
HAL Id: inria-00070279
https://hal.inria.fr/inria-00070279

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling multiple bags of tasks on heterogeneous
master- worker platforms: centralized versus distributed

solutions
Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, Loris

Marchal, Yves Robert

To cite this version:
Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, Loris Marchal, et al.. Scheduling
multiple bags of tasks on heterogeneous master- worker platforms: centralized versus distributed
solutions. RR-5739, INRIA. 2005, pp.35. �inria-00070279�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50454336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070279
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
57

39
--

F
R

+
E

N
G

ap por t

de r ech er ch e

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Scheduling multiple bags of tasks
on heterogeneous master-worker platforms:

centralized versus distributed solutions

Olivier Beaumont — Larry Carter — Jeanne Ferrante — Arnaud Legrand — Loris Marchal —

Yves Robert

N° 5739

Novembre 2005

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Scheduling multiple bags of tasks
on heterogeneous master-worker platforms:

centralized versus distributed solutions

Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, Loris Marchal,
Yves Robert

Thème NUM — Systèmes numériques
Projet Graal

Rapport de recherche n
�

5739 — Novembre 2005 — 35 pages

Abstract: Multiple applications that execute concurrently on heterogeneous platforms compete for
CPU and network resources. In this paper we consider the problem of scheduling applications to
ensure fair and efficient execution on master-worker platforms where the communication is restricted
to a tree embedded in the network. The goal of the scheduling is to obtain the best throughput while
enforcing some fairness between applications.

We show how to derive an asymptotically optimal periodic schedule by solving a linear program
expressing all problem constraints. For single-level trees, the optimal solution can be analytically
computed. For large-scale platforms, gathering the global knowledge needed by the linear program-
ming approach might be unrealistic. One solution is to adapt the multi-commodity flow algorithm of
Awerbuch and Leighton, but it still requires some global knowledge. Thus, we also investigates heuris-
tic solutions using only local information, and test them via simulations. The best of our heuristics
achieves the optimal performance on about two-thirds of our test cases, but is far worse in a few cases.

Key-words: Parallel computing, scheduling, divisible load,
multiple applications, resource sharing.

This text is also available as a research report of the Laboratoire de l’Informatique du Parallélisme
http://www.ens-lyon.fr/LIP.

Ordonnancement d’applications concurrentes
sur plate-forme mâıtre-esclave hétérogène :

comparaison des stratégies centralisées et distribuées

Résumé : Lorsqu’on exécute plusieurs applications simultanément sur une plate-forme de calcul
hétérogène, celles-ci doivent se partager les ressources de calcul (processeurs) et de communication
(bande-passante des liens réseau). Dans ce rapport nous nous intéressons à l’ordonnancement efficace
et équitable de ces applications sur une plate-forme mâıtre-esclave où les communications sont faites
le long d’un arbre inclus dans le réseau.

Nous montrons qu’il est possible de calculer un ordonnancement périodique asymptotiquement op-
timal en utilisant la programmation linéaire. Pour les topologies en étoile (arbre de profondeur 1), nous
montrons comment calculer la solution optimale de façon analytique. Pour des plates-formes de grande
taille, rassembler l’information globale nécessaire au programme linéaire en un ordonnanceur centralisé
peut sembler irréaliste. Une solution est d’adapter l’algorithme des flux concurrents d’Awerbuch et
Leighton, mais celui nécessite tout de même quelques informations globales. Nous nous intéressons
donc également aux heuristiques n’utilisant que des informations locales, et testons leurs performances
par simulation. La meilleure de ces heuristiques atteint les performances optimales dans environ les
deux tiers de nos essais, mais peut en être très éloigné dans quelques cas.

Mots-clés : Calcul distribué, ordonnancement, tâches divisibles,
applications multiples, partage de ressources.

Scheduling multiple bags of tasks 3

1 Introduction

In this paper, we consider the problem of scheduling multiple applications that are executed
concurrently, hence that compete for CPU and network resources, with fair management of
those resources. The target computing platform is a master-worker architecture, either a
simple one-level rooted tree platform, or a multi-level tree-shaped platform. In both cases we
assume full heterogeneity of the resources, both for CPU speeds and link bandwidths.

Each application consists of a large collection of independent equal-sized tasks, and all
originate at the unique master. The applications can be very different in nature, e.g. files to
be processed, images to be analyzed or matrices to be manipulated. The resources required
to execute tasks — both the communication volume and the computing demand — may well
vary from one application to another. In fact, the relative communication-to-computation
ratio of the applications proves to be an important parameter in the scheduling process.

This scenario is somewhat similar to that addressed by existing systems. For instance
BOINC [19] is a centralized scheduler that distributes tasks for participating applications, such
as SETI@home, ClimatePrediction.NET, and Einstein@Home. However, these applications
all have a very low communication-to-computation ratio. For instance in Einstein@Home [23]
a task is about 12 MB and requires between 5 and 24 hours of dedicated computation. Thus,
the issue of network bandwidth is not important. However, our work anticipates that future
applications, particularly ones that run on in-house computing networks, may have much
higher communication requirements.

The scheduling problem is to maintain a balanced execution of all applications while
using the computational and communication resources of the system effectively to maximize
throughput. For each application, the master must decide which workers (i.e. which subtree)
the tasks are sent to. For tree-shaped platforms, each non-leaf worker must make similar
decisions: which tasks to compute in place, and which to forward to workers further down in
the tree.

The scheduler must also ensure a fair management of the resources. If all tasks are equally
important, the scheduler should try to process the same number of tasks for each application.
We generalize this by allowing each application Ak to be assigned a priority weight w(k) that
quantifies its relative worth. For instance, if w(1) = 3 and w(2) = 1, the scheduler should try
to ensure that three tasks of A1 are executed for each task of A2.

For each application Ak, let ν(k)(t) be the number of tasks of Ak completed by time t.
At any given time t, we can define the throughput α(k) to be ν(k)(t)/t. A natural objective
would be to maximize the overall weighted throughput, namely

∑K
k=1 α

(k)/w(k). However,
such an objective could result in tasks of only one application being executed. To achieve a
fair balance of execution, one should use the objective function:

Maximize min
k

{
α(k)

w(k)

}
. (1)

This maximization of the weighted throughput, called fair throughput in the following,
corresponds to the well-known MAX-MIN fairness strategy [13] between the different appli-
cations, with coefficients 1/w(k), 1 6 k 6 K.

In this paper, we consider both centralized and decentralized schedulers. For smaller
platforms it may be realistic to assume a centralized scheduler, which makes its decisions
based upon complete and reliable knowledge of all application and platform parameters.

RR n
�

5739

4 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

With such a knowledge at our disposal, we are able to determine the optimal schedule, i.e.
the schedule which maximizes the weighted throughput of each application. The main idea
is to gather all constraints into a linear program; the rational values output by the program
will guide the construction of the actual periodic schedule. For single-level rooted trees,
we provide an interesting characterization of the optimal solution: those applications with
larger communication-to-computation ratio should be processed by the workers with larger
bandwidths, independent of the communication-to-computation ratios of the workers.

For large-scale platforms, a centralized scheduler is unrealistic. Only local information
is likely to be available to each participating resource. One major goal of this paper is to
investigate whether decentralized scheduling algorithms can reach the optimal throughput,
or at least achieve a significant fraction of it. In decentralized solutions, each resource makes
decisions based upon limited local knowledge, typically the current capacity (CPU speed and
link bandwidth) of its neighbors. From the theoretical perspective, one result of this paper
is the adaption of the multi-commodity flow of Awerbuch and Leighton [2, 3] to provide a
fully decentralized solution for scheduling multiple bags of tasks on tree-shaped platforms,
assuming limited global knowledge of the solution size.

From a more practical point of view, we also provide several decentralized heuristics
that rely exclusively on local information to make scheduling decisions. The key underlying
principles of these heuristics is to give priority to fast communicating children, and to assign
them applications of larger communication-to-computation ratios. A focus of this paper is
evaluating decentralized heuristics through extensive simulations. The value of the optimal
throughput (computed from the linear program) will serve as a reference basis to compare
the heuristics.

The rest of the paper is organized as follows. In Section 2, we state precisely the scheduling
problem under consideration, with all application and platform parameters, and the objective
function. Section 3 explains how to analytically compute the best solution, using a linear
programming approach, both for single-level trees (Section 3.1) and general tree-shaped (Sec-
tion 3.2) platforms. In Section 3.3 we provide a decentralized solution to the scheduling
problem using multi-commodity flows. Then Section 4 deals with the design of several decen-
tralized scheduling heuristics, while Section 5 provides an experimental comparison of these
heuristics, through extensive simulations. Section 6 is devoted to an overview of related work.
Finally, we state some concluding remarks in Section 7.

2 Platform and Application Model

2.1 Platform Model

The target platform is either a single-level tree (also called a star network) or an arbitrary tree.
The master Pmaster is located at the root of the tree. There are p workers, P1, P2, . . . , Pp; each
worker Pu has a single parent Pp(u), and the link between Pu and its parent has bandwidth
bu. We assume a linear-cost model, hence it takes X/bu time-units to send a message of size
X from Pp(u) to Pu. The computational speed of worker Pu is cu, meaning that Pu needs
X/cu time-units to execute X (floating-point) operations.

We assume that the master is not performing any computation, but it would be easy to
modify this assumption. Indeed, we can add a fictitious extra worker paying no communication
cost to simulate computation at the master.

INRIA

Scheduling multiple bags of tasks 5

There are several scenarios for the operation of the processors, which are discussed in
Section 6. In this paper, we concentrate on the full overlap, single-port model. In this model,
a processor node can simultaneously receive data from one of its neighbors, perform some
(independent) computation, and send data to one of its neighbors. At any given time-step,
there are at most two communications involving a given processor, one sent and the other
received. More precisely: if Pp(u) sends a message of size X to Pu at time-step t, then: (i)
Pu cannot start executing or sending this task before time-step t′ = t+X/bu; (ii) Pu can not
initiate another receive operation before time-step t′ (but it can perform a send operation
and independent computation); and (iii) Pp(u) cannot initiate another send operation before
time-step t′ (but it can perform a receive operation and independent computation). Note
that in the case of a star network, the master can only communicate to one worker at a time,
while the workers can simultaneously receive data and perform independent computations.

2.2 Application Model

We consider K applications, Ak, 1 6 k 6 K. The master Pmaster initially holds all the
input data necessary for each application Ak. Each application has a priority weight w(k) as
described earlier.

Each application is composed of a set of independent, same-size tasks. We can think
of each Ak as bag of tasks, and the tasks are files that require some processing. A task of
application Ak is called a task of type k. We let c(k) be the amount of computation (in flops)
required to process a task of type k. Similarly, b(k) is the size (in bytes) of (the file associated
to) a task of type k. We assume that the only communication required is from the master to
the workers, i.e. that the amount of data returned by the worker is negligible. Our results
are equally applicable to the scenario in which the input to each task is negligible but the
output is large. (We have not studied the case of large and different sizes for the input and
output.) The communication-to-computation ratio of tasks of type k is defined as b(k)/c(k)

and represents the communication overhead per computation unit for application Ak.
Note our restriction that for each application, the amount of data and computation are

identical for each task in the application. If an application has a finite set of different
communication-to-computation ratios, and the distribution of these ratios are known, we
can treat it as a set of separate applications and adjust the priority weights appropriately.

2.3 Objective Function

If we assumed that each application had an unlimited supply of tasks, our goal would be to
maximize

lim
t→∞

min
k

{
ν(k)(t)

w(k) · t

}
(2)

where ν(k)(t) is the number of tasks of application Ak completed by time t.
However, we can do better than studying asymptotic behavior. Following standard prac-

tice, we partition time into a sequence of equal length time-steps, and optimize the “steady-
state throughput”. Thus, as stated earlier, our objective is:

Maximize min
k

{
α(k)

w(k)

}
. (3)

RR n
�

5739

6 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

where α(k) is the number of tasks of Ak executed per time-step.
There are two features of this approach:

1. If we can derive an upper bound on the steady-state throughput for arbitrarily long
time-steps, then this is an upper bound on the limit of formula (2).

2. If for a fixed length time-step we construct a periodic schedule – one that begins and
ends in exactly the same state – and assuming it is possible to enter that state in a
finite start-up period, then the periodic schedule’s throughput will be a lower bound on
the limit of formula (2).

As we shall see, this approach allows us to derive optimal results. The advantage over
asymptotic analysis is we derive an upper bound for any length of time, and actually con-
struct periodic schedules. When the number of tasks per application is large, the advantage
of avoiding the NP-completeness of the makespan optimization problem outweights the dis-
advantage of not knowing the exact length of the start-up and clean-up phases of a finite
schedule. Many situations where this approach has been successful can be found in [10].

In reality, only integer numbers of tasks should be considered. However we relax the
problem and deal with rational number of tasks in the steady-state equations that follow.
The main motivation for this relaxation is technical: the scheduling is better amenable to an
analytical solution if rounding problems are ignored. Thus, we consider that our applications
are divisible load, i.e. they can be divided into smaller subtasks. See Section 6 for a comparison
of our approach with divisible load scheduling [15, 16, 41]. From a practical point of view,
this simplification is harmless: later in Section 3.1.2, we briefly explain how to retrieve an
effective schedule with an integer number of tasks for each application.

3 Computing the Optimal Solution

In this section, we show how to compute the optimal throughput, using a linear programming
formulation. For star networks we give a nice characterization of the solution, which will
guide the design of some heuristics in Section 4. We also show how to state and solve the
optimization for general tree-shaped platforms problem in terms of a multi-commodity flow
approach.

3.1 Star networks

In this section we consider a star network. The master Pmaster has no processing capability
and holds initial data for all tasks of any type. There are p worker processors Pu, 1 6 u 6 p.
The platform model is the full-overlap single-port model.

3.1.1 Linear Program

Let α
(k)
u denote the rational number of tasks of type k executed by Pu every time-unit. Some

of these quantities may well be zero, and if α
(k)
u = 0 for all 1 6 k 6 K, then Pu is not enrolled

in the computation. Each processor Pu computes an amount of
∑

k α
(k)
u · c(k) flops per time

unit, hence the constraint
∑K

k=1 α
(k)
u · c(k) 6 cu.

The master processor sends
∑K

k=1 α
(k)
u · b(k) bytes to each worker Pu, which requires

P

k α
(k)
u ·b(k)

bu
time-units. These sends are sequentialized due to the one-port hypothesis, hence

the constraint
∑p

u=1

PK
k=1 α

(k)
u ·b(k)

bu
6 1.

INRIA

Scheduling multiple bags of tasks 7

We have set α(k) =
∑p

u=1 α
(k)
u , and we aim at maximizing the minimum of the weighted

throughputs α(k)

w(k) . Altogether, we have assembled the following linear program:

Maximize mink

{
α(k)

w(k)

}
,

under the constraints



(4a) ∀k,
∑

u

α(k)
u = α(k)

(4b) ∀u,
∑

k

α(k)
u · c

(k)
6 cu

(4c)
∑

u

∑
k α

(k)
u · b(k)

bu
6 1

(4d) ∀k, u, α(k)
u > 0

(4)

3.1.2 Reconstructing a Periodic Schedule

Suppose we have solved linear program (4). Note that conditions in the linear program deal
with steady state behavior, so that it is not obvious that there exists a valid schedule, where
precedence constraints are satisfied, that achieves obtained throughput. Nevertheless, we have

determined all the values α
(k)
u , which we write α

(k)
u =

pu,k

qu,k
, where pu,k and qu,k are relatively

prime integers. Let us define the period Tperiod as

Tperiod = lcm{qu,k|1 6 k 6 K, 1 6 u 6 p},

and n
(k)
u = α

(k)
u · Tperiod for each worker Pu. If the master sends a bunch of n

(k)
u tasks of type

k to processor Pu for each k and each u every period, and if the processors greedily compute
those tasks, we get a periodic schedule of period Tp whose throughput for each application
type is exactly α(k).

Of course the first and last periods will be different. We can assume an initialization
phase, during which tasks are forwarded to processors, and no computation is performed.
Then, during each time-period in steady state, each processor can simultaneously perform
some computations, and send/receive some other tasks. Similarly, we need a clean-up phase
in the end. But it can be shown that the previous periodic schedule is asymptotically optimal,
among all possible schedules (not necessarily periodic). More precisely, given a time-bound
B for the execution, it can be shown that the periodic schedule computes as many tasks of
each type as the optimal, up to a constant (independent of B) number of tasks. This result
is an easy generalization of the same result with a single application [6].

3.1.3 Structure of the Optimal Solution

We can prove that optimal solutions have a very particular structure:

Proposition 1.

� Sort the link by bandwidth so that b1 > b2 . . . > bp.

� Sort the applications by communication-to-computation ratio so that b(1)

c(1)
>

b(2)

c(2)
. . . >

b(K)

c(K) .

RR n
�

5739

8 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

Then there exist indices a0 6 a1 . . . 6 aK , a0 = 1, ak−1 6 ak for 1 6 k 6 K, aK 6 p, such
that only processors Pu, u ∈ [ak−1, ak], execute tasks of type k in the optimal solution.

In other words, each application is executed by a slice of consecutive workers. The most
demanding application (in terms of communication-to-computation ratio) is executed by a
first slice of processors, those with largest bandwidths. Then the next demanding application
is executed by the next slice of processors. There is a possible overlap between the slices. For
instance Pa1 , the processor at the boundary of the first two slices, may execute tasks for both
applications A1 and A2 (and even for A2 if a1 = a2).

Proof. Assume that there exists an optimal solution where there are two distinct processors
Pu and Pv , where u < v, and two task types k and l, where k < l, such that

α(k)
u = 0, α(l)

u 6= 0, α(k)
v 6= 0, α(l)

v 6= 0

In other words, Pu executes tasks of type l but not k, but Pv execute both, which contradicts
the proposition. Note that because u < v and k < l:

bu > bv and
b(k)

c(k)
>
b(l)

c(l)
(5)

We build another solution, whose throughput is the same, but where either Pu will no longer
execute tasks of type l, or Pv will no longer execute tasks of type k. The idea is that Pu and
Pv exchange some tasks of type k and l. More precisely, letting α̃ instead of α denote the
load units the new solution, we have:

Pu

{
α̃

(k)
u ← α

(k)
u + βk = βk

α̃
(l)
u ← α

(l)
u − βl

and Pv

{
α̃

(k)
v ← α

(k)
v − βk

α̃
(l)
v ← α

(l)
v + βl

The value of βk and βl is chosen as follows. The key idea is to impose

c(k) · βk = c(l) · βl,

so that the total computing time of Pu and Pv is left unchanged. Indeed for Pv , the time to
compute tasks of type k and l is

c(k) · α̃
(k)
v + c(l) · α̃

(l)
v

cv
=
c(k) · (α

(k)
v − βk) + c(l) · (α

(l)
v + βl)

cv
=
c(k) · α

(k)
v + c(l) · α

(l)
v

cv

The same holds for Pu. The constraints on βk and βl are

0 6 βk 6 α(k)
v , 0 6 βl 6 α(l)

u

Therefore we let

βl = min

(
α(l)

u ,
c(k)

c(l)
· α(k)

v

)
and βk =

c(l)

c(k)
· βl

We claim that we still have a valid solution to the linear program (4). As already stated,
the total computing time of Pu and Pv is left unchanged. Furthermore, the time spent by the
master to communicate with Pu and Pv has not increased. Indeed, this time was equal to

Mu,v =
α

(k)
u · b(k) + α

(l)
u · b(l)

bu
+
α

(k)
v · b(k) + α

(l)
v · b(l)

bv

INRIA

Scheduling multiple bags of tasks 9

The communication time is now equal to

M̃u,v =
α̃

(k)
u · b(k) + α̃

(l)
u · b(l)

bu
+
α̃

(k)
v · b(k) + α̃

(l)
v · b(l)

bv

and we have

M̃u,v = Mu,v +
βk · b

(k) − βl · b
(l)

bu
+
βl · b

(l) − βk · b
(k)

bv

hence

M̃u,v = Mu,v +
(
βk · b

(k) − βl · b
(l)
)(1

bu
−

1

bv

)
= Mu,v + βk · c

(k)

(
b(k)

c(k)
−
b(l)

c(l)

)(
1

bu
−

1

bv

)

Equation (5) shows that M̃u,v 6 Mu,v, which establishes the validity of the new solution.

In the case where βl = α
(l)
u , we have α̃

(l)
u = 0. Otherwise we have βk = α

(k)
v and α̃

(k)
v = 0.

In any case, this concludes the proof, by induction on the number of exchanges needed.

Note that Proposition 1 would not hold if we had processor-task affinities, i.e. if the speed

c
(k)
u of a processor Pu would depend upon the task type k.

3.2 Tree-shaped Platforms

For tree-shaped platforms, we can also build a linear program that computes the optimal
throughput. We use the following notations:

� Pmaster is the master processor

� Pp(u) is the parent of node Pu for u 6= master

� Γ(u) is the set of indices of the children of node Pu

� bu,v is the bandwidth of the link Pu → Pv for v ∈ Γ(u)

� sent
(k)
u→v is the (fractional) number of tasks of type k sent by Pu to Pv, where v ∈ Γ(u),

every time-unit

We formulate the following linear program:

Maximize mink

{
α(k)

w(k)

}
,

under the constraints



(6a) ∀k,
∑

u

α(k)
u = α(k)

(6b) ∀k,∀u 6= 0, sent
(k)
p(u)→u

= α(k)
u +

∑

v∈Γ(u)

sent(k)
u→v

(6c) ∀u,
∑

k

α(k)
u · c

(k)
6 cu

(6d) ∀u,
∑

v∈Γ(u)

∑
k sent

(k)
u→v · b(k)

bu,v
6 1

(6e) ∀k, u, α(k)
u > 0

(6f) ∀k, u, v sent(k)
u→v > 0

(6)

RR n
�

5739

10 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

The equations are similar to that of the program for star networks, except the second
equation, which is new. This equation can be viewed as a conservation law. Every time-unit,

Pu receives sent
(k)
p(u)→u

tasks of type k. A fraction of these tasks, namely α
(k)
u , are executed

in place, while the remaining ones are forwarded to the children of Pu. It is important to
understand that this conservation law really applies to the steady state operation; we do
not have to detail which operation is performed at which time-step, because the tasks all
commute, they are mutually independent. The reconstruction of an (asymptotically optimal)
periodic schedule obeys exactly the same principles as in Section 3.1.2.

We did not succeed in deriving a counterpart of Proposition 1 for tree-shaped platforms.
Intuitively, this is because the fast children of a node can themselves have slower children, so
there is no a priori reason to delegate them the execution of the more demanding tasks. Still,
we use the intuition provided by Proposition 1 to design the heuristic of Section 4.5.

3.3 Multi-commodity flows

In this section, we show how to compute the optimal solution for the general problem on tree-
shaped platforms in a decentralized way. This approach is based on an algorithm by Awerbuch
and Leighton [2, 3] for multi-commodity flows. The multi-commodity flow problem consists
of shipping several different commodities from their source to their destination through a
network such that the total flow going through any edge does not exceed its capacity. A
demand is associated to each commodity. The objective if to maximize a fraction z such that
z percent of each commodity is satisfied and the capacity constraints are not violated.

The Awerbuch and Leighton algorithm provides a distributed solution to the problem. Our
objective is to adapt their algorithm to our scheduling problem while keeping the convergence
result. The general idea is to map each type of application into a commodity to be shipped
on the network directly made from the platform graph. Several difficulties have to be be
circumvented:

1. First, the multi-commodity flow problem takes only link constraints into account: there
is no notion of computation. We have to simulate the computing limitation of each node
by adding fictitious links from computing nodes to (fictitious) computing sinks. The
capacity of these new links is the computing power of the corresponding node.

2. In the multi-commodity flow problem, the constraints on the edges are simple: the sum
of every flow going through one edge is less than its global capacity. In our adapta-
tion, mainly due to the fictitious edges added to represent computing power, we have
to consider more complex constraints like: the sum of each flow times a coefficient (de-
pending on the flow and the edge) is less than the capacity of the edge. This leads to
two problems:

� we have to adapt the local optimization algorithm which gives the values of each
commodity to ship on a given edge for a given time-step;

� with this new optimization method, we have to prove that the convergence of the
algorithm is still ensured.

3. Last, the classical multi-commodity flow problem works in the multi-port model: the
flow is limited only through each edge, not through the sending/receiving ports of each
node. We have to enforce the one-port constraints into the multi-port model.

INRIA

Scheduling multiple bags of tasks 11

3.3.1 Problem formulation

In order to take computation power into account, we modify the model presented in Section 3.2
by adding some nodes and edges to the platform graph. We first add a sink node Sink(k) for
each application of type k. Each processor Pu is linked to the sink Sink(k) by a link with
capacity cu

c(k) (the inverse of the time needed by Pu to process a task of type k).

To stick to the the model used in [3], we also add one source node Source(k) for each
application type k. The source Source(k) for tasks of type k is linked to the master processor
with an infinite capacity link.

These new nodes are “fictitious” in the sense that they do not represent any real node of
the physical platform. An example of this adaptation is represented on Figure 1.

P2 P3

P1

Pmaster

bmaster,1

b1,2 b1,3

(a) original platform graph

∞

Source
(2)

Sink
(1)

Sink
(2)

c1
c(2)

c3
c(2)

c2
c(2)

c1
c(1)

c2
c(1)

c3
c(1)

∞

Source
(1)

P2 P3

P1

Pmaster

bmaster,1

b1,2 b1,3

(b) its transformation to apply multi-
commodity flow techniques

Figure 1: An example of fictitious sources and sinks

In order to keep notations homogeneous, we denote by

� sent
(k)
p(u)→u

the number of tasks of type k between the parent node Pp(u) of Pu

� sent
(k)

Source(k)→P0
the number of tasks of type k injected in the system

� sent
(k)

u→Sink(k) the number of tasks of type k processed by Pu.

RR n
�

5739

12 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

With those notations, we can check that the following equations hold true:





∀k, u 6= P0,Source,Sink
∑

v∈Γ(u) sent
(k)
u→v + sent

(k)
u→sink(k) = sent

(k)
p(u)→u

tasks of type k are either transmitted or processed locally at Pu

∀k, sent
(k)

Source(k)→P0
=

∑
u sent

(k)

u→Sink(k)

all injected tasks are processed by some Pu

Therefore, ∀k, the values
(
sent

(k)
∗→∗

)
define a flow of value sent

(k)

Source(k)→P0
between Source(k)

and Sink(k).
We still have to express constraints for the computational limit of each processor, and for

the one-port model. The amount of tasks of type k processed by a processor Pu is sent
(k)

u→Sink(k) ,
the constraint for computation on node Pu can be expressed as:

∑

k

sent
(k)

u→Sink(k) × c
(k)

6 cu

As we target a tree-shaped platform, the one-port model has to be enforced only for
outgoing communications. On node Pu, the bound on outgoing communications is:

∑

k

∑

v∈Γ(u)

sent
(k)
u→v · b(k)

bu,v
6 1

So on a node Pu, all constraints can be expressed as a weighted sum of some outgoing
commodities, with general form:

∑

(v,k)∈S

sent(k)
u→v × γu,v,k 6 1

where S is a given set of indices and γu,v,k is some given coefficient (which depends upon the
type of the constraint). This formulation is slightly more complex than the one for classical
flows used in the multi-commodity flow problem:

on each edge (u, v),
∑

k

sent(k)
u→v 6 1

Nevertheless, we will prove in next sections that it is possible to adapt the Awerbuch-
Leighton algorithm for multi-commodity flow problems to our problem. In the following, we
first present the Awerbuch-Leighton algorithm in Section 3.3.2, and then show how to adapt
it in Section 3.3.3 to take the new constraints into account.

3.3.2 The Awerbuch-Leighton Algorithm

Main Result Consider a multi-commodity flow problem (with classical capacity constraints
on the edges) on a directed graph G = (V,E). Let us assume that there exists, for each
commodity k, at any time, a way to ship (1 + 2ε)dk units of flow from the source node for
commodity k to the sink node for commodity k.

In [3], Awerbuch and Leighton present an algorithm which is able to ship (1+ε)dk units of
flow for each commodity k. Note that the assumption states that there is at any time a way to

INRIA

Scheduling multiple bags of tasks 13

ship the flow (in fact, even slightly more flow than what is shipped using Awerbuch Leighton
algorithm), but the paths used to ship the flow may well change during the whole process.
Surprisingly enough, the algorithm is very simple, fully distributed, with local control, and
is able to cope with changes in link and node capacities, provided that above mentioned
assumption holds true during the whole process.

Moreover, as we will prove in Section 3.3.3, the framework presented for multi-commodity
flow problems in [3] can be generalized to a more general class of problems, such as the one
considered in this paper.

Sketch of the algorithm Let us assume that for each source, there exists a single outgoing
edge. This can be done, as noted in Section 3.3.1 by adding fictitious nodes linked with infinite
capacity edges.

Each node is given some buffers to store messages, and there is one such buffer at each
node associated to each directed edge and to each commodity. So a node with x incoming or
outgoing edges will have x×K buffers. In addition to these regular buffers, the source node
for commodity k is also given an overflow buffer for commodity k. The size of the regular
buffer is bounded at this node: it cannot contain more than Qk elements. If the source nodes
has to store more than Qk elements, the remaining elements are stored into the overflow
buffer. We set (the exact value for Qk can be found in [40])

Qk = O

(
ndk ln(K

ε
)

ε

)
(7)

The main idea of the algorithm is to introduce a potential function associated to each
regular and overflow buffer. More precisely, the potential of a regular buffer with q elements
for commodity k is given by

φk(q) = exp(γkq), where γk =
ε

8ndk
,

and the potential of the overflow buffer for commodity k at node Source(k) is given by

ψk(q) = qγk exp(γkQk)

The sketch of the algorithm is as follows. The time is divided into rounds and each round
consists in the following four phases.

Phase 1: For each source Source(k), add (1 + ε)dk units of flow to the overflow buffer of
commodity k. Then, move as much flow as possible from the overflow buffer to the
regular buffer at source node Source(k).

Phase 2: For each edge, push flow along the edge so as to minimize the sum of the potential
of all the buffers associated to this edge. This requires to solve a multi-variate non-linear
optimization problem. We will not detail at this step the resolution of this optimization
problem, but we will present in Section 3.3.3 a general framework for solving a larger
class of problems.

Phase 3: For each commodity k, empty the regular buffer for commodity k at the sink node
Sink(k) for commodity k.

Phase 4: At each node Pu and for each commodity k, balance the buffers for commodity k
associated to all incoming and outgoing edges, such that the sizes of all the buffers for
commodity k are the same at node Pu.

RR n
�

5739

14 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

Sketch of the proof The algorithm presented above does not guarantee that all units
of flow will be shipped to their destination at the end of the algorithm. Nevertheless, it
guarantees that the overall number of tasks that do not reach their destination remains
bounded at any time. Since (1 + ε)dk units of flow are injected in the system at each round,
this means that the throughput for commodity k obtained after a large number of rounds is
arbitrarily close to dk.

The proof is based on a precise analysis of the overall potential of the system, i.e. the
sum of the potentials associated to all regular and overflow buffers in the system. During the
different phases in one round, the evolution of the overall potential is the following:

� Phase 1 increases the value of the overall potential since flow units are added in regular
(and possibly overflow) buffers at each source, and potential functions are increasing
functions in the size of the buffers.

� Phase 2 decreases the value of the overall potential since it aims at minimizing indepen-
dently the potential of the buffers at the tail and head of each edge, for each commodity.

� Phase 3 decreases the value of the overall potential since some flow units are removed
from the buffers (at sink nodes), and potential functions are increasing functions in the
size of the buffers.

� At last, phase 4 decreases the overall potential since for each commodity, it aims at
balancing the buffers at each node, and the potential is a convex function in the size of
the buffers.

More precisely, it can be proved (see [3, 40]) that the overall potential increase for com-
modity k during phase 1 is bounded by

(1 + ε)dkφ
′(sk),

where sk is the size of the regular buffer at the end of Phase 1 at source node Source(k) (and
φ′ denotes the derivative of φ).

In order to evaluate potential decrease during phases 2 to 4, Awerbuch and Leighton use
the following mechanism. They consider the potential decrease that would be induced in
Phase 2 by a flow of value (1 + 2ε)dk for each commodity k. By assumption, such a flow
exists, even if we do not know how to ship it. Since proposed algorithm decreases the flow
locally for each edge as much as possible during phase 2, then phase 2 decreases the potential
as much as what a (1 + 2ε)dk flow does. Using this argument, it can be proved (see [40],
since the proof in the original paper contains one mistake) that the potential decrease during
phases 2, 3 and 4 is at least

(
1 +

3ε

2
− ε2

)
dkφ

′
k(sk)−

ε(2 + 5ε)

8n
.

Therefore, the overall drop in potential for all four phases is given by

(ε
2
− ε2

)
dkφ

′
k(sk)−

ε(2 + 5ε)

8n
.

We can then set the value of the constant in the O of equation (7) so that the previous
equation is always positive. Therefore if any regular buffer is saturated at the end of Phase 1,

INRIA

Scheduling multiple bags of tasks 15

then the overall potential decreases during the whole round. Therefore, since regular buffers
are not saturated at the end of the phase 1 of the first round, the overall potential OP during
the whole process is bounded by

OP 6
∑

k

2mφk(Qk) 6
2mK(2 + 5ε)

ε(1
2 − ε)

.

Therefore, the sum of the sizes of all regular and overflow buffers associated to commodity
k can be bounded from the last equation and is of order

O

(
mndk

(
k + ln(k

ε
)
)

ε

)
,

and therefore remains bounded during the whole algorithm. Thus, since (1 + ε)dk units of
flow for commodity k are injected in the system at each round, the throughput for flow of
commodity k is arbitrarily close to dk, what achieves the proof.

3.3.3 Adaption to the throughput optimization problem

As already noted, the maximization of throughput for k sets of independent tasks cannot be
reduced to a classical multi-commodity flow problem, since under our model (one-port model
for communications, one node processes several type of tasks), the capacity constraints are
written for each node and not for each edge,




∀u 6= Pmaster,Source,Sink
∑

k

∑

v∈Γ(u)

sent
(k)
u→v · b(k)

bu,v
6 1 (one-port model at Pu)

∀u 6= Pmaster,Source,Sink,
∑

k

sent
(k)

u→Sink(k) × c
(k)

6 cu (processing constraint at Pu)

Nevertheless, the main ideas of the Awerbuch-Leighton algorithm still apply to our prob-
lem. Let us consider a very simple adaptation of the algorithm, where only Phase 2 has
been changed. Recall that the aim of Phase 2 is to minimize as much as possible the overall
potential by exchanging tasks on the edges, given the capacity constraints. In our context,
we need to change this minimization phase, given the set of constraints for both processing
and outgoing communications (we do not take incoming communications into account since
we assume a tree-shaped platform).

Let us consider node Pu. The sizes of buffers for tasks of type k at Pu are denoted q
(k)
u→v

for the edge between Pu and Pv, where Pv ∈ Γ(Pu) and by q
Sink(k) for the edge between Pu

and Sink(k). We also denote by p
(k)
u→v the size of the buffer for tasks of type k at the tail of

the edge between Pu and Pv. Because of last phase 3, the buffer for tasks of type k at Sink(k)

is initially empty. We will denote by f
(k)
u→v the number of tasks of type k sent to Pv and by

α
(k)
u the number of tasks of type k processed by Pu. Then, the corresponding minimization

problems at Pu become
� For processing:

Minimize
∑

k

(
exp

(
γk(qSink(k) − α

(k)
u)
)

+ exp
(
γkα

(k)
u

))
(the new potential)

Under the constraints{
∀k, α

(k)
u > 0, (the number of processed tasks is non negative)

∑
k c

(k)α
(k)
u 6 cu, (time needed to process all types of tasks)

RR n
�

5739

16 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

� For outgoing communications:

Minimize
∑

k

∑
v∈Γ(u)

(
exp

(
γk(q

(k)
u→v − f

(k)
u→v)

)
+ exp

(
γk(p

(k)
u→v + f

(k)
u→v)

))
(the new potential)

Under the constraints{
∀k, f

(k)
u→v > 0, (the number of transmitted tasks is non negative)

∑
k

∑
v

b(k)f
(k)
u→v

bu,v
6 1, (time needed to send all types of tasks to all children)

Both optimization problems obey to the following general formulation:

Minimize F (f) =
∑K

i=1 (exp (γi(qi − fi)) + exp (γi(pi + fi)))
Under the constraints{
∀i, fi > 0,∑

iwifi 6 c,

Such problems can be solved using general techniques of non linear convex optimization and
Karush-Kuhn-Tucker conditions [39]. Indeed, the above optimization problem is a convex
optimization problem since the constraints define a convex domain and

∀i,
∂2F

∂fi
2 = γ2

i (exp (γi(qi − fi)) + exp (γi(pi + fi))) > 0.

Therefore, Karush-Kuhn-Tucker conditions apply to the optimal solution:

∃λ,





∀i, ∂F
∂fi
− λ ∂

∂fi

(
c−

∑
j wjfj

)
= 0 if fi 6= 0

λ > 0 and ∀i, fi > 0

λ(c−
∑
wifi) = 0

which is equivalent to

∃λ,





∀i, γi (− exp (γi(qi − fi)) + exp (γi(pi + fi))) + λwi = 0 if fi 6= 0

λ > 0 and ∀i, fi > 0

λ(c−
∑
wifi) = 0

and finally

∃λ,





∀i, λ = γi

wi
(exp (γi(qi − fi))− exp (γi(pi + fi))) if fi 6= 0

λ > 0 and ∀i, fi > 0

λ(c−
∑
wifi) = 0

(8)

The first constraints of (8) define a strong relation between each fi and λ. Let us consider
a given i for a moment. We can define

λ̃ :

{
]0, qi−pi

2] 7→ [0, xi[(where xi = γi

wi
(exp (γiqi)− exp (γipi)))

fi → γi

wi
(exp (γi(qi − fi))− exp (γi(pi + fi)))

INRIA

Scheduling multiple bags of tasks 17

xi
0

λ

fi(λ)

qi−pi

2

0 x3
0

λx1 x2

g(λ)
∑

i
qi−pi

2

0

Figure 2: Relation between fi and λ induced by the Karush-Kuhn-Tucker conditions.

We can easily check that λ̃′ is negative. λ̃ is thus strictly decreasing and is a bijection from
]0, qi−pi

2] to [0, xi[. Therefore, we can also define

fi :





[0,+∞[7→ [0, qi−pi

2]

λ →





λ̃−1(λ) = 1
γi

ln


−

“

λwi
γi

”

+

r

“

λwi
γi

”2
+4 exp (γi(pi+qi))

2 exp (γipi)


 if λ < xi

0 if λ > xi

It follows that fi is also a decreasing function of λ (see Figure 2). As a consequence, the
following function g is also a decreasing function of λ:

g :

{
[0,+∞[7→ [0,

∑
i wi

qi−pi

2]

λ →
∑

iwifi(λ)

Let us use the last constraint of system (8) to determine the solution of our optimization
problem:

� If c > g(0) =
∑
wi

qi−pi

2 , then as g is a decreasing function of λ, the last condition
of (8) holds true only if λ is equal to 0. As a consequence, the optimal solution of our
minimization problem is found when λ = 0 and therefore we have fi = qi−pi

2 for all i.

� If c 6
∑
wi

qi−pi

2 , then we can find find λ such that g(λ) = c. Given the structure of g,
this can be done by first determining the interval such that g(xj) 6 c and g(xj+1) < c.
Note that for λ ∈ [xj , xj+1], the values of f1(λ), . . . , fj(λ) are all zeros. Then we can
determine the exact value of λ such that g(λ) = c by dichotomic search in [xj, xj+1] (g
being hard to formally inverse). From the value of λ we can then find the non-zeros
values of fi.

This provides a method to solve the optimization problems for outgoing communications
under the one-port model and for processing several tasks at each node.

3.3.4 Hints for a distributed implementation

We have seen that it is possible to adapt the algorithm develop by Awerbuch and Leighton to
our problem. Nevertheless, in the following, we will not present simulation results using our

RR n
�

5739

18 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

modified version of Awerbuch Leighton algorithm. Indeed, several issues have to addressed
before designing a fully distributed version of our algorithm. We provide here some ideas on
how to use this method to derive a distributed algorithm to compute an optimal solution.

� First, the behavior of fictitious nodes and edges can be simulated in a distributed im-
plementation: the master is in charge of all source nodes and corresponding edges, and
each node with some processing capability is in charge of the simulation of the fictitious
edges added to represent computation: as noted in the previous section, as in Phase 3,
the buffer corresponding of task k at Sink(k) is emptied, this buffer is initially empty at
the beginning of Phase 2.

� During Phase 1 of each round, we inject (1 + ε)dk tasks of type k at source node
k. A priori, this requires to know dk and therefore the best achievable throughput!
Nevertheless, there are several ways to circumvent this problem.

1. We can solve the linear program once to get a rough evaluation of the throughput.

2. We can also use the fundamental property of Awerbuch Leighton algorithm on
the overall number of remaining tasks and use dichotomic search. Roughly, if we
inject to much tasks at each round, then the platform will not be able to process
them all, and therefore the overall number of remaining tasks in overflow buffer
at source node will increase at each round. If the number of tasks in overflow
buffers becomes larger than the theoretical bound on the size of the overflow queue
derived in above section, then the amount of tasks injected at each round should
be decreased. Unfortunately, the bounds known for the convergence rate of this
process are very large, and may therefore not be of practical use.

� During the second phase of each round, a rational number of tasks is exchanged along
each edge. Since we deal with tasks, we need to transfer integer number of tasks only.
Indeed, we must ensure that the file associated to a given task is not spread amongst
several processors! Nevertheless, there are again several possible ways to fix this prob-
lem.

1. It is possible to solve the non linear multivariate linear optimization problem with
rational numbers, and then to round obtained values to integers. Unfortunately,
we did not manage to prove any approximation ratio for this process.

2. We can also change the size of the round in order to obtain integer number of
tasks, using lcm’s, as we proposed in Section 3.2 to obtain a valid schedule from
the solution of the linear program. nevertheless, this solution may lead to huge
round periods and may therefore not be of practical use.

4 Design of Decentralized Heuristics

As shown in Section 3.2, given a tree-shaped platform and the set of all application parameters,
we are able to compute an optimal periodic schedule. However, when trying to implement
such a schedule, we face two main problems:

1. The period of the schedule (as computed in Section 3.2) is the lcm of the denominators
of the solution of linear program (6). This period may then be huge, which entails

INRIA

Scheduling multiple bags of tasks 19

two embarrassing issues. First such a long period makes it potentially very difficult to
adapt to load variations. Second, a long period implies sending large bunch of tasks at
a time to a single processor, what incurs prohibitive memory overhead. It follows that
we should try to implement dynamic heuristics that use the weights computed by the
linear program (6) as hints to achieve a good throughput.

2. Computing those weights with a centralized algorithm (i.e. by solving linear pro-
gram (6)) may become an issue when the size of the platform grows beyond a certain
point. It may then be hard to collect up-to-date the information and inject them into
the linear program. Moreover a slight variation of the data may result in a totally dif-
ferent solution. Indeed, even though the optimal value of the objective function changes
smoothly with the input parameters, it may be the case that many different solutions
have the same throughput and we could jump from one solution to the others. Con-
sequently, we should try to design a decentralized computation of these weights and
evaluate its quality regarding the optimal solution. Even though we have not been able
to obtain any insight on the structure of the optimal solution for arbitrary trees, we will
see that a few natural rules enable to get a decent decentralized computation of those
weights.

In the following we consider four algorithms that make local decisions. We evaluate two
different things:
- the impact of a decentralized control of the scheduling: how much do we loose when we
use demand-driven heuristics compared to a tight periodic schedule built with the lcm of the
solution of the linear program?
- the impact of a decentralized computation of the weights used in demand-driven heuristic.
Only the first heuristic below relies on centralized information, and it will serve as a reference
to assess the performance of the four decentralized approaches.

4.1 Centralized demand-driven (LP-BASED)

If we allow for a centralized solution, we can solve the linear program (4) and dynamically
control a demand-driven heuristic by feeding children only with tasks of type that they are
assigned by the linear program. See Figure 3: each node records what has been sent to each
child and applies the 1D-load balancing mechanism [8] when a child executes several task
types.

This demand-driven based on linear program heuristic (LP-BASED) is expected to con-
verge to the optimal throughput, but we have not been able to prove it. Even for a single
application, i.e. in the pure bandwidth-centric case, there is much experimental evidence of
this fact [33] but no proof is available. For several applications, we will see that in practice,
the real throughput achieved by this heuristic is extremely close to optimal throughput.

However, to implement this heuristic, we need to know for each processor and each task
type, (the number of tasks sent/computed per second. These rates can be computed using
linear program (4) but this approach is not likely to scale very well. In other words, this
heuristic does not satisfy our basic requirement of a decentralized solution.

4.2 First Come First Served

The FCFS heuristic is a purely demand-driven heuristic. All nodes keep sending requests
to their parents, and parents fulfill them on a First Come First Served basis. The master

RR n
�

5739

20 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

1: The local worker starts by requesting a few tasks.
2: Loop

3: Send requests to your father (and make sure that you do not have too
much pending requests)

4: Select the type of application and the host (yourself or one of your child)
using the 1D-load balancing mechanism.

5: Get incoming requests (from your local worker or one of your child) if
any

6: Get incoming tasks (from your father) if any
7: If you have one task and a request that match the 1D-load balancing

mechanism choice Then

8: Send a task to the corresponding host (respecting the 1-port con-
straint)

9: Else

10: Wait for a request or a task

Figure 3: Dynamic demand-driven 1D-load balancing algorithm

controls the fairness by alternately sending different task types, using the 1D load-balancing
mechanism [8] with priority weights 1/w(k). The 1D load-balancing mechanism works as
follows: if nk tasks of type k, 1 6 k 6 K, have already been sent by Pmaster, the next task to
be sent will be of type `, where

n` + 1

w(`)
= min

16k6K

nk + 1

w(k)

Obviously, the choice of type ` achieves the best possible weighted load, given the tasks that
have already been executed.

This is a simple scheduling scheme but also very natural. It will serve as a reference for
more complex heuristics, which are duly expected to perform better!

4.3 Coarse-Grain

This heuristic (CGBC) builds upon our previous work for scheduling a single application on
a tree shaped platform [9, 6]. In this framework, we have designed a decentralized algorithm,
called bandwidth-centric. Each node only needs to know local information, i.e. the bandwidth
and speed of its children. Based upon this information, a node selects the children that it will
enroll to compute tasks. Typically, not all children will be enrolled, only those with larger
bandwidth. Once the selection of children is made, the algorithm amounts to serve them on
a demand-driven basis. In other words, the bandwidth-centric algorithm is a variant of FCFS
where only a subtree is selected to take part to the computation.

The idea of the coarse-grain heuristic is to assemble several tasks into a large one. More
precisely, we build a macro-task made out of w(k) tasks of type k, for each k. The compu-
tational weight of a macro-task is W =

∑K
k=1w

(k) · c(k), and its communication weight is

∆ =
∑K

k=1w
(k) · b(k). Thereafter, we allocate macro-tasks using a pure bandwidth-centric

approach, which can be summarized as follows: suppose that the subtree rooted at node Pu

as depth 1 (meaning that no children of Pu has itselft children). We sorts the children of Pu

in the tree Pv1 , Pv2 , . . . , Pvi
such that bu,v1 > bu,v2 . . . > bu,vi

; only the first k children will be

INRIA

Scheduling multiple bags of tasks 21

enrolled in the demand-driven execution, where k is the smallest integer such that

k∑

j=1

∆

bu,vj

·
cvj

W
> 1 (9)

(and all children are enrolled if no such k exists). Intuitively, node Pu needs ∆
bu,vj

time-units

to send a task to Pvj
, which it will execute in W

cvj
time-units. Hence Pu spends ∆

bu,vj
·

cvj

W

time-units to keep Pvj
active for one time-unit. Within one time-unit, Pu can feed the first

k − 1 children at full rate, and the k-th child at a possibly reduced rate; but Pu should not
send any task to the next children, if any.

The Pu computes its aggregated computing speed cu, agg defined as the computing speed of
a single node equivalent to the subtree rooted at Pu:

cu, agg = cu +

k−1∑

j=1

cvj
+

(
1−

∑k−1
j=1

cvj

W
· ∆

bu,vj

)
· bu,vk

·W

∆

This speed is used in Equation 9 at the father of Pu, where Pu is considered as a child with
computing speed cu, agg and with no children. This bottom-up process leads to the knowledge
of the global throughput of the platform at the master, and to the selection of the participating
nodes.

The coarse-grain heuristic will not reach the optimal fair throughput, because some re-
sources are not used at their best capacity. Indeed, we have seen (Proposition 1) that
nodes with faster incoming links should process only tasks with larger communication-to-
computation ratio). In fact it is very likely that in presence of a very communication-intensive
macro-task fewer nodes will be enrolled by the bandwidth-centric scheduler; however, in the
optimal solution, deeper nodes in the tree would probably process less demanding applications
(those with a small communication-to-computation ratio).

4.4 Blind Co-Scheduling

The main idea of the blind co-scheduling heuristic (BCS) is to superpose the bandwidth-
centric trees for each type of tasks and to run all of them in parallel. More precisely, there
are K schedulers that run simultaneously.

Running many independent schedulers in parallel on the same resources will entail some
problems for performance evaluation. In all our experiments we do enforce the one-port
constraint for all schedulers. But here the for blind co-scheduling heuristic, we have not
enforced this constraint globally across the schedulers (nor did we enforce the exclusive usage
of a CPU, but this less likely to obviate results). We did not enforce any global constraint to
simulate as accurately as possible the behavior of a blind co-scheduling. Therefore, in some
sense, this heuristic is favored compared to the other ones as a node is then potentially able to
make a better use of network resources (many outgoing communications could simultaneously
occur at the same location).

However, in our experiments we have observed that this performance evaluation issue
was not too much a difficulty and that bandwidth and CPU speed measurements evaluations
stabilized rather quickly. As we will see, the main trouble with this approach results from the
greedy sharing of resources among the different trees. Some trees are particularly unfavored
compared to other ones, and the blind co-scheduling heuristic suffers from this problem.

RR n
�

5739

22 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

4.5 Decentralized Demand-Driven

This heuristic aims at implementing a decentralized version of the LP-BASED approach
(Section 4.1). We seek for a decentralized demand-driven algorithm (DATA-CENTRIC) that
converges, or comes close, to a solution of program (4), even if it is not optimal.

We sort the task types by non-increasing communication-to-computation ratio. Using a
pure bandwidth-centric approach [9, 6], we start by computing the optimal rates for tasks of
type 1. This load repartition being particularly unfair, we try to improve it by repeatedly
performing some of the following operations (in the following, A (resp. B) denotes the ap-
plication with currently has the highest (resp. lowest) throughput). All these operations are
exclusive and are to be applied repeatedly in this order:

Communication Trading If a processor is partially idle but is receiving tasks of type A, its
father exchanges some A tasks against some B tasks. It does this exchange so that its
bus occupation remains the same though by trading communication time. Therefore, it
lowers the throughput of type A tasks processed and increases the throughput of type B
tasks while not changing the bandwidth saturation. It just leads to a more fair solution
that makes better use of the computing resources. Note that this operation makes sense
only if A has a higher communication-to-computation ratio than B.

i

j

Consider a processor j willing to trade εA tasks of type A against εB tasks
of type B. Let us denote by CPU the cpu occupation of processor j :

CPU =
∑

k

α
(k)
j .c(k)

cj

The following constraints must hold true:

εA 6 α
(A)
j (Pj cannot give more than it actually has) (10)

CPU − εA
c(A)

cj
+ εB

c(B)

cj
6 1 (cpu occupation has to be smaller than 1) (11)

Last, as we are trading communication time, we have:

εA
b(A)

bj
= εB

b(B)

bj
(12)

Combining equations (11) and (12), we get:

εA 6
1−CPU

c(B)

cj
. b

(A)

b(B) −
c(A)

cj

Because we do not want to reduce too much the imbalance between α(A) and α(B), we
add the following constraint:

α(A) − εA > α(B) + εB ,

which leads to

εA 6
α(A) − α(B)

1 + b(A)

b(B)

INRIA

Scheduling multiple bags of tasks 23

Therefore, we have:

εA = min


α(A)

j ,
1− CPU

c(B)

cj
. b

(A)

b(B) −
c(A)

cj

,
α(A) − α(B)

1 + b(A)

b(B)


 and εB =

b(A)

b(B)
εA

Gap filling It may be the case that some bandwidth is not used and that a remote processor
Pu could receive more tasks of an unfavored application.

u

+εB

p(i)

i

Let us denote by εB the amount of tasks of type B that this processor
could handle. If we denote by CPU the cpu occupation of processor
Pu, we have:

CPU =
∑

k

α
(k)
u .c(k)

cu

and the following condition on εB has to hold true:

CPU + εB
c(B)

cu
6 1

We also need to verify that there is enough free network along the path from the root
node to Pu. Therefore for any node i along this path, we need the following condition
on εB to hold true:

∑

k

∑

j

sent
(k)
p(i)→j

.c(k)

cj
+ εB

︸ ︷︷ ︸
bus occupation(p(i))

b(B)

bi
6 1

Last, we do not want to reduce too much the imbalance between α(A) and α(B), we add
the following constraint:

α(A)
> α(B) − εB .

Therefore, we have:

εB = min


cu(1− CPU)

c(B)
, α(B) − α(A), min

i ∈ path from
the root to Pu

(
1− bus occupation(p(i))

b(B)
.bi

)


Bus de-saturation The bus may have been satu-
rated by tasks with a high communication-to-
computation ratio. We may then still be us-
ing only workers with high communication ca-
pacity. In such a situation, the tree has to be
widened and the only way to do that is to re-
duce the amount of tasks of type A that are pro-

cessed by the subtrees. The α
(A)
i and sent

(A)
i→j

values of any node of the branch with the small-
est bandwidth that process some tasks of type
A are then scaled down by a factor of 0.9. This
operation allows to decrease the communication resource utilization and precedes “Gap
filling” operations.

RR n
�

5739

24 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

Task trading on the master At some point (when application A is processed only on the
root node) we may have no choice but to change what the master is doing. Let us
consider that the master will trade εA tasks of type A against εB tasks of type B. Then
we will have the following constraints:

εA 6 α
(A)
root

α(A) − εA > α(B) + εB

εB .
c(B)

croot
= εA.

c(A)

croot

Therefore, we have

εA = min

(
α

(A)
j ,

α(A) − α(B)

1 + b(A)

b(B)

)
and εB =

b(A)

b(B)
εA

Those operations are continuously performed (with the listed order of precedence) until we
reach a satisfying balance like:

α(kmax) − α(kmin)

α(kmin)
< 0.05

We use those weights to dynamically control (using the algorithm of Figure 3) the task
distribution.

5 Simulation Results

5.1 Evaluation methodology

In this section we describe in a comprehensive way the experimental framework that we have
set up to assess the efficiency of our heuristics.

5.1.1 Throughput evaluation

Determining that we have reached a steady-state and computing the throughput of a schedule
are straightforward problems when one considers periodic schedules. These are however much
trickier problems when the schedule is not periodic. Consider for example a heuristic that first
process all tasks of application 1, then all tasks of application 2, and so on. At a global scale,
no steady state has actually occurred yet. At a local scale, though, one can observeK different
steady-state periods. How could we define the throughput for each of these applications? It
could be the total number of tasks of each application divided by the makespan of the whole
schedule. However, this would not really reflect the fairness of the schedule. We would rather
say that a schedule like the one we just described achieves a fair throughput (the quantity we
aim at maximizing) equal to 0.

In fact, once all tasks of a given application have been processed, the situation is completely
different. Indeed being fair to this application does not make sense anymore. That is why
we should only consider the period where tasks of any application are still in the system
to compute the fair throughput. Let us denote by T the first date where all tasks of an

INRIA

Scheduling multiple bags of tasks 25

1: Push(nodes to expand , root)
2: While root = Shift(nodes to expand) Do

3: If n = 0 Then

4: Return {there is no more node to add}
5: Repeat {to avoid premature pruning}
6: nb child ← rand(0..degreemax)
7: If nb child > n Then

8: nb child ← n
9: Until |nodes to expand | > 0 or nb child > 0

10: For u ∈ {1 . . . nb child} Do

11: n ← n − 1
12: Create a new node connected to root
13: Push(nodes to expand , new node)

Figure 4: Tree generation

application have been processed. Let us also denote by Nk(t) the number of tasks of type k
that have been processed in time period [0, t]. We can then define the achieved throughput
ρk for application k by:

ρk =
Nk((1 − ε)T)−Nk(εT)

(1− 2ε)T
, where ε ∈]0, 0.5[.

The epsilon is just a measurement artifact to get rid of initial and final instabilities (in
practice, we set ε to be equal to 0.1). In the following, we will refer to ρk as the experimental
throughput of application k as opposed to the expected throughput that can be computed
solving linear program (6). Like wise, the minimum of the weighted expected throughput will
be referred as experimental fair throughput. For some heuristics (e.g. LP-BASED , DATA-
CENTRIC and CGBC) we can easily compute an expected theoretical throughput. We will
see in section 5.2.1 how implementation issues can affect the deviation of the experimental
fair throughput from the expected theoretical fair throughput.

5.1.2 Platform generation

The platforms used in our experiments are random trees described by two parameters: the
number of nodes n and the maximum degree degreemax. We use the algorithm of Figure 4
to generate the interconnection network topology. This breadth-first growth enables to have
wide trees rather than filiform ones. In our experiments, we have generated trees of 5, 10,
20, 50 and 100 nodes. The maximum degree was equal to 2, 5, or 15 and 10 trees of each
configuration have been generated (i.e our platform set comprised 150 trees in total).

Then we assign typical capacity, latency and CPU power values on edges and nodes at
random. Those values come from real measurements performed on machines spread across
the internet with tools like pathchar. CPU power ranges from 22.151 Mflops (an old Pentium
Pro 200MHz) to 171.667 Mflops (an Athlon 1800). Capacity ranges from 110 kb/s to 7 Mb/s
and latency ranges from 6 ms to 10 s. Note that in the simulator that we are using (see
Section 5.1.4), latency is a limiting factor as well as the link capacity for determining the
effective bandwidth of a connection.

RR n
�

5739

26 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

5.1.3 Application generation

An application type being mainly characterized by its communication-to-computation ratio
(CCR), a set of different application types is described by the interval in which the CCR of the
applications lie. For example suppose we consider two competing applications. If the tasks
of the first (resp. second) application require 21.739 Mflop and 100 Mb (resp. 100,000 Mflop
and 100 Mb), the CCR is roughly equal to 4.6 (resp. 0.001). To fix the orders of magnitude,
a CCR of 4.6 is typical of a two 3500 × 3500 matrix addition and a CCR of 0.001 is typical
of a two 3500 × 3500 matrix multiplication. It is not reasonable to consider applications
with a CCR larger than 4.6 because a matrix addition is an operation where the amount of
computations is very small regarding the amount of data to communicate. The CCR interval
is therefore equal to [CCRmin,CCRmax] = [0.001, 4.6]. When we generate application sets
with more than two types of tasks, we ensure that the CCR are evenly distributed in the CCR
interval, which enables us to completely characterize an application set by the corresponding
CCR interval. In our simulations we always have set CCRmin to be equal to 0.001 (i.e. there
is an highly parallel application that is likely to take advantage of the whole distributed
platform) and CCRmax ranges from 0.002 to 4.6.

5.1.4 Heuristic implementation

The experiments described herein have been performed using the SimGrid simulator [34].
The simulated platform is therefore much more complex than the platform model used to
design our heuristics. Therefore ci and bi values are continuously measured from within the
simulator and used as such to compute the weights used in the algorithms of Section 4. As
explained in section 4.5, most heuristics rely on a dynamic demand-driven 1D-load balancing
algorithm (see Figure 3). This algorithm heavily relies on a request mechanism. Each of
these requests account for a few bytes that simply tell a processor that a child needs some
more tasks. This request mechanism has been fully implemented and we have ensured that no
deadlock occurred in our thousands of experiments, even when some load-variations occurred,
resulting in brutal weight modifications. Last, throughput evaluation has been performed in
most experiments by running 200 tasks per application.

5.2 Case study

5.2.1 Impact of a decentralized control of the scheduling

As we use a decentralized control of the scheduling, the experimental fair throughput may be
smaller than the expected theoretical one (that would be reached with a tight periodic schedule
built with the lcm of the values returned by the linear program). In particular, one reason why
we may not reach the optimal throughput is that we somehow limit the number of requests
(and therefore the amount of tasks stored on each node, even if this is not a strict constraint)
that a node can send to its parents. Having a strict limit is hard because as we strictly
enforce the 1D-load balancing, it may lead to deadlocks. Figure 5 depicts the experimental
fair throughput deviation from the expected theoretical throughput for heuristics CGBC , LP-
BASED and DATA-CENTRIC (computing the theoretical throughput of the other heuristics
being out of the scope of this article) when each node maintains a maximum number of 10
pending requests in steady-state.

The average deviation is equal to 9.426%. When we increase the maximum number of
pending requests and the buffer size by a factor ten, the mean average deviation drop to 0.334%

INRIA

Scheduling multiple bags of tasks 27

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

F
re

qu
en

cy

Deviation from theoretical throughput

Figure 5: Deviation of experimental fair throughput from expected theoretical throughput

(this throughput has been evaluated with 10 times more tasks). Note that this problem of
buffer size has already been pointed out in [21, 12]. Finding the optimal throughput when
buffer sizes are bounded is a strongly NP-hard problem even in very simple situations [12].
Even though increasing buffer size leads to much better throughput, we consider that this
is not a viable approach. As a consequence, we will only consider in the following the case
where each node maintains a maximum number of 10 pending requests in steady-state.

5.2.2 Heuristic performances

Let us first compare the relative performances of our five heuristics (FCFS , BCS , CGBC ,
LP-BASED and DATA-CENTRIC). More precisely, for each experimental setting (i.e. a
given platform and a given CCR interval), we compute the logarithm of the ratio of the
experimental fair throughput of LP-BASED with the experimental fair throughput of a given
heuristic (applying a logarithm enables us to have a symmetrical value). Therefore, a positive
value means that LP-BASED performed better than the other heuristic. Figure 6 depicts the
histogram plots of these values.

First of all, we can see that most values are positive, which assesses the superiority of
LP-BASED . Then, we can see on Figure 6(a) that DATA-CENTRIC is most of the time
very close to LP-BASED , despite the distributed computation of the weights. However, the
geometric average of these ratios is equal to 1.164, which is slightly larger than the geometric
average for CGBC (1.156). The reason is that even though in most settings DATA-CENTRIC
ends up with a very good solution, in a few ones its performances are very bad (up to 16
times worse than LP-BASED). On the opposite, CGBC (see Figure 6(d)) is much more stable
since its worst performance is only two times worse than LP-BASED . Note that those failures
happen on any type of tree (small or large, filiform or wide) and that the geometric average
of these two heuristics are always very close to each other. We also have checked that these
failures are not due to an artifact of the decentralized control of the scheduling by ensuring
that the theoretical throughput has the same behavior. We are still investigating the reasons
why DATA-CENTRIC fails on some instances and suspect that it is due to the use of the
sometimes misleading intuition of Proposition 1.

Unsurprisingly, BCS leads to very bad results. In many situations (more than 35% ac-
tually), an application has been particularly unfavored and the fair experimental throughput
was close to 0. The logarithm of the deviation for these situations has been normalized to

RR n
�

5739

28 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 0 2 4 6 8

F
re

qu
en

cy

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3

Log(deviation from LP-BASED heuristic)

DATA-CENTRIC

(a) Performances of DATA-CENTRIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 0 2 4 6 8

F
re

qu
en

cy

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3

Log(deviation from LP-BASED heuristic)

FCFS

(b) Performances of FCFS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 0 2 4 6 8

F
re

qu
en

cy

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3

Log(deviation from LP-BASED heuristic)

BCS

(c) Performances of BCS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−2 0 2 4 6 8

F
re

qu
en

cy

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5 3

Log(deviation from LP-BASED heuristic)

CGBC

(d) Performances of CGBC

Figure 6: Logarithm of the deviation from LP-BASED performances

INRIA

Scheduling multiple bags of tasks 29

8. These poor results advocate the need for fairness guarantees in distributed computing
environment like the ones we consider.

Last, the geometrical average of FCFS is 1.564 and in the worst case, its performances
are more than 8 times worse the LP-BASED situation. On the average, FCFS is therefore
much worse than LP-BASED . On small platforms, the performances for FCFS and CGBC
have the same order of magnitude. However, on larger ones (50 and 100), CGBC performs
much better (geometrical average equal to 1.243) than FCFS (geometrical average equal to
2.0399).

6 Related Work

We classify several related papers along the following four main lines:

Models for heterogeneous platforms – In the literature, one-port models come in two
variants. In the unidirectional variant, a processor cannot be involved in more than
one communication at a given time-step, either a send or a receive. In the bidirectional
model, a processor can send and receive in parallel, but at most to a given neighbor
in each direction. In both variants, if Pu sends a message to Pv, both Pu and Pv are
blocked throughout the communication.

The bidirectional one-port model is used by Bhat et al. [17, 18] for fixed-size messages.
They advocate its use because “current hardware and software do not easily enable mul-
tiple messages to be transmitted simultaneously”. Even if non-blocking multi-threaded
communication libraries allow for initiating multiple send and receive operations, they
claim that all these operations “are eventually serialized by the single hardware port to
the network”. Experimental evidence of this fact has recently been reported by Saif and
Parashar [43], who report that asynchronous MPI sends get serialized as soon as message
sizes exceed a few megabytes. Their results hold for two popular MPI implementations,
MPICH on Linux clusters and IBM MPI on the SP2.

The one-port model fully accounts for the heterogeneity of the platform, as each link has
a different bandwidth. It generalizes a simpler model studied by Banikazemi et al. [4]
Liu [35] and Khuller and Kim [32]. In this simpler model, the communication time only
depends on the sender, not on the receiver: in other words, the communication speed
from a processor to all its neighbors is the same.

Finally, we note that some papers [5, 7] depart form the one-port model as they allow
a sending processor to initiate another communication while a previous one is still on-
going on the network. However, such models insist that there is an overhead time
to pay before being engaged in another operation, so there are not allowing for fully
simultaneous communications.

Steady-state scheduling – The steady-state approach has been pioneered by Bertsimas
and Gamarnik [14]. This technique has been used in [9, 6] to schedule independent
tasks on heterogeneous master-slave platforms. This is exactly the problem dealt with
in this paper, but for a single application. Bandwidth-centric trees are introduced in [9],
and extensive experiments are reported in [33]. Autonomous protocols for bandwidth-
centric scheduling are investigated in [21].

The steady-state approach has been used by Hong et al. [30] who extend the work in [9]
to deploy a divisible workload on a heterogeneous platform. Thanks to a special model,

RR n
�

5739

30 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

it becomes possible to apply powerful graph techniques on the target platform (a graph
weighted by link capacities and processor speeds): the solution is then a maximal flow
in this graph. In this new model, each communication link is labelled with a value li,j
that represents the number of data which may be transferred through this link in one
time-unit. Besides, the processors have a limited communication capacity: Pi can send
at most bini data and receive at most bout

i data in one time-unit. This particular model
can be justified by a network interface limited capacity at node Pi, whereas the same
node Pi is able to open as many connections as it wants (one per neighbor). Contrarily
to all other models, the one-port model is not assumed here, but the total capacity
of all ports is limited. In [30], Hong et al. propose a decentralized algorithm to solve
the problem of finding a maximum flow, and thus to coordinate the resources in the
platform.

Scheduling divisible loads – Divisible load applications can be divided among worker pro-
cesses arbitrarily, i.e. into any number of independent pieces. This corresponds to a
perfectly parallel job: any sub-task can itself be processed in parallel, and on any num-
ber of workers. In practice, this model is an approximation of applications that consist
of large numbers of identical, low-granularity computations. Because the applications
considered in this paper are composed of independent tasks, they are not fully divisible:
their granularity is fixed by the size of a task. However, allowing for scheduling rational
number of tasks in stead-state mode makes the problem very similar to divisible-load
scheduling. The main difference comes from the organization of the communications.
Instead of scheduling several communications, one for each task, the divisible load ap-
proach consists in scheduling a single communication at the beginning of the operation.
The cost of this communication is proportional to the amount of computation per-
formed. This approach is termed one-round in the divisible load literature. A star
graph is targeted in [46], with homogeneous links and different-speed processors. The
extension to heterogeneous links is dealt with in [22]. See also [42, 1] for sharing bag
of tasks in heterogeneous clusters, using a more refined platform model (including a
detailed analysis of communication times).

The one-round approach is no the only one in the divisible literature; multi-round strate-
gies divide the work into several chunks, whose processing is pipelined in several suc-
cessive rounds. When successive rounds are identical, the model becomes quite close
to steady-state scheduling. Indeed, the linear programming approach has successfully
been applied to multi-round divisible load scheduling, either for a single application [11]
or for several ones [36, 37].

Master-slave on the computational grid – Master-slave scheduling on the grid can be
based on a network-flow approach [45, 44] or on an adaptive strategy [28]. Note that the
network-flow approach of [45, 44] is possible only when using a full multiple-port model,
where the number of simultaneous communications for a given node is not bounded.
This approach has also been studied in [29]. Enabling frameworks to facilitate the
implementation of master-slave tasking are described in [25, 47].

Fairness – Fairness is a classical criteria in network bandwidth allocation. Optimizing the
sum of the throughputs is known as maximizing the throughput or utility of a network.
Optimizing this kind of objective is natural for an access provider who receives an
amount of money proportional to the throughput that he/she is able to provide and

INRIA

Scheduling multiple bags of tasks 31

who wants to maximize his profit. However, this criteria is known to be particularly
unfair and leads to starvation. That is why in section 2.3, we choose to maximize the

minimum of α(k)

w(k) rather than the sum. This criteria is known in the literature as max-
min and is intuitively as fair as possible since all throughput are computed to be as close
as possible from each other. Between these two extreme criteria, other criteria can be

found (e.g. proportional fairness that maximize
∑ log(α(k))

w(k) or minimum potential delay

that minimize
∑ 1

w(k)α(k)) and provide nice alternatives. In fact all these criteria (utility,

proportional fairness and minimize potential delay) amount to maximize the arithmetic,
geometric and harmonic mean of the throughput [20]. It is a well-known fact in the
network community [38] that max-min fairness is generally achieved by explicit-rate
calculation (e.g. in ATM networks) and rather hard to achieve in a fully-decentralized
fashion. Yet, fully distributed algorithms are known to realize proportional fairness
(some variants of TCP). Adapting such algorithms to our framework is however really
challenging as communications and computations are involved.

Last, in our framework, we use a global approach to ensure fairness. There is only one
decision maker (the root of the tree) that optimizes the expected performance of the
entire system over all jobs (by explicitly computing the rates). As we have seen with
the BCS heuristic, non-cooperative approaches where each application optimizes its
own throughput lead to a particularly unfair Nash equilibrium [31, 24]. A “third path”
could be a cooperative approach where several decision makers (each of them being
responsible for a given application) cooperate in making the decisions such that each
of them will operate at its optimum. This situation can be modelled as a cooperative
game like in [27, 26]. However in our situation, hierarchical resource sharing is rather
hard to model.

7 Conclusion

In this paper, we present several heuristics for scheduling multiple applications on a tree-
connected platform made of heterogeneous processing and communication resources. We first
presented a centralized algorithm which, given the performances of all resources, computes
an optimal schedule with respect of throughput maximization.

However, using the previous centralized algorithm requires to gather all the informa-
tion about the platform at a single location, which may be unrealistic for a large scale dis-
tributed platform, whose parameters (bandwidths, processing power) are expected to evolve
very quickly. We have therefore concentrated on distributed algorithms and designed several
decentralized heuristics. The results obtained by the most sophisticated heuristics are very
satisfying in practice, with respect of optimal throughput (as computed thanks to the optimal
centralized algorithm). Nevertheless, it seems very hard to prove approximation ratios and to
extend the results to more general platforms (whose topology is described as a general graph
and not a tree).

We have also presented an adaption of the Awerbuch-Leighton algorithm for multi-commodity
flows to our problem. Although several implementation problems have still to be solved, this
approach represents a promising way both for proving approximation results and for consid-
ering more general platforms.

We believe that this paper constitutes an important contribution to the design of schedul-
ing algorithm in the context of large-scale distributed and dynamic platforms.

RR n
�

5739

32 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

References

[1] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal sharing of bags of tasks in hetero-
geneous clusters. In 15th ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA’03), pages 1–10. ACM Press, 2003.

[2] Baruch Awerbuch and Tom Leighton. A simple local-control approximation algorithm for
multicommodity flow. In FOCS ’93: Proceedings of the 24th Conference on Foundations
of Computer Science, pages 459–468. IEEE Computer Society Press, 1993.

[3] Baruch Awerbuch and Tom Leighton. Improved approximation algorithms for the multi-
commodity flow problem and local competitive routing in dynamic networks. In STOC
’94: Proceedings of the 26h ACM symposium on Theory of Computing, pages 487–496.
ACM Press, 1994.

[4] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient collective communication on het-
erogeneous networks of workstations. In Proceedings of the 27th International Conference
on Parallel Processing (ICPP’98). IEEE Computer Society Press, 1998.

[5] M. Banikazemi, J. Sampathkumar, S. Prabhu, D.K. Panda, and P. Sadayappan. Commu-
nication modeling of heterogeneous networks of workstations for performance characteri-
zation of collective operations. In HCW’99, the 8th Heterogeneous Computing Workshop,
pages 125–133. IEEE Computer Society Press, 1999.

[6] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Scheduling
strategies for master-slave tasking on heterogeneous processor platforms. IEEE Trans.
Parallel Distributed Systems, 15(4):319–330, 2004.

[7] Amotz Bar-Noy, Sudipto Guha, Joseph (Seffi) Naor, and Baruch Schieber. Message
multicasting in heterogeneous networks. SIAM Journal on Computing, 30(2):347–358,
2000.

[8] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert. A proposal for a
heterogeneous cluster ScaLAPACK (dense linear solvers). IEEE Trans. Computers,
50(10):1052–1070, 2001.

[9] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric
allocation of independent tasks on heterogeneous platforms. In International Parallel
and Distributed Processing Symposium (IPDPS’2002). IEEE Computer Society Press,
2002.

[10] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Steady-state scheduling on
heterogeneous clusters: why and how? In 6th Workshop on Advances in Parallel and
Distributed Computational Models APDCM 2004. IEEE Computer Society Press, 2004.

[11] O. Beaumont, A. Legrand, and Y. Robert. Scheduling divisible workloads on heteroge-
neous platforms. Parallel Computing, 29:1121–1152, 2003.

[12] Olivier Beaumont, Arnaud Legrand, Loris Marchal, and Yves Robert. Independent and
divisible tasks scheduling on heterogeneous star-schaped platforms with limited memory.
In PDP’2005, 13th Euromicro Workshop on Parallel, Distributed and Network-based Pro-
cessing, pages 179–186. IEEE Computer Society Press, 2005.

INRIA

Scheduling multiple bags of tasks 33

[13] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1987.

[14] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithm for job shop schedul-
ing and packet routing. Journal of Algorithms, 33(2):296–318, 1999.

[15] V. Bharadwaj, D. Ghose, V. Mani, and T.G. Robertazzi. Scheduling Divisible Loads in
Parallel and Distributed Systems. IEEE Computer Society Press, 1996.

[16] V. Bharadwaj, D. Ghose, and T.G. Robertazzi. Divisible load theory: a new paradigm
for load scheduling in distributed systems. Cluster Computing, 6(1):7–17, 2003.

[17] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication
in distributed heterogeneous systems. In ICDCS’99 19th International Conference on
Distributed Computing Systems, pages 15–24. IEEE Computer Society Press, 1999.

[18] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication
in distributed heterogeneous systems. Journal of Parallel and Distributed Computing,
63:251–263, 2003.

[19] Berkeley Open Infrastructure for Network Computing. http://boinc.berkeley.edu.

[20] Thomas Bonald and Laurent Massoulié. Impact of fairness on internet performance. In
SIGMETRICS/Performance, pages 82–91, 2001.

[21] L. Carter, H. Casanova, J. Ferrante, and B. Kreaseck. Autonomous protocols for
bandwidth-centric scheduling of independent-task applications. In International Paral-
lel and Distributed Processing Symposium IPDPS’2003. IEEE Computer Society Press,
2003.

[22] S. Charcranoon, T.G. Robertazzi, and S. Luryi. Optimizing computing costs using di-
visible load analysis. IEEE Transactions on computers, 49(9):987–991, September 2000.

[23] Einstein@Home. http://einstein.phys.usm.edu.

[24] Ferenc Forgó, Jenö, and Ferenc Szdarovsky. Introduction to the Theory of Games: Con-
cepts, Methods, Applications. Kluwer Academic Publishers, 2 edition, 1999.

[25] J. P Goux, S. Kulkarni, J. Linderoth, and M. Yoder. An enabling framework for master-
worker applications on the computational grid. In Ninth IEEE International Symposium
on High Performance Distributed Computing (HPDC’00). IEEE Computer Society Press,
2000.

[26] Daniel Grosu and Thomas E. Carroll. A strategyproof mechanism for scheduling divisible
loads in distributed systems. In IEEE Computer Society Press, editor, Proc. of the 4th
International Symposium on Parallel and Distributed Computing (ISPDC 2005), 2005.

[27] Daniel Grosu, Antony T. Chronopoulos, and Michael Y. Leung. Load balancing in dis-
tributed systems: An approach using cooperative games. In IEEE Computer Society
Press, editor, Proceedings of the 16th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2002), pages 501–510, 2002.

RR n
�

5739

http://boinc.berkeley.edu
http://einstein.phys.usm.edu

34 O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert

[28] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adaptive scheduling for master-
worker applications on the computational grid. In R. Buyya and M. Baker, editors, Grid
Computing - GRID 2000, pages 214–227. Springer-Verlag LNCS 1971, 2000.

[29] B. Hong and V.K. Prasanna. Bandwidth-aware resource allocation for heterogeneous
computing systems to maximize throughput. In Proceedings of the 32th International
Conference on Parallel Processing (ICPP’2003). IEEE Computer Society Press, 2003.

[30] B. Hong and V.K. Prasanna. Distributed adaptive task allocation in heterogeneous com-
puting environments to maximize throughput. In International Parallel and Distributed
Processing Symposium IPDPS’2004. IEEE Computer Society Press, 2004.

[31] John F. Nash Jr. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences USA, 36:48–49, 1950.

[32] S. Khuller and Y.A. Kim. On broadcasting in heterogenous networks. In Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1011–1020.
Society for Industrial and Applied Mathematics, 2004.

[33] B. Kreaseck. Dynamic autonomous scheduling on Heterogeneous Systems. PhD thesis,
University of California, San Diego, 2003.

[34] A. Legrand, L. Marchal, and H. Casanova. Scheduling Distributed Applications: The
SimGrid Simulation Framework. In Proceedings of the Third IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid’03), May 2003.

[35] P. Liu. Broadcast scheduling optimization for heterogeneous cluster systems. Journal of
Algorithms, 42(1):135–152, 2002.

[36] Loris Marchal, Yang Yang, Henri Casanova, and Yves Robert. A realistic net-
work/application model for scheduling divisible loads on large-scale platforms. In Inter-
national Parallel and Distributed Processing Symposium IPDPS’2005. IEEE Computer
Society Press, 2005.

[37] Loris Marchal, Yang Yang, Henri Casanova, and Yves Robert. Steady-state scheduling of
multiple divisible load applications on wide-area distributed computing platforms. Int.
Journal of High Performance Computing Applications, 2006, to appear.

[38] Laurent Massoulié and James Roberts. Bandwidth sharing: Objectives and algorithms.
Transactions on Networking, 10(3):320–328, june 2002.

[39] Anthony L. Peressini, Francis E. Sullivan, and J.J. Jr. Uhl. The Mathematics of Nonlinear
Programming. Springer, 1 edition, 1993.

[40] Yuval Rabani. Local competitive routing and the multi-
commodity flow problem. Class notes, lectures 8-9: see
http://www.cs.technion.ac.il/~rabani/236604.96.wi.html.

[41] T.G. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer, 36(5):63–68,
2003.

INRIA

http://www.cs.technion.ac.il/~rabani/236604.96.wi.html

Scheduling multiple bags of tasks 35

[42] A. L. Rosenberg. Sharing partitionable workloads in heterogeneous NOws: greedier is
not better. In Cluster Computing 2001, pages 124–131. IEEE Computer Society Press,
2001.

[43] T. Saif and M. Parashar. Understanding the behavior and performance of non-blocking
communications in MPI. In Proceedings of Euro-Par 2004: Parallel Processing, LNCS
3149, pages 173–182. Springer, 2004.

[44] G. Shao. Adaptive scheduling of master/worker applications on distributed computational
resources. PhD thesis, Dept. of Computer Science, University Of California at San Diego,
2001.

[45] G. Shao, F. Berman, and R. Wolski. Master/slave computing on the grid. In Heteroge-
neous Computing Workshop HCW’00. IEEE Computer Society Press, 2000.

[46] J. Sohn, T.G. Robertazzi, and S. Luryi. Optimizing computing costs using divisible load
analysis. IEEE Transactions on parallel and distributed systems, 9(3):225–234, March
1998.

[47] J. B. Weissman. Scheduling multi-component applications in heterogeneous wide-area
networks. In Heterogeneous Computing Workshop HCW’00. IEEE Computer Society
Press, 2000.

RR n
�

5739

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Platform and Application Model
	2.1 Platform Model
	2.2 Application Model
	2.3 Objective Function

	3 Computing the Optimal Solution
	3.1 Star networks
	3.1.1 Linear Program
	3.1.2 Reconstructing a Periodic Schedule
	3.1.3 Structure of the Optimal Solution

	3.2 Tree-shaped Platforms
	3.3 Multi-commodity flows
	3.3.1 Problem formulation
	3.3.2 The Awerbuch-Leighton Algorithm
	3.3.3 Adaption to the throughput optimization problem
	3.3.4 Hints for a distributed implementation

	4 Design of Decentralized Heuristics
	4.1 Centralized demand-driven (LP-BASED)
	4.2 First Come First Served
	4.3 Coarse-Grain
	4.4 Blind Co-Scheduling
	4.5 Decentralized Demand-Driven

	5 Simulation Results
	5.1 Evaluation methodology
	5.1.1 Throughput evaluation
	5.1.2 Platform generation
	5.1.3 Application generation
	5.1.4 Heuristic implementation

	5.2 Case study
	5.2.1 Impact of a decentralized control of the scheduling
	5.2.2 Heuristic performances

	6 Related Work
	7 Conclusion

