke[[_?_FL?ﬂ.

When the convolution is “centered” (around 0, as in (B2) for example), we usually need M > 32X in order

to have: hy, = hy, ¥ k € [ + 1, ¥]. But when the convolution is not “centered”, as this is the case for M2L
(see below), we usually need to have M > 2N (see [ED95] and [EI95]).
This use of extra zeros is called zero-padding.

We can now use the Discrete Convolution Theorem (theorem [B) in order to compute the hi and then the
hi, (with backward DFT) for k € [-5 +1,%
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