
HAL Id: inria-00070313
https://hal.inria.fr/inria-00070313

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Logic of Categorial Grammars: Lecture Notes
Christian Retoré

To cite this version:
Christian Retoré. The Logic of Categorial Grammars: Lecture Notes. RR-5703, INRIA. 2005, pp.105.
�inria-00070313�

https://hal.inria.fr/inria-00070313
https://hal.archives-ouvertes.fr


IS
S

N
 0

24
9-

63
99

   
   

 IS
R

N
 IN

R
IA

/R
R

--
57

03
--

F
R

+
E

N
G

ap por t  
de  r ech er ch e 

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The Logic of Categorial Grammars
Lecture Notes

Christian Retoré

N° 5703

Septembre 2005





Unité de recherche INRIA Futurs
Parc Club Orsay Université, ZAC des Vignes,

4, rue Jacques Monod, 91893 ORSAY Cedex (France)
Téléphone : +33 1 72 92 59 00 — Télécopie : +33 1 72 92 59 ??

The Logic of Categorial Grammars
Lecture Notes

Christian Retoré ∗

Thème SYM — Systèmes symboliques
Projet Signes

Rapport de recherche n° 5703 — Septembre 2005 —105 pages

Abstract: These lecture notes present categorial grammars as deductive systems, and
include detailed proofs of their main properties.

The first chapter deals with Ajdukiewicz and Bar-Hillel categorial grammars (AB
grammars), their relation to context-free grammars and their learning algorithms.

The second chapter is devoted to the Lambek calculus as a deductive system; the
weak equivalence with context free grammars is proved; we also define the mapping
from a syntactic analysis to a higher-order logical formula, which describes the seman-
tics of the parsed sentence.

The third and last chapter is about proof-nets as parse structures for Lambek gram-
mars; we show the linguistic relevance of these graphs in particular through the study
of a performance question.

Although definitions, theorems and proofs have been reformulated for pedagogical
reasons, these notes contain no personnal result but in the proofnet chapter.

Key-words: logic, proof theory, formal grammar, computational linguistics

A first version was written for a lecture on The logic of categorial grammars at ESSLLI 2000. It
has then been improved for an ACL 2001 tutorial, a lecture at ESSLLI 2003, Master/DEA lectures in
Bordeaux from 2002 to 2005.

I would like to thank the participants or readers and in particular Roberto Bonato, Pierre Castéran,
Dick Crouch, Annie Foret, Nissim Francez, Paul Gochet, Gérard Huet, Dan Klein, Yannick Le Nir, Ralf
Matthes, Laurent Miclet, Richard Moot, Sylvain Pogodalla, Géraud Sénizergues, Marc Tommasi, who
provided comments on the lecture or on the notes.

Together with some other chapters, these notes will possibly lead to a book.

∗ Université Bordeaux 1, INRIA-Futurs & LaBRI C.N.R.S.



La logique des grammaires catégorielles
Notes de cours

Résumé : Ces notes de cours présentent les grammaires catégorielles vues comme
des système déductifs; elles incluent des démonstrations détaillées de leurs principales
propriétés.

Le premier chapitre présente les grammaires AB de Ajdukiewicz et Bar-Hillel,
leurs liens avec les grammaires hors-contexte, ainsi que leurs algorithmes d’inférence
grammaticale.

Le second chapitre présente le calcul de Lambek comme un système déductif; on
y démontre notamment l’équivalence faible avec les grammaires hors-contexte; finale-
ment, on définit l’algorithme qui associe une analyse syntaxique une formule logique
d’ordre supérieur, laquelle représente la sémantique de la phrase analysée.

Le troisième et dernier chapitre présente les réseaux de démonstration comme
structures syntaxiques pour les grammaires de Lambek; l’étude d’une question de per-
formance, en autres, démontre la pertinence linguistique de ces graphes.

Bien que définitions, théorèmes et preuves aient été reformulés dans un souci
pédagogique, ces notes ne contiennent pas de résulats personnels si ce n’est dans le
chapitre réseaux de démonstration (proofnets).

Mots-clés : logique, théorie de la démonstration, grammaires formelles, linguistique
computationnelle



The logic of categorial grammars – Lecture Notes 3

Contents

0 General references 5

1 AB grammars 7
1.1 Semantic categories and Ajdukiewicz fractions . . . . . . . . . . . . . . . . . 8
1.2 Classical categorial grammars or AB grammars . . . . . . . . . . . . . . . . . 9
1.3 Example: a tiny AB grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 AB-grammars and context free grammars . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Context-free grammars . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 From context-free grammars to AB-grammars . . . . . . . . . . . . . . 14
1.4.3 From AB grammars to context-free grammars . . . . . . . . . . . . . . 15

1.5 Parsing AB grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Limitations of AB-grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Learning AB grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7.1 Grammatical inference for categorial grammars . . . . . . . . . . . . . 17
1.7.2 Unification and AB grammars . . . . . . . . . . . . . . . . . . . . . . 17
1.7.3 The RG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7.4 Other cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Lambek’s syntactic calculus 25
2.1 Lambek syntactic calculus and Lambek grammars . . . . . . . . . . . . . . . . 26
2.2 Natural deduction for Lambek calculus . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 In Prawitz style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 In Gentzen style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Sequent calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Sequent calculus and natural deduction . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 From natural deduction to sequent calculus . . . . . . . . . . . . . . . 33
2.6.2 From sequent calculus to natural deduction . . . . . . . . . . . . . . . 33

2.7 The empty sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Normalization of natural deduction . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8.1 Normalization for product free Lambek calculus . . . . . . . . . . . . 36
2.8.2 Normalization and Lambek calculus with product . . . . . . . . . . . . 40

2.9 Cut-elimination for sequent calculus . . . . . . . . . . . . . . . . . . . . . . . 40
2.10 Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

RR n° 5703



4 Christian Retoré

2.11 Models for the Lambek calculus and completeness . . . . . . . . . . . . . . . 45
2.11.1 Residuated semi-groups and the free group model . . . . . . . . . . . . 45
2.11.2 The free group model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.11.3 L is sound and complete w.r.t. residuated semi-groups . . . . . . . . . 47
2.11.4 L is sound and complete w.r.t. (free) semi-group models . . . . . . . . 49

2.12 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.13 Lambek grammars and context-free grammars . . . . . . . . . . . . . . . . . . 54

2.13.1 From context-free grammars to Lambek grammars . . . . . . . . . . . 55
2.13.2 A property of the free group . . . . . . . . . . . . . . . . . . . . . . . 56
2.13.3 Interpolation for thin sequents . . . . . . . . . . . . . . . . . . . . . . 57
2.13.4 From Lambek grammars to context-free grammars . . . . . . . . . . . 60

2.14 Lambek calculus and Montague semantics . . . . . . . . . . . . . . . . . . . . 62
2.14.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.14.2 An exercice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Lambek calculus, linear logic and proof-nets 67
3.1 Categorial language and linear logic language . . . . . . . . . . . . . . . . . . 68

3.1.1 Multiplicative linear logic language . . . . . . . . . . . . . . . . . . . 68
3.1.2 Reduced linear language (negative normal form) . . . . . . . . . . . . 69
3.1.3 Relating categories and linear logic formulae : polarities . . . . . . . . 69

3.2 Two sided calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.1 Properties of the linear two sided sequent calculus . . . . . . . . . . . 72
3.2.2 The intuitionnistic two sided calculus LPe . . . . . . . . . . . . . . . . 74
3.2.3 Proof as parse structures: too many of them . . . . . . . . . . . . . . . 76

3.3 A one sided calculus for linear logic: MLL . . . . . . . . . . . . . . . . . . . . 76
3.3.1 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 The intuitionistic restriction in one sided calculi . . . . . . . . . . . . . 80

3.4 Proof-nets : concise and expressive proofs . . . . . . . . . . . . . . . . . . . . 82
3.4.1 Proof-nets for MLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.2 Sequent calculus and proof-nets . . . . . . . . . . . . . . . . . . . . . 86
3.4.3 Intuitionistic proof-nets . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4.4 Cyclic proof-nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.5 Proof-nets for the Lambek calculus . . . . . . . . . . . . . . . . . . . 93

3.5 Parsing as proof-net construction . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.6 Proof-nets for Lambek calculus with cut . . . . . . . . . . . . . . . . . . . . . 98
3.7 Proof-nets and human processing . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.8 Semantic uses of proof-nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

INRIA



The logic of categorial grammars – Lecture Notes 5

Chapter 0

General references

Lambek’s syntactic calculus is the center of this lecture and we strongly recommend
Lambek’s original article [1], the elegance of which is hard to meet. For further general
references on this logical view of categorial grammars the reader is referred to two
chapters of the Handbook Logic and Language [2] namely [3,4]; the short survey [5]
provides a non technical and rather up to date state of the art.

If some background is needed we recommend [6] for proof theory and typed λ -
calculus and [7] for formal language theory, while [8] provides a general introduction

[1] Joachim Lambek. The mathematics of sentence structure. American mathematical monthly, pages
154–170, 1958.

[2] Johan van Benthem and Alice ter Meulen, editors. Handbook of Logic and Language. North-
Holland Elsevier, Amsterdam, 1997.

[3] Wojciech Buszkowski. Mathematical linguistics and proof theory. In van Benthem and ter Meulen
[2], chapter 12, pages 683–736.

[4] Michael Moortgat. Categorial type logic. In van Benthem and ter Meulen [2], chapter 2, pages
93–177.

[5] Christian Retoré. Systèmes déductifs et traitement des langues: un panorama des grammaires caté-
gorielles. Technique et Science Informatiques, 20(3):301–336, 2000. Numéro spécial Traitement
Automatique du Langage Naturel sous la direction de D. Kayser et B. Levrat. Version préliminaire
RR-3917 http://www.inria.fr/.

[6] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1988.

[7] John E. Hopcroft and Jeffrey Ullman. Introduction to automata theory, languages and computa-
tion. Addison Wesley, 1979.

[8] Jean-Yves Girard. Linear logic: its syntax and semantics. In Girard et al. [9], pages 1–42.
[9] Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors. Advances in Linear Logic, volume

222 of London Mathematical Society Lecture Notes. Cambridge University Press, 1995.

RR n° 5703



6 Christian Retoré

to linear logic . On proof-nets, we refer to [10,11]. Regarding learning algorithms
for categorial grammars we recommand [13] or the study [14] which includes a good
survey.

Finally, let us say that our logical view of categorial grammar is not the only one,
and regarding the combinatorial view of categorial grammars we recommend [15].

[10] Christian Retoré. Calcul de Lambek et logique linéaire. Traitement Automatique des Langues,
37(2):39–70, 1996.

[11] François Lamarche and Christian Retoré. Proof nets for the Lambek calculus – an overview. In
Abrusci and Casadio [12], pages 241–262.

[12] Vito Michele Abrusci and Claudia Casadio, editors. Third Roma Workshop: Proofs and Linguis-
tics Categories – Applications of Logic to the analysis and implementation of Natural Language.
Bologna:CLUEB, 1996.

[13] Makoto Kanazawa. Learnable classes of categorial grammars. Studies in Logic, Language and
Information. FoLLI & CSLI, 1998. distributed by Cambridge University Press.

[14] Roberto Bonato. Uno studio sull’apprendibilità delle grammatiche di Lambek rigide — a study
on learnability for rigid Lambek grammars. Tesi di Laurea & Mémoire de D.E.A, Università di
Verona & Université Rennes 1, 2000.

[15] Mark Steedman. Surface structure and interpretation. Number 30 in Linguistic Inquiry Mono-
graphs. M.I.T. Press, Cambridge, Massachusetts, 1997.

INRIA



The logic of categorial grammars – Lecture Notes 7

Chapter 1

Classical categorial grammars:
AB grammars

This first chapter deals with material from the late fifties and early
sixties, but which nevertheless introduce the design of categorial gram-
mars, which are lexcalized grammars, as opposed to the phrase structure
grammars like context-free grammars that were introduced later on.

Although the success of phrase structure grammars went far beyond
the one of categorial grammars, their lexicalization was in fact a modern
feature, the other one being their connection to logical semantics.

We end with recent results: a learning algorithm for categorial gram-
mars from the nineties, which prove to converge only a few years ago. The
possibility to have a learning algorithm for a class of grammar which can
describe (small parts of) natural language is, we think, quite an important
feature of categorial grammars. It comes from their lexicalisation and
logical formulation, which will be further studied in the next chapter.

RR n° 5703



8 Christian Retoré

1.1 Semantic categories and Ajdukiewicz fractions

For the history of categorial grammars, we refer the reader to [16].
In 1935 Ajdukiewicz defined a calculus of fractions to test the correction of logical

statements [17]:

The discovery of antinomies, and the method of their resolution have
made problems of linguistic syntax the most important problems of logic
(provided this word is understood in a sense that also includes meta-theoretical
considerations). Among these problems that of syntactic connection is of
the greatest importance for logic. It is concerned with the specification
of the conditions under which a word pattern constituted of meaningful
words, forms an expression which itself has a unified meaning (consti-
tuted, to be sure, by the meaning of the single words belonging to it). A
word pattern of this kind is call syntactically connected.

His paper deal with both the formal language of logic and natural language, but is
actually more concerned with the language of propositional and predicate logic.

If one applies this index symbolism to ordinary language, the semantic
categories which we have assumed (in accordance with Lesniewski) will
not always suffice, since ordinary language are richer in semantic cate-
gories.

Each word (or lexical entry) is provided with an index which is a fraction. Fractions
are defined out of two primitive types n (for entities or individuals or first order terms)
and s (for propositions or truth values) and whenever N is a fraction and D1, . . . ,Dp is
a sequence or multiset of fractions, N

D1···Dp
is itself a fraction.

[16] Claudia Casadio. Semantic categories and the development of categorial grammars. In R. Oehrle,
E. Bach, and D. Wheeler, editors, Categorial Grammars and Natural Language Structures, pages
95–124. Reidel, Dordrecht, 1988.

[17] Kazimierz Ajdukiewicz. Die syntaktische konnexität. Studia Philosophica, 1:1–27, 1935. (En-
glish translation in [18], pages 207–231).

[18] Storrs McCall, editor. Polish Logic, 1920-1939. Oxford University Press, 1967.

INRIA



The logic of categorial grammars – Lecture Notes 9

If we formalize the definitions in his article, syntactically connected expressions
and their exponents are recursively defined as follows:

• a word or lexical entry is syntactically connected, and its exponent is its index.

• given

– n syntactically connected expressions d1, . . . ,dn of respective exponents
D1, . . . ,Dn

– an expression f of exponent N
D1···Dp

the expression f d1 · · ·dn (or any permutation of it) is syntactically connected and
has exponent N.

This in particular entails that the sequences of fraction reduces to a single index
using the usual simplifications for fractions. It should be observed that in this "com-
mutative setting" the simplification procedure of the fractions is not that simple : if the
bracketing corresponding to subexpressions is not given. As Ajdukiewicz is mainly
concerned with the language of logic where one can use the Polish notation, word
order is not really a problem for him.

1.2 Classical categorial grammars or AB grammars

In 1953,that is a bit before Chomsky introduced his hierarchy of Phrase Structure
Grammars [19], Bar-Hillel defines bidirectional categorial grammars [20], taking into
account constituent order in Ajdukiewicz types. Therefore his grammars are more
concerned with natural language where word order is crucial.

In the literature, these grammars are either called AB grammars, classical catego-
rial grammars, or basic categorial grammars, BCG.

Types or fractions are defined as follows:

L ::= P | L\L | L/L

where P is the set of primitive types or basic categories which usually contains S
(for sentences) np (for noun phrases) and n (for nouns), and may include pp (for
prepositional phrase) vp (for verb phrase) etc.

The grammar is defined by a lexicon, that is a function Lex which maps words or
terminals to finite sets of types (a set of types is needed, since in natural language a
single word may admit various constructions: eat may ask for an object or not, for
instance).

[19] Noam Chomsky. The logical structure of linguistic theory. Revised 1956 version published in
part by Plenum Press, 1975; University of Chicago Press, 1985, 1955.

[20] Yehoshua Bar-Hillel. A quasi arithmetical notation for syntactic description. Language, 29:47–
58, 1953.

RR n° 5703



10 Christian Retoré

An expression, that is a sequences of words or terminals w1 · · ·wn, is of type u
whenever there exists for each wi a type ti in Lex(wi) such that t1 · · ·tn −→ u with the
following reduction patterns:

∀u,v ∈ L
u(u\ v) −→ v (\e)

(v/u)u −→ v (/e)

These rules are called residuation laws, or simplifications, or modus ponens.
These rules provides the symbols \ and / with an intuitive meaning: an expression

y is of type A \B whenever it needs an expression a of type A on its left to obtain an
expression ay of type B; symmetrically, an expression z is of type B / A whenever it
needs an expression a of type A on its right to obtain an expression za of type B;

The set of sentences or the language generated by the grammar is the set of word
sequences of type S.

The derivation tree is simply a binary tree whose leaves are the ti and whose nodes
are labeled by rules /e and \e.

It should be observed that such a grammar is lexicalized: to generate different
languages the rules do not change, but only the lexicon, and this is coherent with
modern linguistic theories, like the minimalist program of Chomsky [21] (language
variation is only lexical), and with some formalisms for computational linguistics,
like (Lexicalized) Tree Adjoining Grammars [22,23] or Head-Driven Phrase Structure
Grammars [25,26].

Another observation is that the rules are like modus ponens, but in a logic where
contraction and weakening is not allowed, and where the order of the hypothesis is
taken into account. We shall come back on these matters.

Let us state one of the first result on categorial grammars known as the Gaifman
theorem of [27] which is more or less equivalent to the existence of a Greibach normal
form for context-free grammars:

[21] Noam Chomsky. The minimalist program. MIT Press, Cambridge, MA, 1995.
[22] Aravind Joshi, Leon Levy, and Masako Takahashi. Tree adjunct grammar. Journal of Computer

and System Sciences, 10:136–163, 1975.
[23] Aravind Joshi and Yves Schabes. Tree adjoining grammars. In Rozenberg and Salomaa [24],

chapter 2.
[24] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages. Springer Verlag, Berlin,

1997.
[25] Fernando C. N. Pereira and Stuart M. Shieber. Prolog and Natural-Language Analysis. Num-

ber 10 in CSLI Lecture Notes. University of Chicago Press, Chicago, IL, 1987.
[26] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Center for the Study

of Language and Information, Stanford, CA, USA, 1994. (distributed by Cambridge University
Press).

[27] Yehoshua Bar-Hillel, Chaim Gaifman, and Eli Shamir. On categorial and phrase-structure gram-
mars. Bulletin of the research council of Israel, F(9):1–16, 1963.

INRIA



The logic of categorial grammars – Lecture Notes 11

Proposition 1 Every AB grammar is equivalent to an AB grammar containing only
types of the form

p (p/q) ((p/q)/ r)

where p,qr stand for primitive types.

PROOF : This theorem is an immediate consequence of propositions 4 and 3 to be
proved below using Greibach normal form theorem that is now famous. This
enables a simpler proof. �

1.3 Example: a tiny AB grammar

Consider the following lexicon:

Word Type(s)
cosa (S / (S /np))

guarda (S /vp)
passare (vp/np)

il (np/n)
treno n

The sentence guarda passare il treno (he/she looks the train passing by) belongs
to the generated language:

(S /vp) (vp/np) (np/n) n
−→ (S /vp) (vp/np) np
−→ (S /vp) vp
−→ S

The derivation tree for this analysis can be written as:

[/e
(S /vp) [/e

(vp/np) [/e
(np/n) n]]]

The sentence cosa guarda passare (what is he/she looking passing by?) does not
belong to the generated language : indeed the sequence

(S / (S /np))(S /vp)(vp/np)

does not contain anything that could be reduced.
Exercises: define AB grammars for

1. anbn,

2. brackets ((())())

3. for a small fragment of English with np being proper names or determinants
applied to nouns, and (try to) extend it to include relative pronouns.

RR n° 5703



12 Christian Retoré

1.4 AB-grammars and context free grammars

1.4.1 Context-free grammars

Context-Free Grammars (CFGs) were introduced in [19] and a good introduction is
provided in [7]; we use the following standard notation:

• M∗ stands for the set of finite sequences over the set M.

• M+ stands for the set of finite non empty sequences over the set M.

• ε stands for the empty sequence of M∗.

A context free grammar is defined by:

Non Terminals a set NT of symbols called non terminals, one of them, S being the
start symbol.

Terminals a disjoint set T of symbols called terminals (or words according to the
linguistic viewpoint)

production rules a finite set of production rules of the form X −→ W with X ∈ NT
and W ∈ (T ∪NT )∗

A sequence V ∈ (T ∪NT )∗ is said to rewrite immediately into a sequence W ∈
(T ∪NT )∗ whenever there exists W ′,W ′′,W ′′′ ∈ (T ∪NT )∗ and a non terminal X such
that

• V = W ′X W ′′

• X −→W ′′ is a production rule.

• W = W ′W ′′W ′′′

The relation −→ is defined over sequences in (T ∪NT )∗ as the transitive closure
of “rewrites immediately into". The language generated by a CFG is the subset of T ∗

containing the sequences into which S rewrites.

Two grammars which generates the same languages are said to be weakly equiva-
lent.

[19] Noam Chomsky. The logical structure of linguistic theory. Revised 1956 version published in
part by Plenum Press, 1975; University of Chicago Press, 1985, 1955.

[7] John E. Hopcroft and Jeffrey Ullman. Introduction to automata theory, languages and computa-
tion. Addison Wesley, 1979.

INRIA



The logic of categorial grammars – Lecture Notes 13

Whenever a non-terminal N rewrites into a sequence of terminals and non termi-
nals X1, . . . ,Xn it is possible (as linguist often do) to denote the derivation tree by an
expression in DT :

• a non terminal or a terminal is a DT and its yield is itself.

• if T1, . . . ,Tn are DT produced by non terminals X1, . . . ,Xn and if X −→ X1 · · ·Xn

is a rule of the grammar then [X T1, . . . ,Tn] is a DT labeled X and its yield is the
concatenation of the yields of T1, . . . ,Tn.

Obviously a sequence of terminals a1 · · ·an is in the language if and only if there
exists a derivation tree labeled S the yield of which is a1 · · ·an. We denote by ε the
empty sequence.

Two grammars which generate the same derivation trees are said to be strongly
equivalent.

A CFG is said to be in Chomsky normal from whenever its production rules are of
the form X −→Y Z and X −→ a with X ,Y,Z ∈ NT and a ∈ T . Any CFG can be turned
into a weakly equivalent CFG in Chomsky normal form and this transformation can be
performed in polynomial time. [28,7]

A CFG is said to be ε free whenever ε does not belong to the generated language.
It is easy to decide whether a CFG is ε free or not, and if it is not ε-free, the grammar
can be written with production rules of an ε-free CFG, together with the rule: S −→ ε .

A CFG is said to be in Greibach normal form whenever its production rules are
of the form: X −→ aX1 · · · Xn with a ∈ NT , X ,X1, . . . ,Xn ∈ NT . It is said to be in
strong Greibach normal form whenever n ≤ 2. Any ε-free CFG can be turned into a
CFG in (strong) Greibach normal form, and these transformations can be performed
in polynomial time. [29,30] While the derivation trees of a CFG and the ones of its
Chomsky normal form are closely related, the derivation trees of the Greibach normal
from of a CFG are in general very different from the derivation trees of the original
CFG: to lexicalize a CFG while preserving the analyses, one has to move to TAGs
[23].

[28] Noam Chomsky. Formal properties of grammars. In Handbook of Mathematical Psychology,
volume 2, pages 323 – 418. Wiley, New-York, 1963.

[29] Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars.
Journal of the ACM, 12(1):42–52, 1965.

[30] M. A. Harrison. Introduction to Formal Language Theory. Addison Wesley, 1978.
[23] Aravind Joshi and Yves Schabes. Tree adjoining grammars. In Rozenberg and Salomaa [24],

chapter 2.
[24] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages. Springer Verlag, Berlin,

1997.

RR n° 5703



14 Christian Retoré

1.4.2 From context-free grammars to AB-grammars

The study of the relationship between CFG and AB-grammars was studied and “fin-
ished” long ago, that is in the early sixties in particular in [27].

Proposition 2 Every ε-free Context-Free Grammar in Greibach normal form is strongly
equivalent to an AB categorial grammar.

PROOF : Let us consider the following AB grammar:

• Its words are the terminals of the CFG.

• Its primitive types are the non terminals of the CFG.

• Lex(a), the finite set of types associated with a terminal a contains the
formulae ((· · ·((X /Xn)/Xn−1)/ · · ·)/X2)/X1 such that there are non ter-
minals X ,X1, . . . ,Xn such that X −→ aX1 · · ·Xn is a production rule.

It is then easily observed that the derivation trees of both grammars are isomor-
phic. �

Proposition 3 Each ε-free Context Free Grammar is weakly equivalent to an AB-
grammar containing only types of the form X or X /Y or (X /Y )/Z.

PROOF : Here we provide the reader with a simple “modern proof” using the existence
of a Greibach normal from: indeed the Gaifman theorem first published in [27]
was proved before the existence of Greibach normal form for CFGs [29], and
these two theorems are actually more or less equivalent.

As we just said, any CFG can be turned into a weakly equivalent CFG in strong
Greibach normal form. As can be observed from the construction of an equiva-
lent AB grammar in the previous proof, if the CFG is in strong Greibach normal
form that is if rules are of the form: X −→ aX1 · · ·Xn with 0 ≤ n ≤ 2, then the
corresponding AB grammar only uses types of the form X , X /X1, (X /X2)/X1.
�

[27] Yehoshua Bar-Hillel, Chaim Gaifman, and Eli Shamir. On categorial and phrase-structure gram-
mars. Bulletin of the research council of Israel, F(9):1–16, 1963.

[29] Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars.
Journal of the ACM, 12(1):42–52, 1965.

INRIA



The logic of categorial grammars – Lecture Notes 15

1.4.3 From AB grammars to context-free grammars

Proposition 4 Every AB grammar is strongly equivalent to a CFG in Chomsky normal
form.

PROOF : Let G be the CFG defined by:

• Terminals T are the words of the AB grammar.

• Non Terminals NT are all the subtypes of the types appearing in the lexicon
of the AB grammar — a type is considered to be a subtype of itself.

• The production rules are of two kinds:

– X −→ a whenever X ∈ Lex(a)

– X −→ (X / Z)Z and X −→ Z(Z \X) for all X ,Z ∈ NT — beware that
from the CFG viewpoint (Z \X) or (X /Z) is a single non terminal.

This defines a CFG because the lexicon is finite, so there are only finitely many
subtypes of types in the lexicon, hence finitely many production rules. The
derivation trees in both formalisms are isomorphic. �

1.5 Parsing AB grammars

Theorem 5 A sentence of n word can be analyzed according to an AB-grammar in
O(n3) times using O(n2) space.

PROOF : (easy exercice) Following the relation between AB-grammars and CFG in
Chomsky normal form, it is not difficult to adpat the Cocke Kasami Younger
algorithm (see e.g. [31]) to AB grammars. �

1.6 Limitations of AB-grammars

In an AB grammar one is not able to derive (t /v) from (t /u) and (u/v). Consider for
instance the Italian sentence Cosa guarda passare?. One is not able to derive it with
the simple type assignment given above. We would need transitivity of / to obtain it:

(S / (S /np)) (S /vp) (vp/np)
(trans.)
−→ (S / (S /np)) (S /np) −→ S

[31] Klaas Sikkel and Anton Nijholt. Parsing of context-free languages. In Rozenberg and Salomaa
[24], chapter 2.

[24] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages. Springer Verlag, Berlin,
1997.

RR n° 5703



16 Christian Retoré

We would also like to model the behavior of an object relative-pronoun like that/whom,
by providing it with the type (n\n)/(S/np) but unfortunately this too requires transi-
tivity — unless a transitive verb also has the type np\ (S/np) but it is quite unnatural
that the verb first combine with its subject and thereafter with its object.

On the mathematical side, one would like to interpret categories by subsets of a free
monoid, (the intended one being sequences of words), so that the subset of sequences
of type S are precisely the correct sentences. This is indeed impossible. One may
view the residuation rules as modus ponens, but then what is lacking are introduction
rules to get the completeness of the calculus with respect to this natural monoidal
interpretation. This is sorted out by the Lambek calculus that we are to study later on.

1.7 Learning AB grammars

Let us end up our study of AB grammars with an interesting property: they enjoy good
learning algorithms from positive examples, at least when example are structured. This
learning question is important for the following two reasons:

• It models, although very roughly, the process of language acquisition and more
precisely of syntax acquisition [32,34] extensively discussed in generative lin-
guistics; indeed, it is the main justification for the existence of a universal gram-
mar see e.g. [21].

– The similarity with natural language acquisition by human beings, is that
we only learn from positive examples, and that structure is needed for the
learning device.

– The main difference is that the sequence of languages which converges to
the target language is increasing, while in natural language acquisition the
sequence of languages is decreasing.

• This learning algorithm provides a method for the automated construction of
a grammar (that is a lexicon) from a corpus, which also can be viewed as an
automated method for completing an existing grammar/lexicon.

[32] L.R. Gleitman and E.L. Newport. The invention of language by children: Environmental and
biological influences on the acquisition of language. In Gleitman and Liberman [33], chapter 1,
pages 1–24.

[33] L.R. Gleitman and M. Liberman, editors. An invitation to cognitive sciences, Vol. 1: Language.
MIT Press, 1995.

[34] Steven Pinker. Language acquisition. In Gleitman and Liberman [33], chapter 6, pages 135–182.
[21] Noam Chomsky. The minimalist program. MIT Press, Cambridge, MA, 1995.

INRIA



The logic of categorial grammars – Lecture Notes 17

1.7.1 Grammatical inference for categorial grammars

Learning (that in this case is also called grammatical inference) from positive example
is the following problem: define a function Learn from finite sets of positive examples
to grammars of a given class G , such that:

• Given a grammar G of the class G and an enumeration s1,s2, . . . of the sen-
tences G generates, letting Exi = {s1, . . . ,si}, there exists an N such that for all
n ≥ N the grammar Learn(Exn) is constant and exactly generates the sentences
produced by G.

• The following is not mandatory, but one usually asks for this extra property: for
every set of sentences Ex the grammar Learn(Ex) generates all the examples in
Ex

This definition is the so-called identification in the limit introduced by Gold in
1967 [35]. The grammars we are to consider are of course AB grammars, but what
will the positive examples be? In our definition the term "sentence" is left vague.
Actually we shall use this definition not with mere sequences of words, but we will
rather consider the derivation trees produced by the grammar, and so our examples will
be derivation trees in which the types of the words are absent: this is not absolutely
unrealistic, because the learner of a language has access to some information related
to the syntactic structure of the sentences like prosody or semantics; nevertheless it is
unrealistic, because the complete syntactic structure is not fully known.

The lexicalization of categorial grammars is extremely helpful for this learning
question: indeed we have no rules to learn, but only the types of the words to guess.
Observe that it is needed to bound the number of types per word; otherwise each new
occurrence of a word may lead to the introduction of a new type for this word, and this
process cannot converge.

As this presentation is just meant to give an idea of learning algorithms, we only
present here the simplest case of learning from structures: the algorithm RG of Buszkowski
and Penn. The AB grammars considered are rigid, that is to say there is exactly one
type per word.

1.7.2 Unification and AB grammars

The algorithm makes use of type-unification, and this kind of technique is quite com-
mon in grammatical inference see [36], so let us briefly define it and explain its relation
to AB grammars. A substitution σ is a function from variables to types which is ex-
tended from types to types by

σ(S) = S σ(A\B) = σ(A)\σ(B) σ(B/A) = σ(B)/σ(A)

[35] E. Mark Gold. Language identification in the limit. Information and control, 10:447–474, 1967.
[36] Jacques Nicolas. Grammatical inference as unification. Rapport de Recherche RR-3632, INRIA,

1999. http://www.inria.fr/.

RR n° 5703



18 Christian Retoré

Given a substitution σ , one can apply it to the lexicon of an AB grammar. If
a sentence is generated by an AB grammar defined by a lexicon Lex then it is also
generated by the AB grammar defined by the lexicon σ(Lex).

A substitution is said to unify a set of types T if for all types A,B in T one has
σ(A) = σ(B). For such kinds of formulae, whenever a unifier exists, there exists a
most general unifier (mgu) that is a unifier σu such for every unifier τ there exist a
substitution στ such that τ = στ ◦σu.

The relation between two rigid AB grammars with respective lexicon Lex and Lex′

defined by there exists a substitution σ such that Lex′ = σ(Lex) defines an order which
is a complete lattice, and the supremum of a family correspond to the less general
grammar generating all the trees of all the grammars in the family.

1.7.3 The RG algorithm

We present here the RG algorithm (learning Rigid Grammars) introduced by W. Buszkowski
and G. Penn in [37,38] and which has been further studied by M. Kanazawa [13].

To illustrate this algorithm, let us take a small set of positive examples:

(1.1) [\e
[/e

a man ] swims ]

(1.2) [\e
[/e

a fish ][\e
swims fast ]]

Typing As the examples are assumed to be correct sentences we know the root should
be labeled by the type S which is the only type fixed in advance, a constant.

Each time there is a \e (resp. /e) node labeled y, we know the argument node,
the one on the left (resp. on the right) should be x while the function node the
one on the right (resp. on the left) should be x\ y (resp. y/x)

So by assigning a new variable to each argument node we have typed the whole
tree, and so words have been provided with a type (involving the added variables
and S).

We can do so on our examples; to denote the resulting type, we add it on top of
the opening bracket.

(1.3) [S/e
[x2
\e

a:(x2 /x1) man:x1] swims:(x2 \S)]

(1.4) [S\e
[y2
/e

a:(y2 /y3) fish:y3][
(y2\S)
\e

swims:y1 fast:(y1 \ (y2 \S))]]

[37] Wojciech Buszkowski. Discovery procedures for categorial grammars. In J. van Benthem and
E. Klein, editors, Categories, Polymorphism and Unification. Universiteit van Amsterdam, 1987.

[38] Wojciech Buszkowski and Gerald Penn. Categorial grammars determined from linguistic data by
unification. Studia Logica, 49:431–454, 1990.

[13] Makoto Kanazawa. Learnable classes of categorial grammars. Studies in Logic, Language and
Information. FoLLI & CSLI, 1998. distributed by Cambridge University Press.

INRIA



The logic of categorial grammars – Lecture Notes 19

Unification We end up from the previous steps with several types per word. For
instance the examples above yields:

(1.5)
word type1 type2

a: x2 / x1 y2 / y3

fast: y1 \ (y2 \S)
man: x1
fish: y3

swims: x2 \S y1

One has then to unify the set of the types associated with a single word, and the
output of the algorithm is the grammar/lexicon in which every words gets the
single type which unifies the original types, collected from each occurrence of
a word in each example. If these sets of types can be unified, then the result of
this substitution is a rigid grammar which generates all the examples, and can be
shown to be the less general grammar to generate these examples.

In our example, unification succeeds and leads the most general unifier σu de-
fined as follows:

(1.6)
σu(x1) = z1
σu(x2) = z2

σu(y1) = z2 \S
σu(y2) = z2
σu(y3) = z1

which yields the rigid grammar/lexicon:

(1.7)
a: z2 / z1

fast: (z2 \S)\ (z2 \S)
man: z1
fish: z1

swims: z2 \S

1.7.3.1 Convergence of the RG algorithm

This algorithm converges in the sense we defined above, as shown by [13]. The tech-
nique also applies for learning rigid Lambek grammars from natural deduction trees
[14] and we follow his presentation.

[14] Roberto Bonato. Uno studio sull’apprendibilità delle grammatiche di Lambek rigide — a study
on learnability for rigid Lambek grammars. Tesi di Laurea & Mémoire de D.E.A, Università di
Verona & Université Rennes 1, 2000.

RR n° 5703



20 Christian Retoré

The proof of convergence makes use of the following notions and notations:

G ⊂ G′ This reflexive relation bewteen G and G′ holds whenever every assignment
a : T in G is in G′ as well — in particular when G′ is rigid, so is G, and they are
equal.

size of a grammar The size of a grammar is simply the sum of types in the lexicon,
where the size of a type is its number of occurrences of base categories (variables
or S).

G < G′ This reflexive relation bewteen G and G′ holds when there exists a substitution
σ such that σ(G) ⊂ G′ which dos not identify different types of a given word,
but this is always the case when the grammar is rigid.

FA-structure An FA-structure is a binary tree whose leaves are labeled with words
(terminals) and internal nodes with names of the rules, namely /e and \e. An
analysis in an AB grammar, once the types are erased, is an FA structure, and,
conversely, for every type T , every FA structure can be labeled with types in
order to obtain an analysis of the sequence of words as having category T —
that’s what the typing algorithm does, with T = S. The positive examples we are
using for the RG learning algorithm, see examples 1.1 and 1.2 are FA-structures.

FL(G) Given a grammar G, FL(G) is the tree language consisting in all the FA-
structures with root S derived from G.

GF(D) Given a set of FA-structures D, GF(D) is the lexicon obtained by collecting
the types of each word in the various examples of D — as in example 1.5 above.

RG(D) Given a set of examples D, RG(D) is, whenever it exists, the rigid gram-
mar/lexicon obtained by applying the most general unifier to GF(D) — as in
example 1.7 above.

Proposition 6 Given a grammar G there are finitely many grammars H such that
H < G.

PROOF : There are finitely many grammars which are included in G, since G is a finite
set of assignments. Whenever σ(H) = K for some substitution σ the size of H
is smaller or equal to the size of K, and, up to renaming, there are finitely many
grammars smaller than a given grammar.

By definition, if H < G then there exist K ⊂ G and a substitution σ such that
σ(H) = K. Because there are finitely many K such that K ⊂ G, and for every
K there are finitely many H for which there could exists σ with σ(H) = K we
conclude that there are finitely many H such that H < G. �

INRIA



The logic of categorial grammars – Lecture Notes 21

Proposition 7 If G < G′ then FL(G) ⊂ FL(G′).

PROOF : G < G′ means that there exists σ such that σ(G) ⊂ G′. Let T be an FA-
structure in FL(G), hence T comes from an analysis A of a sequence of words
m1 · · ·mn. If we apply σ to A we obtain an analysis of the same sequence of
words in G′. Indeed for a word whose assignment is T in G we have the as-
signment σ(T ) which is its assignment in G′, and the types obtained inside the
tree match the sules since σ(A\B) = σ(A)\σ(B) and σ(A/B) = σ(A)/σ(B)
So σ(A) is an analysis in G′ of m1 · · ·mn. hence, by definition, the FA-structure
underlying σ(A) is in FL(G′), and this underlying FA-structure is F .T �

Proposition 8 If GF(D) < G then D ⊂ FL(G).

PROOF : By construction of GF(D) we have D ⊂ FL(GF(D)) and we also have
FL(GF(D)) ⊂ FL(G) because of proposition 7. �

Proposition 9 If RG(D) exists then D ⊂ FL(RG(D)).

PROOF : By definition RG(D) = σu(GF(D)) where σu is the most general unifier of
all the types of each word. So we have GF(D) < RG(D), and applying previous
proposition 8 with G = RG(D) we obtain D ⊂ FL(RG(D)). �

Proposition 10 If D ⊂ FL(G) then GF(D) < G.

PROOF : By construction of GF(D), there is exactly one occurrence of a given type
variable x in a tree of D typed as we did in the example. Now, viewing the same
tree as a tree of FL(G) at the place as x there is a type label, say T . Doing so for
every type variable, we can define a substitution by σ(x) = T for all type vari-
ables x: indeed because x occurs once, such a substitution is well defined. When
this substitution is applied to GF(D) it yields a grammar which only contains
assignments from G — by applying the substitution on the whole tree, still it is
a well typed tree, and in particular the types on the leaves must coincide. �

Proposition 11 When D⊂FL(G) with G a rigid grammar, the grammar RG(D) exists
and RG(D) < G.

PROOF : By proposition 10 we have GF(D) < G, so there exists a substitution σ such
that σ(GF(D)) ⊂ G.

As G is rigid, σ unifies all the types of each word. Hence there exists a unifier
of all the types of each word, and RG(D) exists.

RG(D) is defined as the application of most general unifier σu to GF(D). By
definition of a most general unifier, which works as usual eventhough we unify
sets of types, there exists a substitution τ such that σ = τ ◦σu.

Hence τ(RG(D)) = τ(σu(GF(D))) = σ(GF(D)) = σ(GF(D)) ⊂ G;
thus τ(RG(D))⊂ G, hence RG(D) < G. �

RR n° 5703



22 Christian Retoré

Proposition 12 If D ⊂ D′ ⊂ FL(G) with G a rigid grammar then RG(D) < RG(D′) <

G.

PROOF : Because of proposition 11 both RG(D) and RG(D′) exist. We have D ⊂ D′

and D′ ⊂ FL(RG(D′)), so D ⊂ FL(RG(D′)); hence, by proposition 11 applied
to D and G = RG(D′) (a rigid grammar) we have RG(D) < RG(D′). �

Theorem 13 The algorithm RG for learning rigid AB grammars converges in the
sense of Gold (paragraph 1.7.1).

PROOF : Take Di, i ∈ ω an increasing sequence of sets of examples in FL(G) enumer-
ating FL(G) — ∪i∈ωDi = FL(G):

D1 ⊂ D2 ⊂ ·· ·Di ⊂ Di+1 · · · ⊂ FL(G)

Because of the proposition 11 for every i∈ωRG(Di) exist and because of propo-
sition 12 they define an increasing sequence of grammars w.r.t. < which by
proposition 11 is bounded by G:

RG(D1) < RG(D2) < · · ·RG(Di) < RG(Di+1) · · · < G

As they are finitely many grammars below G w.r.t. < (proposition 6) this se-
quence is stationary after a certain rank, say N, that is forall n ≥ N RG(Dn) =
RG(DN).

We have FL(RG(DN)) = FL(G):

FL(RG(DN)) ⊃ FL(G) Let T be an FA-structure of FL(G). Since ∪i∈ω Di =
FL(G) there exists p such that T ∈ FL(Dp).

• If p < N, because Dp ⊂DN , T ∈DN , and by proposition 9 T ∈FL(RG(DN)).

• If p≥ N, we have RG(Dp) = RG(DN) since the sequence of grammars
is stationary after N. By proposition 9 we have Dp ⊂ FL(RG(Dp))
hence T ∈ FL(RG(DN)) = FL(RG(Dp)).

In all cases, T ∈ FL(RG(DN)).

FL(RG(DN)) ⊂ FL(G) Since RG(DN) < G, by proposition 7 we have

FL(RG(DN)) ⊂ FL(G)

�

INRIA



The logic of categorial grammars – Lecture Notes 23

1.7.4 Other cases

The learning problem covered by the RG algorithm is very simple and restricted.
Firstly, the class of grammars we are learning is quite restricted:

1. They are AB-grammars and not richer categorial grammars.

2. They are rigid, that is each word has a single syntactic behavior. This limitation
is not too difficult to overcome: different occurrences of the same word corre-
sponding to different syntactic behavior can to be distinguished. This is sound
when the occurences correspond to really different words like that as a demon-
strative and that as a complementizer, but it is less convincing when the word is
the same like the transitive use of eat (I ate an apple.) and the absolutive use of
eat (I already ate).

Secondly, we are using input structures which are not so easy to obtain, and which
are probably too close to the output that we are looking for:

3. Parse structures or FA structures are much too precise, it would make more sense
to have a tree structure, or some information on the tree structure of the sentence,
but not the whole tree structure. It seems that dependency structures would be
a good compromise between no structure, and a complete structure, and, from a
practical viewpoint, it is possible to actually obtain such a corpus of exeamples,
by shallow parsing or efficient (partial) parsing by dependency grammars. On
the other hand, it is well known that strings are not enough to learn since gram-
matical rules apply to trees and not to sequences of words, and this has been
confirmed by negative results in formal learing theory.

The base algorithm that we presented can be adapted in order to go beyond the
limitations enumerated above.

1. Firstly an extension is to learn Lambek grammars from parse structures. It works
and it is worth noticing that this class of languages does not have finite elastic-
ity, but is learnable. [14] The same learning mechanism works for minimalist
grammars when they are viewed as categorial grammars, also the determinism
is lost. [39]. A strong generalization of this kind of results has been proved:
reversible regular tree languages (and dependency grammars too) are learnable
from positive examples [41].

[14] Roberto Bonato. Uno studio sull’apprendibilità delle grammatiche di Lambek rigide — a study
on learnability for rigid Lambek grammars. Tesi di Laurea & Mémoire de D.E.A, Università di
Verona & Université Rennes 1, 2000.

[39] Roberto Bonato and Christian Retoré. Learning rigid Lambek grammars and minimalist grammars
from structured sentences. In Popelìnskỳ and Nepil [40], pages 23–34.

[40] Lubos̆ Popelìnskỳ and Miloslev Nepil, editors. Proceedings of the third workshop on Learn-
ing Language in Logic, LLL 01, number FI-MU-RS-2001-08 in FI MU Report series, Strabourg,
September 2001. Faculty of Informatics – Masaryk University.

[41] Jérôme Besombes and Jean-Yves Marion. Identification of reversible dependency tree languages.
In Popelìnskỳ and Nepil [40], pages 11–22.

RR n° 5703



24 Christian Retoré

2. An orthogonal extension is to consider k-valued AB grammars: in this later case,
one has to try to unify types in all possible manners in order to have less than k
types per word. This has been studied by Kanazawa [13].

3. Regarding the input structures, the simplest generalization is to consider unla-
beled trees: then one has to try all possible labeling with \e and /e. Going even
further one can learn from unstructured sentences that are simply sequences of
words: once again this is done by considering all possible structures on such
sentences. This has been studied by Kanazawa [13].

All these extensions considerably increase the complexity of the algorithm, as one
can imagine, but nevertheless the existence of learning algorithms for categorial gram-
mars is a good property that other formalisms for natural language syntax do not have.

[13] Makoto Kanazawa. Learnable classes of categorial grammars. Studies in Logic, Language and
Information. FoLLI & CSLI, 1998. distributed by Cambridge University Press.

INRIA



The logic of categorial grammars – Lecture Notes 25

Chapter 2

A logic for categorial grammars:
Lambek’s syntactic calculus

Our second chapter is a rather complete study of the Lambek calculus,
which enables a completely logical treatment of categorial grammar.

We first present its syntax in full details, both with sequent calculus
and natural deduction, and explain the relationship between these two
presentations. Then we turn our attention to the normal forms for such
proofs. Normalization and its dual namely interpolation are not only
pleasant mathematical properties; they also are key properties for the cor-
respondence between Lambek grammars and more familiar phrase struc-
ture grammars; we prove in detail the weak equivalence between context-
free grammars and Lambek grammars.

Next we prove completeness for the Lambek calculus with linguisti-
cally natural models: in these models categories are interpreted as sub-
sets of a free monoid; taking words or lexical items as generators of the
free monoid really gives sense to the categorial approach.

We end with a description of the simple algorithm for computing the
Montague semantics of a sentence from the semantics of the lexical items
and the syntactic analysis. The straightforward correspondence between
Montague semantics and categorial syntax is in our opinion an important
advantage of (Lambek) categorial grammars.

RR n° 5703



26 Christian Retoré

2.1 Lambek syntactic calculus and Lambek grammars

We now turn our attention to Lambek calculus (L) and Lambek grammars (LCG) that
were introduced in the seminal paper [1]: we strongly recommend to read it; the subse-
quent paper [42] is also worth reading in particular it presents a non associative version
that we will not study here, but has been intensively used by Moortgat [4] and Morrill
[43].

The limitations of AB grammars, and the endless quest of new rules (composition,
type raising, Geach laws, etc.) is a way to explain the interest of Lambek calculus. An-
other is to place AB-grammar into a richer and more natural mathematical formalism.

A controversial but more interesting justification is the following: syntax is driven
by resource consumption, which is neatly handled by resource conscious logics —
the Lambek calculus being the first such logic. This viewpoint is not that far from
Chomsky’s minimalist program [21] as discussed in [44].

Lambek (categorial) grammars or LCGs for short proceed exactly as AB grammars
do. A lexicon Lex provides each word with one or several types, constructed from the
usual primitive types P = {S,np,n, . . .} — noun phrases, nouns, sentences. Types are
more or less the same as the one of AB grammars: the only difference is that Lambek
types allow for a (non commutative) product or conjunction denoted by •:

Lp ::= P | Lp\Lp | Lp/Lp | Lp •Lp

When introducing AB grammars, we already explained the intuitive meaning of
A \B and B / A: an expression is of type A \B (resp. B / A) when it is waiting for an
expression of type A on its left (resp. right) to form a compound expression of type B.
An expression of type A followed by an expression B is of type A •B, and product is
related to \ and / by the following relations:

A\ (B\X) = (B •A)\X (X /A)/B = X / (B •A)

These relations looks like currying, but beware the order, which is required by the
behavior of \ and /: in the left equation both types require a sequence ab on their left,

[1] Joachim Lambek. The mathematics of sentence structure. American mathematical monthly, pages
154–170, 1958.

[42] Joachim Lambek. On the calculus of syntactic types. In Roman Jakobson, editor, Structure of
language and its mathematical aspects, pages 166–178. American Mathematical Society, 1961.

[4] Michael Moortgat. Categorial type logic. In van Benthem and ter Meulen [2], chapter 2, pages
93–177.

[2] Johan van Benthem and Alice ter Meulen, editors. Handbook of Logic and Language. North-
Holland Elsevier, Amsterdam, 1997.

[43] Glyn V. Morrill. Type Logical Grammar. Kluwer Academic Publishers, Dordrecht and Hingham,
1994.

[21] Noam Chomsky. The minimalist program. MIT Press, Cambridge, MA, 1995.
[44] Christian Retoré and Edward Stabler. Generative grammar in resource logics. 2(1):3–25, 2004.

INRIA



The logic of categorial grammars – Lecture Notes 27

and in the second equation both types require a sequence ba on their right (with a,b of
respective types A,B).

Recall that for AB grammars a sequence of words w1 · · ·wn, is of type u whenever
there exists for each wi a type ti in Lex(wi) such that t1 · · ·tn −→ u with the following
reduction patterns:

∀u,v ∈ Lp
u(u\ v) −→ v (\e)

(v/u)u −→ v (/e)

Here the logical aspect of these rules — they look like modus ponens — will be
emphasized by allowing for other rules, so that \ and / will really by implications (and
• will be their associated conjunction). Accordingly −→ will be written `, and our first
objective is to define this logical calculus: for the time being we only know the modus
ponens of the non commutative implications \ and /. Therefore we simply replace −→
with ` to obtain the following definition: a sequence of words (or terminals) w1 · · ·wn

is of type u whenever there exists for each wi a type ti in Lex(wi) such that t1 · · ·tn ` u,
where ` is the deductive relation of the Lambek calculus to be define thereafter. The
generated language or the set of correct sentences is the set of sequences of type S.

2.2 Natural deduction for Lambek calculus

To the best of my knowledge natural deduction for Lambek has mainly be studied by
van Benthem [45] one of the first paper being [46].

2.2.1 In Prawitz style

Maybe the simplest way to define product free Lambek calculus is natural deduction
in tree like setting :

this rule requires at least two free hyp.

A left most free hyp.
. . . [A] . . . . . .

·
·
·
B

\i binding A
A\B

∆
·
·
·
A

Γ
·
·
·

A\B
\e

B

[45] Johan van Benthem. Language in Action: Categories, Lambdas and Dynamic Logic, volume 130
of Sudies in logic and the foundation of mathematics. North-Holland, Amsterdam, 1991.

[46] Johan van Benthem. Categorial grammars and lambda calculus. In D. Skordev, editor, Mathemat-
ical logic and its Applications. Plenum Press, 1987.

RR n° 5703



28 Christian Retoré

this rule requires at least two free hyp.

A right most free hyp.
. . . . . . [A] . . .

·
·
·
B

/i binding A
B/A

Γ
·
·
·

B/A

∆
·
·
·
A

/e
B

These deductions clearly extend the derivation trees of AB grammars. AB sim-
plification or residuation rules are two of the rules of the system, the rules \e and /e;
the other two being the corresponding introduction rules. The fact that these rules are
particular cases of the rules for intuitionistic logic confirms that the fraction symbols
\ and / can be viewed as implications.

It should be observed that as opposed to natural deduction for intuitionistic logic,
there is no need to specify which hypothesis A is cancelled by an /i or \i introduction
rule. Indeed in the first case it is the left most free hypothesis, and in the second case it
is the right most free hypothesis. As a consequence the formal structure of a deduction
is a plain (binary/unary) tree with leaves labeled with formulae and with nodes labelled
by rules : binary nodes are labelled with either /e or \e and unary nodes with either /i
or \i. Such a plain tree is enough to reconstruct the deduction, i.e. which hypothesis
are free or not and which hypothesis is cancelled by which rule. This remark is the
basis of the study of [47] ; parse structure of a Lambek grammar are defined to be
natural deduction trees, and they are studied as tree languages.

Product Lambek calculus admits a product which corresponds to the implications
by the usual rules of currying given above. The product is often skipped out of natural
deduction presentation of the Lambek calculus. There is no need to do so, but it is true
that these rules are less natural, because of the order on hypotheses:

∆
·
·
·
A

Γ
·
·
·
B

•i
A •B

∆
·
·
·

A •B

: without free hyp.
. . . [A]α [B]α . . .

·
·
·
C
•e(α) binding A and B

C

The main problem is that in order to apply the product elimination rule there should
be no free hypothesis in between the two cancelled assumptions, A and B, and that the
order of the premises after the rule is not anymore the left right order. Another problem

[47] Hans-Jörg Tiede. Lambek calculus proofs and tree automata. In Michael Moortgat, editor, Logical
Aspects of Computational Linguistics, LACL‘98, selected papers, number 2014 in LNCS/LNAI.
Springer-Verlag, 2001.

INRIA



The logic of categorial grammars – Lecture Notes 29

is that, as we shall see, proof-normalization or rather the sub-formula property is more
problematic with the product.

Also observe that there can be several consecutive A and B free hypothesis, so that
a labelling of the cancelled hypotheses is needed for this rule: natrual deduction are
not anymore plain trees.

This kind of natural deduction rules were first introduced by S. Abramsky in [48]
for multiplicative linear logic, but in this commutative case the problem of hypothesis-
order vanishes.

2.2.2 In Gentzen style

One can also define natural deduction in a “sequent” presentation that is in specify-
ing at each node what the free hypotheses are; this formulation is possibly clearer in
particular when one uses the product. Nevertheless this presentation defines exactly
the same logical calculus as the natural deduction in tree like format given above: the
proofs of the two systems are isomorphic.

Although we use sequents, that are expressions A1, . . . ,An ` C, this calculus is by
no means a sequent calculus: there are no left rules, no cut rule, and the notion of
normal proof (for having the sub-formula property) is completely different.

Γ ` A ∆ ` A\B
\e

Γ,∆ ` B

A,Γ ` C
\i Γ 6= ε

Γ ` A\C

∆ ` B/A Γ ` A
/e∆,Γ ` B

Γ,A ` C
/i Γ 6= ε

Γ ` C /A

∆ ` A •B Γ,A,B,Γ′ ` C
•e

Γ,∆,Γ′ ` C

∆ ` A Γ ` B
•i

∆,Γ ` A •B

axiom
A ` A

[48] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111:3–57, 1993.

RR n° 5703



30 Christian Retoré

2.3 An example

Here we take up again our small example of an Italian lexicon:

Word Type(s)
cosa (S / (S /np))

guarda (S /vp)
passare (vp/np)

il (np/n)
treno n

Remember that the sentence Cosa guarda passare could not be analyzed in AB
grammars, because the transitivity of / was not a rule of AB grammars. Let us show
that it can be analyzed with the Lambek calculus (we use Natural Deduction in Gentzen
style):

(S / (S /np)) ` (S / (S /np))

(S /vp) ` (S /vp)

(vp/np) ` (vp/np) np ` np
/e

(vp/np),np ` vp
/e

(S /vp),(vp/np),np ` S
/i

(S /vp),(vp/np) ` S /np
/e

(S / (S /np)),(S /vp),(vp/np) ` S

This example relies on composition for /, which is not provable within AB grammars.
Composition is established by using a fake np which is then abstracted by an intro-
duction rule : to make a comparison with Chomsky’s theories [49,21] this fake np is
corresponds to a trace and the introduction rule to a movement.

Similarly it can be shown that it is possible to only assign the type (np \ S) / np
to a transitive verb, and to construct object relatives with whom/that having the type
(n\n)/(S/np) — which could not be done in AB grammars, see paragraph 1.6. This
results form the possibility to rearrange brackets in the Lambek calculus: (a\b)/ c `
a\ (b/c), etc.

Finally it can be easily seen that one has x ` (z / x) \ z and x ` z / (x \ z) for every
categories x and z. This is interesting from a semantic viewpoint: an np (an individual)
can be viewed as a (S /np)\S or S / (np\S) (a function form one place predicates to
truth values) that is the set of all the properties of this individual.

[49] Noam Chomsky. Syntactic structures. Janua linguarum. Mouton, The Hague, 1957.
[21] Noam Chomsky. The minimalist program. MIT Press, Cambridge, MA, 1995.

INRIA



The logic of categorial grammars – Lecture Notes 31

2.4 Sequent calculus

Here are the rules of the Lambek calculus in Sequent Calculus, as given in the original
paper [1]. Although it also handles expressions A1, . . . ,An ` C, let us insists that it is
different from Natural Deduction in sequent style given above: for instance the modus
ponens or residuation laws of the AB grammars are not rules of this system (they are
just derivable) and the notion of a normal proof is very different.

Γ,B,Γ′ ` C ∆ ` A
\h

Γ,∆,A\B,Γ′ ` C

A,Γ ` C
\i Γ 6= ε

Γ ` A\C

Γ,B,Γ′ ` C ∆ ` A
/hΓ,B/A,∆,Γ′ ` C

Γ,A ` C
/i Γ 6= ε

Γ ` C /A

Γ,A,B,Γ′ ` C
•h

Γ,A •B,Γ′ ` C

∆ ` A Γ ` B
•i

∆,Γ ` A •B

Γ ` A ∆1,A,∆2 ` B
cut

∆1,Γ,∆2 ` B
axiom

A ` A

Here is an obvious proposition, known as η-expansion:

Proposition 14 Every axiom A ` A can be derived from axioms p ` p, with p being a
primitive type (and the proof does not use the cut rule).

The polarity of an occurrence of a propositional variable p in a formula is defined
as usual:

• p is positive in p

• if p is positive in A, then

– p is positive in X •A, A •X , X \A, A/X

– p is negative in A\X , X /A

• if p is negative in A, then

– p is negative in X •A, A •X , X \A, A/X

– p is positive in A\X , X /A

[1] Joachim Lambek. The mathematics of sentence structure. American mathematical monthly, pages
154–170, 1958.

RR n° 5703



32 Christian Retoré

The polarity of an occurrence of a propositional variable p in a sequent Γ ` C is:

• if p is in C, the polarity of p in C

• if p is in a formula G of Γ, the opposite of the polarity of p in G.

If a proof only use atomic axioms (this is always possible, as said above) that are
p ` p with p a primitive type, then one can follow these two occurrences of p, one
being negative and the other positive and none of the rules changes the polarity of an
occurrence of a primitive type. The two occurrences of p either lead to a cut formula
(the one that disappear in the cut rule) or to the conclusion sequent. Now observe that
the cut rule cancels a formula in positive position (on the right) with the same formula
in negative position (on the left), so that the same number of positive and negative
occurrences of p disappear. Consequently:

Proposition 15 Each propositional variable has exactly the same number of positive
and negative occurrences in a provable sequent.

2.5 An example

Here is an example of a proof in sequent calculus, corresponding to the analysis of
Cosa guarda passare already given above but in natural deduction format . It is some-
how less natural, but has other advantages, like an easier sub-formula property.

S ` S

S ` S vp ` vp
/h

S / vp,vp ` S np ` np
/h

S /vp,vp/np,np ` S
/i

S /vp,vp/ np ` S /np
/h

(S / (S /np)),S /vp,vp/np ` S

2.6 Equivalence of sequent calculus
and natural deduction

As we will see, this equivalence is absolutely clear as far as provability is concerned.
In fact there is a correspondence for proofs as well, but it is not a straightforward
isomorphism [6].

As introduction rules are common to both formalisms, we just need to mimic elim-
ination rules �e in sequent calculus and left rules �h in natural deduction, and by in-
duction on the height of the proofs the equivalence of both formalisms follows. This
section is an easy adaptation of the results in [6] for intuitionistic logic.

[6] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1988.

INRIA



The logic of categorial grammars – Lecture Notes 33

2.6.1 From natural deduction to sequent calculus

It is possible to do “better” than the translation we provide here; indeed, when the
natural deduction is normal, one can manage to obtain a cut-free proof, and this better
translation is implicitely used when one uses proof nets for λ -calculus see e.g. [50,51]

Replace: with:

∆ ` A Γ ` A\B
\e

∆,Γ ` B Γ ` A\B

∆ ` A
ax

B ` B
\h

∆,A\B ` B
cut

∆,Γ ` B

Γ ` B/A ∆ ` A
/eΓ,∆ ` B Γ ` B/A

∆ ` A
ax

B ` B
/h

B/A,∆ ` B
cut

Γ,∆ ` B

Γ ` A •B ∆,A,B,Θ ` C
•e

∆,Γ,Θ ` C
Γ ` A •B

∆,A,B,Θ ` C
•h

∆,A •B,Θ ` C
cut

∆,Γ,Θ ` C

2.6.2 From sequent calculus to natural deduction

By induction on the height of a sequent calculus proof, let us see that it can be turned
into a natural deduction. As above, we will not exhibit a translation from cut free
proofs to normal deductions, although it is possible.

• If the proof consists in an axiom, its translation is obvious.

• If the proof ends with an introduction rule, \i, /i or •i by induction hypothesis
we have a deduction of the premise(s) and as these rules also exist in natural
deduction and the translation is obvious.

[50] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
[51] Philippe de Groote and Christian Retoré. Semantic readings of proof nets. In Geert-Jan Kruijff,

Glyn Morrill, and Dick Oehrle, editors, Formal Grammar, pages 57–70, Prague, 1996. FoLLI.

RR n° 5703



34 Christian Retoré

• If the proof ends with an \h rule:

·
·
·

γ
Γ,B,Γ′ ` C

·
·
·

δ
∆ ` A

\h
Γ,∆,A\B,Γ′ ` C

then by induction hypothesis we have two natural deduction proofs, γ ∗ of Γ,B,Γ′ `
C and δ ∗ of ∆ ` A and a translation of the whole proof is:

Γ

∆
·
·
·

δ
A A\B

\e
B Γ′

·
·
·

γ
C

• If the proof ends with /h we proceed symmetrically.

• If the proof ends with •h:
·
·
·

γ
Γ,A,B,Γ′ ` C

•h
Γ,A •B,Γ′ ` C

by induction hypothesis we have a proof γ∗ of Γ,A •B,Γ′ ` C and a translation
is the following:

A •B

Γ A B Γ′

·
·
·

γ∗

C
•e

C

INRIA



The logic of categorial grammars – Lecture Notes 35

• If the proof ends with a cut:

·
·
·

γ
Γ ` X

·
·
·

δ
∆,X ,∆′ ` C

cut
C

by induction hypothesis we have two natural deductions γ∗of Γ ` X and δ ∗ of
∆,X ,∆′ ` C and a translation is:

Γ
·
·
·

γ∗

∆ X ∆′

·
·
·

δ
C

2.7 The empty sequence

In the introduction rules we have assumed that the context contains at least two formu-
lae: there fore the context afterwards is never empty. By case inspection we see that
this guarantees that the context of a sequent (the sequence on the left of `) never is
empty in a proof.

This is justified by the intended meaning of the connectives. Indeed by assigning
the type A\B to a word or an expression e, we mean that an expression a of type A is
required before e to obtain an expression ae of type B. This would fail without the "no
empty sequence" requirement.

To explain this, let L1 be the calculus L without this restriction. Indeed, assume
A is a tautology of L1, i.e. `L1 A (*); now let Γ be a sequence of type A \B, that is
Γ`L1 A\B (**). Then from (*) and (**) we can infer by \e the sequent Γ`L1 B without
any sequence preceding Γ. This can actually happen in natural language; indeed some
expression, including all modifiers do have such a tautology type, like X \X .

For instance, a natural type for English adjectives is n / n and thus very gets the
type (n/n)/ (n/n): when applied to an adjective on its right, one obtains an adjective
phrase. Without the exclusion of the empty sequence, one is able to analyze in L1 the
expression “a very book” as a noun phrase: indeed the adjective following very can be
provided by the empty sequence, since n/n is derivable in L1. Let us give the proof in
L1 with a natural deduction in Prawitz style:

a :np/n

very :(n/n)/ (n/n)

[n]α
/i−α

n/n
/e

n/n book :n
/e

n
/e

np

RR n° 5703



36 Christian Retoré

One may wonder why such a requirement was not needed in AB grammars. As
AB grammars only contains elimination rules, no hypothesis is cancelled during a
derivation, and as there are hypotheses at the beginning of every sub-analysis (the
types of the words in the analyzed sequence) there always is at least one hypothesis.

2.8 Normalization of natural deduction

This section is also an easy adaptation of similar results presented in [6].

2.8.1 Normalization for product free Lambek calculus

A natural deduction is said to be normal whenever it does not contain an introduction
rule followed by an elimination rule. There are two such possible configurations:

. . . . . . [A]α . . .
·
·
·

δ ′

B
/i−α

B/A

∆
·
·
·

δ
A

/e
B

∆
·
·
·

δ
A

. . . [A]α . . . . . .
·
·
·

δ ′

B
\i−α

A\B
\e

B
Whenever such a configuration appears, it can be reduced as follows:

1. find the hypothesis A which has been cancelled in the proof δ ′ of B under some
hypotheses including A

2. replace this hypothesis with the proof δ of A

So the configurations above reduce to:

∆
·
·
·

δ
. . . . . .A . . .

·
·
·

δ ′

B

∆
·
·
·

δ
. . .A . . .

·
·
·

δ ′

B

Proposition 16 Natural deduction for L without product enjoys strong normalization,
that is there are no infinite reduction sequences.

PROOF : Observe that the size of the proof decreases in each reduction step. �

[6] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1988.

INRIA



The logic of categorial grammars – Lecture Notes 37

Proposition 17 Normalization is a locally confluent process.

PROOF : If a proof d contains two redexes, they correspond to two elimination rules e′

and e′′ between sub-proofs corresponding to a function f ′ applied to an argument
a′ and to a function f ′′ applied to an argument a′′. One of the following case
applies:

• e′′ is in a′

• e′′ is in f ′

• e′ is in a′′

• e′ is in f ′′

• e′ and e′′ can not be compared.

Assume we reduce e′. The redex e′′ which is not reduced possesses a unique
trace ē′′ in the reduced proof d′. Symmetrically if we reduce e′′ the redex e′

which is not reduced possesses a unique trace ē” in d′′. If in d′ we reduce ē′′ we
obtain a proof d′′′ but if in d′′ we reduce ē′ we also obtain d′′′. �

It is easily shown by induction on the proofs that whenever a natural deduction
is normal (that is without such configuration) each formula is a sub-formula of a free
hypothesis or of the conclusion. More precisely. In order to establish this, let us
introduce the notion of principal branch.

Let us call a principal branch leading to F a sequence H0, . . . ,Hn = F of formulae
of a natural deduction tree such that:

• H0 is a free hypothesis

• Hi is the principal premise — the one carrying the eliminated symbol — of an
elimination rule whose conclusion is Hi+1

• Hn is F

RR n° 5703



38 Christian Retoré

Proposition 18 Let d be a normal natural deduction (without product), then:

1. if d ends with an elimination then there is a principal branch leading to its
conclusion

2. each formula in d is the sub-formula of a free hypothesis or of the conclusion

PROOF : By induction on d.

axiom If d is an axiom, (1) and (2) hold.

\i introduction (1) holds by vacuity. Assume d is made out of d ′ by the intro-
duction \i rule: by induction hypothesis each formula in d ′ is a sub-formula
of A,Γ (the free hypotheses under which B is proved) or a sub-formula of
B; so it is true that each formula in d is a sub-formula of Γ,A \B, since A
and B are sub-formulae of A\B.

\e elimination Assume d is an elimination rule \e applied to:

• d′ with conclusion A and free hypotheses Γ
• d′′ with conclusion A\B and free hypotheses ∆

(1) Since d is normal the last rule of d ′′ is an elimination: indeed, if it were
an introduction rule then it would be a \i introduction making a redex with
the final elimination in d. As d ′′ ends with an elimination, by induction
hypothesis, there is a principal branch leading from H0 in ∆ to A \B, so d
contains a principal branch leading to its conclusion B.

(2) By induction hypothesis

• all formulae in d′ are sub-formula of A or Γ (the free hypotheses under
which A is proved)

• all formulae in d′′ are sub-formulae of ∆,A\B.

Because of the principal branch of d ′ leading to A\B, the conclusion A\B
of d′ is a sub-formula of some H0 in ∆. Thus each formulae in d is a
sub-formula of Γ,∆ hence of Γ,∆,B

/i introduction as \i introduction.

/e elimination as \e elimination

�

INRIA



The logic of categorial grammars – Lecture Notes 39

Here is a proposition of [52] that we shall use to prove that every context free
grammar is weakly equivalent to a Lambek grammar. Let us call the order o(A) of a
formula A the number of alternating implications:

• o(p) = 0 when p is a primitive type

• o(A\B) = max(o(A)+1,o(B))

• o(B/A) = max(o(A)+1,o(B))

Proposition 19 A provable sequent A1, . . . ,An ` p of the product free Lambek calculus
with o(Ai)≤ 1 and p a primitive type is provable with \e and /e only — in other words
AB derivations and L derivations coincide when types are of order at most one.

PROOF : We proceed by contradiction, so we assume that the normal deduction con-
tains an introduction rule, and so there is a lowest introduction rule — one with-
out any introduction rule below.

Let us consider an arbitrary lowest introduction I.

• If the chosen lowest introduction I is an \i introduction leading from y to
b\ y. This introduction cannot be the last rule, because the conclusion is a
primitive type p. So this rule is followed by a an elimination rule E, and
there are three possibilities:

– If b\y is the principal premisse of the elimination rule E, then the rule
E is an \e elimination rule other premisse b; we then have a redex I,E
and this conflicts with the deduction being normal.

– If b\y is not the principal premisse of the elimination rule E, then E is
either an \e elimination rule with principal premisse being (b\y)\z or
an /e elimination rule with principal premisse z/ (b\y). In both cases
the principal premisse is of order at least two. This conflicts with d
enjoying the subformula property which is forced by d being normal
(previous proposition 18).

• If the chosen lowest introduction I is an /i rule, the argument is symmetri-
cal.

Therefore there is no lowest introduction, hence no introduction at all. �

[52] Joel M. Cohen. The equivalence of two concepts of categorial grammars. Information and
Control, 1967.

RR n° 5703



40 Christian Retoré

2.8.2 Normalization and Lambek calculus with product

We have to introduce commutative reductions for the product, otherwise is is possible
that a normal proof does not satisfy the sub-formula property:

A ` A B ` B
•i

A,B ` A •B D ` D
•i

A,B,D ` (A •B) •D
/i

A,B ` (A •B) •D/D A •B ` A •B
•e

A •B ` (A •B) •D/D D ` D
/e

A •B,D ` (A •B) •D

Let us mention that this can be achieved by adding some “commutative contrac-
tions" which basically consists in putting product elimination rules as high as possi-
ble (just after the cancelled hypotheses A and B have met), and then rearranging the
sub-trees made of product elimination rules with a kind of associativity so that the
eliminated product never is the conclusion of another product elimination. This is too
lengthy for what it is since this kind of result can also be deduced from the correspon-
dence with sequent calculus.

2.9 Cut-elimination for sequent calculus

Cut elimination is the process under which a proof is turned into a proof of the same
sequent without any cut rule — in other words, the cut rule is redundant.

This property is famous for classical or intuitionistic logic see e.g. [6], and regard-
ing L, it was originally proved in [1].

Cut elimination has an important consequence, that we state before proving cut
elimination:

Proposition 20 In a cut-free proof of A1, . . . ,An ` An+1 every formula of every sequent
is a sub-formula of some formula Ai (1 ≤ i ≤ n+1).

PROOF : By case inspection it is easily observed that every rule of the sequent calculus
but the cut rule, satisfies the property that every formula in its premise sequent(s)
is a sub-formula of some formula in its conclusion sequent. �

[6] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1988.

[1] Joachim Lambek. The mathematics of sentence structure. American mathematical monthly, pages
154–170, 1958.

INRIA



The logic of categorial grammars – Lecture Notes 41

We give a syntactic proof of cut elimination (while models could be used as well):
it is lengthy, tedious and without surprise, but one has to see this kind of proof at least
once.

We proceed by induction on (d,r) with (d,r) < (d ′,r′) if d < d′ or d = d′∧ r < r′

where r is the number of rules of the proof, and d the maximal degree of a cut, assumed
to be 0 when there is no cut.

The degree of a formula is the height of the sub-formula tree, and the degree of a
cut is the degree of the cut-formula, the one which disappears during the cut rule.

First, let us see that we can assume that the last rule R is a cut rule and the only cut.
Indeed, otherwise we can transform all the subproofs above this rule R (because they
contain less rules) into cut-free proof and then apply R, obtaining a cut-free proof.

Therefore we can assume that R is the only cut hence of maximal degree d.

·
·
·

γ

Ra

Γ ` X

·
·
·

δ

R f

∆,X ,∆′ ` C
cut d

∆,Γ,∆′ ` C

Notice that because the last rule is the only cut, neither Ra nor R f is a cut rule.
We are going to explore all possible values for Ra and R f , and whatever these rules

are, at least one of the following cases apply:

1. One of Ra or R f is an axiom: both the cut and the axiom are suppressed.

2. Ra does not create the cut-formula, — so Ra 6= •i,\i,/i. In this case it is possible
to apply Ra after the cut. We can apply the induction hypothesis to the proof(s)
minus Ra since its (their) number of rules is smaller: it can be turned into a
cut-free proof. Reapplying Ra we obtain a cut free proof.

3. If R f does not create the cut formula, we proceed symmetrically.

4. If both Ra and R f create the cut formula, then this cut of degree d is replaced
with two cut of degree strictly smaller. Hence, the maximal degree of a cut is
strictly smaller (as the last rule was the only cut) and by induction hypothesis
we are done.

We only describe the cases for \ because the ones for / are strictly symmetrical.
1 Ra or R f is an axiom The final cut can be supressed.

X ` X

·
·
·

δ
Γ,X ,∆ ` C

cut
Γ,X ,∆ ` C

reduces to
·
·
·

δ
Γ,X ,∆ ` C

RR n° 5703



42 Christian Retoré

2 Ra does not create X , the cut formula
Ra Before reduction After reduction

•h

·
·
·

γ
Γ,A,B,Γ′ ` X

•h
Γ,A •B,Γ′ ` X

·
·
·

δ
∆,X ,∆′ ` C

cut d
∆,Γ,A •B,Γ′,∆′ ` C

·
·
·

γ
Γ,A,B,Γ′ ` X

·
·
·

δ
∆,X ,∆′ ` C

cut d
∆,Γ,A,B,Γ′,∆′ ` C

•h
∆,Γ,A •B,Γ′,∆′ ` C

\h

·
·
·

δ
∆,B,∆′′ ` X

·
·
·

δ ′

∆′ ` A
\h

∆,∆′,A\B,∆′′ ` X

·
·
·

γ
Γ,X ,Γ′ ` C

cut d
Γ,∆,∆′,A\B,∆′′,Γ′ ` C

·
·
·

δ
∆,B,∆′′ ` X

·
·
·

γ
Γ,X ,Γ′ ` C

cut d
Γ,∆,B,∆′′,Γ′ ` C

·
·
·

δ ′

∆′ ` A
\h

Γ,∆,∆′,A\B,∆′′,Γ′ ` C

INRIA



The logic of categorial grammars – Lecture Notes 43

3 R f does not create X , the cut formula
R f Before reduction After reduction

•h

·
·
·

δ
∆ ` X

·
·
·

γ
Γ,X ,Γ′,A,B,Γ′′ ` C

•h
Γ,X ,Γ′,A •B,Γ′′ ` C

cut d
Γ,∆,Γ′,A •B,Γ′′ ` C

·
·
·

δ
∆ ` X

·
·
·

γ
Γ,X ,Γ′,A,B,Γ′′ ` C

cut d
Γ,∆,Γ′,A,B,Γ′′ ` C

•h
Γ,∆,Γ′,A •B,Γ′′ ` C

\h

·
·
·

δ
∆ ` X

·
·
·

γ
Γ,B,Γ′,X ,Γ′′ ` C

·
·
·

θ
Θ ` A

\h
Γ,Θ,A\B,Γ′,X ,Γ′′ ` C

cut d
Γ,Θ,A\B,Γ′,∆,Γ′′ ` C

·
·
·

δ
∆ ` X

·
·
·

γ
Γ,B,Γ′,X ,Γ′′ ` C

cut d
Γ,B,Γ′,∆,Γ′′ ` C

·
·
·

θ
Θ ` A

\h
Γ,Θ,A\B,Γ′,∆,Γ′′ ` C

\h

·
·
·

δ
∆ ` X

·
·
·

γ
Γ,B,Γ′′′ ` C

·
·
·

γ ′

Γ′,X ,Γ′′ ` A
\h

Γ,Γ′,X ,Γ′′,A\B,Γ′′′ ` C
cut d

Γ,Γ′,∆,Γ′′,A\B,Γ′′′ ` C

·
·
·

γ
Γ,B,Γ′′′ ` C

·
·
·

δ
∆ ` X

·
·
·

γ ′

Γ′,X ,Γ′′ ` A
cutd

Γ′,∆,Γ′′ ` A
\h

Γ,Γ′,∆,Γ′′,A\B,Γ′′′ ` C

•i

·
·
·

δ
∆ ` X

·
·
·

γ
Γ,X ,Γ′ ` A

·
·
·

θ
Θ ` B

•i
Γ,X ,Γ′,Θ ` A •B

cut d
Γ,∆,Γ′,Θ ` A •B

·
·
·

δ
∆ ` X

·
·
·

γ
Γ,X ,Γ′ ` A

cut d
Γ,∆,Γ′ ` A

·
·
·

θ
Θ ` B

•i
Γ,∆,Γ′,Θ ` A •B

\i

·
·
·

δ
∆ ` X

·
·
·

γ
A,Γ,X ,Γ′ ` B

\i
Γ,X ,Γ′ ` A\B

cut d
Γ,∆,Γ′ ` A\B

·
·
·

δ
∆ ` X

·
·
·

γ
A,Γ,X ,Γ′ ` B

cut d
A,Γ,∆,Γ′ ` B

\i
Γ,∆,Γ′ ` A\B

RR n° 5703



44 Christian Retoré

4 Both Ra and R f create the cut-formula
Before reduction After reduction

•

·
·
·

δ
∆ ` U

·
·
·

θ
Θ ` V

•i
∆,Θ ` U •V

·
·
·

γ
Γ,U,V,Γ′ ` C

•h
Γ,U •V,Γ′ ` C

cut d
Γ,∆,Θ,Γ′ ` C

·
·
·

δ
∆ ` U

·
·
·

θ
Θ ` V

·
·
·

γ
Γ,U,V,Γ′ ` C

cut < d
Γ,U,Θ,Γ′ ` C

cut < d
Γ,∆,Θ,Γ′ ` C

\

·
·
·

δ
U,∆ ` V

\i
∆ ` U \V

·
·
·

γ
Γ,V,Γ′ ` C

·
·
·

θ
Θ ` U

\h
Γ,Θ,U \V,Γ′ ` C

cut d
Γ,Θ,∆,Γ′ ` C

·
·
·

θ
Θ ` U

·
·
·

δ
U,∆ ` V

cut < d
Θ,∆ ` V

·
·
·

γ
Γ,V,Γ′ ` C

cut < d
Γ,Θ,∆,Γ′ ` C

To be fully complete one should check that whenever the original proof contains no
sequent with an empty antecedent, so does the cut free proof we inductively defined.

Now let us summarize what we have proved in this section:

Proposition 21 Every proof of a given sequent Γ ` A can be turned into a cut free
proof of the same sequent — all formulae in the cut-free proof being sub-formulae of
the sequent Γ ` C.

2.10 Decidability

One way wonder why we wanted to have normal or cut free proof since the compu-
tational process of cut elimination or normalization is of little interest for categorial
grammars.

What is nevertheless very interesting in such a result is that instead of looking for
any proof when we want, for instance to parse and analyze a sentence, we can restrict
our search space to these canonical proofs, either normal deductions or cut-free proofs.
As we have seen, from cut elimination (or natural deduction normalization) entails the
sub-formula property and then it is quite easy to have the decidability of the calculus:

Proposition 22 There is an algorithm which decides whether a sequent is derivable
in L.

PROOF : Assume we want to prove a sequent. Since the cut rule is not needed, we
have finitely many rules to try, each of these rules leading to prove one or two
smaller sequents which are also in finite number. �

INRIA



The logic of categorial grammars – Lecture Notes 45

2.11 Models for the Lambek calculus and completeness

We now turn our attention towards models for the Lambek calculus. As we have seen
that as far as provability is concerned, cut-free sequent calculus, sequent calculus and
natural deduction are equivalent, we are going to use the most adequate formalism to
establish properties of models with respect to the deductive system.

These models have been first investigated in [53] and our presentation follows [3].
As we have said Lambek calculus prohibits the empty sequence, and we will

present models for L with this restriction. Let us nevertheless say that all these re-
sults can be adapted by adding a unit to residuated semi-groups and to semi-groups —
replacing the word “semi-group” with the word “monoid”.

2.11.1 Residuated semi-groups and the free group model

Let us call a residuated semi-group, a structure (M,◦,\\,//,<) where

• M is a set.

• ◦ is an associative composition over M — (M,◦) is a semi-group.

• \\ and // are binary composition law on M.

• < is an order on M.

which satisfies the following property:

(RSG) The following order relations are either all true or all false:

a < (c//b)

(a◦b) < c

b < (a\\ c)

[53] Wojciech Buszkowski. Compatibility of a categorial grammar with an asssociated category sys-
tem. Zeitschrift für matematische Logik und Grundlagen der Mathematik, 28:229–238, 1982.

[3] Wojciech Buszkowski. Mathematical linguistics and proof theory. In van Benthem and ter Meulen
[2], chapter 12, pages 683–736.

[2] Johan van Benthem and Alice ter Meulen, editors. Handbook of Logic and Language. North-
Holland Elsevier, Amsterdam, 1997.

RR n° 5703



46 Christian Retoré

Proposition 23 In a residuated semi-group (M,◦,\\,//,<), for all a,b,x,y ∈ M one
has:

1. a < b ⇒ (a◦ x) < (b◦ x)

2. a < b ⇒ (x◦a) < (x◦b)

3.





a < b
and

x < y



 ⇒ (a◦ x) < (b◦ y)

In other words, a residuated semi-group is in particular an ordered semi-group.

PROOF : (1) From (b◦ x) < (b◦ x) (< is an order) (RSG) yields b < ((b◦ x)// x) ; if
we assume a < b by transitivity of < we have a < ((b ◦ x) // x) which by
(RSG) yields (a◦ x) < (b◦ x).

(2) From (x◦b) < (x◦b) (< is an order) (RSG) yields b < (x\\ (x◦b)) ; if we
assume a < b by transitivity of < we have a < (x\\(x◦b)) which by (RSG)
yields (x◦a) < (x◦b).

(3) The assumption a < b yields (a ◦ x) < (b ◦ x) (*) by (1). The assumption
x < y yields (b◦ x) < (b◦ y) (**) by (2). By transitivity of <, (*) and (**)
yields (a◦ x) < (b◦ y).

�

Given a residuated semi-group, an interpretation [. . .] is a map from primitive types
to elements in M, which extends to types and sequences of types in the obvious way:

[A,B] = [A]◦ [B] [A\B] = [A]\\ [B]

[A •B] = [A]◦ [B] [B/A] = [B]// [A]

A sequent Γ ` C is said to be valid in a residuated semi-group whenever [Γ] < [C].

2.11.2 The free group model

A particular case of residuated semi-group is the free group over primitive types. It
will be especially important in the section 2.13. The free group interpretation for L is

• a particular residuated semi-group where

– (M, ·) is the free group over the propositional variables,

– a\\b is a−1b

– b//a is ba−1

– a < b is a = b (the discrete order)

INRIA



The logic of categorial grammars – Lecture Notes 47

One easily observes that the three equalities

ab = c a = cb−1 b = a−1c

are equivalent — so (RSG) holds.

• a standard interpretation defined by [p] = p

Because of the soundness of L w.r.t. residuated semi-groups (next proposition)
whenever a sequent Γ ` C is provable one has [Γ] = [C] in the free group. The free
group model is of course not complete: indeed it interprets ` by a symmetrical relation
(=) while ` is not symmetrical: n ` s/ (n\ s) is provable but not s/ (n\ s) ` n.

2.11.3 L is sound and complete w.r.t. residuated semi-groups

Proposition 24 A provable sequent is valid in every residuated semi-group, for every
interpretation of the primitive types.

PROOF : We proceed by induction on the proof in natural deduction.

• If the proof consists in an axiom X ` X then the result is true: [X ] < [X ]
whatever the semi-group or the interpretation is.

• If the last rule is the introduction rule \i:

A,Γ ` C
\i Γ 6= ε

Γ ` A\C

by induction hypothesis we have [A] ◦ [Γ] < [C], thus, by (RSG) we have
[Γ] < ([A]\\ [C]), so the sequent Γ ` A\C is valid as well.

If the last rule is the introduction rule /i we proceed as for \i.

If the last rule is the elimination rule \e:

Γ ` A ∆ ` A\B
\e

Γ,∆ ` B

then by induction hypothesis we know that [Γ] < [A], and using proposition
23 we have [Γ] ◦ [∆] < [A] ◦ [∆] (1); we also have [∆] < [A] \\ [B] —
hence by (RSG) ([A]◦ [∆]) < [B] (2). Therefore from (1) and (2) we obtain,

[Γ,∆] = [Γ]◦ [∆] < (1) [A]◦ [∆] < (2) [B]

• If the last rule is the elimination rule /e we proceed as for /i.

RR n° 5703



48 Christian Retoré

• If the last rule is the product elimination rule •e

Γ ` A •B ∆,A,B,∆′ ` C
•e

∆,Γ,∆′ ` C

By induction hypothesis we know that [Γ] < [A •B] = [A] ◦ [B], and, using
proposition 23 we obtain [∆]◦ [Γ]◦ [∆′] < [∆]◦ [A]◦ [B]◦ [∆′]. We also know
that [∆,A,B,∆′] = [∆]◦ [A]◦ [B]◦ [∆′] < [C]. We therefore have

[∆,Γ,∆′] = [∆]◦ [Γ]◦ [∆′] < [∆]◦ [A]◦ [B]◦ [∆′] < [C]

If the last rule is the product introduction rule •i by induction hypothesis
we know that [∆] < [A] and that [∆′] < [B]; consequently

[∆,∆′] = [∆]◦ [∆′] < [A]◦ [B] = [A •B]

�

Proposition 25 A sequent which is valid in every residuated semi-group is derivable.

PROOF : Let F be the set of formulae and let M = F/ à be the quotient of formulae
by the equivalence relation à; this relation à is defined by A à B whenever
A ` B and B ` A; it is symmetrical, axioms shows it is reflexive and the cut rule
makes sure it is transitive.

Is is easily observed that \, /, • and ` can be defined over equivalence classes,
that is: whenever A à A′ and B àB′ one has (A�B) à (A′�B′) So let us define
◦,\\,// as the similar operations over equivalence classes of à: A à ◦B à =
(A •B) à, A à \\B à = (A \B) à and B à // A à = (B / A) à Finally let < be `
which can also be defined for equivalence classes: if A à A′ and B à B′ then
A ` B is equivalent to A′ ` B′.

The property (RSG) is satisfied i.e. (A à ◦B à) < C à is equivalent to A à
<

(C à // B à) and to A à
< (B à \\C à). Indeed A ` A and B ` B lead to A,B `

A •B; thus from A •B ` C one obtains A,B ` C which yields A ` C /B by /i and
B ` A\C by \i; from B ` A\C (resp. A ` B/C) using A ` A (resp. B ` B) one
obtains A,B ` C by \e (resp. by /e) and A •B\C by •h.

Now let us consider the interpretation [p] = p à for every primitive type. Then
for every formula [A] = A à.

To say that a sequent H1, . . . ,Hn ` A is valid in this model under this interpreta-
tion is to say that [H1, . . . ,Hn] < [A]. Therefore H1 • · · ·•Hn ` A is provable which
entails that H1, . . . ,Hn ` A is provable as well — indeed from H1 • · · · • Hn ` A
one obtains ` H1 • · · · • Hn \A (*); then by n rules •i on the axioms Hi ` Hi one
obtains H1, . . . ,Hn ` H1 • · · · • Hn (**) and an application of •e to (*) and (**)
yields H1, . . . ,Hn ` A. �

INRIA



The logic of categorial grammars – Lecture Notes 49

2.11.4 L is sound and complete w.r.t. (free) semi-group models

A more interesting class of models is provided by semi-groups. Indeed, the interpre-
tation of a category should be the set of the words and expressions of this category,
shouldn’t it?

So, given a semi-group (W, .) that is a set W endowed with an associative compo-
sition "." one can define a residuated semi-group as follows:

• M = 2W

• A◦B = {ab | a ∈ A and b ∈ B}

• A\\B = {z | ∀a ∈ A az ∈ B}

• B//A = {z | ∀a ∈ A za ∈ B}

• A < B whenever A ⊂ B (as sets).

It is easily seen that this structure really is a residuated semi-group:

• ◦ is associative:

(A◦B)◦C = {abc | a ∈ A and b ∈ B and c ∈C} = A◦ (B◦C)

• ⊂ is an order on 2W

(RSG) The following statements are clearly equivalent:

(A◦B)⊂C : ∀a ∈ A ∀b ∈ B ab ∈C
A ⊂ (C //B) : ∀a ∈ A a ∈ (C //B)
B ⊂ (A\\C) : ∀b ∈ B b ∈ (A\\C)

What is of special interest are free semi-group models, since there are no equations
between sequences of words. The following result may be understood as L is the logic
of free semi-groups:

Proposition 26 Product free L is complete over free semi-group models.

PROOF : Take as semi-group the finite non empty sequences of formulae F+, endowed
with concatenation (A1, . . . ,An) · (B1, . . . ,Bp) = A1, . . . ,An,B1, . . . ,Bp.

For a primitive type p define [p] by {Γ | Γ ` p}.

Let us firstly see that for every formula F , the set of finite sequences [F] defined
inductively from the [p]’s by the definition of \\ and // is precisely Ctx(F) =
{∆ | ∆ ` F}. We proceed by induction on F . Is F if some primitive type, it
is the definition. Now assume that [G] = Ctx(G) and [H] = Ctx(H) and let us
see that [G\H] = Ctx(G\H) — the case H /G being symmetrical.

RR n° 5703



50 Christian Retoré

Ctx(G\H)⊂ [G\H] Let ∆ be a sequence such that ∆ ∈ Ctx(G\H) that is ∆ `
G\H (1) and let us see that for every Θ ∈ [G] we have Θ,∆ ∈ [H] — which
entails ∆ ∈ [G \ H]. By induction hypothesis we have Ctx(G) = [G] so
Θ ` G (2). From (1) and (2) we obtain Θ,∆ ` H, so Θ,∆ ∈Ctx(H). Since
by induction hypothesis Ctx(H) = [H] we have Θ,∆ ∈ [H]. As this holds
for every Θ we have ∆ ∈ [G\H].

[G\H] ⊂Ctx(G\H) Let ∆ be a sequence such that ∆ ∈ [G \H]. Let us show
that ∆ ` G\H. Since G ` G we have G ∈Ctx(G) and by induction hypoth-
esis G ∈ [G]. By definition of [G \H] we thus have G,∆ ∈ [H] and, since
by induction hypothesis we have [H] = Ctx(H) we obtain G,∆ ` H. Now,
by the \i introduction rule we obtain ∆ ` G\H, that is ∆ ∈Ctx(G\H).

If a sequentA1, . . . ,An ` C is valid in this model under this interpretation, what
does it means? We have [A1]◦· · ·◦[An]⊂ [C] and as Ai ∈ [Ai] we have A1, . . . ,An ∈
[C] that is A1, . . . ,An ` C. �

Next follows a very difficult result due to Pentus [54], that we give without proof:

Proposition 27 L with product is also complete w.r.t. free semi-groups models.

2.12 Interpolation

This section presents the interpolation theorem for Lambek calculus which appeared
in the thesis of Roorda [55].

Interpolation is somehow the converse of cut elimination. The interest of cut free
proofs is that they obey the sub-formula property. The usual interest of interpolation,
say for classical or intuitionistic logic is to be able to factor equal sub-proofs in a given
proof. In the Lambek calculus where contraction is prohibited, nothing like this can
happen. So the interest is very different, let us explain it shortly.

Assume we are able to formulate the calculus with a set of axioms, and only the
cut rule: viewing ` as −→ (in th oposite direction) the calculus is nothing but a set of
context free production rules — the cut rule is the substitution rule often left implicit
in phrase structure grammars.

[54] Mati Pentus. Lambek calculus is L-complete. Technical Report LP-93-14, Institute for Logic,
Language and Computation, Universiteit van Amsterdam, 1993.

[55] Dirk Roorda. Resource logic: proof theoretical investigations. PhD thesis, FWI, Universiteit van
Amsterdam, 1991.

INRIA



The logic of categorial grammars – Lecture Notes 51

Indeed a production rule X −→ X1 · · ·Xn corresponds to an axiom X1, . . . ,Xn ` X
and the cut rule simply state that is we have been able to derive

W −→V1 · · ·Vk T U1 · · ·Ul

T −→ Z1 · · ·Z j

then we are able to derive

W −→V1 · · ·Vk Z1 · · ·Z j U1 · · ·Ul .

Now observe that for a given Lambek grammar because of cut elimination we know
that the types appearing in any syntactic analysis are all sub-formulae of the conclusion
sequent: indeed a syntactic analysis is a proof of t1, . . . , tn ` S with all ti in the lexicon.
Can we derive every any syntactic analysis from a finite number of provable sequents
by means of the cut rule only?

As we shall see in the next section, it is possible and consequently Lambek gram-
mars are weakly equivalent to context free grammars.

Given a formula or a sequence of formulae ∆ and a primitive type p we denote by
ρp(∆) the number of occurrences of p in ∆.

Proposition 28 Let Γ,∆,Θ ` C be a provable sequent in L, with ∆ 6= ε . There exists
an interpolant of ∆ that is a formula I such that:

1. ∆ ` I

2. Γ, I,Θ ` C

3. ρp(I)≤ ρp(∆) for every primitive type p

4. ρp(I)≤ ρp(Γ,Θ,C) for every primitive type p

PROOF : We proceed by induction on the size of a cut free proof of Γ,∆,Θ ` C —
there are many cases in this proof, according to the nature of the last rule, and to
the respective position of the created formula and ∆.

axiom X ` X

If the proof is an axiom, then ∆ is a formula X and I = X obviously works:

1. X ` X

2. X ` X

3. ρp(X) = ρp(X)

4. ρp(X) = ρp(ε,ε,X)

RR n° 5703



52 Christian Retoré

Π ` X Φ ` Y
•h

Π,Φ ` X •Y

• Π = Π′,∆,Π′′ — so Γ = Π′ and Θ = Π′′,Φ.

By induction hypothesis we have an interpolant I for ∆ in Π′,∆,Π′′ ` X ,
let us see it is an interpolant for ∆ in Π′,∆,Π′′,Φ ` X •Y .

1. We already have ∆ ` I

2. From Π′, I,Π′′ ` X and Φ ` Y , we have Π′, I,Π′′,Φ ` X •Y .

3. We already have ρp(I)≤ ρp(∆).

4. From ρp(I)≤ ρp(Π′,Π′′,X) we obtain ρp(I) ≤ ρp(Π′,Π′′,Φ,X ,Y).

• Φ = Φ′,∆,Φ′′ — so Γ = Π,Φ′ and Θ = Φ′′.

Symmetrical to the previous case.

• Π = Π′,∆′ Φ = ∆′′,Φ′′ and ∆ = ∆′,∆′′ — so Γ = Π′ and Θ = Φ′′.

By induction hypothesis we have an interpolant I ′ for ∆′ in Π′,∆′ ` X and
an interpolant I ′′ for ∆′′ in ∆′′,Φ′′ ` X . Then I = I ′ • I′′ is an interpolant for
∆ = ∆′,∆′′ in Π′,∆′,∆′′,Φ′′ ` X •Y .

1. From ∆′ ` I′ and ∆′′ ` I′′ we obtain ∆′,∆′′ ` X •Y by •i.

2. From Π′, I′ ` X and I ′′,Φ′′ ` Y we have Π′, I′, I′′,Φ′′ ` X •Y by •i and
finally Π′, I′ • I′′,Φ′′ ` X •Y by •h

3. From ρp(I′) ≤ ρp(Π′,X) and ρp(I′′) ≤ ρp(Φ′′,Y ) we get ρp(I′ • I′′) =
ρp(I′)+ρp(I′′)≤ ρp(Π′,X)+ρp(Φ′′,Y ) = ρp(Π′,Φ′′,X ,Y) = ρp(Π′,Φ′′,X •

Y ).

4. From ρp(I′)≤ ρp(∆′) and ρp(I′′)≤ ρp(∆′′) we get ρp(I′ •I′′) = ρp(I′)+
ρp(I′′) ≤ ρp(∆′,∆′′) = ρp(∆).

Π,X ,Y,Φ ` C
•h

Π,X •Y,Φ ` C

Let ∆′ be defined as follows: if ∆ contains X •Y then ∆′ = ∆[X •Y := X ,Y ],
otherwise ∆′ = ∆. Let I be an interpolant for ∆′ in Π,X ,Y,Φ ` C. Then I is itself
an interpolant for ∆ in Π,X •Y,Φ ` C.

1. From ∆′ ` I we have ∆ ` I (possibly using •h).

2. From Π,X •Y,Φ[∆′ := I] ` C we get Π,X •Y,Φ[∆ := I] ` C.

3. From ρp(∆) = ρp(∆′) we obtain ρp(I)≤ ρp(∆)

4. Since ρp((Π,X •Y,Φ)[∆′ := ε],C) = ρp((Π,X •Y,Φ)[∆ := ε],C) we have
ρp(I) ≤ ρp((Π,X •Y,Φ)[∆ := ε],C).

INRIA



The logic of categorial grammars – Lecture Notes 53

X ,Γ,∆,Θ ` Y
\i

Γ,∆,Θ ` X \Y

By induction hypothesis we have an interpolant I for ∆ in A,Γ,∆,Θ ` B. It is an
interpolant for ∆ in Γ,∆,Θ ` X \Y as well.

1. We already have ∆ ` I.

2. From X ,Γ, I,Θ ` Y we obtain Γ, I,Θ ` X \Y by \i.

3. We already have ρp(I) ≤ ρp(∆).

4. We have: ρp(I)≤ ρp(X ,Γ,Θ,Y) = ρp(Γ,Θ,X \Y ).

Π ` X Φ,Y,Ψ ` C
\h

Φ,Π,X \Y,Ψ ` C

• ∆ is included into Π Let I be an interpolant for ∆ in the premise containing
it. Then I is an interpolant for ∆ in Φ,Π,X \Y,Ψ ` C.

1. We already have ∆ ` I

2. From Π[∆ := I]` X and Φ,Y,Ψ ` C, by \h we obtain Φ,Π[∆ := I],X \
Y,Ψ ` C

3. We already have ρp(I)≤ ρp(∆).

4. From ρp(I)≤ ρp(Π[∆ := ε],X) we have ρp(I)≤ ρp(Φ,Π[∆ := ε],X \
Y,Ψ,C)

• ∆ is included in Φ (resp. Ψ) Let I be an interpolant for ∆ in the premise
containing it. Then I is an interpolant for ∆ in Φ,Π,X \Y,Ψ ` C.

1. We already have ∆ ` I

2. From Φ[∆ := I],Y,Ψ ` C (resp. Φ,Y,Ψ[∆ := I] ` C) and Π ` X , by \h

we obtain Φ[∆ := I],Π,X \Y,Ψ ` C (resp. Φ,Π,X \Y,Ψ[∆ := I] ` C)

3. We already have ρp(I)≤ ρp(∆).

4. From ρp(I) ≤ ρp(Φ[∆ := ε],Y,Ψ,C) (resp. ρp(I) ≤ ρp(Φ,Y,Ψ[∆ :=
ε],C)) we have ρp(I) ≤ ρp(Φ[∆ := ε],Π,X \Y,Ψ,C) (resp. ρp(I) ≤
ρp(Φ,Π,X \Y,Ψ[∆ := ε],C)).

• ∆ = ∆′,∆′′ and Φ = Φ′,∆′ and Π = ∆′′,Π′′.

Let I′ be an interpolant for ∆′ in Φ′,∆′,Y,Ψ ` C, and let I ′′ be an inter-
polant for ∆′′ in ∆′′,Π′′ ` X . Then I = I ′ • I′′ is an interpolant for ∆′,∆′′ in
Φ′,∆′,∆′′,Π′′,X \Y,Ψ ` C.

1. From ∆′ ` I′ and ∆′′ ` I′′ we have ∆′,∆′′ ` I′ • I′′ by •i.

2. From I ′′,Π′′ ` X and Φ′, I′,Y,Ψ ` C we have Φ′, I′, I′′,X \Y,Ψ ` C by
\h and Φ′, I′ • I′′,X \Y,Ψ ` C by •i.

RR n° 5703



54 Christian Retoré

3. We have ρp(I′ • I′′) = ρp(I′)+ρp(I′′) ≤ ρp(∆′)+ρp(∆′′) = ρp(∆).

4. We have ρp(I′ • I′′) = ρp(I′)+ρp(I′′)≤ ρp(Φ′,Y,Ψ,C)+ρp(Π′′,X) =
ρp(Φ′,Π′′,X \Y,Ψ,C).

• ∆ = Φ′′,Π,X \Y,Ψ′ with Φ = Φ′,Φ′′ and Ψ = Ψ′,Ψ′′.

Let I be an interpolant for Φ′′,Y,Ψ′ in Φ′,Φ′′,Y,Ψ′,Ψ′′ `C. Then I is itself
interpolant for Φ′′,Π,X \Y,Ψ′ in Φ′,Φ′′,Π,X \Y,Ψ′,Φ′′ ` C.

1. From Φ′′,Y,Ψ′ ` I and Π ` X we have Φ′′,Π,X \Y,Ψ′ ` I by \h.

2. We already have Φ′, I,Ψ′′ ` C.

3. We already have ρp(I)≤ ρp(Φ′,Ψ′′,C)

4. We have ρp(I) ≤ ρp(Φ′′,Y,Ψ′) ≤ ρp(Φ′′,Π,X \Y,Ψ′).

• ∆ = Π′′,X \Y,Ψ′ with Π = Π′,Π′′ and Ψ = Ψ′,Ψ′′.

Let I′ be and interpolant for Π′ in Π′,Π′′ ` X and let I ′′ be an interpolant for
Y,Ψ′ in Φ,Y,Ψ′,Ψ′′ ` C. Then I ′ \ I′′ is an interpolant for ∆ = Π′′,X \Y,Ψ′

in Φ,Π′,Π′′,X \Y,Ψ′,Ψ′′ ` C.

1. From I ′,Π′′ ` X and Y,Ψ′ ` I′′ we have I ′,Π′′,X \Y,Ψ′ ` I′′ by \h and
Π′′,X \Y,Ψ′ ` I′ \ I′′ by \i.

2. From Φ, I ′′,Ψ′′ ` C and Π′ ` I′ we have Φ,Π′, I′ \ I′′,Ψ′′ ` C.

3. We have ρp(I′ \ I′′) ≤ ρp(Π′′,X)+ρp(Y,Ψ′) = ρp(Π′′,X \Y,Ψ′)

4. We have ρp(I′ \ I′′) ≤ ρp(Π′)+ρp(Φ,Ψ′′,C) = ρp(Φ,Π′,Ψ′′,C)

This ends the proof because /i and /e are symmetrical to \i and \e. �

2.13 Lambek grammars and context-free grammars

At the beginning of this section we shall see that context free grammars translate into
weakly equivalent Lambek grammars [52]: this is non trivial but unsurprising, and this
section is in fact devoted to prove the converse, known as Chomsky conjecture stated
in 1963 [28, p. 413] and proved by Pentus in 1992 [56]: Languages generated by
Lambek grammars are context free languages.

This result was already suggested in the previous section on interpolation: if we
are able to derive all sequents corresponding to syntactic analyses from a finite set of
sequents by the cut rule only, then Lambek grammars are context free.

Let us define the size |A| of a formula A by its number of primitive types. We
are going to show that given an integer m there exists a finite set AX(m) of provable

[52] Joel M. Cohen. The equivalence of two concepts of categorial grammars. Information and
Control, 1967.

[28] Noam Chomsky. Formal properties of grammars. In Handbook of Mathematical Psychology,
volume 2, pages 323 – 418. Wiley, New-York, 1963.

[56] Mati Pentus. Lambek grammars are context-free. In Logic in Computer Science. IEEE Computer
Society Press, 1993.

INRIA



The logic of categorial grammars – Lecture Notes 55

sequents such that all provable sequent containing only formulae of size smaller than
m are derivable from sequents in AX(m) by means of the cut rule only. This easily
entails that Lambek grammars are context-free.

This does not means that they should be left out: they are lexicalized, they offer
a pleasant interface with semantics, and even for syntactic considerations, let us say
that while the derivation trees of a context-free grammars constitute a regular tree
language [57,58] the derivation trees (natural deduction trees) of a Lambek grammar
can constitute a non regular tree language — but always consitute a context-free tree
language. [47]

There are basically two ingredients for the Pentus proof that Lambek grammars are
context free. One is interpolation and we already explained its relevance to this ques-
tion. The other is a property of the free group to be applied to the free group model of
section 2.11.2 page 46. This property is needed to find, in a sequent where all formulae
have sizes lower than m, two (or more) consecutive formulae whose interpolant also
has a size less than m — this is of course to be used for the final induction.

We mainly follow [56], and borrow a few things from [59,3].

2.13.1 From context-free grammars to Lambek grammars

It is natural to think that every AB grammar corresponds to a Lambek grammar be-
cause Lambek calculus includes the residuation laws and is even richer. In fact this
result although not as difficult as the one needed in the previous section is not fully
straight forward.

Using proposition 1 from chapter 1, any AB grammar is weakly equivalent to an
AB grammar only containing types of order at most 1.

Now, by proposition 19 a sequent A1, . . . ,An ` S with o(Ai)≤ 1 is provable with AB
residuation rules if and only if it is provable in L. Consequently the language generated
by an AB grammar with types of order at most 1 coincide with the language generated
by the Lambek grammar with the same lexicon.

[57] J. W. Thatcher. Characterizing derivation trees of context free grammars through a generalization
of finite automata theory. Journal of Computer and System Sciences, 1:317–322, 1967.

[58] Ferenc Gécseg and Magnus Steinby. Tree languages. In Rozenberg and Salomaa [24], chapter 1.
[24] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages. Springer Verlag, Berlin,

1997.
[47] Hans-Jörg Tiede. Lambek calculus proofs and tree automata. In Michael Moortgat, editor, Logical

Aspects of Computational Linguistics, LACL‘98, selected papers, number 2014 in LNCS/LNAI.
Springer-Verlag, 2001.

[59] Mati Pentus. Product-free Lambek calculus and context-free grammars. Journal of Symbolic
Logic, 62(2):648–660, 1997.

[3] Wojciech Buszkowski. Mathematical linguistics and proof theory. In van Benthem and ter Meulen
[2], chapter 12, pages 683–736.

[2] Johan van Benthem and Alice ter Meulen, editors. Handbook of Logic and Language. North-
Holland Elsevier, Amsterdam, 1997.

RR n° 5703



56 Christian Retoré

Using the weak equivalence between AB grammars and context-free grammars
(propositions 4 and 3) we have the result of [52]:

Proposition 29 Every ε-free context-free grammar is weakly equivalent to a Lambek
grammar.

2.13.2 A property of the free group

Let w be an element of the free group; then ‖w‖ stands for the length of the reduced
word corresponding w — e.g. ‖cb−1a−1abc‖ = 2.

This lemma which is needed for a refinement of interpolation, only concern the
free-group. It has actually been proved earlier on in [60] and reproved in [61].

Proposition 30 The two following properties of the free group hold:

1. Let u,v,w be elements of the free group; if ‖u‖ < ‖uv‖ and ‖uv‖ ≥ ‖uvw‖ then
‖vw‖ ≤ max(‖v‖,‖w‖).

2. Let ui i = 1, . . . ,n+1 be elements of the free group with u1 · · · · ·un+1 = 1. Then
there exists k ≤ n such that

‖ukuk+1‖ ≤ max(‖uk‖,‖uk+1‖)

PROOF : The first part is actually a lemma for the second part.

Proof of 1 We proceed by reductio ad absurdum, so we assume that

a. ‖u‖ < ‖uv‖

b. ‖uv‖ ≥ ‖uvw‖

c. ‖vw‖ > ‖v‖

d. ‖vw‖ > ‖w‖

There exists three reduced words x,y,z such that

• u = xy−1 v = yz uv = xz

• xy−1 yz xz are reduced.

From (a) we have ‖x‖+‖y‖ < ‖x‖+‖z‖ so ‖y‖< ‖z‖ and therefore ‖y‖ <
1
2‖v‖ (*).

Similarly there exists three reduced words x′,y′,z′ such that

[52] Joel M. Cohen. The equivalence of two concepts of categorial grammars. Information and
Control, 1967.

[60] Maurice Nivat. Congruences de thue et t-langages. Studia scientiarum mathematicarum hungar-
ica, 6:243–249, 1971.

[61] Jean-Michel Autebert, Luc Boasson, and Géraud Sénizergues. Langages de parenthèses, langages
n.t.s. et homomorphismes inverses. R.A.I.R.O. Informatique Théorique, 18(4):327–344, 1984.

INRIA



The logic of categorial grammars – Lecture Notes 57

• v = x′y′ w = y′−1z′ vw = x′z′

• x′y′ y′−1z′ x′z′ are reduced.

From (c) we have ‖y′‖+ ‖z′‖ < ‖x′‖+ ‖z′‖ so ‖y′‖ < ‖x′‖ and therefore
‖y′‖ < 1

2‖v‖ (**)

From v = yz = x′y′ with ‖y‖ < 1
2‖v‖ (*) and ‖y′‖ < 1

2‖v‖ (**), there exists
a non empty a such that

• z = ay′ x′ = ya v = yay′

• ay′ ya yay′ are reduced

So we have uvw = xy−1yay′y′−1z′ = xaz′ — as xa and az′ are reduced, xaz′

is reduced as well. From (b) we have

‖uvw‖ = ‖xaz′‖ ≤ ‖xay′‖ = ‖xz‖ = ‖uv‖

and therefore ‖z′‖ ≤ ‖y′‖.

Since from d we have ‖x′z′‖ > ‖x′y′‖ so ‖z′‖ > ‖y′‖, there is a contradic-
tion.

Proof of 2 Let k be the first index such that ‖u1 · · ·uk‖ ≥ ‖u1 · · ·ukuk+1‖.

If k = 1 ‖u1‖ ≥ ‖u1u2‖ then max(‖u1‖,‖u2‖) ≥ ‖u1‖ ≥ ‖u1u2‖.

Otherwise, let

u = u1 · · ·uk−1 v = uk w = uk+1

we have
‖u‖ = ‖u1 · · ·uk−1‖ < ‖uv‖ = ‖u1 · · ·uk−1uk‖

and
‖uv‖ = ‖u1 · · ·uk−1uk‖ ≥ ‖uvw‖ = ‖u1 · · ·ukuk+1‖

so applying the first part (1) of this proposition we obtain

‖ukuk+1‖ ≤ max(‖uk‖,‖uk+1‖)

�

2.13.3 Interpolation for thin sequents

A sequent Γ ` C is said to be thin whenever it is provable and ρp(Γ,C) is at most 2
— where ρp(Θ) is the number of occurrences of a primitive type p in Θ. Notice that
by proposition 15 which says that a provable sequent contains as many positive and
negative occurrences of a primitive type, ρp(Γ,A) is either 0 or 2.

Here is a proposition which is very representative of multiplicative calculi, in which
a formula is neither contracted or weakened:

RR n° 5703



58 Christian Retoré

Proposition 31 Each provable sequent may be obtained from a thin sequent by sub-
stituting primitive types with primitive types.

PROOF : Given a cut free proof d with only primitive axioms of a sequent Γ ` C,
number the axioms and replace each axiom p ` p by pi ` pi where i is the
number of the axiom, and also replace all the traces of this occurrence of p in
the proof with pi. Clearly the result is itself a proof of a sequent Γ′ ` C′, which
contains exactly two or zero occurrences of each primitive type, and which gives
back Γ ` C when each pi is substituted with p. �

Proposition 32 Let Γ,∆,Θ ` C be a thin sequent. Then there exists a formula B such
that:

1. ∆ ` B is thin

2. Γ,B,Θ ` C is thin

3. |B| = ‖[∆]‖ — the number of primitive types in B is the size of the interpretation
of ∆ in the free group (see pragraph 2.11.2 page 46).

PROOF : p stands for any primitive type,

Let B be an interpolant of ∆ which exists by theorem 28. We then have:

a. ∆ ` B is provable

b. Γ,B,Θ ` C is provable

c. ρp(B) ≤ min(ρp(Γ,Θ,C),ρp(∆))

Let us first prove 1. As the sequent Γ,∆,Θ ` C is thin,

ρp(Γ,∆,Θ,C) = ρp(Γ,Θ,C)+ρp(∆)

is either 0 or 2; so by c ρp(B) is either 0 or 1, and we have

ρp(∆,B) = ρp(∆)+ρp(B) ≤ ρp(Γ,∆,Θ,C)+ρp(B) ≤ 2+1

Since ∆ ` B is provable (a), ρp(∆,B) is even, and thus ρp(∆,B) ≤ 2. So, being
provable, ∆ ` B is thin.

Now let us prove 2 Similarly,

ρp(Γ,B,Θ,C) = ρp(Γ,Θ,C)+ρp(B) ≤ ρp(Γ,∆,Θ,C)+ρp(B) ≤ 2+1

Since Γ,B,Θ `C is provable (b) ρp(Γ,B,Θ,C) is even, so ρp(Γ,B,Θ,C)≤ 2 So,
being provable, Γ,B,Θ ` C is thin.

INRIA



The logic of categorial grammars – Lecture Notes 59

Finally let us prove 3.

• if p does not occur in ∆ then p does neither occur in [∆] nor in B, by c.

• if p occurs once in ∆ then it occurs once in [∆] too — it cannot cancel with
another occurrence of p; as ∆ ` B is thin it also occurs once in B — it
occurs twice in ∆ ` B and once in ∆ so it occurs once in B.

• if p occurs twice in ∆ then it does not occur in Γ,Θ,C; therefore it does
not occur in B by (c). The soundness of the interpretation in the free group
entails [Γ,∆,Θ] = [C] that is [∆] = [Γ]−1[C][Θ]−1 As p does not occur in
Γ,Θ,C, there is no occurrence of p in [Γ]−1[C][Θ]−1 and therefore no oc-
currence of p in [∆]

So for every primitive type, and whatever its number of occurrences in ∆ is, there
are exactly as many occurrences of p in B and in [∆], so the number of primitive
types in B and in [∆] are equal: |B| = ‖[∆]‖. �

Proposition 33 Let A1, . . . ,An ` An+1 be a thin sequent with |Ai| ≤ m; then either:

• there exists an index k and a type B with |B| ≤ m such that the following sequents
are thin:

A1, . . . ,Ak−1,B,Ak+2, . . . ,An ` An+1

Ak,Ak+1 ` B

• there exist a type B with |B| ≤ m such that the following sequents are thin:

B,An ` An+1

A1, . . . ,An−1 ` B

PROOF : Let ui = [Ai] for 1 ≤ i ≤ n and un+1 = [C]−1. Interpreting the provability in
the free group we obtain: u1 · · ·unun+1 = 1 By lemma 30 there exist an index
k ≤ n for which ‖ukuk+1‖ ≤ max(‖uk‖,‖uk+1‖) ≤ m.

If k < n, we apply proposition 32 with

∆ = Ak,Ak+1,
Γ = A1, . . . ,Ak−1
Θ = Ak+2, . . . ,An.

So the sequents

A1, . . . ,Ak−1,B,Ak+2, . . . ,An ` An+1

Ak,Ak+1 ` B

are thin, and

|B| = ‖[Ak,Ak+1]‖ = ‖ukuk+1‖ ≤ m

RR n° 5703



60 Christian Retoré

If k = n, we apply proposition 32 with

Γ = ε ,
∆ = A1, . . . ,An−1
Θ = An.

So the sequents A1, . . . ,An ` B and B,An ` B are thin.

Since [A1, . . . ,An−1,An] = [C]
we have |B| = ‖[A1, . . . ,An−1]‖ = ‖[C][An]

−1‖

therefore

|B| = ‖[C][An]
−1‖ = ‖([An][C]−1)−1‖ = ‖(unun+1)

−1‖ = ‖unun+1‖ ≤ m

�

2.13.4 From Lambek grammars to context-free grammars

Proposition 34 If a sequent A1, . . . ,An ` An+1 with each |Ai| ≤ m is provable in L,
then it is provable from provable sequents U,V ` X or U ` X with |U |, |V |, |X | ≤ m by
means of the cut rule only.

PROOF : We proceed by induction on n. If n ≤ 2 then there is nothing to prove. Oth-
erwise, let A′

1, . . . ,A
′
n ` A′

n+1 be a corresponding thin sequent obtained as in
proposition 31 — using a different primitive type for each axiom in the proof of
A1, . . . ,An ` An+1. Thus there exists a substitution σ replacing primitive types
with primitive types and preserving provability such that σ(A′) = A.

As the substitution replaces primitive types with primitive types, we also have
|A′

i| ≤ m. By proposition 33 there exists a formula B′ with |B| ≤ m such that
either:

• A′
1, . . . ,A

′
k−1,B

′,A′
k+2, . . . ,A

′
n ` A′

n+1

A′
k,A

′
k+2 ` B′

are thin, and therefore provable.

Let B = σ(B′), so B has at most m primitive types as well; applying the
substitution we obtain two provable sequents

A1, . . . ,Ak−1,B,Ak+2, . . . ,An ` An+1

Ak,Ak+1 ` B.

By induction hypothesis
A1, . . . ,Ak−1,B,Ak+2, . . . ,An ` An+1 (∗)

is provable from provable sequents U,V ` X or U ` X with |U |, |V |, |X |≤m
by means of the cut rule only.

Notice that Ak,Ak+1 ` B (∗∗) is of the form U,V ` X with |U |, |V |, |X | ≤
m.

INRIA



The logic of categorial grammars – Lecture Notes 61

A cut rule between the proof of (∗) and (∗∗) yields a proof of

A1, . . . ,An ` An+1

from provable sequents U,V ` X or U ` X with |U |, |V |, |X | ≤ m by means
of the cut rule only.

• B′,A′
n ` A′

n+1 and A1, . . . ,An−1 ` B are thin and therefore provable.
Let B = σ(B′), so |B| ≤ m; applying the substitution we obtain two prov-
able sequents

B,An ` An+1

A1, . . . ,An−1 ` B.

By induction hypothesis
A1, . . . ,An−1,B ` An+1 (+)

is provable from provable sequents U,V ` X or U ` X with U,V,X having
at most m primitive types by means of the cut rule only.
Notice that B,An ` An+1 (++) is of the form U,V ` X with |U |, |V |, |X | ≤
m.
A cut rule between the proof of (+) and (++) yields a proof of

A1, . . . ,An ` An+1

from provable sequents U,V ` X or U ` X with |U |, |V |, |X | ≤ m by means
of the cut rule only.

�

Theorem 35 Let Lex be the lexicon of a Lambek grammar GL, and let and let m the
maximal number of primitive types in a formula of the lexicon. Then the language
L(GL) generated by GL is the same as the language L(GC) generated by the following
context-free grammar GC:

• Terminals: terminals (words) of GL

• Non-Terminals: all formulae A with |A| ≤ m

• Start symbol S, the one of GL

• X −→ a whenever X ∈ Lex(a)

• X −→ A whenever A ` X is provable in L

• X −→ AB whenever A,B ` X is provable in L

Observe that the rules are in finite number, because there are finitely many sequents
U,V ` X or U ` X when U,V,X contains at most m primitive types — hence there are
only finitely many provable such sequents.

RR n° 5703



62 Christian Retoré

PROOF : Assume a1 · · ·an ∈ L(GC). Hence there exist types Xi ∈ Lex(ai) such that
S −→ X1 · · ·Xn. The derivation in the CFG GC can be turned into a derivation in
L using only the cut rule (reversing −→ and `), therefore a1 · · ·an ∈ L(GL).

Assume now that a1 · · ·an ∈ L(GL). Hence there exist types Xi ∈ Lex(ai) such
that X1, . . . ,Xn ` S. By proposition 34 such a sequent is provable by means of the
sequents corresponding to production rules, and of the cut rule only. By induc-
tion on the size of the cut-only proof, it is easily seen that the proof corresponds
to a derivation in the CFG GC. If the proof is reduced to a proper axiom, than this
axiom is itself a production rule. If the last rule is a cut, say between Γ,B,Θ ` C
and ∆ ` B, then by induction hypothesis we have B −→ ∆ and C −→ ΓBΘ
hence C −→ Γ∆Θ. Thus, if a1 · · ·an ∈ L(GL), we have S −→ X1 · · ·Xn with
Xi ∈ Lex(Ai); as Xi ∈ Lex(ai) we have S −→ a1 · · ·an. �

2.14 Lambek calculus and Montague semantics

So far the main interest of categorial grammars are that they are lexicalized. Now
we will turn our attention to their relation to Montague semantics, introduced in [62]
which is one very important feature of categorial grammars.

We do not give a lecture on Montague semantics, which is a wide area and the
reader interested in this topic is referred to [63,64]. Montague semantics is also a
controversial view of semantics. Indeed this semantics contains nothing fancy about
mental representation or the organization of concepts as for instance in [65] or [66]:
semantics is depicted by formulae of predicate calculus, possibly of intentional logic,
and the notions are represented by logical constants. Nevertheless it enables a neat and
computational treatment of (co)reference and of quantifiers and this is very important
— although according to generative grammar, these questions belong to syntax.

After this warning, let us come back to the relation between Montague semantics
and categorial grammars. This is due to the following fact, studied in particular by
van Benthem (see [45]): simply typed λ -terms which represent formulae of predicate
calculus and neatly handle substitution are very close to proofs in the Lambek calculus,

[62] Richard Montague. The proper treatment of quantification in ordinary english. In J. Hintikka,
J. Moravcsik, and P. Suppes, editors, Approaches to natural language: proceedings of the 1970
Stanford workshop on Grammar and Semantics, Dordrecht, 1973. Reidel.

[63] L. T. F. Gamut. Logic, Language and Meaning, volume 2. The University of Chicago Press,
1991.

[64] Bob Carpenter. Lectures on Type-Logical Semantics. MIT Press, Cambridge, Massachussetts and
London, England, 1996.

[65] Ray Jackendoff. The Architecture of the Language Faculty. Number 28 in Linguistic Inquiry
Monographs. M.I.T. Press, Cambridge, Massachusetts, 1995.

[66] James Pustejovsky. The generative lexicon. M.I.T. Press, 1995.
[45] Johan van Benthem. Language in Action: Categories, Lambdas and Dynamic Logic, volume 130

of Sudies in logic and the foundation of mathematics. North-Holland, Amsterdam, 1991.

INRIA



The logic of categorial grammars – Lecture Notes 63

that are syntactic analyses. Indeed, via the Curry-Howard isomorphism (see e.g. [6])
simply typed λ -terms are proofs in intuitionistic logic which embeds Lambek calculus.
Indeed, reading a \ b and b / a as a→b (intuitionistic implication) each rule of the
Lambek calculus is a rule of intuitionistic logic. Assume our Lambek grammar uses
the primitive types: np, n, S. First let us define a morphism from syntactic types
to semantic types : these semantic types are formulae are define from two types e
(entities) and t (truth values or propositions) with the intuitionistic implication → as
their only connective:

types ::= e | t | types→types

Thus a common noun like chair or an intransitive verb like sleep have the type e→t
(the set of entities which are chairs or who sleep) a transitive verb like takes is a two
place predicate of type e→(e→t) (the pairs of entities such that the first one takes the
second one) etc.

Thus we can define a morphism from syntactic types to semantic types:

(Syntactic type)∗ = Semantic type
S∗ = t a sentence is a proposition

np∗ = e a noun phrase is an entity
n∗ = e→t a noun is a subset of the set of entities

(a\b)∗ = (b/a)∗ = a∗ → b∗ extends (_)∗ to all syntactic types

The lexicon associates to each syntactic type tk ∈ Lex(m) of a word m a λ -term τk

whose type is precisely t∗k , the semantic counter part of the syntactic type tk. We use
implicit right bracketing for types: a→b→c = a→(b→c), which goes with implicit
left bracketing for λ -terms: w v u = (w v) u. We need constants for usual logical
operations like quantification, conjunction etc. :

Constant Type
∃ (e→t)→t
∀ (e→t)→t
∧ t→(t→t)
∨ t→(t→t)
⊃ t→(t→t)

and proper constants for the denotation of the words in the lexicon:

[6] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1988.

RR n° 5703



64 Christian Retoré

likes λxλy (likes x) y x : e, y : e, likes : e→(e→t)
� likes � ���������
	����������������������������

Pierre λP (P Pierre) P : e→t, Pierre : e
� Pierre � �������������������
�� !�"��!	#!�������������� 
��� � Pierre �  �	$���
�

These constants can include intentionality operators ˆ and ˇ but we do not present
them : indeed they are only introduced in the lexicon (and not in the computations) ,
they are not modified during the computations, and do not modify the algorithm we
are to present. On the other hand a presentation of intentionality would take us too far
for this lecture, we refer the reader to [63].

Given

• a syntactic analysis of m1 . . .mn in Lambek calculus, that is a proof D of
t1, . . . , tm ` S and

• the semantics of each word m1,. . . et mn, that are λ -terms τi : t∗i ,

we obtain the semantics of the sentence by the following algorithm:

1. Replace every syntactic type in D with its semantic counterpart; since intuition-
istic logic extends the Lambek calculus the result D ∗ of this operation is a proof
in intuitionistic logic of t∗1 , . . . , t∗n ` t = S∗.

2. Via the Curry-Howard isomorphism, this proof in intuitionistic logic can be
viewed as a simply typed λ -term D∗

λ which contains one free variable xi of
type t∗i per word mi.

3. Replace in D∗
λ . each variable xi by the λ -term τi — whose type is also type t∗i ,

so this is a correct substitution.

4. Reduce the resulting λ -term: this provides the semantics of the sentence (an-
other syntactic analysis of the same sentence can lead to a different semantics).

We used natural deduction, because natural deduction is closer to λ -terms, but, if
one prefers, one can or use sequent calculus and cut-elimination.

Why does the final λ -term corresponds to a proposition, or a closed predicate cal-
culus formula? It is because in the semantic λ -terms all constants which are not logical
connectives have types e→e→···→e (functions) or e→e→···→t (predicates) ; it is
easily observed that every normal λ -term of type t with only constants of such types
correspond to a formula of predicate calculus.

[63] L. T. F. Gamut. Logic, Language and Meaning, volume 2. The University of Chicago Press,
1991.

INRIA



The logic of categorial grammars – Lecture Notes 65

2.14.1 An example

Consider the following lexicon:

word syntactic type u
semantic type u∗

semantics : λ -term of type u∗

xv means that the variable or constant x is of type v
some (S / (np\S))/n

(e→t)→((e→t)→t)
λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))

statements n
e→t
λxe(

�#�����!���
���$�
e→t x)

speak_about (np\S)/np
e→(e→t)
λye λxe ((

� !�$����������	
	$�
e→(e→t) x)y)

themselves ((np\S)/np)\ (np\S)
(e→(e→t))→(e→t)
λPe→(e→t) λxe ((P x)x)

Let us first show that Some statements speak about themselves. belongs to the lan-
guage generated by this lexicon. So let us prove (in natural deduction) the following :

(S / (np\S))/n , n , (np\S)/np , ((np\S)/np)\ (np\S) ` S

using the abbreviations So (some) Sta (statements) SpA (speak about) Re f l (themselves)
for the syntactic types :

So ` (S/(np\S))/n Sta ` n
/e

So,Sta ` (S/(np\S))

SpA ` (np\S)/np Re f l ` ((np\S)/np)\(np\S)
\e

SpA,Re f l ` (np\S)
/e

So,Sta,SpA,Re f l ` S

Using the homomorphism from syntactic types to semantic types we obtain the
following intuitionistic deduction, where So∗,Sta∗,SpA∗,Re f l∗ are abbreviations for the
semantic types respectively associated with the syntactic types: So,Sta,SpA,Re f l :

So∗ ` (e→t)→(e→t)→t Sta∗ ` e→t
→e

So∗,Sta∗ ` (e→t)→t

SpA∗ ` e→e→t Re f l∗ ` (e→e→t)→e→t
→e

SpA∗,Re f l∗ ` e→t
→e

So∗,Sta∗,SpA∗,Re f l∗ ` t

RR n° 5703



66 Christian Retoré

The λ -term representing this deduction simply is

((some statements) (themsleves speak_about)) of type t

where some,statements,themselves,speak_about are variables with respective types
So∗,Sta∗,Re f l∗,SpA∗. Let us replace these variables with the semantic λ -terms (of the
same type) which are given in the lexicon. We obtain the following λ -term of type t
(written on two lines) that we reduce:

(

(

λPe→t λQe→t (∃(e→t)→t (λxe(∧(P x)(Q x))))
)(

λxe(
�#���������
���$�

e→t x)
)

)

(

(

λPe→(e→t) λxe ((P x)x)
)(

λye λxe ((
�#!�������$����	
	$�

e→(e→t) x)y)
)

)

↓ β
(

λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(
�#���������
���$�

e→t x)(Q x))))
)

(

λxe ((
�#!�������$����	
	$�

e→(e→t) x)x)
)

↓ β
(

∃(e→t)→t (λxe(∧(
�#���������
���$�

e→t x)((
� 
������������	
	$�

e→(e→t) x)x)))
)

This term represent the following formula of predicate calculus (in a more pleasant
format) :

∃x : e (
�#�!�������
���$�

(x) ∧
� !��� ��������	�	$�

(x,x))

This is the semantics of the analyzed sentence.

2.14.2 An exercice

As an exercice on Lambek calculus and Montague semantics, one can verify that there
are two readings of the sentence:

A number corresponds_to every student.
Firstly, one has to provide types for "a" and "every" in subject and object position.
Then construct two different syntactic analyses of the sentence.
Finally observe that one analysis gives to the existential "a" the widest scope while

the other gives to the universal quantifier "every" the widest scope.

INRIA



The logic of categorial grammars – Lecture Notes 67

Chapter 3

Lambek calculus and linear logic:
proof-nets as parse structures

This chapter, a large part of which is a translation of [10], deals with
the connection between Lambek categorial grammar and linear logic, the
main objective being the presentation of proof-nets which are excellent
parse structures, because they identify equivalent analyses of a given sen-
tence.

This graphical notation for proofs that are parse structures in catego-
rial grammar is a not a mere variation for convenience. On a technical
ground, it avoids the so called spurious ambiguities of categorial gram-
mars (many different proof/parse structures for a single analysis). Con-
ceptually this proof syntax gives sense to the expression parsing as deduc-
tion often associated with categorial grammar. Indeed the proof-nets only
make distinction between proofs which do correspond to different syntactic
analyses.

We first give a rather complete presentation of the correspondance be-
tween Lambek calculus and variants of multiplicative linear logic, since
Lambek calculus can be defined as non-commutative intuitionnistic multi-
plicative linear logic without empty antecedents.

Next we define proof-nets and establish their correspondence with the
more traditional sequent calculus, and present parsing as proof-net con-
struction and present some recent description of non commutative proof-
nets.

Finally, as an evidence of their linguistic relevance, we explain how
they provide a formal account of some performance questions, like the
complexity of the processing of several intricate syntactic constructs, like
center embedded relatives, garden pathing, or preferred readings.

[10] Christian Retoré. Calcul de Lambek et logique linéaire. Traitement Automatique des Langues,
37(2):39–70, 1996.

RR n° 5703



68 Christian Retoré

3.1 Categorial language and linear logic language

3.1.1 Multiplicative linear logic language

Let us recall the language of the Lambek calculus:

Lp ::= P | Lp •Lp | Lp/Lp | Lp\Lp

As we have seen in the previous chapter \ and / are implications, and the product
• is a conjunction. All these connectives are linear logic connectives, but are rather
denoted by: ◦−,−◦,⊗ in the linear logic community.

Lambek calculus \ / •

Linear logic −◦ ◦− ⊗

Multiplicative linear logic is a classical calculus which extends Lambek calculus
by a negation denoted by (. . .)⊥ (the orthogonal of . . . ) together with the symmetries
induced by a classical negation, that are the familiar De Morgan identities of classical
logic.

To be precise, usual Multiplicative Linear Logic extends Lambek calculus without
the non empty antecedent requirement, and allows for permutation (hypotheses can be
permuted). One must restrict permutations to cyclic permutations for having a single
involutive negation and two distinct implications ◦− et −◦, and in the absence of any
form of permutation, there has to be two negations [67,68].

Because of the De Morgan identities, there will be a disjunction ℘ (par, standing
for in parallel with) corresponding to the conjunction ⊗. As we are especially inter-
ested in having a non commutative conjunction so will be, by duality, the disjunction.

Such a disjunction and a classical negation allows for the implication A \B to be
defined as A⊥℘B and for the implication B/A to be defined as B℘A⊥ — as one can
defined A ⇒ B as ¬A∨B in classical logic. Noticed that the non commutativity of the
disjunction is needed for having two distinct implications.

In the Lambek calculus, one has the following equivalence: (C /B)/A ≡C / (A⊗
B) : indeed (C /B)/A is a formula which requires an A and then a B to obtain C, and
C / (A⊗B) is a formula which requires an A_followed_by_a_B, to obtain a C. The
formula (C /B) / A can be written as C℘B⊥℘A⊥ using the (associative) disjunction
and the formula C / (A⊗B) as C℘(A⊗B)⊥. Therefore if there is a classical extension
of the Lambek calculus then negation has to swap the components of a disjunction
(and of a conjunction, by duality).

[67] Vito Michele Abrusci. Phase semantics and sequent calculus for pure non-commutative classical
linear logic. Journal of Symbolic Logic, 56(4):1403–1451, 1991.

[68] Vito Michele Abrusci. Non- commutative proof nets. In Girard et al. [9], pages 271–296.
[9] Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors. Advances in Linear Logic, volume

222 of London Mathematical Society Lecture Notes. Cambridge University Press, 1995.

INRIA



The logic of categorial grammars – Lecture Notes 69

Linear logic, a classical extension of the Lambek calculus as the following lan-
guage:

Li+ ::= P | Li⊥+ | Li+℘Li+ | Li+⊗Li+ | Li+ \Li+ | Li+ /Li+

and enjoys the following De Morgan identities:

(A⊥)⊥ ≡ A (A℘B)⊥ ≡ B⊥⊗A⊥ (A⊗B)⊥ ≡ B⊥℘A⊥

3.1.2 Reduced linear language (negative normal form)

For every formula X in Li+ there exists a unique equivalent formula +X such that
negation only applies to propostional variables, and its only connectives are conjunc-
tion and disjunction. In some books, the analogous of +X for classical logic is called
its negative normal form. The fromula +X is obtained by replacing its implication
by its definition as a disjunction, and then apllying De morgan identities as rewriting
rules from left to right, and, finally by concelling double negations. Notice that this
form does not require distibutivity of ℘ w.r.t. ⊗ or ⊗ w.r.t. ℘ — these distributivity
identities do not hold in linear logic.

So every formula in Li+ is equivalent to a formula +X in Li, where Li is:

Li ::= N | Li℘Li | Li⊗Li where N = P∪P⊥ is the set of atoms.

Observe that if F ∈ Li then +F = F .
Let us denote by −F the unique formula in Li equivalent to (F)⊥ ∈ Li+ — −F =

+(F⊥). Given +F , −F is obtained be replacing every propositional variable in +F
with its negation, every conjunction by a disjunction, every disjunction by a conjunc-
tion, and finally by reverting the left right order of the result.

Given F = (α⊥℘β )⊗ γ⊥ one first obtains F ′ = (α ⊗β⊥)℘γ , which yields F⊥ ≡
−F = γ℘(β⊥⊗α) by rewriting F ′ from right to left.

3.1.3 Relating categories and linear logic formulae : polarities

Since Lp is a sublanguage of Li+ every formula L in Lp there exists a unique formula
+L in Li which is equivalent to L and a unique formula −L which is equivalent to L⊥.
These two maps from Lp to Li can be inductively defined as follows:

L α ∈ P L = M •N L = M \N L = N /M

+L α +M ⊗+N −M℘+N +N℘−M
−L α⊥ −N℘−M −N ⊗+M +M⊗−N

RR n° 5703



70 Christian Retoré

EXAMPLE 36

L +L −L

np np np⊥ noun phrase

np/ n np⊥℘n n⊥⊗np determiner

n n n⊥ common
noun

n\n n⊥℘n n⊥⊗n right adjec-
tive

(n\n)/ (n\n) (n⊥℘n)℘(n⊥⊗n) (n⊥℘n)⊗ (n⊥⊗n) left modifier
for right ad-
jectives

β \ ((α /β )\α) β⊥℘((β ⊗α⊥)℘α) (α⊥⊗ (α ℘β⊥))⊗β ) type raising

Let us consider the following sets of formulae, which enables to recognize, among
linear formulae the ones which are Lambek formulae or the negation of Lambek for-
mulae.

Li◦ = {F ∈ Li/∃L ∈ Lp +L = F} : positive linear formulae
Li• = {F ∈ Li/∃L ∈ Lp −L = F} : negative linear formulae
Li◦∪Li• : intuitionistic or polarized linear formulae

We then have:

F ∈ Li• ⇔−F ∈ Li◦ et F ∈ Li◦ ⇔−F ∈ Li•

Li◦∪Li• 6= Li — for instance α℘β 6∈ Li◦∪Li•

Li•∩Li◦ = /0 — because of the following proposition :

Proposition 37 The sets of formulae Li◦ and Li• are inductively defined by:
[

Li◦ ::= P | Li◦⊗Li◦ | Li•℘Li◦ | Li◦℘Li•

Li• ::= P⊥ | Li•℘Li• | Li◦⊗Li• | Li•⊗Li◦

The maps + et − are bijections from Lp to Li◦ and Li• respectively.

If (. . .)◦Lp denotes the inverse bijection of +, from Li◦ to Lp and if (. . .)•Lp denotes
the inverse bijection of − from Li• to Lp. then theses two maps are inductively defined
as follows:

F∈Li◦ α∈P (G∈Li◦)⊗ (H∈Li◦) (G∈Li•)℘(H∈Li◦) (G∈Li◦)℘(H∈Li•)

F◦
Lp α G◦

Lp⊗H◦
Lp G•

Lp \H◦
Lp G◦

Lp /H•
Lp

F∈Li• α⊥∈P⊥ (G∈Li•)℘(H∈Li•) (G∈Li◦)⊗ (H∈Li•) (G∈Li•)⊗ (H∈Li◦)

F•
Lp α H•

Lp⊗G•
Lp H•

Lp /G◦
Lp H◦

Lp \G•
Lp

INRIA



The logic of categorial grammars – Lecture Notes 71

The inductive definition of Li◦ and Li• yields an easy decision procedure to check
whether a formula F is in Li◦ or Li• — if so, all sub-formulae of F are in Li◦ or in
Li•: replace every propositional variable with ◦ and every negation of a propositional
variable with • and compute using ℘ et ⊗ as the following operations on ?,◦,• :

℘ ? ◦ •
? ? ? ?
◦ ? ? ◦
• ? ◦ •

⊗ ? ◦ •
? ? ? ?
◦ ? ◦ •
• ? • ?

The result of this simple computation is used as follows:

• ? whenever the formula is neither in Li◦ nor in Li•

• ◦ whenever the formula is in Li◦

• • whenever the formula is in Li•

EXAMPLE 38

F computation conclusion F◦
Lp F•

Lp

(α⊥℘β )℘α (•℘◦)℘◦ = ◦℘◦ = ? F 6∈ Li◦∪Li• undefined undefined

(α⊥℘β )℘α⊥ (•℘◦)℘• = ◦℘• = ◦ F ∈ Li◦ (α \β )/α undefined

(α⊥℘β )⊗α⊥ (•℘◦)⊗• = ◦⊗• = • F ∈ Li• undefined α / (α \β )

RR n° 5703



72 Christian Retoré

3.2 Two sided calculi

Here is the both sided linear calculus MLL+ fro all connectives of the language Li+. In
the next section, we shall see how it embeds the Lambek calculus.

Exchange
Γ,A,B,∆ ` Ψ

(x)h
Γ,B,A,∆ ` Ψ

Θ ` Γ,A,B,∆
(x)i

Θ ` Γ,B,A,∆

Axiom ax
A ∈ Li+A ` A

Γ ` A,∆
⊥

h
A⊥,Γ ` ∆

Negation
A,Γ ` ∆

⊥
i

Γ ` A⊥,∆

Γ,A ` Θ B,Γ′ ` Θ′

℘h
Γ,A℘B,Γ′ ` Θ,Θ′ Disjunction

Θ ` Γ,A,B,∆
℘h

Θ ` Γ,A℘B,∆

Logical
rules

Γ,A,B,∆ ` Ψ
⊗h

Γ,A⊗B,∆ ` Ψ
Conjunction

Θ ` Φ,A Θ′ ` B,Φ′

⊗i
Θ,Θ′ ` Φ,A⊗B,Φ′

Γ ` Φ,A Γ′,B,∆′ ` Ψ′

\h
Γ′,Γ,A\B,∆′ ` Φ,Ψ′

Implications

A,Γ ` C,Φ
\i

Γ ` A\C,Φ

Γ ` Φ,A Γ′,B,∆′ ` Ψ′

/h
Γ′,B/A,Γ,∆′ ` Φ,Ψ′

Γ,A ` Φ,C
/i

Γ ` Φ,C /A

3.2.1 Properties of the linear two sided sequent calculus

3.2.1.1 Cut elimination

We left out the cut rule on purpose. There are two ways to formulate the cut rule in a
classical calculus:

Θ ` Φ,A A,Θ′ ` Ψ′

cut
Θ,Θ′ ` Φ,Ψ′

Θ ` Φ,A Θ′ ` A⊥,Φ′

cut
Θ,Θ′ ` Φ,Φ′

As in the Lambek calculus, this rule is redundant, and the proof is more or less the
same. As a consequence, the subformula property also holds for this calculus.

INRIA



The logic of categorial grammars – Lecture Notes 73

3.2.1.2 De Morgan identities

As we earlier claimed, these identities hold for linear logic. For instance:

A ` A
⊥

i
A⊥,A `

⊥
i

A ` (A⊥)⊥

A ` A
⊥

i
` A⊥,A

⊥
i

(A⊥)⊥ ` A

3.2.1.3 Eta expansion

As for the Lambek calculus, an easy induction on A, shows that every axiom A ` A can
be derived from axioms α ` α , where α is a propositional variable, without using the
exchange rule. For instance let us show that A ` A with A = α ℘β⊥ can be derived
from the axioms α ` α and β ` β :

ax
α ` α

ax
β ` β

⊥
h

β ,β⊥ `
⊥

i
β⊥ ` β⊥

℘h
α ℘β⊥ ` α ,β⊥

℘i
α ℘β⊥ ` α℘β⊥

3.2.1.4 Equality of the two implications

In this calculus, the implication A\B can be viewed as a shorthand for A⊥℘B, while
A / B is a short hand for B℘A⊥. Indeed the implications rules can be derived when
implications are defined this way. Furthermore, in the presence of a full exchange rule,
one has: A\B ≡ B/A.

Γ ` A
⊥

h
Γ,A⊥ ` ∆′,B,Γ′ ` Θ′

\i
∆′,Γ,A⊥℘B,Γ′ ` Θ′

A⊥ ` A B ` B
℘h

[A\B ≡ A⊥℘B] ` A⊥,B
(x)i

A\B ` B,A⊥

℘i
A\B ` [B℘A⊥ ≡ B/A]

RR n° 5703



74 Christian Retoré

3.2.1.5 Negation and symmetrical rules

If one consider formulae up to De Morgan identities, then right rules are enough. For
instance the rule ℘h can be simulated by the rule ⊗i :

Γ,A ` Θ
⊥

i
Γ ` A⊥,Θ

B,Γ′ ` Θ′

⊥
i

Γ′ ` B⊥,Θ′

⊗i
Γ,Γ′ ` Θ,A⊥⊗B⊥,Θ′

(x)h and ⊥
h

[A℘B ≡ (A⊥⊗B⊥)⊥],Γ′,Γ ` Θ′,Θ
(x)h

Γ, [B℘A ≡ (A⊥⊗B⊥)⊥],Γ′ ` Θ′,Θ

In order to avoid the exchange rule, one has to consider a more subtle sequent
calculus like the one of [67, p. 1415] but identifying the two negations — this actually
forces a restricted form of the exchange rule known as cyclic exchange, that we shall
present later on.

3.2.2 The intuitionistic two sided calculus LPε

The calculus LPε , that is Lambek calculus with permutation and empty antecedents is
exactly intuitionistic multiplicative linear logic. This calculus is obtained from MLL+

by forcing sequents to always have exactly one formula on the right hand side.
It is easily seen that only negation and disjunction need at least two formulae on the

right hand side. Therefore the natural language for LPε is Lp. The rules are obtained
from the ones of MLL+ in section 3.2, by replacing the sequences of formulae denoted
by Φ and Φ′ by the empty sequence, and the sequences of of formulae denoted by Ψ
and Ψ′ by a single formula F or F ′. This yields the following rules:

[67] Vito Michele Abrusci. Phase semantics and sequent calculus for pure non-commutative classical
linear logic. Journal of Symbolic Logic, 56(4):1403–1451, 1991.

INRIA



The logic of categorial grammars – Lecture Notes 75

Exchange
Γ,A,B,∆ ` F

(x)h
Γ,B,A,∆ ` F

Axiom ax
A ∈ LpA ` A

Γ,A,B,∆ ` F
⊗h

Γ,A⊗B,∆ ` F
Conjunction

Θ ` A Θ′ ` B
⊗h

Θ,Θ′ ` A⊗B

Règles
logiques

Γ ` A Γ′,B,∆′ ` F ′

\hΓ′,Γ,A\B,∆′ ` F ′

Implications

A,Γ ` C
\h

Γ ` A\C

Γ ` A Γ′,B,∆′ ` F ′

/h
Γ′,B/A,Γ,∆′ ` F ′

Γ,A ` C
/i

Γ ` C /A

This calculus LPε and its variants are studied in a slightly different perspective in
[45], and is also the basis of works on the semantics of LFG in a series of articles like
[69].

This calculus allows for several variants according to the presence or absence of the
exchange rule, or the allowance or prohibition of sequents with an empty antecedent,
that is: the sequence of formulae Π is not empty when the rule \i or /i is applied or,
equivalently, every sequent in a proof has a non empty antecedent.

This last restriction is harmless from a logical viewpoint, i.e. preserves cut-eli-
mination, but is essential for a grammatical use of the Lambek calculus, as we have
seen in the previous chapter. let us give one more example of an uncorrect analysis
due to empty antecedents:

EXAMPLE 39 ������� �������$���� �$� �$���� �$�	��� 	 �

TYPE(S) n n\n (n\n)/ (n\n) np/n

EXAMPLE 40

ax
n ` n

d/
ε ` n/n

ax
n ` n

ax
sn ` sn

g/
sn/n,n ` sn

ax
n ` n

g\
sn/n,n,n\n ` sn

g/
sn/n, n, (n\n)/ (n\n) ` sn
un exemple très

[45] Johan van Benthem. Language in Action: Categories, Lambdas and Dynamic Logic, volume 130
of Sudies in logic and the foundation of mathematics. North-Holland, Amsterdam, 1991.

[69] Mary Dalrymple, John Lamping, Fernando Pereira, and Vijay Saraswat. Linear logic for mean-
ing assembly. In Glyn Morrill and Richard Oehrle, editors, Formal Grammar, pages 75–93,
Barcelona, 1995. FoLLI.

RR n° 5703



76 Christian Retoré

3.2.3 Proof as parse structures: too many of them

Given a Lambek grammar, the parse structure should be proofs. Nevertheless it is
easy to find several proofs which should correspond to the same parse structure, but
which nevertheless are distinct. For instance, with the previous grammar lexicon, the
following sequent calculus proofs are not equal although they are equivalent in the
sense that they express the same valence consumption.

EXAMPLE 41

ax
n ` n

ax
n ` n

\h
n,n\n ` n

\i
n\n ` n\n

ax
n ` n

ax
n ` n

\h
n,n\n ` n

ax
np ` np

/h
np/ n,n,n\n ` np

/h
np\n, n, (n\n)/ (n\n), n\n ` np
un exemple très simple

EXAMPLE 42

ax
n ` n

ax
n ` n

\h
n,n\n ` n

\i
n\n ` n\n

ax
n ` n

ax
np ` np

/h
np/n,n ` np

ax
n ` n

\h
np/ n,n,n\n ` np

/h
np\n, n, (n\n)/ (n\n), n\n ` np
un exemple très simple

One of the main objective of this chapter is to find a notion of proof that yields one
proof per parse structure; this is a key motivation for proof-nets, to be introduced in
section 3.4.

3.3 A one sided calculus for linear logic: MLL

As we have seen in the paragraph 3.1.2 fro every formula X of Li+ there exists a unique
formula +X of Li which is equivalent to it by De Morgan identities, and as explained in
paragraph 3.2.1.5, right rules can be simulated by left rules. Therefore, if one consider
formulae up to De Morgan identities then the following one sided sequent calculus,
defined as follows, is enough:

INRIA



The logic of categorial grammars – Lecture Notes 77

Exchange
` Γ,A

(cx)
` A,Γ

` Γ,A,B
(tx)

` Γ,B,A

Axiom ax
α ∈ P` α ,α⊥

Logical
rules

` Γ,A,B,∆
℘

` Γ,A℘B,∆

` Γ,A ` B,Γ′

⊗
` Γ,A⊗B,Γ′

The exchange rule (x)h of MLL+ has been split into two rules (tx) (transposition
exchange) and (cx) (cyclic exchange). Therefore (x)h is derivable but, this formulation
allows to consider the calculus NC-MLL of [70], which only has the (cx) exchange,
but not the (tx) exchange.

The simple calculus MLL whose language is Li,proves exactly the same sequents
as the bigger two sided calculus MLL+ :

Proposition 43 Let A1, . . . ,An,B1, . . . ,Bp be formulae in Li+; then one has:

MLL+ (A1, . . . ,An ` B1, . . . ,Bp) ⇔ MLL (` −An, . . . ,−A1,+B1, . . . ,+Bp)

For the converse implication, notice that given a formula F ∈ Li there usually exists
several formulae X ∈ Li+ such that +X = F or −X = F.

[70] David N. Yetter. Quantales and (non-commutative) linear logic. Journal of Symbolic Logic,
55:41–64, 1990.

RR n° 5703



78 Christian Retoré

3.3.1 Variants

We are about to introduce several variants of MLL according to the following restric-
tions:

INTUI intuitionistic calculi

in two sided presentation: one formula in the right hand side of every sequent

in one sided presentation: only polarized formulae (formulae of Li◦•)

NC non commutative calculi

in two sided presentation: no exchange at all

in one sided presentation: cyclic exchange (cx) only (no transposition exchange
(tx))

ε -FREE no empty antecedent

in two sided presentation: no empty antecedent, at least one formula on the
left hand side of every sequent

in one sided presentation: at least two formulae in every sequent

The names for these calculi somehow differ in the categorial tradition and in the
linear logic community, for instance classical calculi are never considered in the cat-
egorial tradition, and calculus without empty antecedent are neverconsidered in linear
logic. For linear calculi, the restriction corresponding to forbid empty antecedents will
be denoted by (· · ·)∗. Conversely, for categorial grammar and Lambek calculus, allow-
ing for empty antecedents will be denoted by (· · ·)ε . The non commutative restriction
of a linear calculus restriction will be denoted by a prefix NC, and the commutative
extension of a Lambek style calculus will be denoted by a suffix P

Because of these two communities, we have two names for the intuitionistic calculi,
and we hope it will not confuse the reader. To help him, here is a commutative diagram
of these restriction. All these restrictions will appear again for describing the proof-
nets corresponding to each calculus.

Although this might be surprising we are able to provide a one sided formulation
for intuitionistic calculi. So we will use the linear name · · ·MLL for one sided caculi
and the categorial name L · · · for two sided calculi.

INRIA



The logic of categorial grammars – Lecture Notes 79

INTUI NC ε -FREE Linear name Categorial name

yes yes yes NC-IMLL∗ L
yes yes no NC-IMLL Lε

yes no yes IMLL∗ LP
yes no no IMLL LPε

no yes yes NC-MLL∗

no yes no NC-MLL
no no yes MLL∗

no no no MLL

one sided two sided

Intuitionistic

MLL MLL∗

LPε
IMLL IMLL∗NC-MLL∗NC-MLL

Lε
NC-IMLL∗

L

restrictionrestriction

calculi

restriction

LP

NC-IMLL

No empty antecedentNon commutative Intuitionistic

RR n° 5703



80 Christian Retoré

3.3.2 The intuitionistic restriction in one sided calculi

The two sided intuitionistic calculus LPε is a proper restriction of its classical coun-
terpart MLL. For instance letting F = (β ℘α)℘(α⊥⊗β⊥) one has MLL (` F) but
there is no formula G equivalent to F such that LPε (` G). Actually, this restriction
is only a language restriction, that we already studied in paragraph 3.1.3. Indeed, it is
only because there is no formula in Lp equivalent to F , i.e. because F 6∈ Li•∪Li◦ that
F is not a theorem of IMLL. More precisely we have the following result:

The fact that intuitionistic restriction for two sided calculi does correspond to the
possibility to formulate a proof of an equivalent sequent in a usual two sided intuition-
istic calculi (with one conclusion and with only the connectives \,/,•) relies on the
following property, first studied by by van de Wiele in the typed case [71, taken up
again] and by Danos and Regnier [72,73] in the untyped case. This property has lead
Lamarche to interesting theory of intuitionistic proof-nets [74] somehow orthogonal to
our presentation.

Proposition 44 If ∀i ∈ [1,n] Ai ∈ Li•∪Li◦ then

MLL (` A1, . . . ,An) ⇔ IMLL (` A1, . . . ,An)

and whenever these properties hold, then exactly one formula of the sequent is in Li◦,
all others being in Li•. This also holds for the variants NC-MLL et NC-IMLL.

PROOF : Easy induction on the proofs. �

From the previous proposition we easily deduce the correspondence between one
sided intuitionistic calculi and the two sided intuitionistic calculi:

Proposition 45 If MLL (` F1, . . . ,Fn), with ∀i ∈ [1,n] Fi ∈ Li•∪Li◦, then :

• there exists a unique index i0 ∈ [1,n] such that Fi0 ∈ Li◦ and for every other index
i ∈ [1,n] we have Fi ∈ Li• because of the proposition 44

• because of paragraph 3.1.3, every formula F⊥
i with i 6= i0 is equivalent to unique

formula (Fi)
•
Lp ∈ Lp, while Fi0 is equivalent to a unique formula (Fi0)

◦
Lp

• LPε

(

(Fi0−1)
•
Lp,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
L ` (Fi0)

◦
Lp

)

[71] G. Bellin and P. J. Scott. On the π-calculus and linear logic. Theoretical Computer Science,
135:11–65, December 1994.

[72] Vincent Danos. La logique linéaire appliquée à l’étude de divers processus de normalisation et
principalement du λ -calcul. Thèse de Doctorat, spécialité Mathématiques, Université Paris 7,
juin 1990.

[73] Laurent Regnier. Lambda calcul et Réseaux. Thèse de doctorat, spécialité mathématiques,
Université Paris 7, Janvier 1992.

[74] François Lamarche. Proof nets for intuitionistic linear logic: Essential nets. 35 page technical
report available by FTP from the Imperial College archives, April 1994.

INRIA



The logic of categorial grammars – Lecture Notes 81

Conversely, LPε (X1, . . . ,Xn ` Y ) ⇒ MLL, IMLL (` −Xn, . . . ,−X1,+Y ).

If one replaces MLL with NC-MLL (resp. NC-MLL∗) and LPε with Lε (resp. L)
the result also holds. (As announced in the commutative diagram, the restriction IN-
TUI,NCand ε -FREEcommute).

For these non commutative variants NC-MLL, NC-MLL∗, Lε et L, with a restricted
exchange rule, one has to abide by the order between formulae: this order is reversed
when formulae move form one hand-side of the sequent to the other.

PROOF : The "conversely" is obvious.

The direct implication is shown by induction on the proof. For the proof to work
in the non commutative case, the rule (tx) is only used for the translation of the
(x)h rule of IMLL. Here is, for instance, the translation of the /h.

Assume that the sequences of formulae involved in /h are Γ = G1, . . . ,Gn, Γ′ =
G′

1, . . . ,G
′
k, ∆′ = D′

1, . . . ,D
′
l . Here is the NC-MLL proof which simulates the rule

/h of Lε — remember that +A⊗−B = −(A/B) (c.f. paragraph 3.1.3) :

` −Gn, . . . ,−G1,+A

` −D′
l , . . . ,−D′

1,−B,−G′
k, . . . ,−G′

1,+C′

l(EC)
` −B,−G′

k, . . . ,−G′
1,+C′,−D′

l , . . . ,−D′
1

⊗
` −Gn, . . . ,−G1,+A⊗−B,−G′

k, . . . ,−G′
1,+C′,−D′

l , . . . ,−D′
1

l(EC)
` −D′

l, . . . ,−D′
1,−Gn, . . . ,−G1,+A⊗−B,−G′

k, . . . ,−G′
1,+C′

i.e.
` −D′

l, . . . ,−D′
1,−Gn, . . . ,−G1,−(A/B),−G′

k, . . . ,−G′
1,+C′

�

Let us provide the NC-MLL translation of the proofs or parse structures given in
examples 41 and 42 :

EXAMPLE 46

ax
` n,n⊥

ax
` n,n⊥

⊗
` n,n⊥⊗n,n⊥

CX
` n⊥⊗n,n⊥,n

℘
` n⊥⊗n,n⊥℘n

ax
` n,n⊥

ax
` n,n⊥

⊗
` n,n⊥⊗n,n⊥

CX
` n⊥⊗n,n⊥,n

⊗
` n⊥⊗n,(n⊥℘n)⊗ (n⊥⊗n),n⊥,n

ax
` np⊥,np

⊗
` n⊥⊗n, (n⊥℘n)⊗ (n⊥⊗n), n⊥, n⊗np⊥, np

simple très exemple un

n\n (n\n)/(n\n) n np/n

RR n° 5703



82 Christian Retoré

EXAMPLE 47

ax
` n,n⊥

ax
` n,n⊥

⊗
` n,n⊥⊗n,n⊥

CX
` n⊥⊗n,n⊥,n

℘
` n⊥⊗n,n⊥℘n

ax
` n,n⊥

ax
` np,np⊥

⊗
` n⊥,n⊗np⊥,np

CX
` n⊗np⊥,np,n⊥

ax
` n,n⊥

⊗
` n⊗np⊥,np,n⊥⊗n,n⊥

2×CX
` n⊥⊗n,n⊥,n⊗np⊥,np

⊗
` n⊥⊗n, (n⊥℘n)⊗ (n⊥⊗n), n⊥, n⊗np⊥, np

simple très exemple un

n\n (n\n)/(n\n) n np/n

3.4 Proof-nets : concise and expressive proofs

We now turn our attention to proof-nets; they are for linear logic what natural deduc-
tions (or typed lambda terms) are for intuitionistic logic, in the sense that the contexts
are not copied at each step of the proof.

From a logical viewpoint they are much more compact than sequent calculus proofs,
they well-formedness is a global condition but quick to check, and cut-elimination is
a local and efficient process. But their main advantage, is a better representation of
proofs. Indeed, many sequent calculus proofs which only differ in the order of appli-
cation of the rules convert into the same proof-net. For example, the two proofs given
in the examples 46 and 47 will yield the same proof-net. It should be notice that when
these proofs are viewed as parse structures (they correspond to parse structures 41 and
42. in a Lambek grammar), they both describe the same linguistic analysis, so it is re-
ally a good outcome of proof-nets that we are able to describe this analysis by a single
object.

3.4.1 Proof-nets for MLL

3.4.1.1
�����

Graphs

A matching in a graph is a subset of the set of edges such that no two edges of the
matching are adjacent. The matching is said to be perfect whenever each vertex of the
graph is incident to an edge of the matching – because it is a matching, each vertex is
incident to exactly one edge of the matching.

Definition 48 (
�����

graphs) A ����� graph is a edge colored graph, whose edges either
are of colour � (blue or bold), or � (red or regular), such that the � edges defines a
perfect matching of the graph.

�
edges correspond to formulae and

�
edges to connectives. The recognition,

among all such graphs, of the ones which are proofs, will involved the notion of alter-
nate elementary path.

INRIA



The logic of categorial grammars – Lecture Notes 83

Definition 49 ( � paths and cycles) An � path in a � � � graph is an alternating ele-
mentary path, that is a path the edges of which are alternatively in � and in � which
does not use twice the same edge — as � edges are a matching, this is equivalent to
the path does not contain twice the same vertex (except, possibly the first and last ver-
tices that might be the same). More precisely, an � path is a finite sequence of edges
(ai)i∈[1,n] such that :

i 6= j =⇒ ai 6= a j #(ai∩ai+1) = 1
ai ∈ � =⇒ ai+1 ∈ � ai ∈ � =⇒ ai+1 ∈ �

An � cycle is an � path of even length, whose end vertices are equal.

3.4.1.2 Prenets

Definition 50 (Prenets or proof structures, links) Prenets are ����� graphs built from
basic � ��� graphs called links:

Liens

Name Graph Premises Conclusions

Axiom
α⊥ α

none

α et α⊥

Times
BA

A⊗B

⊗

A et B

A⊗B

Par

A℘B

A B
℘

A et B

A℘B

in such a way that each formula is the conclusion of exactly one link and the
premise of at most one link. Formulae that are not the premise of a link are called
conclusions of the prenet.

Definition 51 (
�����

subformula tree) Given a formulaC, its
�����

subformula tree T (C)
is a � ��� graph defined inductively as follows:

• If C = α is a propositional variable then T (C) is : α

• T (A⊗B) et T (A℘B) are définis à partir de T (A) et T (B) ainsi :

T (A⊗B) : A⊗B

A B

T (B)T (A)

⊗

T (A℘B) : A℘B

℘
A

T (A) T (B)

B

RR n° 5703



84 Christian Retoré

Beware that the
��� �

subformula tree of a formula C is not, from a graph theoretical
point of view, a tree: indeed, every Times link contains a cycle. We nevertheless chose
this name because it is very similar to the subformula tree, and that w.r.t. the � paths,
the only paths we shall use, the

�����
subformulae trees are acyclic.

The vertices corresponding to propositional variables in a subformula tree will be
called leaves of the subformula tree.

Definition 52 (prenet with conclusions Γ) Given a sequence of formulae Γ, a prenet
with conclusions Γ consists in:

• the � ��� subformula trees of the formulae in Γ

• a set of non incident � edges joining dual leaves, called axioms, such that each
leave is incident to exactly one axiom.

The structure of a prenet is the following:

�����
trees of Γ

Γ

Axioms of Π

Notice that the order between formulae of Γ or their subformula trees is not part of
the structure, but because of the labeling of the vertices,

�����
subformula trees make a

distinction between their right and left subtrees.
Here are some examples of prenets:

EXAMPLE 53 EXAMPLE 54 EXAMPLE 55

⊗
n⊥n

⊗
n⊥ n

n⊥⊗n n⊗n⊥

n⊥n
℘ ℘

n⊥℘n n⊥℘n

nn⊥ n n
⊗ ℘

n⊥

n⊥⊗n n℘n⊥

n⊥

INRIA



The logic of categorial grammars – Lecture Notes 85

EXAMPLE 56 EXAMPLE 57

n
⊗ ℘

n⊥

n℘n

nn⊥

n⊥⊗n⊥

⊗

n n⊥ n n⊥ n sn⊥

n⊗ sn⊥

℘ ⊗ ⊗
sn

(n⊥℘n)⊗ (n⊥⊗n)

n⊥

EXAMPLE 58

⊗

n n⊥ n n⊥ n n⊥ n snsn⊥

(n⊥℘n)⊗ (n⊥⊗n)

n⊗ sn⊥n⊥⊗n

n⊥
⊗ ℘ ⊗ ⊗

EXAMPLE 59

⊗

n⊥ n snsn⊥

n⊗ sn⊥

⊗
n n⊥ n n⊥ n

n⊥⊗n

n⊥

(n⊥℘n)⊗ (n⊥⊗n)

⊗ ℘ ⊗

3.4.1.3 Proof-Nets

Definition 60 (proof-net) A proof-net is a prenet satisfying the following properties:

ØÆ : there is no � cycle.

SAT : there exists an � path between any two vertices.

RR n° 5703



86 Christian Retoré

Regarding older presentation of proof-nets, like [75,8], where one consider all cor-
rection graphs obtained by suppressing one of every pair of Par edges in the subfor-
mula trees, the first property correspond to the acyclicity of all these graphs and the
second property to their connectedness. [76,77].

The following result of [77,78] shows that the correctness of proof-nets is not too
bad from an algorithmic point of view — recently some linear algorithms have been
provided on some other presentation of proof-nets, and they certainly can be adapted
to our formalism [79,80].

Proposition 61 Given a prenet with n vertices, their exist an algorithm working in n2

steps which decides whether the prenet is a proof-net.

Among the examples of prenets given above, only 55, 56, 57, 58 and 59 are proof-
nets. The prenet 53 contains an � cycle, and the prenet 54 does not contain any � path
between the left most leaves n⊥ and n.

3.4.2 Sequent calculus and proof-nets

The following proposition gives a precise account of the correspondence between
proof-nets and sequent calculus proofs, and its proofs shows how sequent calculus
proofs are mapped onto proof-nets. The converse correspondence relies on graph the-
oretical properties, and we refer the reader to [77,78].

Theorem 62 Every sequent calculus proof in MLL of a sequent ` A1, . . . ,An trans-
lates into a proof-net with conclusions A1, . . . ,An. Conversely, every proof-net with
conclusions A1, . . . ,An corresponds to at least one sequent calculus proof in MLL of
` A1, . . . ,An in NC-MLL — every such proof is called a sequentialisation of the proof-
net.

[75] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathematical
Logic, 28:181–203, 1989.

[8] Jean-Yves Girard. Linear logic: its syntax and semantics. In Girard et al. [9], pages 1–42.
[9] Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors. Advances in Linear Logic, volume

222 of London Mathematical Society Lecture Notes. Cambridge University Press, 1995.
[76] Arnaud Fleury and Christian Retoré. The mix rule. Mathematical Structures in Computer Science,

4(2):273–285, 1994.
[77] Christian Retoré. Perfect matchings and series-parallel graphs: multiplicative proof nets as R&B-

graphs. In J.-Y. Girard, M. Okada, and A. Scedrov, editors, Linear‘96, volume 3 of Electronic
Notes in Theoretical Science. Elsevier, 1996. http://www.elsevier.nl/.

[78] Christian Retoré. Handsome proof-nets: perfect matchings and cographs. Theoretical Computer
Science, 294(3):473–488, 2003. Complete version RR-3652 http://www.inria.fr.

[79] S. Guerrini. Correctness of multiplicative proof nets is linear. In 14th Symposium on Logic in
Computer Science (LICS’99), pages 454–463. IEEE, July 1999.

[80] A. Murawski and C.-H. Ong. Dominator trees and fast verification of proof nets. In 15th
Symposium on Logic in Computer Science (LICS’ 00), pages 181–191. IEEE, June 2000.

INRIA



The logic of categorial grammars – Lecture Notes 87

PROOF : As said above, we limit ourselves to the first part of this statement.

The translation from sequent calculus proofs to proof-nets is defined inductively.
As the exchange rule has no effect on proof-nets, since for the time being we
have no order on the conclusions, we simply skip it. The effect of this rule
would be to produce crossings of axiom links, but up to now this is not part
of our description of a proof-net. For instance the examples, 58 and 59 are
considered as the same proof-net.

Proof ∂ in MLL Corresponding proof-net ∂ ?

ax
` α⊥,α α⊥ α

·
·
·

∂1

` Γ,A,B
℘

` Γ,A℘B

A

A℘B

B

Γ

∂ ?
1

·
·
·

∂1

` Γ,A

·
·
·

∂2

` B,Γ′

⊗
` Γ,A⊗B,Γ′

A B

Γ Γ′

A⊗B

∂ ?
1 ∂ ?

2

It is easily checked by induction that the prenet corresponding to a sequent calcu-
lus proof are proof-nets : no � cycle can appear during the construction, and the
fact that there always exists an � path between any two vertices is also preserved
during the construction. �

Using this inductive definition, the proofs 46 and 47, both yield to the proof-net
58, so a single proof-net correspond to a single parse structure.

Rules and links are in a one-to-one correspondence (ax/Axiom,℘/Par,⊗/TensorProduct),
and the last logical rule in the sequent calculus proof correspond to a final link in the
prenet — a link which is the root of one of the subformula trees — while the converse
does not hold. We nevertheless have the following property, that will be useful later
on :

RR n° 5703



88 Christian Retoré

Proposition 63 In a proof-net the conclusions of which are all Times or Axioms, and
which is not reduced to a single Axiom at least one of the final Times links is splitting
that is each of the two premise � edges is a bridge — an edge the suppression of which
increases the number of connected components.

PROOF : As we have a proof-net, at least one sequent calculus proof translates into it.
The final rule of the sequent calculus correspond to a final link, so is a Times
link. From the translation given above, both the premise

�
edges of this link are

bridges of the graph. �

Observe that not all final Times links are splitting. For instance in the example 58
the final Times n⊥⊗n is not splitting, and never can be the translation of the final rule
of a corresponding sequent calculus proof. The final Times links (n⊥℘n)⊗ (n⊥⊗ n)
and n⊗ np⊥ are splitting Times links, and this is supported by the sequentialisations
given in examples 46 and 47.

A minimal representation of prenets and proof-nets To define a prenet or a proof-
net Π it is enough to give its conclusions and the pairs of propositional variables which
are linked by an axiom link. These pairs can be depicted by a 2-permutation σΠ —
that is a permutation such that σ 2

Π = Id and ∀x σΠ(x) 6= x — defined on the set of
occurrences of atoms in the sequence of conclusions. This representation will become
necessary when we will deal with proof-nets for the Lambek calculus, that are parse
structure for Lambek categorial grammars.

Up to now, representing the conclusions by a graph is needed to check whether
a prenet is a proof-net [50,75,81,82,83]. This graph can be minimized in more ab-
stract representation [78]. There exists an alternative criterion relying on denotational
semantics [84] which does not need such a graph, but, unfortunately, the correctness
checking the correctness becomes exponential.

Let us give the description of the examples 58 and 55 by means of 2-permutations.

[50] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
[75] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathematical

Logic, 28:181–203, 1989.
[81] Andrea Asperti. A linguistic approach to dead-lock. Technical Report LIENS 91-15, Dép. Maths

et Info, Ecole Normale Supérieure, Paris, 1991.
[82] Andrea Asperti and Giovanna Dore. Yet another correctness criterion for multiplicative linear

logic with mix. In A. Nerode and Yu. Matiyasevich, editors, Logical Fundations of Computer
Science, volume 813 of Lecture Notes in Computer Science, pages 34–46, St. Petersburg, 1994.
Springer Verlag.

[83] François Métayer. Homology of proof-nets. Prépublication 39, Equipe de Logique , Université
Paris 7, 1993.

[78] Christian Retoré. Handsome proof-nets: perfect matchings and cographs. Theoretical Computer
Science, 294(3):473–488, 2003. Complete version RR-3652 http://www.inria.fr.

[84] Christian Retoré. A semantic characterisation of the correctness of a proof net. Mathematical
Structures in Computer Science, 7(5):445–452, 1997.

INRIA



The logic of categorial grammars – Lecture Notes 89

EXAMPLE 64
Proof-Net Π Example 58 Example 55

Conclusions of Π n⊥⊗n (n⊥℘n)⊗ (n⊥⊗n) n⊥ n⊗np⊥ np n⊥⊗n n℘n⊥

Atom occurrences x n⊥1 n2 n⊥3 n4 n⊥5 n6 n⊥7 n8 np⊥9 np10 n⊥1 n2 n3 n⊥4
σΠ(x) n4 n⊥3 n2 n⊥1 n8 n⊥7 n6 n⊥5 np10 np⊥9 n3 n⊥4 n⊥1 n2

3.4.3 Intuitionistic proof-nets

Definition 65 An intuitionistic proof-net with conclusions F1, . . . ,Fn is a proof-net sat-
isfying :

INTUI : ∀i ∈ [1,n] Fi ∈ Li◦∪Li•.

For instance the example 56 is not an intuitionistic proof-net since n℘n 6∈ Li•∪Li◦.

Theorem 66 Every sequent calculus proof A1, . . . ,An ` B in IMLL translates into an
intuitionistic proof-net with conclusions −An, . . . ,−A1,+B.

Conversely, let Π a proof-net with conclusions F1, . . . ,Fn ∈ Li. Then there exists
a unique index i0 in [1,n] such that Fi0 ∈ Li◦ and Fi ∈ Li•, for i 6= i0, and Π is the
translation of a proof in IMLL of

(Fi0−1)
•
Lp,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp ` (Xi0)

◦
Lp

PROOF : The first part is obvious.

For the converse, we first have to justify the existence of i0. This existence is
justified by theorem 62 (it shows that Π is the translation of proof of MLL) and
proposition 44 (which shows that a proof in MLL with all its conclusions in
Li• ∪ Li◦ has exactly one conclusion in in Li◦ and all the others in Li•). Once
the existence of i0 is established, the result follows from proposition 45, which
shows that given a sequentialisation of Π in MLL, with conclusions ` F1, . . . ,Fn

(with Fi0 in Li◦ and all the others in Li•) corresponds to a proof in IMLL of

(Fi0−1)
•
Lp,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp ` (Xi0)

◦
Lp

�

RR n° 5703



90 Christian Retoré

3.4.4 Cyclic proof-nets

We now turn our attention towards proof-nets for NC-MLL. These are proof-nets
which can be drawn in the plane without intersecting axioms, keeping the same de-
sign and up-down orientation for links. This condition is strictly stronger than being a
planar graph (because we ask for the links to be as we draw them). Consequently we
shall present this condition without any reference to an embedding of the graph in the
plane, but by means of 2-permutation (brackettings from formal language theory would
work just the same). This restriction, combined with the previous one for intuitionistic
proof-nets from the previous paragraph, will allow for a characterisation of proof-nets
for the Lambek calculus, and therefore to directly parse phrases and sentences with
proof-nets.

3.4.4.1 Cyclic permutations and compatibility of a 2-permutation

A permutation ψ over a set E is said to be cyclic whenever:

∀x,y ∈ E ∃k ∈ [0,n−1] y = ψk(x) (with ψ0(x) = x)

such a permutation ψ can be described by an expression :

� x;ψ(x);ψ(ψ(x)); · · · ;ψn−1(x) �

Given x,y ∈ E, and an index k ∈ [0,n−1] such that y = ψ k(x), we write [x,y] for the
set {z/∃ j ∈ [0,k] z = ψ j(x)}; similarly [x,y[ is defined as {z/∃ j ∈ [0,k[ z = ψ j(x)}
etc.

Given a set E endowed with a cyclic permutation ψ and a 2-permutation σ we can
give an algebraic account of the following geometric fact: if we place the points of E
on a circle following the cyclic order ψ the chords joining x and σ(x) do not intersect
— in other words, σ is a correct bracketing, w.r.t. the cyclic order ψ over E.

Definition 67 A 2-permutation σ of E is said to be compatible with a cyclic permuta-
tion ψ of E whenever ∀x,y ∈ E x ∈ [y,σ(y)]⇒ σ(x) ∈ [y,σ(y)].

For instance the 2-permutation σΠ of the example 64 (n⊥1 ,n3),(n2,n⊥4 ) is not com-
patible with the cyclic permutation � n⊥1 ;n2;n3;n⊥4 �. Indeed, n2 ∈ [n⊥1 ,σΠ(n⊥1 )=n3]
while σΠ(n2) = n⊥4 6∈ [n⊥1 ,n3].

In the following definition the Ei’s should be viewed as the conclusions of a proof-
net Π, endowed with the cyclic permutation ΨΠ. The induced cyclic permutation is the
cyclic permutation induced on the atoms — thus viewing σ of the previous definition
as the axioms of Π we are able to express that axioms do not intersect.

Definition 68 Let � E1; · · · ;En � be a cyclic permutation of M = {E1, . . . ,En} where
each Ei is a sequence of symbols a1

i ,a
2
i , . . . ,a

pi
i . The cyclic permutation induced by Ψ

over the disjoint sum of the symbols of the Ei’s is the cyclic permutation defined by :

� a1
1;a2

1; · · · ;a j1
1 ;a1

2;a2
2; · · · ;a j2

2 ; · · · ;a1
n;a2

n; · · · ;a jn
n �

INRIA



The logic of categorial grammars – Lecture Notes 91

In order to characterize the proof-nets for the Lambek calculus we shall need the
following proposition:

Proposition 69 Let Ψ be a cyclic permutation over a finite set M of n sequences of
symbols M = E1, . . . ,En. Let ψ be the cyclic permutation induced on E = ⊕Ei, as
in definition 68. Let σ be a 2-permutation of E, compatible with ψ , as in definition
67. Let Σ be the following (symmetric) relation over M: EiΣE j whenever there exists
xi ∈ Ei such that σ(xi)∈ E j. Let Σ∗ be the transitive closure of Σ; if Σ∗ has exactly two
equivalence classes G et D , then there exist G ∈ G and D ∈ D such that : G = [G,D[
et D = [D,G[.

PROOF : By induction on #E +n.

If one of the class contains only one element, the result is obvious — this neces-
sarily happens when a class has a single element, for instance when n = 2.

There exists z such that ψ(z) = σ(z) Let z be a point such that #]z,σ(z)[ has
the smallest number of elements, and let us show that #]z,σ(z)[= 0 — hence
ψ(z) = σ(z). Assume that there exists y ∈]z,σ(z)[; since σ is compatible with
ψ , σ(y)∈]z,σ(z)[. Thus one of the two intervals ]y,σ(y)[ or ]σ(y),σ(σ(y))= y[
is a subset of ]z,σ(z)[, and since none of them contains y, they have strictly less
elements than #]z,σ(z)[, contradiction.

Let z be an element such that ψ(z) = σ(z) and let i be the index such that z ∈ Ei.
Three cases can happen:

σ(z) ∈ Ei et Ei = z,σ(z) In this case, Ei is the only element in its equivalence
class, and the result is clear.

σ(z) ∈ Ei et Ei = . . . ,z,σ(z), . . . In this case, replace Ei with Ei \ {z,σ(z)}, re-
strict σ and ψ to E \ {z,σ(z)}. The induction hypothesis apply, and since Σ∗

remains unchanged, the D and G provided by the induction hypothesis are solu-
tions for the original problem.

σ(z) 6∈ Ei. In this case σ(z) is the first symbol of Ei+1 = Ψ(Ei). Let us consider
the following reduce problem:

let Ψ′ be the cyclic permutation � E1; . . . ;Ei−1;Ei(i+1);Ei+2; . . . ;En � where
Ei(i+1) is the sequence of symbols Ei,E j

Observe that E, ψ and σ remains unchanged, and therefore σ is compatible with
ψ . Since EiΣEi+1 the equivalence relation Σ′∗ for this reduced problem also has
exactly two classes.

Hence we are faced to a similar problem with #M′ = n− 1. The induction hy-
pothesis yields G′ and D′ such that G ′ = [G′,D′[ and D ′ = [D,G′[. A solution
to the original problem is given by G = G′ and D = D′ —- if G′ (resp. D′) is
Ei(i+1), then G (resp. D) should be Ei. �

RR n° 5703



92 Christian Retoré

3.4.4.2 Cyclic proof-nets

Definition 70 A cyclic prenet with conclusions Ψ :� A1; · · · ;An � is a prenet with
conclusions A1, . . . ,An endowed with the cyclic permutation ΨΠ :� A1, . . . ,An �. We
write Ψat

Π for the cyclic permutation induced by ΨΠ on the atoms of Ψ — in the sense
of the definition 68.

Definition 71 A cyclic prenet with conclusion Ψ :� A1, · · · ,An � is a cyclic proof-net
if and only if it is a proof-net with conclusion A1, . . . ,An (the conditions ØÆ and SATare
satisfied) and:

NC : σΠ is compatible with Ψat
Π

For instance the example 55 is not a cyclic proof-net. Indeed, ΨΠ = � n⊥1 ⊗n2;n3℘
n⊥4 � (there are only two conclusions, so there is only one possible cyclic permutation),
and Ψat

Π = � n⊥1 ;n2;n3;n⊥4 �, while the 2-permutation σΠ of its axiom links, given in
example 64, is not compatible with Ψat

Π — as we have seen after the definition 67.
The proof-nets of the examples 56, 57, 58 and 59 are cyclic proof-nets.

Theorem 72 Every sequent calculus proof of ` A1, . . . ,An in NC-MLL translates into
a cyclic proof-net with conclusions � A1; · · · ;An �.

Conversely, every cyclic proof-net with conclusion n � A1; · · · ;An � is the transla-
tion of at least a sequent calculus proof of ` A1, . . . ,An in NC-MLL.

PROOF : The first part is rather simple to establish by induction on the sequent calculus
proof. Nevertheless one should take care of the compatibility of Ψat

Π with σΠ; to
do so, one should place atoms on a circle, and draw axiom links as chords of this
circle, and draw

�����
subformula trees outside the circle. Observe that the cyclic

exchange (cx) corresponds to the equality of the proof-nets.

The converse is proved by induction on the number of links of the proof-net Π.
As it is a proof-net, the proposition 63 applies.

If Π is an axiom � α,α⊥
�= � α,α⊥

� a sequentialisation is provided by the
axiom ` α,α⊥ of NC-MLL.

If Π has a final Par link Ai = A℘A′, let us consider Π′ the proof-net obtained
from Π by suppressing this final Par link and endowed with the cyclic permu-
tation � A1; . . . ;Ai−1;A;A′;Ai+1; · · ·An �. The proof-net Π′ is a cyclic proof-net
as well, since Ψat

Π′ = Ψat
Π and σΠ′ = σΠ. By induction hypothesis there exists a

sequent calculus proof in NC-MLL corresponding to Π′, and applying a ℘ rule
to this proof yields a sequentialisation of Π.

Otherwise, Π has a splitting Times, say Ai = A ⊗ A′. Suppressing this final
link yields two proof-nets ΠA and ΠA′ with conclusions ΓA = Ai1, . . . ,Aip,A
and ΓA′ = A j1, . . . ,A jq,A with {i1, . . . , ip, j1, . . . , jq} = [1,n] \ {i}. Consider the
prenet Π′ = ΠA ∪ ΠA′ and endow its conclusions with the cyclic permutation

INRIA



The logic of categorial grammars – Lecture Notes 93

� A1; · · · ;Ai−1;A;A′;Ai+1; · · · ;An �. Since Ψat
Π′ = Ψat

Π and σΠ′ = σΠ, the 2-
permutation σΠ′ is compatible with Ψat

Π′ . Let Σ be the (symmetric) relation be-
tween the conclusions of Π′ defined by: ∃x ∈ C σΠ(x) ∈ C′ — in other words,
this relation holds whenever Π contains an axiom with a conclusion in C and the
other in C′. The link A⊗B is splitting in Π, means that Σ∗ has exactly two equiv-
alence classes ΓA and ΓA′ . Because of the proposition 69 the cyclic permutation
of the conclusions of Π′ can be written as � Ai1; · · · ,Aip;A;A′,A j1; · · · ;A jq �.
Thus ΠA (resp. ΠA′) endowed with the cyclic permutation � Ai1; · · · ,Aip;A �

(resp. � A′,A j1; · · · ;A jq �) is a cyclic proof-net. Indeed ΠA is a proof-net and
since σΠA and Ψat

ΠA
are the restrictions to ΓA of σΠ and Ψat

Π compatibility is
preserved — the same argument works for ΠA′ .

Therefore, by induction hypothesis we have two sequent calculus proofs in NC-MLL
with conclusions ` Ai1; · · · ,Aip;A and ` A′;A j1; · · · ;A jq corresponding to ΠA

and Π′
A. Applying the rule ⊗ of NC-MLL yields a proof with conclusion `

ΓA,A⊗B,ΓB corresponding to Π. �

For instance the proofs of the examples 46 and 47 correspond to the cyclic proof-
net of the example 58, which is equal to the proof-net of the example 59. Indeed ex-
pressions � n⊥⊗n;(n⊥℘n)⊗(n⊥⊗n);n⊥;n⊗np⊥;np � and � n⊥;n⊗np⊥;np;n⊥⊗
n;(n⊥℘n)⊗ (n⊥⊗n) � denotes the same cyclic permutation.

3.4.5 Proof-nets for the Lambek calculus
Êwith or without empty antecedent

In order to characterize the proof-nets of the Lambek calculus L, which exclude se-
quents with empty antecedents, we need the following proposition. It involves the
notion of a sub-prenet and subproof-net: a sub-prenet (sub-proof-net) is a subgraph of
a prenet (proof-net) which is itself a prenet (proof-net). A sub-prenet of a proof-net is
not always a proof-net it is possible that SAT does not hold in the sub-prenet (but ØÆ

holds).

Proposition 73 Let Π be a proof-net; the following statements are all equivalent:

1. Every sub-prenet of Π has at least two conclusions. (ε -FREE)

2. Every sub-proof-net of Π has at least two conclusions.

3. Every sequentialisation of Π contains only sequents with at least two conclu-
sions.

4. There exists a sequentialisation of Π which contains only sequents with at least
two conclusions.

RR n° 5703



94 Christian Retoré

PROOF : Implications 1 ⇒ 2, 2 ⇒ 3 and 3 ⇒ 4 are straightforward.

4 ⇒ 1 is shown by induction on the number of links in Π, which is equal to
the number of axioms and logical rules of every sequentialisation of Π. Let us
consider a sequentialisation Π∗ of Π, such that every sequent of it contains at
least two formulae. We can assume the last rule of Π∗ is not an exchange rule:
indeed the same proof without this exchange rule is also a sequentialisation of
Π, with all sequents having at least two formulae.

If the last rule of Π∗ is an axiom, Π∗ consists in this axiom, which contains two
formulae. In this case Π is an axiom, whose only sub-prenet is itself, which has
two conclusions.

If that rule of Π∗ is a two premise rule, applied to two proofs Π′∗ and Π′′∗, the
corresponding link of Π is a splitting Times link: Π is obtained from two smaller
proof-nets Π′ and Π′′ connected by this Times link. The two proofs Π′∗ and Π′′∗

are possible sequentialisations for Π′ and Π′′ and these proofs also have sequents
with at least two formulae. Thus the induction hypothesis can be applied to Π′

and Π′′ : every sub-prenet of Π′ or of Π′′ has at least two conclusions. The
intersection of a sub-prenet sΠ of Π, with Π′ (resp. Π′′) is a sub-prenet of Π′

(resp. Π′′) which has p > 1 (resp. q > 1) conclusions. If the Times link is part
of sΠ then the number of conclusions of sΠ is p+q−1 > 1, and otherwise the
number of conclusion of sΠ is p+q > 1. Thus, in any case Π satisfies ε -FREE.

If the last rule of Π∗ is a one premise rule applied to some proof Π′∗, the corre-
sponding link of Π is a final Par link. Let Π′ be the proof-net obtained from Π by
removing this final Par link; it is a proof-net with strictly less links, which has a
sequentialisation Π′∗ with sequents with more than one conclusions. Hence, by
induction hypothesis every sub-prenet of Π′ has at least two conclusions. Given
a sub-prenet sΠ of Π, its intersection sΠ′ with Π′ has at least two conclusions.
It is impossible that sΠ′ has only the two conclusions X and Y . Indeed we know
that Π has at least two conclusions, hence it has another conclusion Z in addition
to X ℘Y . Since Π is a proof-net it is connected, and there exists a path joining
sΠ′ to Z conclusion, and this path can be assumed to lie outside sΠ′ — by cut-
ting the part inside sΠ′. So there exists an edge of Π, incident to sΠ′ starting
this path. This edge can neither be the

�
edge below X , nor the one below Y ,

since any path starting by one of these edges has to enter again sΠ′. But the only
way to leave a sub-prenet is from one of its conclusions : therefore sΠ′ has a
conclusion which is neither X nor Y . Let p be the number of conclusions of sΠ′.
If X and Y are among the p conclusions of sΠ′, then sΠ′ has another conclusion
and p > 2. Therefore, either sΠ has p > 2 conclusions (when X ℘Y is not one
of its conclusions), or sΠ has p− 1 > 1 conclusions (when X ℘Y is one of its
conclusions). If X or Y is not a conclusion of sΠ′, then X℘Y is not a conclusion
of sΠ, and sΠ and sΠ′ have the same number of conclusions p > 1.

In any case sΠ has at least two conclusions. �

INRIA



The logic of categorial grammars – Lecture Notes 95

Definition 74 A Lambek proof-net of conclusion ΨΠ = � F1; · · · ;Fn � is an intuition-
istic cyclic proof-net, i.e. a prenet satisfying

ØÆ : there is no � cycle alternate elementary cycle.

SAT : There always exists an � path between any two vertices.

INTUI : Every conclusion Fi is in Li•∪Li◦.

NC : σΠ is compatible with Ψat
Π — the axioms of Π do not intersect.

A Lambek proof-net is said to be without empty antecedent if, moreover:

ε -FREE : Every sub-prenet of Π has at least two conclusion.

Among the four equivalent statements given above, we have chosen the first one,
because subprenet are easier to define. It is enough to chose a set of vertices of the
proof-net, and to close it by subformula and axiom links, without verifying SAT or ØÆ.
When NC and ØÆ hold, this amounts to the following fact: for every subformula G of
a conclusion, the first and last atom of G are never linked by an axiom. If G = H ⊗H ′

then this holds, and if G = H℘H ′, this exactly means that there is no sub-net with a
single conclusion.

Theorem 75 Every sequent calculus proof with conclusion A1, . . . ,An ` B in Lε (resp.
L) translates into a Lambek proof-net (resp. a Lambek proof-net without empty an-
tecedent) with conclusions � −An; · · · ,−A1;+B �.

Conversely, let Π be a Lambek proof-net (resp. a Lambek proof-net without empty
antecedent) with conclusions � F1; . . . ;Fn �. and let i0 be the unique index in [1,n]
such that Fi0 ∈ Li◦ and Fi ∈ Li•, for i 6= i0. The proof-net Π is the translation of at least
a sequent calculus proof in Lε (resp. L) of

(Fi0−1)
•
L,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp ` (Fi0)

◦
Lp

PROOF : The first part is a straightforward induction on the sequent calculus proof in
Lε (resp. L).

For the second part, we know from the proposition 72 that there is a sequentiali-
sation corresponding to Π in NC-MLL, with conclusion ` F1, · · · ,Fn. Because of
proposition 45, this sequent calculus proof in NC-MLL corresponds to a proof of
(Fi0−1)

•
L,(Fi0−2)

•
Lp, . . . ,(F1)

•
Lp,(Fn)

•
Lp, . . . ,(Fi0+1)

•
Lp ` (Fi0)

◦
Lp in Lε . Using 1⇒ 3

of proposition 73, it is easily seen that whenever Π is a Lambek proof-net with-
out empty antecedent, the sequentialisation in Lε is in fact in Li.e. does not
contain sequents with only one formula. �

RR n° 5703



96 Christian Retoré

Among our proof-net examples, only the examples 57, 58 and 59 are Lambek
proof-nets. The example 58 corresponds to the parse structures 41 and 42 : we thus
got rid off one spurious ambiguity — a classical drawback of categorial grammars,
which provides to many proofs/parse structures for a single analysis. One advantage
to work with cyclic permutation is that the examples 58 and 59 are equal. The example
57 is not a Lambek proof-net without empty antecedent: indeed it does contain a sub-
net whose only conclusion is n⊥℘n. It does correspond to the example 39 in Lε .

3.5 Parsing as proof-net construction

Assume we want to analyze the noun phrase
	 � �������$������$�	��� �$� �$����

, according
to the lexicon provided in the example 39. We need a proof in Lof

np/n,n,(n\n)/(n\n),n\n ` np

Because of proposition 75 this amounts to construct a Lambek proof-net without empty
antecedent with conclusions:

� n⊥⊗n;(n⊥℘n)⊗ (n⊥⊗ n);n⊥;n⊗np⊥;np �

— these "linear types" are automatically computed as we did in the example 36, and
the order is inverted (see proposition 45). So the lexicon provides automatically the
�����

subformula trees of the proof-net :

3 4 52 6 7 8 9 101

⊗⊗

⊗

℘
n n⊥ n n⊥ n n⊥ n snsn⊥

(n⊥℘n)⊗ (n⊥⊗n)

n⊗ sn⊥n⊥⊗n

n⊥
⊗

���������	�


��� �

�����������	�

�	�

n−◦n

(n−◦n)◦− (n−◦n)

n

sn◦−n

What is missing to obtain a proof-net is σΠ, the axiom links between the occur-
rences

n⊥1 ,n2,n
⊥
3 ,n4,n

⊥
5 ,n6n⊥7 ,n8,np⊥9 ,np10

They should be placed in such a way that the conditions ØÆ, SAT, INTUI, NC, ε -
FREE are met. Of course, INTUI is automatically satisfied since all conclusions belong
to (Lp)⊥ and one (S) is in Lp

Because axioms link dual formulae there must be an axiom (np⊥
9 ,np10). One

should then link the n and the n⊥, and this makes 24 possibilities. But, because of
the constraints expressed by ØÆ, SAT, NC et ε -FREE we almost have no choice:

INRIA



The logic of categorial grammars – Lecture Notes 97

(n4,n⊥5 ) 6∈ σΠ — ØÆ, � cycle with the Times link (n ⊥
3 ℘n4)⊗ (n⊥5 ⊗ n6).

(n⊥5 ,n6) 6∈ σΠ — ØÆ, � cycle with the Times link between these two atoms.

(n⊥3 ,n4) 6∈ σΠ — ε -FREE, sub-prenet with a single conclusion.

(n4,n⊥7 ) 6∈ σΠ — NC this would force (n4,n⊥5 ), which was shown to be impossible. .

(n⊥1 ,n4) ∈ σΠ — only possible choice for n4.

(n2,n⊥3 ) ∈ σΠ — NC, because of the previous line.

(n⊥7 ,n8) 6∈ σΠ — SAT, yields a non connected proof-net.

(n⊥5 ,n8),(n6,n⊥7 ) ∈ σΠ — only possible choice for these atoms, according to the above
decisions.

Hence the only possible solution is the 2-permutation σΠ given in the example 64 :
(n⊥1 ,n4),(n2,n⊥3 ),(n⊥5 ,n8),(n6,n⊥7 ),(np⊥9 ,np10). It corresponds to the prenet 58.

Next one has to check that the result is a Lambek proof-net, without empty an-
tecedent, and this is straightforward and quick. It corresponds to the sequent calculus
proofs given in examples 41 et 42. The identification of various sequent calculus proofs
into a single proof-net leads to less possibilities when constructing the proof.

A natural question is the algorithmic complexity of this parsing algorithm. For
the less constrained calculus MLL(only satisfying ØÆ and SAT) it is known to be NP
complete [85], but the notion of splitting Times leads to efficient heuristics using the
fact that there never can be any axiom link between the two side of a Times link [86].
This considerably reduces the search space. The intuitionistic restriction does not lead
to any improvement.

For the non commutative calculi, and in particular for the Lambek calculus, the or-
der constraint NC is so restrictive that one may think that the complexity is polynomial
but up to now, the issue is uncertain. The most recent work on this issue is [87], which
improves the tabulation techniques introduced in [88]. This idea is to use dynamic

[85] Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan Shankar. Decision problems for
propositional linear logic. Annals of Pure and Applied Logic, 56(1-3):239–311, 1992.

[86] Philippe de Groote. Linear logic with Isabelle: pruning the proof search tree. In 4t h Work-
shop on theorem proving with analytic tableaux and related methods, Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1995.

[87] Philippe de Groote. A dynamic programming approach to categorial deduction. In Conference on
Automated Deduction, CADE‘99, Lecture Notes in Artificial Intelligence. Springer-Verlag, 1999.

[88] Glyn V. Morrill. Memoisation of categorial proof nets: parallelism in categorial processing. In
Abrusci and Casadio [12].

[12] Vito Michele Abrusci and Claudia Casadio, editors. Third Roma Workshop: Proofs and Linguis-
tics Categories – Applications of Logic to the analysis and implementation of Natural Language.
Bologna:CLUEB, 1996.

RR n° 5703



98 Christian Retoré

programming for the placement of axiom links, defining them by a context-free gram-
mar. Up to now the authors have not been able to bound the size of the information
which has to be memorized in the table, so the polynomiality is not proved. Never-
theless proof-nets seem a good technique for facing this question, the other one being
a more precise correspondence with context-free grammars than the Pentus construc-
tion. However, a recent work of Mati Pentus, [89] still unpublished as we web-publish
these notes, shows that Lambek calculus with product is NP complete.

3.6 Proof-nets for Lambek calculus with cut

The previous sections only deal with cut-free proof-nets which are enough for parsing,
because L enjoys cut-elimination. In the mean time Abrusci and Maringelli in [90] ex-
tended our characterisation to non cut-free proof-nets, and which up to now is the only
one to avoid to refer to embedding in the plane. Let us explain it — this explanation
relies on the description of proof-nets provided in previous sections.

We already gave the cut-rule of L, and the cut rule for NC-MLLis

` Γ,A ` A⊥,∆
cut

Γ,∆

Using the same correspondence between one sided and two sided calculus by
means of polarities of the previous sections, this cut rule exactly corresponds to the
cut rule of the Lambek calculus, provided that all formulae are intuitionistic.

Firstly a cut is an
�
-edge between two dual conclusions K and K⊥ and the premises

K and K⊥ of the cut link are not anymore considered as conclusions once there is such
an

�
-edge.

[89] Mati Pentus. Lambek calculus is NP-complete. Technical Report TR-2003005, CUNY - City
University of New York, 2003. http://www.cs.gc.cuny.edu/tr/.

[90] Vito Michele Abrusci and Elena Maringelli. A new correctness criterion for cyclic multiplicative
proof-nets. In Retoré [91], pages 449–459.

[91] C. Retoré, editor. Special Issue on Recent Advances in Logical and Algebraic Approaches to
Grammar, volume 7(4) of Journal of Logic Language and Information. Kluwer, 1998.

INRIA



The logic of categorial grammars – Lecture Notes 99

The
�
-edges are directed in formulation of Abrusci and Maringelli, and their direc-

tion is defined as follows (this refers to the pictures in the definition 50)

℘-link Here is the orientation of the two
�
-edges of this link:

• The
�
-edge between A and the

�
-edge A℘B is directed from the

�
-edge A℘B to

A.

• The
�
-edge between B and the

�
-edge A℘B is directed from B to the

�
-edge

A℘B.

⊗-link Here is the orientation of the two
�
-edges of this link:

• The
�
-edge between A and the

�
-edge A⊗B is directed from the

�
-edge A⊗B

to A.

• The
�
-edge between B and the

�
-edge A⊗B is directed from B to the

�
-edge

A⊗B.

• The
�
-edge between A and B is directed from A to B.

cut-link This
�
-edge is not directed i.e. there is a pair of

�
-arcs, one from K to K⊥ and

one from K⊥ to K.

With this description of proof structure there is no need to say that the axiom links
are compatible with the order on the atoms. Indeed, the order can be retrieved from
the directed graph.

Let us define a maximal alternate elementary (m.a.e.) path as follows: it is a di-
rected alternate elementary path, starting and ending with a

�
-edge, which is maximal.

These m.a.e. paths always go

from a conclusion or the second premise of a ℘-link

to a conclusion or the first premise of a ℘-link.

Observe that with this formulation there is no need to consider left or right to find out
which of the premises is the first one or the second one: the direction of the

�
-edges

expresses this information.
We also have no order on the conclusions, but using m.a.e. paths we are able to

reconstruct it when the proof structure is correct. Given two conclusions of the proof
structure we say that A ς B whenever there is an m.a.e. path from B to A.

RR n° 5703



100 Christian Retoré

Then they obtained the following characterisation:

Proposition 76 A directed bicoloured proof structure Π with directed � -edges is a
cyclic proof-net (i.e. corresponds to a proof of C-MLL) if and only if:

• the underlying bicoloured undirected graph contains no alternate elementary
cycle

• for each℘-link there is an m.a.e. path from its second premise to its first premise

• ς is a cycle: it is bijective and its order is the number of conclusions.

Proposition 77 A directed bicoloured proof structure is a Lambek proof-net if and
only if

• it is a cyclic proof-net

• all its conclusions are intuitionistic formulae

In fact the criterion for cyclic proof-nets implies that the cut formulae are intuition-
istic as well.

INRIA



The logic of categorial grammars – Lecture Notes 101

3.7 Proof-nets and human processing

Started with a study by Johnson [92] for center embedded relatives and then improved
and extended by Morrill [93], proof-nets happen to be interesting parse structure not
only from a mathematical viewpoint, but also from a linguistic viewpoint. Indeed
they are able to address various performance questions like garden pathing, center
embedding unacceptability, preference for lower attachment, and heavy noun phrase
shift, that can be observed from parse structure as proof-nets.

We follow Morrill [93] and consider the examples:

Garden pathing

1(a) The horse raced past the barn.

1(b) The horse raced past the barn felt.

2(a) The boat floated down the river.

2(b) ?The boat floated down the river sank.

3(a) The dog that knew the cat disappeared.

3(b) ?The dog that knew the cat disappeared was rescued.

The (b) sentences are correct but seem incorrect. Indeed there is a natural tendency
to interpret the first part of the (b) sentences (that are the(a) sentences) hence the other
analysis, the correct one, is left out.

[92] Mark E. Johnson. Proof nets and the complexity of processing center-embedded constructions. In
Retoré [91], pages 433–447.

[91] C. Retoré, editor. Special Issue on Recent Advances in Logical and Algebraic Approaches to
Grammar, volume 7(4) of Journal of Logic Language and Information. Kluwer, 1998.

[93] Glyn Morrill. Incremental processing and acceptability. Computational Linguistics, 26(3):319–
338, 2000. preliminary version: UPC Report de Recerca LSI-98-46-R, 1998.

RR n° 5703



102 Christian Retoré

Quantifier-scope ambiguity Here are example of quantifier-scope ambiguity, with
the preferred reading:

I(a) Someone loves everyone. ∃∀

I(b) Everyone is loved by someone. ∀∃

II(a) Everyone loves someone. ∀∃

II(b) Someone is loved by everyone. ∃∀

So in fact the preference goes for the first quantifier having the wider scope.

Embedded relative clauses.

A(a) The dog that chased the rat barked.

A(b) The dog that chased the cat that saw the rat barked.

A(c) The dog that chased the cat that saw the rat that ate the cheese barked.

B(a) The cheese that the rat ate stank.

B(b) ? The cheese that the rat that the cat saw ate stank.

B(c) ?? The cheese that the rat that the cat that the dog chased saw ate stank.

X(a) That two plus two equals four surprised Jack.

X(b) ?That that two plus two equals four surprised Jack astonished Ingrid.

X(c) ??That that that two plus two equals four surprised Jack astonished Ingrid both-
ered Frank.

Y(a) Jack was surprised that two plus two equals four.

Y(b) Ingrid was astonished that Jack was surprised that two plus two equals four.

Y(c) Frank was bothered that Ingrid was astonished that Jack was surprised that two
plus two equals four.

INRIA



The logic of categorial grammars – Lecture Notes 103

In his paper [93] Morrill provides an account of our processing preferences, based
on our choice for a lower complexity profile. Given an analysis in Lambek calculus of
a sentence depicted by a proof-net, we have conclusions corresponding to the syntactic
types of the words, and a single conclusion corresponding to S. All these conclusions
are cyclically ordered. This cyclic order is easily turned into a linear order by choosing
a conclusion and a rotation sense. Let us take the output conclusion S as the first
conclusion, and let us choose the clockwise rotation with respect to the proof-nets of
the previous sections. According to the way proof-nets are drawn we thus are moving
from right to left, and we successively meet S, the type of the first word, the type of
the second word, etc.

Now let us define the complexity of a place in between two words wn and wn+1
(w0 being a fake word corresponding to S) as the number of axioms a−a⊥ which pass
over this place, and such that the a belongs to a conclusion which is, in the linear order,
before the conclusion containing a⊥.

Observe that this measure relies on the fact that Lambek calculus is an intuitionistic
or polarized calculus in which a and a⊥ are of a different nature: indeed waiting for
a category is not the same as providing a category. This measure also depends on the
fact that we chose the output S to be the first conclusion: this corresponds to the fact
that when someone starts speaking we are expecting a sentence (it could be another
category as well, but still we expect some well formed utterance).

Now we can associate to a sentence with n words a sequence of n integers (since S
has been added there are n places) called its complexity profile.

In all examples above, the preferred reading always has the lower profile (that is
a profile which is always lower, or at least does not go as high) and hardly parsable
sentences have a high profile.

Here we only present one example, as the others provide excellent exercises (and
drawing proof-nets on the computer is painful).

word type u u⊥ for constructing the proof-net
someone (subject) S / (np\S) S℘(S⊥⊗np)

(object) (S /np)\S (np⊗S⊥)℘S
everyone (subject) S / (np\S) S℘(S⊥⊗np)

(object) (S /np)\S (np⊗S⊥)℘S
loves: (np\S)/np np⊗ (S⊥⊗np)

To complete the example, one should compute the semantics according to the al-
gorithm given in section 2.14.

[93] Glyn Morrill. Incremental processing and acceptability. Computational Linguistics, 26(3):319–
338, 2000. preliminary version: UPC Report de Recerca LSI-98-46-R, 1998.

RR n° 5703



104 Christian Retoré

S

S⊥S⊥

S np⊥

np

1 12

reading direction: right to left

someoneeveryone loves

someone loves everyone ∃∀

Snp⊥npS⊥

np

np⊥S

S⊥ S⊥

S

S⊥ np np⊥ S

someone loves everyone ∀∃

122

reading direction: right to left

someoneeveryone loves

INRIA



The logic of categorial grammars – Lecture Notes 105

3.8 Semantic uses of proof-nets

Once one is convinced by the relevance of proof-nets as parse structures, it is worth
looking at what else can be achieved with proof-nets, in order to avoid translating from
one formalism into another, which unpleasant and algorithmically lengthy. As a major
advantage of categorial grammars is their relation to Montague semantics, there has
been several work in this direction.

As intuitionistic logic can be embedded into linear logic [50] the algorithm fro
computing semantic readings can be performed within linear logic. Indeed λ -terms
can be depicted as proof-nets, and β -reduction (or cut-elimination) for proof-nets is
extremely efficient. In particular the translation can limit the use of replication to its
strict minimum. This has been explored with de Groote in [51].

The correspondence between syntax and semantics with proof-nets has been used
for generation, firstly by Merenciano and Morrill [94]. Assuming that the semantic of a
sentence is known, as well as the semantics of the words, the problem is to reconstruct
a syntactic analysis out of these informations. This mainly consists in reversing the
process involved in the previous paragraph, which is essentially cut elimination. Using
a representation of cut elimination by matrix computations (graphs can be viewed as
matrices) Pogodalla has thus defined an efficient method for generation. [95,96,97].

[50] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
[51] Philippe de Groote and Christian Retoré. Semantic readings of proof nets. In Geert-Jan Kruijff,

Glyn Morrill, and Dick Oehrle, editors, Formal Grammar, pages 57–70, Prague, 1996. FoLLI.
[94] Josep Maria Merenciano and Glyn Morrill. Generation as deduction. In Christian Retoré, editor,

Logical Aspects of Computational Linguistics, LACL‘96, volume 1328 of LNCS/LNAI, pages 77–
80. Springer-Verlag, 1996.

[95] Sylvain Pogodalla. Generation with semantic proof nets. Research Report 3878, INRIA, January
2000. http://www.inria.fr/.

[96] Sylvain Pogodalla. Generation in the Lambek calculus framework: an approach with semantic
proof nets. In proceedings of NAACL 2000, May 2000.

[97] Sylvain Pogodalla. Generation, Lambek calculus, montague’s semantics and semantic proof nets.
In proceedings of Coling 2000, August 2000.

RR n° 5703



Unité de recherche INRIA Futurs
Parc Club Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399


	General references
	AB grammars
	Semantic categories and Ajdukiewicz fractions
	Classical categorial grammars or AB grammars
	Example: a tiny AB grammar
	AB-grammars and context free grammars
	Context-free grammars
	From context-free grammars to AB-grammars
	From AB grammars to context-free grammars

	Parsing AB grammars
	Limitations of AB-grammars
	Learning AB grammars
	Grammatical inference for categorial grammars
	Unification and AB grammars
	The RG algorithm
	Other cases


	Lambek's syntactic calculus
	Lambek syntactic calculus and Lambek grammars
	Natural deduction for Lambek calculus
	In Prawitz style
	In Gentzen style

	An example
	Sequent calculus
	An example
	Sequent calculus and natural deduction
	From natural deduction to sequent calculus
	From sequent calculus to natural deduction

	The empty sequence
	Normalization of natural deduction
	Normalization for product free Lambek calculus
	Normalization and Lambek calculus with product

	Cut-elimination for sequent calculus
	Decidability
	Models for the Lambek calculus and completeness
	Residuated semi-groups and the free group model
	The free group model
	L is sound and complete w.r.t. residuated semi-groups
	L is sound and complete w.r.t. (free) semi-group models

	Interpolation
	Lambek grammars and context-free grammars
	From context-free grammars to Lambek grammars
	A property of the free group
	Interpolation for thin sequents
	From Lambek grammars to context-free grammars

	Lambek calculus and Montague semantics
	An example
	An exercice


	Lambek calculus, linear logic and proof-nets
	Categorial language and linear logic language
	Multiplicative linear logic language
	Reduced linear language (negative normal form)
	Relating categories and linear logic formulae : polarities

	Two sided calculi
	Properties of the linear two sided sequent calculus
	The intuitionnistic two sided calculus LPe
	Proof as parse structures: too many of them

	A one sided calculus for linear logic: MLL
	Variants
	The intuitionistic restriction in one sided calculi

	Proof-nets : concise and expressive proofs
	Proof-nets for MLL
	Sequent calculus and proof-nets
	Intuitionistic proof-nets
	Cyclic proof-nets
	Proof-nets for the Lambek calculus

	Parsing as proof-net construction
	Proof-nets for Lambek calculus with cut
	Proof-nets and human processing
	Semantic uses of proof-nets


