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Abstract: Numerical integration is an operation that is frequently available in multiple
precision numerical software packages. The different quadrature schemes used are con-
sidered well studied but the roundoff errors that result from the computation are often
neglected, and the actual accuracy of the results are therefore seldom rigorously proven.

We focus on the Gauss-Legendre quadrature scheme and describe the algorithms needed
in our implementation. A thorough error analysis is given as well as experimental error
measurements and timings.
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Intégration de Gauss-Legendre en précision arbitraire avec
arrondi correct

Résumé : L’intégration numérique est une opération fréquemment disponible dans les
logiciels de calcul numérique en précision arbitraire. Bien que les différentes méthodes
d’intégration aient été bien étudiées du point de vue mathématique, l’erreur qui résulte
des arrondis lors de l’évaluation est souvent négligée, et la précision finale des calculs n’est
pas prouvée.

Nous étudions la méthode d’intégration de Gauss-Legendre et décrivons les algorithmes
utilisés dans notre implémentation. Une analyse rigoureuse de l’erreur ainsi que des résul-
tats expérimentaux sont fournis.

Mots-clés : intégration numérique, arrondi correct, Gauss-Legendre, précision arbitraire.
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1 Introduction
Numerical integration is readily available in most multiple precision numerical computa-
tion software (e.g. Pari/GP, MuPAD, Mathematica, Maple, . . . ). The working precision can
usually be changed between computations and the software displays the computed result
with desired precision (some software cheat and use a greater internal precision than what
is displayed). At this point the user is at a loss to determine how many if any of the dig-
its in the returned result are correct. Let us try a simple example and ask MuPAD 2.5.3,
Pari/GP 2.1.6, and Maple 9 for the value of I =

∫ 106+π

106 sin(sin(x))dx with 19 digits of pre-
cision:

>> DIGITS := 19: numeric::quadrature(sin(sin(x)), x=10^6.. 10^6+PI);
1.661291708545107576

? default(realprecision,19); intnum(x=10^6,10^6+Pi,sin(sin(x)))
%1 = 1.661291708545990308

> Digits:=19: evalf(Int(sin(sin(x)), x = 10^6.. 10^6 + Pi));
1.661291708545107059

So we get three different results depending on the software used, which is more than
enough. This disappointing observation is easy to explain. Although the semantics of
floating-point numbers computations is well defined when those computations are re-
stricted to the four basic operations (thanks to the IEEE754 standard [1]), nothing is guar-
anteed as soon as computations are composed (think for example of the double rounding
problem), or transcendental functions like sin are used. Hence the difficulty of a correctly
rounded numerical quadrature operation.

Several approaches were made to surpass these shortcomings when computing inte-
grals. One can mention the use of adaptive quadrature functions (in MuPAD [2]), or dy-
namic error control (of simple or multiple integrals [3, 4]). Our work differs from these
approaches in that we seek a correctly rounded result for which a proven bound on the er-
ror is needed. We need to provide more than an estimation and instead give a guaranteed
error bound on the final result which takes into account all errors, including the roundoff
errors which are the toughest to measure properly. We emphasize the fact that computing
the correct rounding of the integral is only possible if its value is not exactly representable
by a floating-point number, in which special case the problem is undecidable and we can
only provide a result with an absolute error bound as small as desired.

We first describe briefly the Gauss-Legendre integration from a mathematical point of
view. A more detailed study of the Gauss family of integration methods with correspond-
ing weight functions can be found in [5]. In this paper, f : [a, b] → R is the C∞ function
we want to integrate on a finite domain [a, b] and n is the number of points of the Gauss-
Legendre method. Let

I =

∫ b

a

f(x)dx
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4 Laurent Fousse

be the exact value of the integral. We define the inner product of f and g on [a, b] for the
admissible weight function w as

< f, g >=

∫ b

a

w(x)f(x)g(x)dx.

This leads to the definition of a sequence of orthogonal polynomials (pi)i≥0 such that:

∀i ∈ N, deg(pi) = i

∀(i, j) ∈ N2, < pi, pj >= 0 if i = j

and the leading coefficient ki of pi is positive. For fixed n > 0, pn has n distinct roots in
]a, b[ which we name x0 < x1 < . . . < xn−1. The Gauss quadrature method associated to
the weight function w on [a, b] is the interpolatory method at evaluation points (xi)0≤i<n

such that ∫ b

a

w(x)p(x)dx =

n−1∑

i=0

wip(xi)

holds for every polynomial p of degree at most n−1 (this is enough to define the weights wi

although the method will be shown to integrate accurately polynomials of degree at most
2n− 1).

The Gauss-Legendre quadrature method is the Gauss method for the weight function
w = 1. Additionally the Legendre polynomials are usually defined on [−1, 1] and normal-
ized such that Pn(1) = 1 and we will follow this custom here.

In section 2 we will describe the algorithms used to compute the Legendre polynomials,
the evaluation points and the coefficients of the method. The mathematical error of the
method will then be discussed. In section 3 the actual quadrature algorithm is explained
and the error analyzed. We follow with experiments and some conclusive remarks.

2 Algorithms
In the rest of this paper Pn is the Legendre polynomials of degree n defined on [−1, 1] as
usual. The quadrature method on [a, b] is derived from the quadrature method on [−1, 1]
from a shifting and scaling in the polynomial. If we name (Vn) the updated family of
polynomials on [a, b] we have the simple formulas

Vn(u) = Pn

(
2u− (b + a)

b− a

)
and Pn(x) = Vn

(
a + b + x(b− a)

2

)
.

When translating the associated quantities (evaluation points and weights) from [−1, 1] to
the target domain [a, b] the details of the translation are omitted for the sake of simplicity.
We will however take into account the error corresponding to this translation.

INRIA
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2.1 Legendre Polynomials
Like other orthogonal polynomial sequences, the (Pn)n≥0 satisfy a recurrence relationship:





P0(X) = 1
P1(X) = X

(n + 1)Pn+1(X) = (2n + 1)XPn(X)− nPn−1(X).
(1)

From this we deduce that Pn has only monomials of degree the same parity as n and has
rational coefficients. We assume that the common denominator is always a power of 2.
Thus Pn can be written

Pn(X) =

{
2−dnQn(X2) if n is even

2−dnXQn(X2) otherwise.

The problem of computing Pn is reduced to that of computing Qn and dn. The procedure
is detailed in Algorithm 1. Details for the case of the constant coefficient have been omitted
on line 8.

Algorithm 1 Computation of the Legendre Polynomials
1: Q0 ← 1
2: Q1 ← 1
3: d0 ← 0
4: d1 ← 0
5: p← 0 . holds the parity of the polynomial currently computed
6: for i← 2 to n do
7: α← d1−p − dp

8: Qp ← 2α(i− 1)Qp + (2i− 1)Xp−1Q1−p

9: r ← max({n ∈ N | 2n|i})
10: s← max({n ∈ N | 2n|Qp})
11: Qp ← 2r−s

i
Qp

12: dp ← d1−p + r − s
13: p← 1− p
14: end for

2.2 Evaluation points
Computing the roots (xi)0≤i<n of Pn reduces to the computation of the roots of Qn. Let
m = bn

2 c and u0, u1, . . . um−1 be the roots of Qn, we have:

{x0, x1, . . . , xn−1} =

{ {
±√u0, . . . ,±√um−1

}
if n is even,{

±√u0, . . . ,±√um−1,
}
∪ {0} otherwise.

where 0 < u0 < u1 < . . . < um−1. The process of computing the roots of Qn has two steps:

RR n° 5705



6 Laurent Fousse

1. root isolation, that is finding m intervals that contain each exactly one root of Qn,

2. root refinement.

The root isolation is made using Uspensky’s algorithm as described in [6]. The input of the
algorithm is Qn(x), and the output is a sequence of m + 1 intervals of the form ci

2li
where ci

and li are integers and such that [ ci

2li
, ci+1

2li
] contains exactly one root of Qn, namely ui. At

this step, log2(ci) bits of ui are known.
The refinement is done using dichotomy and Newton iteration.

2.2.1 Dichotomy

Performing a dichotomy to refine each root is a straightforward method but quite slow if
done naively. Since Qn(X) =

∑m

i=0 aiX
i has integer coefficients, it is possible to compute

the sign of Qn( c
2l ) as sign

(
2lmQn( c

2l )
)

= sign
(∑m

i=0 ci2l(m−i)
)

but the cost turns out to be
prohibitive as the integers involved are large and only one bit is gained at each step.

Instead we try to decrease the complexity of the computation by using intervals for the
coefficients, where the bounds of the intervals are derived from the coefficients by truncat-
ing and rounding. Writing the expansion of Qn near the target root ui:

Qn(u) = (u− ui)Q
′
n(ui) +O((u− ui)

2)

so it is expected that the required precision used to compute Qn(u) and to successfully tell
the sign despite the roundoff errors is approximately the number of current known good
bits − log2 |u − ui|, up to a constant factor. If the interval computed for Qn(u) contains 0,
the coefficients of Qn are truncated to a higher precision until we can decide.

The algorithm stops when we have reached the desired accuracy p in number of bits,
that is log2(c) > p.

2.2.2 Newton iteration

Once the isolating interval for each root is sufficiently small, the faster Newton iteration is
used. Since our error analysis requires a guaranteed error bound on the root, we use the
interval Newton iteration described in [7].

2.3 Weights
The weights (wi)0≤i<n verify

∫ 1

−1

p(x)dx =

n−1∑

i=0

wip(xi)

for every polynomial of degree ≤ 2n− 1 (see section 3.1).
For i ∈ [0, n − 1] we write Li(x) =

∏
j 6=i(x − xj). Notice that Li(x) = Pn(x)

(x−xi)P ′

n
(xi)

. L′
i has

INRIA
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degree n− 2 so by definition < L′
i, Pn >= 0.

0 =

∫ 1

−1

Pn(x)L′
i(x)dx = [Pn(x)Li(x)]

1
−1 −

∫ 1

−1

P ′
n(x)Li(x)dx.

P ′
nLi has degree 2n− 1 so it is integrated exactly by the method:

0 =
P 2

n(1)

(1− xi)P ′
n(xi)

− P 2
n(−1)

(−1− xi)P ′
n(xi)

−
n−1∑

j=0

wjP
′
n(xj)Li(xj).

From Equation (1) we can see that |Pn(±1)| = 1. Moreover Li(xj) = δi,j (Kronecker delta)
so

0 =
2

(1− x2
i )P

′
n(xi)

− wiP
′
n(xi),

wi =
2

(1− x2
i )P

′2
n (xi)

. (2)

In Section 2.2 we showed how to compute xi with desired accuracy. Since P ′
n is known

exactly we can evaluate P ′
n(xi) with a dynamic error bound (known as running error in [8]),

and from that compute wi with arbitrary accuracy.

3 Error bounds

3.1 Mathematical error
In this section we prove the bound on the mathematical error made with the Gauss-Legendre
quadrature method. A generic proof for any weight function w can be found in [5]. We
adapt and recall it here for completeness. Some proofs are omitted and can be found in [9].

Theorem 1. The Gauss-Legendre method on [a, b] with n points is exact for polynomials of degree
≤ 2n− 1.

PROOF: by definition, the Gauss-Legendre quadrature scheme being of interpolatory type,
it is exact of polynomials of degree ≤ n− 1. Let f be a polynomial of degree ≤ 2n− 1. We
write

f = q · Pn + r, with deg(q) ≤ n− 1, deg(r) ≤ n− 1.

Since Pn is orthogonal to the set Pn−1 of polynomials of degree≤ n− 1 we have
∫ 1

−1

q(x)Pn(x)dx = 0

and ∫ 1

−1

r(x)dx = I(r)

RR n° 5705



8 Laurent Fousse

is computed exactly by the method.
Let E[f ] =

∫ 1

−1 f(x)dx−∑n−1
i=0 wif(xi) be the error of the method for the function f . Let

h be the polynomial of degree≤ 2n− 1 such that

∀i ∈ [0, n− 1], f(xi) = h(xi) and f ′(xi) = h′(xi).

Then the remainder theorem for polynomial interpolation states that

f(x) = h(x) +
f (2n)(ζ(x))

(2n!)
(x− x0)

2(x− x1)
2 . . . (x− xn−1)

2

for −1 ≤ x ≤ 1 and a < ζ(x) < b. From Theorem (1), E[h] = 0 so we have

E[f ] = E

[
f (2n)(ζ(x))

(2n!)
(x− x0)

2(x − x1)
2 . . . (x − xn−1)

2

]

= −
∫ 1

−1

f (2n)(ζ(x))

(2n!)

P 2
n(x)

k2
n

dx.

With the mean value theorem there exists ζ ∈]− 1, 1[ such that

E[f ] = −f (2n)(ζ)

k2
n(2n!)

∫ 1

−1

P 2
n(x)dx.

By multiplying Equation (1) by Pn−1(x) and integrating over [−1, 1] we get

(2n + 1)

∫ 1

−1

xPn−1(x)Pn(x)dx = n

∫ 1

−1

P 2
n−1(x)dx.

Let vn =
∫ 1

−1
P 2

n(x)dx. By Euclidean division we can write xPn−1(x) = kn−1

kn

Pn(x) + R(x)
where deg(R) < n. So

(2n + 1)kn−1

kn

∫ 1

−1

P 2
n(x)dx = n

∫ 1

−1

P 2
n−1(x)dx

(2n + 1)kn−1

kn

vn = nvn−1

vn =

(
n

2n + 1

)
kn

kn−1
vn−1.

Again from Equation (1) we get kn = 2n−1
n

kn−1, so

vn =
2n− 1

2n + 1
vn−1

vn =
2

2n + 1

kn =
(2n− 1)!

(n− 1)!n!2n−1
.

INRIA
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Finally the error term is

E[f ] = f (2n)(ζ)
2[(n!)(n− 1)!]2 · 22n−2

((2n− 1)!)2(2n)!(2n + 1)

=
22n+1(n!)4

(2n + 1)[(2n)!]3
f (2n)(ζ).

Taking into account the scaling from [−1, 1] to [a, b] there is an additional
(

2
b−a

)n

factor in

kn and b−a
2 in vn.

Theorem 2. Let M a bound of |f (2n)| on [a, b], then the error of the Gauss-Legendre integration of
f on [a, b] with infinite precision is bounded by

(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M.

3.2 Roundoff errors

Algorithm 2 Gauss-Legendre integration

INPUT: â, b̂− a, (ŵi), f, (v̂i), n . where wi are the weights and vi is defined in §3.2.
OUTPUT: Î .

1: for i← 0 to n− 1 do
2: t← ◦((b̂− a) · v̂i)
3: x̂i ← ◦(t + â)

4: f̂i ← ◦(f(x̂i))

5: ŷi ← ◦(f̂i · ŵi)
6: end for
7: Ŝ ← sum(ŷi, i = 0 . . . n− 1) . with Demmel and Hida algorithm [10]
8: D̂ ← ◦(b̂− a)/2

9: return ◦(D̂Ŝ) = Î

For the error analysis of Algorithm 2, we need a few useful lemmas concerning the
“ulp1 calculus”, as well as some definitions. The floating-point numbers are represented
with radix 2 (this could be generalized for any radix but radix 2 is simpler and is natural
on computers). For this section, p is the working precision, and we assume all floating-
point numbers are normalized, which means in our notations that the exponent range is
unbounded.

Definition 1 (Exponent, Ulp). For a non-zero real number x we define E(x) := 1 + blog2 |x|c,
such that 2E(x)−1 ≤ |x| < 2E(x), and ulp(x) := 2E(x)−p.

1unit in the last place

RR n° 5705



10 Laurent Fousse

For a real x 6= 0 and a working precision p we always have 2p−1ulp(x) ≤ |x| < 2pulp(x).
If x is a floating-point number, then ulp(x) is the weight of the least significant bit — zero
or not — in the p-bit mantissa of x. For all real x, ulp(x) is always greater than zero by
definition.

Lemma 1. If c 6= 0 and x 6= 0 then c · ulp(x) < 2 · ulp(cx).

Lemma 2. Assuming no underflow (flush to zero) occurs then in all rounding modes for a non zero
real x we have: ulp(x) ≤ ulp(◦(x)), where ◦(x) is the rounding of x in the chosen mode with an
unbounded exponent range.

Lemma 3. Let x a non-zero real and ◦(x) its rounding to nearest on p bits. Then |x| ≤ (1+2−p)| ◦
(x)|.

Lemma 4. Let a and b be two non-zero floating-point numbers of the same sign and precision p
then in all rounding modes

ulp(a) + ulp(b) ≤ 3

2
ulp(◦(a + b)).

Lemma 5. For x and y real numbers and using rounding to nearest in precision p we have

| ◦ (◦(x) ◦ (y))− xy| ≤
(

5

2
+ 2−p

)
ulp(◦(◦(x) ◦ (y))).

PROOF: let u = ◦(x), v = ◦(y) and z = ◦(uv). We can write

x = u(1 + θ), y = v(1 + θ′), uv = z(1 + θ′′) where |θ|, |θ′|, |θ′′| ≤ 2−p,

|z − xy| ≤ 1

2
ulp(z) + |uv − xy|

≤ 1

2
ulp(z) + |uv|(1− (1 + θ)(1 + θ′))

≤ 1

2
ulp(z) + |uv|(21−p + 2−2p)

≤ 1

2
ulp(z) + |z|(21−p + 2−2p)(1 + 2−p).

With |z| ≤ (2p − 1)ulp(z) we have |z − xy| ≤ 1
2ulp(z) + (2 + 2−p − 21−p − 2−3p)ulp(z).

For this section we denote by x̂ the value actually computed (i.e. with all roundoff er-
rors) for a given “exact” value x, as would be computed with an infinite precision from
the beginning of the algorithm. In order to provide an error bound on the numerical re-
sult given by the Gauss-Legendre method, we need to have a step-by-step look into Algo-
rithm 2.

INRIA
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In addition to the parameters of Algorithm 2 we need an upper bound M of |f (2n)| on
[a, b]; p is the working precision expressed in the number of bits of the mantissa, a and b
given as oracles which returns their values as a rounded to nearest floating-point number
of desired precision; m an upper bound of |f ′| on [a, b]. In the rest of this section we will
prove our main theorem:

Theorem 3. Let δ byi
= ( 5

2 + 2−p)ulp(ŷi) +
(

17
4 + 23 · 2−p−2 + 3 · 2−2p−1

)
mŵiulp(x̂i), where

ŷi, ŵi and x̂i are defined in Algorithm 2. When computing the numerical quadrature of f using
Algorithm 2 the total error on the result is bounded by:

Etotal =

(
9

2
+ 3 · 2−p

)
ulp(Î) + n(1 + 2−p)D̂ ·max(δbyi

) +
(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M.

We split the error bound in three terms:

1. the mathematical error (b−a)2n+1(n!)4

(2n+1)[(2n)!]3 M ,

2. the “static” error Estat = ( 9
2 + 3 · 2−p)ulp(Î) which comes mostly from the rounding error

in the summation,

3. the evaluation error Eeval = n(1 + 2−p)D̂ · max(δbyi
) which accounts for the rest of the

rounding errors and tracks possible cancellations in the summation as well.

Corollary 1. If we assume that p ≥ 2 we have the simpler formulas:
{

δ byi
= 11

4 ulp(ŷi) + 6mŵiulp(x̂i)

Etotal = 21
4 ulp(Î) + 5n

4 D̂ ·max(δbyi
) + (b−a)2n+1(n!)4

(2n+1)[(2n)!]3 M.

The algorithm can be analyzed in several steps:

1. the computation of the weights wi, i ∈ [0, n − 1] of the method. They are computed
as explained in Section 2 as the rounded to nearest of the exact value:

|ŵi − wi| ≤
1

2
ulp(ŵi).

2. the computation of xi. Let x′
i be the corresponding evaluation point on [−1, 1], and

vi =
1+x′

i

2 . We assume vi is computed as the rounded to nearest of the exact value:

|v̂i − vi| ≤
1

2
ulp(v̂i),

x̂i = ◦(◦(v̂i · (b̂− a)) + â).

RR n° 5705



12 Laurent Fousse

Since a and b are given as oracles, we can assume that b−a as well as a were computed
as rounded to nearest of the correct value. The error analysis gives:

| ◦ (v̂i · b̂− a)− vi · (b− a)| ≤
[
5
2 + 2−p

]
ulp(◦(v̂i · b̂− a)) [Lemma 5]

|x̂i − xi| ≤ 1
2ulp(x̂i) +

[
5
2 + 2−p

]
ulp(◦(v̂i · b̂− a)) + 1

2ulp(â)
≤ ( 17

4 + 3 · 2−p−1)ulp(x̂i). [Lemma 4]

3. the computation of f(xi). We assume we have an implementation of f with correct
rounding, and we call f which returns the rounding to nearest of the exact value with
precision p. Such correctly rounded implementations of mathematical functions with
arbitrary precision on the result can be found for example in MPFR [11] for non-trivial
functions like exp, sin, arctan and numerous others.
With the already estimated error on x̂i we have:

|f(x̂i)− f(xi)| = |f ′(θi)(x̂i − xi)|, θi ∈ [min(xi, x̂i), max(xi, x̂i)]

and with an upper bound on f ′ we can bound this error absolutely. Let f̂i = ◦(f(x̂i))
be the floating-point number computed. At this step we now have:

δ bfi

= |f̂i − f(xi)| ≤ |f ′(θi)(x̂i − xi)|+ 1
2ulp(f̂i)

≤ ( 17
4 + 3 · 2−p−1)m · ulp(x̂i) + 1

2ulp(f̂i).

4. computation of the yi = f(xi) · wi. The accumulated error so far:

|ŷi − yi| ≤ 1
2ulp(ŷi) + |f̂iŵi − f(xi)wi|

≤ 1
2ulp(ŷi) + f̂i|ŵi − wi|+ wi|f̂i − f(xi)|

≤ 1
2ulp(ŷi) + 1

2 f̂iulp(ŵi) + wiδ bfi

≤ 3
2ulp(ŷi) + wi

[
( 17

4 + 3 · 2−p−1)m · ulp(x̂i) + 1
2ulp(f̂i)

]
[Lemmas 1 and 2]

≤ 3
2ulp(ŷi) + (1 + 2−p|ŵi

[
( 17

4 + 3 · 2−p−1)m · ulp(x̂i) + 1
2ulp(f̂i)

]
[Lemma 3]

≤ ( 5
2 + 2−p)ulp(ŷi) + (1 + 2−p)mŵi(

17
4 + 3 · 2−p−1)ulp(x̂i) [Lemmas 1 and 2]

≤ ( 5
2 + 2−p)ulp(ŷi) +

(
17
4 + 23 · 2−p−2 + 3 · 2−2p−1

)
mŵiulp(x̂i) = δ byi

.

Remark: when bounding the error on x̂i, f̂i as well as ŷi, the term with ulp(x̂i) van-
ishes if the error on x̂i is zero. One can easily show with our assumption that no
underflow occurs, and that if x̂i = 0 then the error on x̂i is zero (i.e. xi = 0) and
the ill-defined quantity ulp(x̂i) vanishes. For the error bound we keep track of only
max(δbyi

).

5. summation of the yi’s: this is done with Demmel and Hida summation algorithm [10],
which guarantees an error of at most 1.5 ulp on the final result. This algorithm uses a
larger working precision p′ ≈ p + log2(n). Let S =

∑n−1
i=0 yi.

|Ŝ − S| ≤ 3

2
ulp(Ŝ) + n ·max(δbyi

).

INRIA
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6. multiplication by b−a
2 : I = b−a

2 S. We note D = b−a
2 and assume as before that the

input b̂− a was computed as the rounded to nearest of its exact value. Since the
division by 2 is exact we have:

|D̂ −D| ≤ 1
2ulp(D̂)

|Î − I | ≤ 1
2ulp(Î) + |ŜD̂ − SD|

≤ 1
2ulp(Î) + 1

2 |Ŝ|ulp(D̂) + D|Ŝ − S|
≤ 3

2ulp(Î) + D
[

3
2ulp(Ŝ) + n ·max(δbyi

)
]

[Lemmas 1 and 2]

≤ 3
2ulp(Î) + (1 + 2−p)D̂

[
3
2ulp(Ŝ) + n ·max(δbyi

)
]

[Lemma 3]

≤ ( 9
2 + 3 · 2−p)ulp(Î) + n(1 + 2−p)D̂ ·max(δbyi

). [Lemmas 1 and 2]

Corollary 2. If we assume furthermore that f does not change sign on [a, b], then we have the
following better bound:

Etotal =

(
9

2
+ 3 · 2−p + (2 + 21−p)(5 + 21−p)(1 + 3 · 2−p)

)
ulp(Î)

+ nm(1 + 2−p)

(
17

4
+ 23 · 2−p−2 + 3 · 2−2p−1

)
D̂ max(ŵiulp(x̂i))

+
(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M.

PROOF: Let us assume for example that f ≥ 0, then we have

∀i ∈ [0, n− 1], ŷi = ◦(ŵi · f̂i) ≥ 0

so
ulp(ŷi) ≤ 21−pŷi.

Let S̃ =
∑n−1

i=0 ŷi, we know that

|S̃ − Ŝ| ≤ 3
2ulp(Ŝ)

S̃ ≤ (1 + 3 · 2−p)Ŝ

L =
∑n−1

i=0 ( 5
2 + 2−p)ulp(ŷi)

≤ ( 5
2 + 2−p)21−p

∑n−1
i=0 ŷi

≤ 21−p( 5
2 + 2−p)(1 + 3 · 2−p)Ŝ

≤ (5 + 21−p)(1 + 3 · 2−p)ulp(Ŝ)

From this we get the following bound on the error on Ŝ:

|Ŝ−S| ≤
(

3

2
+ (5 + 21−p)(1 + 3 · 2−p)

)
ulp(Ŝ)+nm

(
17

4
+ 23 · 2−p−2 + 3 · 2−2p−1

)
max(ŵiulp(x̂i))
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and substituting this expression in the bound of |Î − I | above yields the announced result.
Since 0 ≤ ŵi ≤ 1 and assuming p ≥ 2 we can write the simpler bound

Etotal = 30ulp(Î) + 8nmD̂ max(ulp(a), ulp(b)) +
(b− a)2n+1(n!)4

(2n + 1)[(2n)!]3
M.

4 Experiments
Algorithm 2 was implemented using the MPFR library [11]. In addition to the result of
the integration, the program gives an error bound Etotal on the computed result split in
three terms, as explained in Theorem 3. For our experiments we chose a function and an
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Figure 1: The overestimation of the error in bits when computing
∫ 3

0 exdx with 113 bits of
precision and n evaluation points.

integration domain where the exact value is known, so that we can measure precisely the
actual error of the computation (denoted by Emeas). Figure 1 shows how much pessimistic
the error bound is in number of bits, computed as log2(Etotal)− log2(Emeas) when comput-
ing the integral I =

∫ 3

0
exdx with 113 bits of working precision, the number of evaluation

points varying from 2 to 100.
The error due to roundoffs (Estat + Eeval) is quite stable. This is expected of the Gauss-

Legendre integration scheme where the weights are all positive. With this property the

INRIA
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Figure 2: The roundoff errors Eeval + Estat and the mathematical error when computing∫ 3

0
exdx with 113 bits of precision and n evaluation points.

integration can benefit from an increase in the number of evaluation points n in order to
compute a better result. This is not the case for the Newton-Cotes method for example.

The bound on the total error as given by the algorithm is close to the measured error. In
the experimental data we observe a maximum loss of 7 bits of precision on the computed
result due to a pessimistic bound. However, this overestimation of the error is noticable
for n ≥ 15 which is the point where the mathematical error becomes less than the roundoff
errors. Quite naturally our overestimation is made on the roundoff errors and not on the
mathematical error.

5 Conclusion
The Gauss-Legendre quadrature scheme provides a robust numerical integration algo-
rithm. In this paper we performed an error analysis of the algorithm that can be used
to determine dynamically an error bound on the final result. From this we can easily de-
rive a correctly rounded numerical quadrature algorithm, provided the result is not exactly
representable by a floating-point number.

The running time of the algorithm is dominated by the cost of computing the evalua-
tion points and weights (Figure 3). As future work it is planned to improve this time, for
example by using precomputed tables of roots optimized for the space.
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Figure 3: Roots and weights computation time for 113 bits of precision and n evaluation
points. Measurements made on a 3GHz Pentium 4 processor.

p nopt Predicted good bits
53 8 47
113 15 108
200 22 194
400 38 395

1000 80 995

Figure 4: Optimized order for different working precisions p in bits.

Another idea to work on is to consider composition of the integration method and chose
automatically the best composition level and n for a given function, integration domain and
the required precision with emphasis on the running time. Figure 4 gives the smallest n for
which the mathematical error is smaller than the computed bound on the roundoff error
Eeval + Estat in the computation of

∫ 3

0 exp(x)dx, and gives a first hint in this direction.
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