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Abstract: Security protocols are widely used in open modern networks to ensure safe com-
munications. It is now recognized that formal analysis can provide the level of assurance
required by both developers and users of the protocols. Unfortunately it is generally unde-
cidable to certify whether a protocol is safe or not. However the automatic verification of
security protocols can be attempted using abstraction-based approximation. For this pur-
pose, tree automata approximations were introduced by Genet and Klay in 2000. In this
paper, we propose an extension of their techniques making the approach efficiently auto-
matic. Our contribution has been implementing in the TA4SP tool with a high level specifi-
cation language as input format, providing positive practical results on industrial security
protocols.

Key-words: Security protocols, verifications, approximations, abstractions

* LIFC — Université de Franche-Comté, email: boichut@Quniv-fcomte.fr
** LIFC — Université de Franche-Comté, email: heampc@Quniv-fcomte.fr
*** LIFC — Université de Franche-Comté, email: kouchna@univ-fcomte.fr

Unité de recherche INRIA Lorraine
LORIA, Technopble de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lés-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 383 27 83 19



Approximations pour la vérification automatique de
protocoles de sécurité

Résumé : De nos jours, les protocoles de sécurité (ssh, https,...) sont intensivement utilisés.
Nous nous intéressons a la vérification de tels protocoles d’un point de vue symbolique :
méme si ’on suppose que les primitives cryptographiques utilisées sont parfaites, des failles
peuvent néanmoins intervenir & cause de la parallelisation des sessions. C’est ce qu’on appelle
par exemple les "man in the middle attacks". Nous avons pour objectif de vérifier qu'un
protocole ne comporte pas de telles failles.

D’un point de vue général, méme dans des cas trés restreints, ce probléme est indécidable
pour un nombre non borné de sessions. Nous utilisons alors une méthode introduite par
Genet et Klay utilisant des approximations et des abstractions. Nous montrerons comment,
cette méthode peut étre automatisée pour devenir semi-algorithmique et pour fournir, en
pratique, des résultats concluants. Nous présenterons aussi I’outil TA4SP développé dans ce
cadre et utilisant un langage de spécification (HLPSL) de haut niveau.

Mots-clés : Protocoles de sécurité, vérification, approximations, abstractions
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1 Introduction

1.1 Context

It is now widely accepted that security protocols are complex objects, which should be
specified, designed and verified in a formal way. Many theoretical works have been devoted to
this problem, and useful results have been obtained. In order to verify security protocols in an
automatic way, this paper provides a new theoretical framework inspired by the abstraction-
based approximation method developed by Genet and Klay in [12]. A tool named TA4SP!,
implementing this framework, and practical results on industrial security protocols are also
presented.

Formal verification techniques for security protocols can be roughly classified in three
categories. The first category relies on an exploration of the reachable state space using
general model-checking techniques [13,6,14]. However, they only allow the verification of
finite state systems. In order to apply these techniques, the behavior of the intruder is
arbitrarily bounded. Consequently, these verification methods are not sound, but can find
bugs, though.

The second (and well-known) category for the verification of security protocols relies
on the theorem-proving techniques. Among them, we find for instance Paulson’s work [17]
with the ISABELLE prover, and Bolignano’s work [3] with Coq. With these techniques, the
protocol correctness is established for general cases; for example with an arbitrary number of
parallel sessions. Unfortunately, this approach needs large human expertise even for simple
protocols.

The third category is based on the constraint solving problem techniques. Indeed, rewrit-
ing systems and constraint solving are adequate tools for the proof of security properties
protocols [10,20,5]. This approach is as efficient as the finite model-checking one.

Current verification techniques based on model-checking method can be used whenever
the number of agents and the number of sessions between the agents (and hence the state-
space) are finite. In this case, the protocol security problem is co-NP-complete [18].

However, in a practical use, one cannot bound the number of sessions. So, it would be de-
sirable to verify protocols without these restrictions. But in this case, the problem becomes
undecidable. Abstractions [9,12] represents an attractive way to tackle this problem. Ab-
straction techniques are intensively used in program analysis and the verification of reactive
and hardware systems. The use of abstractions often provides a way to prove the correct-
ness/security of systems by over-estimating the possibility of failure. Moreover, since security
protocols are of industrial interest, it is relevant to develop fully automatic techniques and
tools accepting an intuitive input format. In this paper, we propose a formal approach to
automatically verify security protocols in an unbounded sessions number context and we
present its implementation: TA4SP.

! Tree Automata based Automatic Approximations for the Analysis of Security Protocols developed
in LIFC.
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4 Y. Boichut, P.-C. Héam, 0. Kouchnarenko

1.2 Contributions

This paper describes extensions to Genet and Klay’s method for security protocols based
on tree automata. The motivation of this paper is to obtain an efficient automatic tool ded-
icated to the verification of security protocols. The challenge is in the combination of the
three points: effectiveness (fast computation of the over-approximation in practical cases),
automaticity and precision (the semi-algorithmic approach used has to be practically rele-
vant).

Our contributions are as follows.

— Generally, security protocols cannot be encoded by left-linear term rewriting systems.
The left-linearity condition like in [11] is convenient to protocols however it has to be
verified on the fix point automaton (denoted Ay in Section 2.1). If it does not satisfy it,
the method is not safe, i.e. the automaton A, does not recognize an over-approximation
of accessible terms. We know a posteriori whether the computation is pertinent or not.
In this paper, we define a new left-linearity-like condition based on constant typing,
which is easily checked only on the initial automaton (a priori) and expressive enough
to handle security protocols.

— The method described in [12,11] is not automatic and has to be applied with the help
of an expert. Contrary to this method, we define an automatic way to generate an
approximation function which provides positive results on several industrial security
protocols in a reasonable time (less than few minutes on a usual computer).

— Since security protocols are widely used by industrials, we are interested in developing
a tool that can be used by a non expert. So, we have been implementing a connection
of TA4SP to a high level and intuitive specification language like HLPSL [4].

1.3 Layout of the Paper

This paper is organized as follows. A quick introduction to the Genet and Klay method
[12] and basic definitions are given in Section ??. Sections 3 and 4 respectively describe the
notion of symbolic normalisation and a new left linearity criterion well-adapted to the spec-
ification of security protocols (a related completion algorithm is also given). Thus, we show
how to automatically generate approximations functions in Section 5. Finally, we present
in Section 6 the TA4SP? tool (implementing the approach) and practical experimentations
obtained.

2 Preliminaries

2.1 Related Work and Genet and Klay Approach

The main idea of Genet and Klay [12] is to build an automaton whose language represents an
over-approximation of the network’s configuration with an unbounded number of sessions.

2 Tree Automata based Automatic Approximations for the Analysis of Security Protocols developed
in LIFC.

INRIA



Automatic Verification of Security Protocols Using Approximations 5

The automaton Ay represents the initial configuration of the network and different actions
the intruder is able to do (composition of messages and encryption). A TRS R defines
the abilities of the intruder to analyze messages, and each step of the protocol (I — r: 1
is the message received, and r the message sent). A term rewriting system R is runnable
if for each rule I — r € R, Var(r) C Var(l) (Var(t) is the set of variables appearing in
the term t¢), i.e., if the TRS is left-linear (a weaker left-linear-like condition is proposed
in [11]). The Timbuk?® tool computes, for a given initial automaton, a given TRS and a
given approximation function -, an automaton 4. To summarize the algorithm, starting
from the initial automaton, Timbuk finds a rule [ — r € R and a substitution ¢ such that
lo € L(A;) and ro € L(A;). Notice that one requires Var(r) C Var(l) to ensure ro to be a
ground term. Then, the approximation function 7 helps to normalize ro by adding needed
transitions to the current automaton. Finally, A; 1 recognizes ro and the computation goes
on, until reaching a fix point Ay if it exists.

The language recognized by Ay represents an over-approximation of the set of messages
that the intruder may know. To check whether the intruder may know a secret, we represent
the set of secret terms (i.e., the terms we don’t want the intruder to be able to access) by
a tree automaton Asecrot- We compute the intersection between L£(Agecret) and L(Ag) for
classical methods on tree automata. If the intersection is empty then the protocol is safe
(we are sure the intruder has no access to secret terms), otherwise one cannot conclude. See
Fig. 1 for an illustration.

% accessible
\ terms

approximation encoded by Ay,

set of secret

terms coded

by Ageccret

Fig. 1. Approximation of accessible terms

Recently, the above approach was extended to AC-tree automata (tree automata using
associative and commutative symbols) and implemented in the ACTAS tool [16].

Our improvements allow the method described in [12] to become fully automatic thank
to automatically generated approximations. This generation is based on a notion of symbolic
normalisation presented in the following section.

2.2 Background and Notations

For a definition of tree automata, the reader may refer to [7]. A tree automaton is finite if
its set of transitions is finite.

3 An OCAML tree automata library developed by T. Genet at IRISA-Rennes under GPL.
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6 Y. Boichut, P.-C. Héam, 0. Kouchnarenko

For any set A, we denote by 24 the set of subsets of A.

Let F be a finite set of symbols with their arities. The set of symbols of F with arity
1 is denoted F;. Let X be a finite set whose elements are called variables. We assume that
XNF=0.

We denote by N the set of natural integers and N* denotes the set of finite strings over
N.

A finite ordered tree ¢t over a set of labels (F, X) is a function from a prefix-closed set
Pos(t) C N* to FUX. A term t over F U X is a labeled tree whose domain Pos(t) satisfies
the following properties:

- Pos(t) is non-empty and prefix closed;
- For each p € Pos(t), if t(p) € F,, then {i | p.i € Pos(t)} ={1,...,n};
- For each p € Pos(t), if t(p) € X then {i | p.i € Pos(t)} = 0.

Each element of Pos(t) is called a position of ¢. A frontier position is a position p such that
for all @ € N, p.a ¢ Pos(t). The set of frontier positions of ¢ is denoted FPos(t). Each
position p of ¢ such that ¢(p) € F is called a functional position and is denoted Posz(¢).
The set of terms over (F,X) is denoted 7 (F,X). A term ¢ is ground if ¢ does not contain
any variables.The set of ground terms is denoted 7 (F).

A subterm ¢, of t € T(F, X) at position p is defined by:

- Pos(t,) = {i | p.i € Pos(t)}, and
- For all j € Pos(t,), t,(5) = t(p.j).

We denote by t[s], the term obtained by replacing in ¢ the subterm ¢, by s.

If X contains n elements and is (arbitrarily) ordered then a context C is an element
of 7(F,X) in which all elements of X’ occur exactly once. The expression Clt1,...,t,] for
t1,...,t, € T(F,X) denotes the term in 7 (F, X) obtained from C by replacing the i-th
element of X by ¢; for each 1 <i < n.

For every sets A and B, we denote by X'(A, B) the set of functions from A to B.

If o € ¥(X,B) and B C T(F, X) then for each term t € 7 (F, X), we denote by to the
term obtained from ¢ by replacing the variable = by o(x), for each z € X.

A term rewriting system (TRS) over 7 (F,X) is a finite set of pair (I,r) of 7 (F,X) x
T(F,X), denoted | — r, such that the set of variables occurring in r is included in the set
of variables of [. A TRS is left-linear [resp. right-linear] if in each rule [ — r, all variables
occurring in [ [resp. r] occur at most once in [ [resp. r].

In this paper, the expression left-linear-like condition is used to denote a condition on
TRS that is intuitively closed to the notion of left-linearity.

In this paper some elements are fixed:

— R is a TRS over T (F, X).

- Y ={Yi—rp |l =517 €R, p € Posg(r)} is a finite set of variables. We assume that
XNY=0and FNY = 0.

— Q denotes an infinite ordered set whose elements are called states.

INRIA



Automatic Verification of Security Protocols Using Approximations 7

3 Symbolic Normalisation

Informally, the goal of the normalisation is the following: if in a finite tree automaton A one
has lo —% q and ro /% ¢, we add to the set of transitions of A a finite set of transitions
N, called the normalisation set of the symbolic transitions rc — ¢ such that ro —7% q.
From a practical point of view, the ways to normalize two symbolic transitions roqy — ¢
and ros — ¢2 (related to the same rule [ — r) are very similar, leading to the symbolic
normalisation notion.

Definition 1. A symbolic transition (t,y) is an element of the set T(F,X UY) x (YU Q),
written t — y, such that t = f(y1,...,yn) with f € F, and y; € X UY for each 1 <i <n.

For example, g(x,y) — ¢ is a symbolic transition where g € F and x,y € X. We consider
a symbolic state as a variable in ).

Thus, we propose a symbolic normalisation allowing a reduction of a term in 7 (F, X))
corresponding to the right hand side r of a rule [ — r of R, either to a state or to a symbolic
state.

Definition 2. Given | — r € R and q € Q, the symbolic normalisation of the transition
r — q modulo | — 1 1is the set of symbolic transitions, written Norm(r — ¢,l — r), defined

by

Norm(r — ¢, 0 = 1) ={r(p)(zp.1, - 2pm) = ap |
p € Posx(r),
r(p) € F,
r(p.g) if r(p.i) € XA
Zpi = p.i € FPos(r)
Yi—rp.i Otherwise,

_ {ylﬂr,peyifp#ev
Oép—

q otherwise
1.

Notice that the variable y;_.,,; represents the symbolic state associated to the rule
I — r and the position p.i. The following example illustrates Definition 2 assuming r =
g(z,9(f(a), f(z)) where a,g, f € F and z,z € X.

Norm(r — ¢,1 — r) ={f(2) = yi—r2.2,
a — Yi—r2.1.1,
f(ylanz.l.l) — Yi—r,2.1,
I(WY1—r 2.1, Yi—r,2.2) = Yior2,
9(, Yi—r2) = q}

RR n°® 5727



8 Y. Boichut, P.-C. Héam, 0. Kouchnarenko

For instance, one has f(z) — y;_r 2.2 since the symbol f — corresponding to the subterm
f(z) —is at position 2.2 in r.

Let F be a set of symbolic transitions. We denote by Var(E) the set of variables occurring
in the elements of E, i.e., Var(E) ={y € Y | It € T(F,Y), t — y € E}. We denote by Ec
the set {toc — yo |t — y € E} of transitions.

Definition 3. An approzimation function v is a functiony : RxX(Q, X)xQ — {X(Q,W) |
W C Y} such that y(I — r,0,q) € X(Q, Var(Norm(r — ¢,1 — r))).

For example, consider r = g(x, g(f(a), f(2)). For each o and each ¢, v(I — r,0,q) is a
function from {z, z, Yi—r2.1.1, Yi—r 2.1, Yi—>r2.2, Yi—r2} 10 Q.

Definition 4. Let v be an approzimation function, A a set of transitions, | — r € R and
o € X(X,Q) such that lo —% q. The y-normalisation of the symbolic transition ro — ¢,
written Norm, (ro — q,1 — r), is defined by

Norm, (ro — ¢, — r) = [Norm(r — ¢,l — r)o]v(l — r,0,q).

For example, let us consider r = g(z, g(f(a), f(z)) with o(z) = q1, 0(2) = ¢2, and v = y(l —

r,0,q). Assume that y(yi—r2.1.1) = q1, YWi—r21) = @35 YWi—r22) = ¢ Y(Yi—r2) = @1
Then

Norm, (ro — ¢,l — 1) ={f(q2) — ¢,
a—qi,
fla1) — gs,
9(g3,9) — @1,
9(q1,q1) — q}-

Lemma 1. Let v be an approximation function, A a set of transitions, | — r € R and
o€ X (X, Q) such that loc —% q. One has

*
70 = AUNorm ro—q,l—r q.
¥

Proof. Obvious by Definition 2 and because a substitution covers the symbolic state set
corresponding to the rule [ — r.

4 Completion Algorithm and Left-Linearity

By definition, a term ¢ can be rewritten into a term s by a rule [ — 7 if there exist a position
p of t and a substitution p of the variables of ¢ by ground terms such that ¢ = ¢,[lu] and
s = tp[rp]. The idea of the normalisation is to substitute variables by states in order to
compute accessible terms from regular tree language by a TRS. Using state substitutions

INRIA



Automatic Verification of Security Protocols Using Approximations 9

rather than term substitutions is correct if at each step of the computation the automaton
A; (with the notation of Section 2.1) and R satisfy the following condition: For each rule of
R, l — r, each state q of A;, and each substitution p of the variables of I by terms, if

=%, a
then there exists a substitution o of the variables of | by states such that
l:u _>j41 lo —>j41 q-

In general, the above property is not easy to check (and sometimes false) for TRS. If the TRS
is left-linear, this condition is trivially satisfied (for more details, see [11]). However, modeling
security protocols by TRS requires some non-left-linear rules. To solve this problem, Genet
et al. in [11], propose another left-linear-like condition (implying the above condition) that
has to be (not trivially) checked either at each step of the completion or on the final fix
point automaton. We want to emphasize the fact that these conditions are not well-adapted
for practical computations: verifying the condition requires time and if the condition is not
satisfied, the computation has to be done again with another approximation function.

We define in this section a new left-linear-like condition that guarantees the correctness
of the computation. This condition is restrictive on the TRS, but

1. is expressive enough for many industrial security protocols,
2. has to be checked only on the initial automaton,
3. is easy to check.

In practice (for security protocols modeling), non left-linear variables often concern either
the identity of the agents or numbers for nonces/keys, which are constants in the framework
of nonce abstraction we have been implementing. Informally, we introduce a kind of typing
on constants, variables and states to ensure the validity of the computation.

The rest of this section is organized as follows.

The first part is dedicated to the formal definition of this typing (Definition 5) and its
technical properties (Lemmas 2 and 3). Then, we define the completion procedure in Defini-
tion 6. Finally, the correctness of this procedure is proved in Theorem 1 and Proposition 1.

Definition 5. Let Z C X, F C Fy, and f € F1. Let A be a finite tree automaton, and
v be an approximation function. We say that the pair (A,~v) is (F, Z, f)—compatible if the
following conditions are satisfied:

1) VA € F, there exists a unique state of Q, denoted qa, such that A — A qa, the function
F — Q, where A — qa, is injective, and Qp z s(A) = {qa | A € F}.

2)Vt — q € A, ift =h(q,...,qn) and 3i € [1,...,n] such that ¢; € Qp z (A), then
n=it=1and h=f.

)Vt —qe A, ifqge Qpz s(A) thent € F.

4) Vt—q€ A, ift=f(q) then ¢ € Qp z f(A).

5) Vl—reR,Vpe Pos(l), l(p) € ZUF <= Tp’ € Pos(l) such thatp=p'.1 and(p’) = f.

RR n°® 5727



10 Y. Boichut, P.-C. Héam, 0. Kouchnarenko

6) Vl—>reRVp € Pos(r), r(p) € ZUF < I € Pos(r) such that p = p'.1 and
r(p') = f-

7) V¥l — r € R,Vp € Posg(r), Vo € X¥(Q,X), Vg € Q,r(p) € F <= (I = r,0,q0)(Y1—rp) =
Gr(p) € QF,z,£(A).

Let us informally explain the above definition. Point 1) ensures that every typed variable
is one-to-one associated to a state of the automaton. Points 2-3-/) ensure that this asso-
ciation is compatible with the transitions of the automaton: states defined in point 1) can
only be used to reduce typed constants. Points §-6-7) ensure that the previous points are
preserved when applying the completion procedure (defined in Definition 6).

The two following lemmas are useful to prove that one can use state substitution rather
than term substitution by only verifying a condition on the initial automaton (Theorem 1).

Lemma 2. Let (A,v) be a (F,Z, f)-compatible pair. Let | — r € R, g € Q and p €
YX(T(F),X) such that l;n —7% q. If there exists a frontier position p of | such that I(p) € Z,
then u(l(p)) € F.

Proof. Since I(p) € Z and since (A,~) is (F, Z, f)-compatible (by condition § of Defini-
tion 5), there exists a position p’ of | such that p = p’.1 and I(p’) = f. Consequently
i = f(l). Furthermore [y —% q. Thus there exist q1,¢2 € Q such that

w(l(p)) =4 a1 and  f(q1) = go.

Since (A,~) is (F, Z, f)-compatible (by conditions 4 and & of Definition 5), one obtains
¢1 € Qr z and then u(l(p)) € F.

Lemma 3. Let (A,~) be a (F, Z, f)-compatible pair. Letl —r € R,q € Q ando € X(Q, X)
such that lo —% q. One has ¢ ¢ Qr,z ¢(A) and for all x € Var(l), if o(x) € Qr z (A) then
x € Z.

Proof. — We first prove by contradiction that ¢ ¢ Qp z ;(A). Assume that ¢ € Qp z ;(A).
Since lo —%, ¢, there exist ¢i, ..., qn, € Q such that

ey - dh) —aq.

One obtains I(e) € F because (A,v) is (F, Z, f)-compatible and ¢ € Qrz ((A). A
contradiction with Definition 5, condition 5, and we are done.

— Let 2 € Var(l) such that o(z) € QF z,(A). Since lo —%, ¢, there exist ¢1,...,¢,,¢ € Q,
1<k <n,p €Pos(l) such that I(p) =z, p=p'.1, ¢ = o(z) and

L) g1, qn) —aq-

Since (A,~v) is (F, Z, f)-compatible, it implies n = 1 and I(p’) = f. Consequently,
l(p) e ZUF. Thus x € Z.

INRIA



Automatic Verification of Security Protocols Using Approximations 11

One can now define the completion procedure. Notice that it is very closed to the one
described in [11], but well adapted to the definition of the symbolic normalisation.

Definition 6. Let A = (Q, A, Or) be a tree automaton and v an approzimation function.
We denote f(A) = (Q', A", Qs) the finite tree automaton defined by

A =AU U Norm, (ro — ¢, — r),

l—=re€R,0€X(Q,X),q€Q,lo—% q,~ro—7%q

and
Q' =0QuU{q | 3t — ¢; € Norm,(ro — ¢q,l = r) At € T(F)Q}.

To prove the main result of this section, we need the following lemma.

Lemma 4. Let Z C X, ' C Fy, and f € F1. Let A be a finite tree automaton and v be
an approzimation function. If (A,~) is (F, Z, f)-compatible then (f,(A),v) is (F,Z, f)-
compatible too.

Proof. We prove each condition of Definition 5.

1) Let A — g be a transition of f.(.A) such that A € F. Since (A, ) is (F, Z, f)-compatible,
if A— g€ A, then ¢ = ga. Assume that A — ¢ ¢ A. By Definition 6, there exist
o€ X¥QX),qd € Q, 1l —re Rsuch that A — ¢ € Norm,(roc — ¢,l — r). Thus,
by Definition 2, there exists p € Posx such that r(p) = A and either p = € and ¢ = ¢’
orp#eand ¢ =~ — r,0,¢)(yi—rp) Since (A,7) is (F, Z, f)-compatible, p # € by
condition 6 of Definition 5. Consequently, ¢ = y(I — r,0,¢')(yi—rp). Therefore, ¢ = ga
by condition 7 of Definition 5, and we are done for condition 1. Moreover, we obtain

Qr .z 1(A) = Qrz, 7 (f5(A). (1)

2) Let h(qi,...,qn) — g be a transition of f,(A). Assume that ¢, € Qp z f(A) with
1 < ¢ < n. Since (A,~) is (F, Z, f)-compatible and by Equality (1), if t — ¢ € A,
then n = ¢ =1 and h = f. Otherwise, if ¢t — ¢ ¢ A then, by Definition 6, there exist
o€ X(Q,4X),q¢d e€Q,l - re Rsuch that A — ¢ € Norm,(ro — ¢,l — r). Thus, by
Definition 2, there exists p € Posz such that 7(p) = h and there are two cases for gy.

o g =o(r(p.l)), then r(p.£) € Z because q; € Qr, z f(A) and by Lemma 3. Therefore,
since (A, ~) is (F, Z, f)-compatible by condition 6 of Definition 5, one has r(p) = f
and thus n = ¢ = 1.

o ¢ =7(—r,0,9)(Yi—rpe), then g, € F because of ¢» € O z ¢(A) and since (A7)
is (F, Z, f)-compatible by condition 7 of Definition 5. Thus, using condition 7 of
Definition 5 on (A, ), one has r(p) = f and n =¢ = 1.

We are done for condition 2 of Definition 5.
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3) Let ¢ — ¢ be a transition of f,(A) such that ¢ € Qp z ¢(f1(A)) = Qrz ;(A). By
Equality (1) and since (A,~) is (F, Z, f)-compatible, if ¢t — ¢ € A then ¢t € F. Assume
that t — ¢ ¢ A. By Definition 6, there exist o € X(Q, X), ¢’ € Q, and | — r € R such
that A — ¢ € Norm,,(ro — ¢,! — ). Thus, by Definition 2, there exists p € Posr such
that t = r(p) and either t = r(¢) and ¢ = ¢’ or ¢ = (I — 7,0,q) (Yi—rp). If t = r(e) then
lo =% q. Therefore ¢ ¢ Qp z ¢(A) by Lemma 3, a contradiction. Consequently, ¢ =
vl = 7,0,¢)(Y1—rp)- Since (A,v) is (F, Z, f)-compatible by condition 7 of Definition 5,
one hast € F.

4) Let f(¢') — ¢ be a transition of f,(A). Since (A,~v) is (F, Z, f)-compatible and by
Equality (1), if f(¢/) — ¢ € A, then ¢’ € Qp z (A). Assume that f(¢') — ¢ ¢ A.
By Definition 6, there exist 0 € X(Q,X), ¢ € Q, and I — r € R such that A —
g € Normy(ro — ¢,I — 7). Thus, by Definition 2, there exists p € Posz such that
t = r(p)(q’). Since (A,~) is (F, Z, f)-compatible by condition 6 of Definition 5, r(p.1) €
ZUF.

o If r(p.1) € Z then ¢ = o(r(p.1)) € Qp,z ¢(A) by Lemma 3.
e If r(p.1) € F then ¢’ = gy(p.1) € Qr,z,7(A) by part 1) of the current proof.
5-6) Since conditions 5 and 6 of Definition 5 are conditions on R and v, and since (A, ) is
(F, Z, f)-compatible, (f,(A),~) satisfies this condition too.

7) Since (A,7v) is (F, Z, f)-compatible and by (1), (f,(A),~) satisfies condition 7 of Defi-

nition 5.

Since the set of variables allowed to appear more than once in the left-hand side of a rule
is known, one can easily define a linearity-like condition by Definition 7 as follows.

Definition 7. Let J C X. A term rewriting system R is J—left-linear, if for every rule
l—71 of R, all p,q € FPos(l), l(p) =1(q) and l(p) € T imply p = q.

Informally, a TRS is J—left-linear if the variables of 7 may occur at most once in the
left-hand sides of the rules.

Definition 8. Let J C X. A term rewriting system R is J —right-linear, if for every rule
l—71 of R, all p,q € FPos(r), r(p) =r(q) and r(p) € J imply p = q.

Now we can claim the following inclusion result.

Theorem 1. LetZl, L ZEC A By, Fy C Fo, andfl, ceey fk € Fi. Let A = (Q,A, Qﬁnal)
be a tree automaton, and -y be an approzimation function such that (A,~v) is a (F;, Z;, fi)-
compatible pair for all i € {1,...,k}. If R is (X\ Ule(Zi))—leﬁ—linear TRS then one has

R(L(A)) U L(A) € L((f7(A),7))

and fr~(A) is (F;, Z;, fi)-compatible for all i € {1,... . k}. Moreover, if A is a finite au-
tomaton then fr ,(A) is finite too.
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Proof. By construction the set A of transitions of A is included in the set of transitions of
(f4(A),~). It implies that

L(A) € L(f4(A)).
Now we prove that R(L(A)) C L(fy(A)). Let t € L(A),l — r € R, p € Pos(t) and
€ X(T(F),X) be a substitution such that

tly = In. (2)
We prove that t[ru], € L(f(A)). Since t € L(A), there exists ¢; € Qr such that

Thus, by definition of a successful computation in a tree automaton, there exists ¢ € Q such
that

tlp =% q and tgl, =% g5 (4)

Let C]] be a ground context such that [ = Clxy,...,z,] and {z; | 1 <i <n} = Var(l). One
has

= Clp(ar), .. )] and Clu(@), ., p(@n)] =24 g- ()

Consequently, from (5) and using (2) and (4) one can deduce that there exist ¢1,...,¢, € Q
such that

Clgr,- - qn] =4 ¢ and p(z1) =5 a1, ..., w(@n) =2 Gn. (6)

We claim that there exists a substitution ¢ € X(Q, X) such that o(x;) = ¢; for all i €
{1,...,n}. Let j € {1,...,n}. There are two cases:

— If the variable x; occurs only once, i.e., if £ # j then z; # z;. In this case we set
o(x;) = q5-

— Otherwise, since R is (X\ Ule(Zi))—left—linear, there exists ¢ € {1,...,k} such that
xj € Z. Consequently, by Lemma 2, p(x;) € Fp. Thus, by condition I of Definition 5,
if 2, = x; then ¢; = ¢;n. Consequently, we can set o(x;) = g;.

Proving the claim.

Therefore and by (4), lo —% ¢. Consequently and by Lemma 1, ro _)}w (a) ¢ Moreover,
using the claim above, one obtains ru —>}W( A 4 By construction, A is included in the
set of transitions of fr .. Then, one has t[rul, =% (ay 45 by (4), proving that t[ru] €
L((f5(A),7))-

The (F;, Z;, f;)-compatibility of (f(A),~) is a direct consequence of Lemma 4.

Since R is finite, if A is finite then A’ is finite too, and we are done.
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14 Y. Boichut, P.-C. Héam, 0. Kouchnarenko

Now, one can inductively apply the previous theorem. With the above notations, f,(A)
can be used to obtain an over-approximation of R*(£(.A)). Formally,

Proposition 1. If there exists a positive integer n such that

L(f7(A)) = LIFFH(A)), then R*(L(A)) € L(f}(A)).

Proof. We first claim that for all N > 1,

RN (L(A)) € L(f3'(A)). (7)
The proof is by induction.

— For N =1, (7) is true by Theorem 1.
— Assume there exists N such that (7) is true. By Theorem 1, fV(A) is a (F;, Z;, f;) —compatible
automaton for all ¢ € {1,...,k}. Thus, applying R to (7), one obtains

R(RM(L(A))) € RIL(f (A)))- (8)
Next, Theorem 1 for fI'(A) implies

RIL(f3(A)) € L(f5(f5 (A)))- 9)
Now, using (8) and (9), one has
RNTHL(A)) C L(fNH(A)),
and we are done for the induction.

If there exists an integer n > 1 such that £(f"(A)) = L(f7*'(A)), then one can deduce
that for all N > n,

R(L(£Y (A))) S L(F(A)).

It implies that

U RY(L(A) = R*(L(A) € LIfF(A)).

N>0

5 Automatically Generated Approximations

In this section, we define two classes of approximation functions that can be automatically
computed. The first one requires a right-linearity hypothesis (generally satisfied on security
protocols) and provides a sequence of under-approximations of accessible terms. The idea is
to use new states each time it is necessary (to do that, a function ¢ is introduced). Notice
that this sequence converges to the exact set of accessible terms (Proposition 2), but not
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necessary in a finite time. The second one provides an over-approximation of accessible
terms in a finite time (Proposition 3). The function 1) is introduced for this approximation
function. Practical applications on security protocols will be discussed in Section 6.

Let Qp be a subset of Q. Let 2Z1,..., 2, C X, F1,...,Fx C Fo, f1,---,fr € F1 and
A = (Qo, A, Qy) be a tree automaton such that A is (F}, Z;, fi) — compatible for all i €
{1,...,k}.

Let

Z = Ulezi and F = UleFi and Q_(): UiQFi,Zi,fi(-A)-

Let ¢ be an injective function from R x X(Q, X) x Q x N* into Q\ Qq, F be a subset of
F, ko > 0, Zo a subset of Z of cardinality ko and 7 be an injective function from R x N* x 22
into @\ Qp such that (R x N* x 22) N (R x ¥(Q,X) x Q x N*) = ().

Let 7, be the approximation function defined by:

- Yl = 7,0,¢)(Yi—rp) = ¢l — r,0,q,p) foralll — r e R, 0 € X(Q,X), q € Q,
p € Pos(r) if r(p) € F,
- wa(l — 10, q)(ylHE;D) = dr(p) if T‘(p) S

Notice that (A,~,) is a (F}, Z;, fi) — compatible pair for all s € {1,...,k}.
The three following lemmas are useful to prove Proposition 2.

Lemma 5. If R is (X \ Z)-left and right linear then for all t € T(F) and 0 € X (Qy, X)
such that t —% ro —>;§w ) @ lo =% q and q € Qo There exists ty € T(F) such that

te R(to) and tg %;‘ q.

Proof. Let r = Clyi,...,ys] and, for all ¢ € {1,...,n}, p; be the position of y; in r. Since
t —% ro, notice that all p;’s are also positions of t. We construct now a substitution ; €
X(T(F),X) as follows:

— If a variable y occurs only once in r, i.e., there exists only one ¢ such that y = y;, we set
1(y) = tpp,-

— If a variable y occurs at least twice in 7, we may assume (without lost of generality) that
y = y1 = y2. We claim that ¢, = t,,. Indeed, by the right-linearity condition, there
exists 1 <14 < k such that y € Z;. Since (A, ~,) is (F3, Z;, f;)-compatible, there exist, by
condition 6 of Definition 5, positions p; and pj of r such that 7, = fi(y), 7, = fi(y),
pi1l = p1 and py1 = pp. Moreover, by Lemma 4, (f,_(A),",) is (Fi, Zi, fi)-compatible
too. Consequently, using condition I of Definition 5, and since ro —>>}W (4 & there exists
A € Fj such that t,, = fi(A) and t|,, = fi(A). We set u(y) = A.

— If a variable y does not occur in r, but occurs in I, we construct u(y) as in the proof of
Theorem 1.

— If a variable y does not occur neither in r, nor in I, we arbitrarily set u(y) (this value
will never be used).
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By construction, one has t = ru and for all variable y occurring in [, u(y) —% o(y).
Consequently Iy —% lo —7% q. It implies the proof of the lemma with ¢y = lj.

Lemma 6. Lett € T(F), q € Qo such that t /5% q and such that there exists a function T
from Pos(t) to Q satisfying the following conditions:

(1) 7(¢) = q and,

(i) For all p € Pos(t), t|, —y, (4 T(p) and
(4i) For all p € Pos(t) \ {e}, if 7(p) € Qo, then t|, =% 7(p).

Then there exists to € T (F) such that to —% q and t € R(to).

Proof. By (i) and (i), there exists s1 € 7 (F, Q) such that
t=% ) 8175 ¢
The transition s; — ¢ ¢ A. Indeed, if s1 — ¢ € A then s1 € T(F, Qp). Thus, by (iii),
t —* s1 —.4 ¢ which is a contradiction ( ¢ ¢ L(A, q)).
Consequently, there exist ¢/, 0 € X(X,Q) and | — r € R such that s; =1, (A) 4 €
Norm,,, (I — r,0,q') and

lo =% 4. (10)
By definition of v, and since ¢ € Qu, either ¢ = ¢/ or ¢ € Q. Since A is (F;, Z;, f;) —
compatible for all i € {1,...,k}, if ¢ € Qp, then s; — ¢ € A. It implies that ¢ = ¢’ and that

t —>},W (A) 81 —Norm(l—r,0,q) 4

If s1 ¢ T(F, Qo) then there exists a position p of s; such that s1(p) € @\ Qo. Thus s1(p)

is of the form s1(p) = ¢(I — r,0,p,q). Since  is injective, the only transition of —, (A)
leading to s1(p) is

r(P) (Ve Wimrp.1)s - - - Yo Wimrp.e)) = s1(p).
Let

82 = Sl[r(p)(%(ylﬂr,p.l)a cee a'Vsa(ylHr,p.f))]p'
One has

t =% (4) 52 ZNorm(i—r0.q) 51 ~Norm(i—ro.q) ¢-

By induction, one can iterate this construction to build a term s € 7 (F, Qp) such that
t _>>}W (A) S _>;10rm(l—>r,a',q) 4, (11)
and for all position p of s such that s(p) ¢ Q,
s(p) = r(p)- (12)

Let s = S[q1,...,qn] and let p; be the position of ¢¢ in s. Let s’ = S[t1,...,t,] with
te = qo if v(pe) € X and t; = r(p,) otherwise. By definition of Norm.,, and using (11) and
(12), one has
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—Ifg ¢ g, then r(p;) € X\ Z and o(r(ps)) = qu,
— If ¢y € Q, then either r(p;) € Z and o(r(pe)) = qu, or r(ps) € F.

It follows that s’ = ro. Furthermore, using (11) and by construction, one has

t =%, (4) T “Norm(i—ra.q) -
Moreover, if t, € Qg then t;, = 7(p,). Thus, by (iii), t,, —% t;. Consequently, we obtain

* *
t —AT0 TNorm(i—r,0,q) 4

Therefore, using (10) and Lemma 5, there exists ¢y € 7 (F) such that tg —% ¢ and t € R(to),
proving the lemma.

Lemma 7. If R is (X \ Z)-left and right-linear then one has

L(f5,(A)) € R*(L(A)).

Proof. Let P, be the following proposition:
For all t € L(f,,(A)), if there exists a function T from Pos(t) to Q such that 7(c) = q; and
for all p € Pos(t),

thy =% ) T(P) and tr(p)p = () O

and such that
{p € Pos(t) | 7(p) € Qo A tlp A5 7(p)} =n,

then t € R*(L(A)).
We prove that P, is true for all n > 0 by induction on n. To simplify notations, let

NR(t,7) = {p € Pos(t) | 7(p) € Qo and t|, /% T(p)}.

Po : Assume that ¢ and 7 follow the hypothesis of Py. We have |[NR(¢, 7)| = 0. In particular,
e € NR(t,7) sot =t|c —a 7(¢) = qy. Since A and f,_(A) have the same set of final
states, t € L(A).

Prn = Pns1: Assume that P, is true for n > 0 and that ¢ and 7 follow the hypothesis of P, 1. Since
NR(t,7) is non-empty, let p be a maximal element of NR(t,7) (for the lexicographical
order). By maximality of p, one can apply Lemma, 6 to t|,,. Thus, there exists to € 7 (F)
such that to —% 7(p) and t, € R(to). Therefore, there exists a function 7, from Pos(to)
in Qp such that for all p’, to =% 7 (p'), t{r1 (p')]p —>*J;W (A) 7(p). We define the function
T from Pos(t[to],) to Q by

o If p is not a prefix of p/, then 75(p’) = 7(p'),
o If p’ is of the form pu, then 7 (p’) = 71 (u).
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By construction, ¢ € R(t[to],) and |NR(t[to]p,72)] = n — 1. Thus, by induction, ¢ €
R*(L(A)))-

Let B, (A) be the tree automaton defined by B,(A) = fJ. (A). In the next proposition,

we prove that the approximation function v, provides an under-approximation of accessible
terms.

Proposition 2. If R is (X \ Z)-left and right-linear then for all n < 0, L(B,(A)) C
R*(L(A)), L(Bn(A)) € L(Bnt1(A)) and

U L(Ba(A) = R*(L(A)).

n>0

Proof. By definition B,11(A) = f(Bn(A))). Consequently, the set of transitions of B,,(.A)
is included in the transitions set of B,,+1(A). Thus L(B,(A)) C L(Bu+1(A)).

Now, by Theorem 1, one has for all n > 1,
R(L(Bn(A)) U L(Bn(A)) S L(Bni1(A).
Consequently, by a direct induction,
R="(A) C L(Bny1(A).

It implies that
R*(L(A)) € | L(Ba(A)).

n>0
One can prove that for all n € N, L(B,,(A)) € R*(L(A)) by a direct induction on n using

Lemma 7.

We now address the question of an over-approximation. Let zi,...,2i, be the elements Z.
Let C(A) be the tree automata defined by C(A) = f,,(A) where 4 is inductively defined
foralll - reR, o€ X(Q,X), g€ Q, p € Pos(r) by
— if r(p) € Fo, then y4(l — 7,0,9)(yi—rp) is equal to
min{q | (p) — ¢ € A}

if it exists, and to
Y(l = r,p,{o(z) | z € ZNVar(l)) otherwise.
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— if r(p) € F¢ (¢ > 0), then yA(l — r,0,¢)(Yi—rp) is equal to

min{q | r(p)(B1,...,0n) — q € A) |Bi = r(p.i)o if r(p.i) € X,
Bi = yall = 1,0,0) (Y1—rp.i)
otherwise }

if it exists and to
Yl — rp,{o(z) | z € ZNVar(l)) otherwise.

For all n,i < 0, C!(A) is inductively defined by C°(A) = C(B,(A)) and C;"(A) =
C(Ci(A)). In the next proposition, we prove that the approximation function v, provides
an over-approximation of accessible terms.

Proposition 3. If R is (X \ Z)-left-linear and if A is finite then the sequence (CF(A))r<o
is ultimately constant for all n > 0. We denote by C,,(A) its limit. The tree automaton C,,(A)
is finite. Furthermore, for all n <0, R*(L(A)) C L(C,(A)).

Proof. Since (A,~,) is a (Fj, Z;, fi) — compatible pair for all i € {1,...,k}, by induction
and using Lemma 4, (B, (A),v,) is also a (F;, Z;, f;) — compatible pair and

Qo =U;Qr, z,.1,(Bu(A) = UiQF, 2,1 (A) = UiQr, z, 1, (CE(A)).
Let g € Q, 1 — r be a rule of R and o a substitution of X'(X, Q) such that
lo _%n(A) q.
Since (CE(A),v,) is (F}, Zi, f;) — compatible, if z € Z N Var(l), then
0(2) = qo() € Q.

Consequently, {o(2) | z € ZNVar(l)) C 290 is finite (since Qp is finite). Therefore, the set
of states of Ck(A) is included in Q(B,,(A)) U(R x {Pos(r) | I — r € R} x 220 which is a
finite set. Moreover, for all n, k, the set of states of CX(A) is included in the set of states of
CF1(A). The same arguments hold for transitions. Consequently, the sequence (CX(A))x<o
is ultimately constant for all n > 0.

The inclusion R*(L(A)) C L(C,,(A)) is a direct consequence of Theorem 1.

Propositions 2 and 3 provide several upper and under-approximations of the set of ac-
cessible terms as shown in Fig. 2. Using notations of Section 2.1, one can use defined ap-
proximations in the semi-algorithm presented in Fig. 3.

Basically, when this semi-algorithm terminates, either the condition A = ) or the con-
dition F # 0 is be false. If A # () then at least one secret term is reached (the property
is violated) and if £ = ) then there are not any secret terms in the over-approximation
computed (the property is safe).
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R*(L(Ap))

Fig. 2. Inclusions of languages involved in Propositions 2 and 3

= ,C(B() (A)) N L(Asecret);
= £(CO (A)) N ﬁ(Asecret);
n = 0;
while (A=0and E #0) do
n:=n+1;
A = ,C(Bn (.A)) n L(Asecret);
E = ,C(Cn(A)) N L(Asecret);
endwhile
if(A#£0)
then return false;
else return true;
endif

A:
E

Fig. 3. Semi-algorithm using automatically generated approximation

6 Application to Security Protocols

This section is dedicated to the application of obtained results, introduced previously, to
the practical automatic verification of security protocols. In Section 6.1, we introduce the
high level specification language (HLPSLin [4]) used to specify protocols and we explain how
it is translated into the formalism of tree automata and TRS. Then, in Section 6.2 we
describe the TA4SP* tool which provides practical results on well-known protocols presented
in Subsection 6.3 and on industrial security protocols in Section 6.4. Notice that only two
agents are used to check secrecy property following results in [8].

4 Tree Automata based Automatic Approximations for the Analysis of Security Protocols developed
in LIFC.
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6.1 Specifying Protocols with Term Rewriting Systems and Tree Automata

Using TRS and/or tree automata to encode security protocols is common, see for example
[12,18,15]. In this section, we describe the specification language used by our tool and we
explain how it is translated to a TRS.

We use the protocol specification language HLPSL (High Level Protocol Specification
Language) defined in [4] and briefly presented in this section. Notice that HLPSL is used by
other tools [1,2,19].

Specification Language Protocol specifications in HLPSL are divided into roles. Some
roles (the so-called basic roles) describe the actions of one single agent in a run of a protocol
or sub-protocol. Others (composed roles) instantiate these basic roles to model an entire
protocol run (potentially consisting of the execution of multiple sub-protocols), a session of
the protocol between multiple agents, or the protocol model itself. This latter role is often
called the Environment role. For instance, the role bellow is Alice’s role in the well-known
Needham-Schroeder Public Key Protocol corrected version.
role Alice (A,B : agent,
Ka,Kb : public_key,
Snd,Rcv : channel (dy)) played_by A def=
local
State : nat,
Na : text (fresh),
Nb : text
init
State = 0
knowledge(A) = A,B,Ka,Kb,inv(Ka)
transition
1. State=0 A Rcv(start) =[>
Snd({A.Na’}_Kb)
N State’=1
2. State=1 A Rcv({Na.Nb’.B}_Ka) =|>
Snd ({Nb’}_Kb)
N State’=2
A secret(Nb’,A)
A secret(Nb’,B)
end role

This role describes what Alice does in a NSPK protocol session. The first transition is
the start of the protocol where Alice sends a nonce Na and her name A to Bob. Notice that
a primed variable means that this variable is initialized. Thus, when this variable occurs in
the right-hand side and not in the left-hand side of a rule, it is a fresh element. Thus, the
second transition means that:

— Alice receives a concatenation of 3 elements Na, Nb' and B where Na is the nonce
created in transition 1, N’ is the nonce generated by Bob and B is the Bob’s identity,
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— Alice sends Nb' encoded by Kb.

Then, given a set of roles describing the protocol and an Environment role, we define
our security goals. In Environment role, we define the concrete sessions whose execution we
want to consider. Currently, the specification language HLPSL supports only authentication
and secrecy goals.

An HLPSL specification is translated into an IF file (Intermediate Format) used by several
tools such as SATMC in [1], OFMC in [2], ATSE in [19] and TA4SP to check the properties
specified.

The TA4SP tool needs to generate a TRS, an approximation function and tree automata:
an initial automaton 4y and secret automaton Ase.r.¢ which recognizes all terms supposed
to be secret.

Term Rewriting System The TRS R represents the protocol steps and the intruder
abilities to analyze a message.
For instance, the rule below corresponds to the second transition of the example above.
state_Alice(ag(A) ,ag(B) ,pk(Ka) ,pk(Kb) ,n1(ag(A),ag(B)) ,D_Nb,
msg (crypt (pk(Ka) ,pair(nl(ag(A) ,ag(B)),
n2(ag(X) ,ag(¥))))))

state_Alice(ag(A) ,ag(B) ,pk(Ka) ,pk (Kb) ,n1(ag(A),ag(B)),
n2(ag(X) ,ag(Y)),
msg (crypt (pk (Kb) ,n2(ag(X) ,ag(¥)))))

Notice that functional symbols are denoted by words beginning with a lower-case letter,
and variables are denoted by words beginning with a capital letter. The symbols ag, pk, pair
respectively represent an agent, a public key, a constant and a concatenation operator. The
fresh elements are expressed by the symbols n1 and n2.

The TRS also expresses certain abilities of the intruder. Indeed, by using the transitions
below, the intruder can decrypt a message and analyze each component of a pair.

pair(X, Y) — Y
pair(X, Y) — X
pair (inv(pky (X)), crypt(pk(X), Y)) — Y
pair(pk(X), crypt(inv(pk(X)), Y)) — Y

Tree automata Two tree automata Ay and A+ are generated from an IF specification.
The tree automaton .4y encodes initial intruder knowledge and abilities of the intruder for
the messages composition, while Ag.qre; encodes all secret terms.

The composition ability of the intruder is handled by pertinent transitions in 4y. The
state gy is a final state of Ay, such that any term ¢ € 7(F) which can be reduced to
gy is in the initial intruder knowledge. Then, using the transition pair(qs,qr) — gy, the
intruder can compose as many messages with unbounded size as he wishes. Obviously, he
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can also encode messages using a similar rule (modulo the functional symbol). Moreover,
Ap recognizes the following terms: ag(a), ag(i), pk(k.), pk(k;) and inv(pk(k;)). Notice that
each constant a, i, k, and k; is associated to a unique state of Ag.

Thus, setting 21 = {A, B, X, Y}, 25 = {Ka, Kb}, Fy ={a,i}, F» = {ka, kb}, f1 = {ag}
and fo = {pk}, R and Aj follow the conditions of Definition 5. For the TRS R, constants
or variables (substitutable by a constant) are protected by the same functional symbol in
left-hand side as in the right-hand side of each rule of R. Furthermore, these variables are the
only ones allowed to appear at least twice in one side or in the other one of a rule. Thus, this
TRS is J-left-linear and J-right-linear where J = X \ Z and Z = {4, B, X0, X1, Ka, Kb}.
For the automaton Ap, each constant is protected by a functional symbol, and moreover
each constant is associated to a unique state of Ag.

The tree automaton Ase.re+ has to be generated too. This tree automaton recognizes all
terms supposed to be secret. For instance, in the example presented above, the nonce Nb has
been translated into n2(ag(X), agt(Y")). Thus, the term secret(Nb', A), in the HLPSL speci-
fication described in Section 6.1, remains to be added in Ayt by the following transitions:

a — qi, ag(q1) — q2, and n2(‘]2; L]2) — {secret

where secrer is a final state of Agecrer-
The last important point concerns the approximation function v 4 dealing with the ap-
proximated case.

Approximation Function Since the number of agents is restricted to two following [8],
F;, f; and Z; are fixed. Thus, following the description presented at the end of Section 5,
one can easily define the approximation function 4.

Following this description, v 4 satisfies the conditions of Definition 5, since R and Ay
follow this definition too and since for all the constants in F; where 4 has to normalise
them, v 4 associates the unique possible state to these constants. Thus, f,, has the properties
given by Lemma 4, Theorem 1 and Proposition 1. The protocol verification can be done.

6.2 Tree Automata based Automatic Approximations for the Analysis of
Security Protocols

The symbolic approximation approach has been implemented (the architecture of the tool,
called TA4SP, is displayed in Fig. 4).

It combines the existing Timbuk2® library, and the following tools we have been imple-
menting.

— A Timbuk?2 package which computes a tree automaton recognising an over-approximation
of the reachable terms as defined in Section 2.1. As for Timbuk?2, its implementation is
done in OCAML.

 An OCAML tree automata library developed by T. Genet at IRISA-Rennes under GPL. Notice that
we use the second version of Timbuk (Timbuk2).
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— A translator from the IF into Timbuk?2 input file, called IF2 Timbuk2. This tool generates:
e the TRS from the section rules of the IF specification,
e the initial automaton from the section inits of the IF specification,
e the set of undesirable configurations (nonces, keys, etc.) as a tree automaton Agecret
from the section goals of the IF specification, and
e the approximation function used for the normalisation from the section rules of
the IF specification.

Timbuk?2 is a collection of tools for achieving proofs of reachability over TRS and for ma-
nipulating tree automata (bottom-up non-deterministic finite tree automata). The TA4SP in-
put is an IF specification which is generated from an HLPSL specification by HLPSL2IF. Then
IF2Timbuk2 generates a specification for Timbuk2 which computes an over or under approx-
imation of the reachable terms. Thus, the intersection between this automaton and Agecret
is computed, which leads to generate an output containing:

— a description of the method used (over-approximation or not);

— the result obtained by TA4SP which is “true”, “false” or “don’t know”. The answer “true”
means that the protocol is secure (empty intersection with secret terms), while the
answer “false” means that there is a potential attack (however, this cannot be certain
since we have used approximations and abstractions). The tools answers “don’t know”
when none of the above answers can be provided.

6.3 Protocols NSPK, NSPK-Lowe, RSA

These protocols NSPK, NSPK-Lowe and RSA have been checked in the under-approximation
context by TA4SP and well-known results have been confirmed.

For NSPK and NSPK-Lowe, the completion program terminates since the TRS associated
allows to do it. Thus, R*(L(.A))) is exactly computed.

Concerning NSPK protocol, the secrecy of a fresh element is not verified. Therefore, this
same property has been verified on the corrected version NSPK-Lowe protocol, and there is
no attack in our model.

Concerning RSA protocol, the context of a run is that each agent does not know the
public key of the others. Thus knowing x and thinking to communicate with the agent w,
the agent w cannot verify the validity of a message crypt (pk(y) ,x) because w does not
know pk(y). The computation of R*(L(.A)) does not terminate for this protocol, but by
computing B3(Ag) N Asecret, the secrecy property is not verified.

In order to make the computation stop, the approximation is used for n > 3. Thus, the
secrecy property is not safe too.

Using the under-approximation context for these three protocols, TA4SP gives a positive
result® for each of them.

6 A positive result is true or false. True and false mean respectively that there is no attack and
there is an attack in our verification context.
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Fig. 4. TA4SP

6.4 Other Practical Results

For most of protocols listed in Table 1, the computation of R*(L£(.A))) is not possible. More-

over, there is no positive result for any n > 1. Thus, an over approximation of R*(L(A))) is
computed for each of them.

Table 1. Practical Results

Protocol Secrecy Time (s)
CHAPv2 verified 10.59
EKE verified 49.24
SHARE verified 48.97
IKEv2-CHILD verified 274.92
TLS verified  157.28
EAP_SIM  verified 2146.45
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For all tested protocols (see Table 1), the intersection between the over-approximation
of the reachable terms and the set of secret terms is empty; all the protocols are verified.
These results show that the abstractions and the approximations used are not too coarse.
Notice that for the protocols IKEv2-CHILD and SHARE, we have modified the TRS by
renaming some non left-linear variables. The experiments show that the computation time
depends on the size of the TRS, on the number of variables occurring in the rules and on the
renaming of non left-linear variables. This latter case is an important point. Indeed, in a real
execution of the protocol, an agent can compare an element to another one. Our approach
does not allow this. And thus, a large number of acceptable” messages could be composed
by the intruder. Among all these messages, many of them would not have to be accepted by
the agents in a real execution of the protocol.

The tests have been performed on a Pentium4 2.4GHz with 640 MB of RAM.

7 Conclusion

In this article, we have presented a fully automatic approach to verify security protocols with
an unbounded number of sessions. Practical tests on industrial security protocols, related
to Internet communications, show the efficiency of this approach. Currently we only verify
secrecy properties. We intend to develop techniques to automatically verify other properties,
such as authentication. Recent work [16] shows that using associative-commutative finite tree
automata is relevant to encode security protocols. We are interested in prospecting whether
our automatically generated approximation functions may be used in the framework of [16].
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