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Abstract: This paper presents a new algorithm for solving a system of polynomials, in a
domain of

�
n. It can be seen as an improvement of the Interval Projected Polyhedron algo-

rithm proposed by Sherbrooke and Patrikalakis [SP93]. It uses a powerful reduction strategy
based on univariate root finder using Bernstein basis representation and Descarte’s rule. We
analyse the behavior of the method, from a theoretical point of view, shows that for simple
roots, it has a local quadratic convergence speed and gives new bounds for the complexity
of approximating real roots in a box of

�
n. The improvement of our approach, compared

with classical subdivision methods, is illustrated on geometric modeling applications such as
computing intersection points of implicit curves, self-intersection points of rational curves,
and on the classical parallel robot benchmark problem.

Key-words: resolution, symbolic-numeric computation, polynomial equation, subdivision,
real solution, Bernstein basis, Descartes rule, complexity.



Méthode de subdivision pour la résolution d’équations

polynomiales

Résumé : Dans ce rapport nous présentons un nouvel algorithme pour la résolution de
systèmes d’équations polynomiales en plusieurs variables, dans un domaine de

�
n. Il peut-

être vu comme une améllioration de l’algorithme Interval Projected Polyhedron proposé par
Sherbrooke and Patrikalakis [SP93]. Il utilise une technique de réduction de domaines ef-
ficaces, qui s’appuie sur une méthode de résolution de polynômes en une variable, utilisant
la représentation dans la base de Bernstein et la règle de Descartes. nous analysons le com-
portement de la méthode d’un point de vue théorique et monrons que pour des racines
simples, il a une vitesse de convergence locale quadratique. Ceci nous conduit à de nouvelle
bornes de complexité pour lápproximation de racines dans une boite de

�
n. L’apport de

notre méthode, comparée avec des méthodes classiques de subdivision, est illustré sur des
applications en modélisation géométrique, telles que le calcul de points d’intersection de
courbes implicites, de points d’auto-intersection de courbes paramétrées et sur un problème
classique de robotique.

Mots-clés : résolution, calcul symbolique-numerique, équation polynomiale, subdivision,
solution réelle, base de Bernstein, règle de Descartes, complexité.
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1 Introduction

Solving polynomial equations is ubiquitous in geometric problems. We can identify two main
families of solvers: a first family of solvers which exploit the algebraic properties associated to
these polynomials and all their polynomial combinations. It usually leads to methods which
gives global informations on the set of solutions [CLO92]; a second family of solvers which
treat the polynomials as real value functions and analyse the zero-level of these functions.
It usually leads to local methods, such as the famous Newton (-Raphson) method [Rhe98].

The approach that we describe in this paper combines, in some way, these two charac-
teristics. We exploit the properties of polynomial representations in the Bernstein basis, to
deduce easily informations on the corresponding real functions in a domain of

�
n. Bern-

stein polynomial representations are ubiquitous in geometric modeling. It is known to be
numerically more stable than the monomial basis representation [FG96], [FR87]. This Bern-
stein representation has a direct geometric meaning, in terms of control points. It provides
useful properties such that the convex hull and the variation diminishing properties. These
properties in conjunction with subdivision techniques explain the large variety of algorithms
proposed until today for solving univariate polynomials, starting with Lane and Riesenfeld
[JR81], up to the Bezier clipping methods initiated by Nishita and al [TNK90]. They com-
bine a global control on the domain where the roots are searched with local and efficient
refinements.

The situation in the multivariate case has not been studied so extensively. Two main
subfamilies coexist: A first family which is based on subdivision techniques such as [EK01];
a second family of solvers is based on reduction techniques, as in [SP93].

The subdivision approaches use an exclusion test, based on the convex hull property in
[SP93], for checking for the existence of a solution in the search domain. The result of the
test is of the form: “no solution” or “maybe one”. If the answer is “no solution” then the
domain is rejected. Otherwise the domain is subdivided, generally in a way independent of
the data, and this process is repeated until the domain satisfies a termination criterion. This
termination criterion can be simply based on the size of the domain, but it can be more
elaborated [EK01], [SM88] [GS01b] (using for instance Miranda theorem). The subdivision
approach provides algorithms that produce a large number of iterations especially in the case
of multiple roots, but the iteration cost is significantly smaller than in reduction approaches,
that we mention now.

Reduction approaches use a technique to contract the domain where the roots are
searched, such as the convex hull property used in [SP93]. Its power resides in its capacity
to concentrate on the parts of the domain where the roots are. Reductions cannot replace
completely subdivisions, because it is not always possible to reduce the domain, if we have
to separate the roots, but they reduce drastically the number of iterations, and thus have a
great impact on the performance of the solver.

In this paper, we analysis in detail the subdivision and reduction approaches. We pro-
pose a general scheme for comparing and evaluating them. In addition, we consider a new
reduction technique and new preconditioning steps, which influence drastically the efficiency
of the solvers. This scheme allows us to compare a large variety of algorithms, including the
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4 B. Mourrain & J.P. Pavone

one previously known. Reporting on extended experimentations, we show the impact of dif-
ferent strategies on the behavior of the solvers. This leads to a new reduction-subdivision
solver, which overcome the other methods. It can be seen as an improvement of the well-
known interval projected polyhedron [SP93]. We use efficient univariate solvers to optimise
the reduction steps, and show that the cost of solving such univariate polynomial equations
is compensated by the speed of the reduction.

The paper is organised as follows. In the next section, we recall the main properties
of Bernstein basis, that we will use for isolating real roots. In section 3, we describe and
analyse the behavior of a family of univariate polynomial solvers, using this representation.
In section 4, we describe the multivariate subdivision solver, which uses as a main ingredient
a univariate solver. The importance of the preconditioning step and the subdivision strategy
are discussed. We analyse the behavior of the method, from a theoretical point of view,
shows that locally it is converging quadratically to a simple root and gives new bounds
for the complexity of approximating real roots in a box D ⊂ �

n. Experimentations on
geometric problems and classical benchmarks show the performances of the implementation
and conclude the papers.

2 Bernstein polynomial representation

Let us first recall the main properties of Bernstein polynomial representation, that we are
going to use. For a more detailed list of properties of this representation, we refer for instance
to [Far90].

Any univariate polynomial f(x) ∈ � [x], of degree d, can be represented as

f(x) =
d

∑

i=0

bi

(

d

i

)

1

(b − a)d
(x − a)i(b − x)d−i.

The polynomials Bi
d(x; a, b) :=

(

d
i

)

1
(b−a)d (x−a)i(b−x)d−i form the Bernstein basis on [a, b].

Hereafter, we are going to consider the sequence of values b = [b0, .., dd] together with the
corresponding interval [a, b], as a representing our polynomial f .

A fundamental algorithm that we will use on such a representation is the de Casteljau
algorithm [Far90]: b0

i = bi, i = 0, . . . , d, br
i = (1 − t) br−1

i + t br−1
i+1 (t), i = 0, . . . , d − r.

It allows us to subdivide the representation of f into the two subrepresentations on the
intervals [a, (1 − t)a + tb] and [(1 − t)a + tb, b]. It requires at most 2d(d + 1) arithmetic
operations.

A simple but interesting property that we are going to use is the following:

Theorem 1 (Descartes rule). [Ris91], [BPR03], [MRR04] The number of real roots of
f(x) =

∑

biB
i
d(x; a, b) in ]a, b[ is bounded by the number V (b) of sign changes of b =

(bi)i=0..n, and is equal modulo 2.

As a consequence, if V (b) = 0 there is no root in ]a, b[ and if V (b) = 1, there is one root in
]a, b[. Another interesting property of this representation is the following:

INRIA



Subdivision methods for solving polynomial equations 5

Theorem 2 (Convex hull). [Far90], [Ris91] Let b = (bi)i=0,...,d be the control coefficients

of f(x) on the interval [a, b] and c = [( (d−i) a+i b

d
, bi)i=0,...,d] the corresponding control points.

The graph {(t, f(t)); t ∈ [a, b]} is in the convex hull of the control points c.

By a direct extension to the multivariate case, any polynomial f(x1, . . . , xn) ∈ � [x1, . . . , xn]
of degree di in the variable xi, can be decomposed as:

f(x1, . . . , xn) =

d1
∑

i1=0

· · ·
dn
∑

in=0

bi1,...,in
Bi1

d1
(x1; a1, b1) · · ·Bin

dn
x(xn; an, bn).

where ( Bi1
d1

(x1; a1, b1) · · ·Bin

dn
(xn; an, bn))0≤i1≤d1,...,0≤in≤dn

is the tensor product Bernstein
basis on the domain D := [a1, b1]×· · ·×[an, bn] ⊂ �

n and b(f) = (bi1,...,in
)0≤i1≤d1,...,0≤in≤dn

are the control coefficients of f on D. The polynomial f is represented in this basis by the
nth order tensor of control coefficients b(f). The control points of f are

c(f) = ((
(d1 − i1) a1 + i1 b1

d1
, . . . ,

(dn − in) an + in bn

d1
, bi1,...,in

)0≤i1≤d1,...,0≤in≤dn
).

Let pi1,...,in
(f) = (( (d1−i1) a1+i1 b1

d1

, . . . ,
(dn−in) an+in bn

d1

).
De Casteljau algorithm also applies in each of the direction xi, i = 1, . . . , n so that we

can split this representation accordingly. This can be used either to split the domain or to
restrict the representation to a subdomain. For a multivariate polynomial of degree di in
xi, we check that this restriction operation costs 2

∑n

i=1 di

∏n

i=1(di + 1) = O(dn+1) where
d = max{d1, . . . , dn}. Thus as the dimension and the degree increase, a good method to
isolate the roots, should consider carefully when to apply this reduction operation, in order
to save the computation time.

Definition 1. For any f ∈ � [x] and j = 1, . . . , n, let

mj(f ; xj) =
∑dj

ij=0 min{0≤ik≤dk,k 6=j} bi1,...,in
B

ij

dj
(xj ; aj , bj),

Mj(f ; xj) =
∑dj

ij=0 max{0≤ik≤dk,k 6=j} bi1,...,in
x B

ij

dj
(xj ; aj , bj).

We have the following property:

Lemma 1 (Projection Lemma). For any u = (u1, . . . , un) ∈ D, and any j = 1, . . . , n,
we have mj(f ; uj) ≤ f(u) ≤ Mj(f ; uj).

Proof. As for k = 1, . . . , n,
∑dk

k=0 Bik

dk
(uk; ak, bk) = 1, we have

d1
∑

i1=0

· · ·
dn
∑

in=0

bi1,...,in
Bi1

d1
(u1; a1, b1) · · ·Bin

dn
(un; an, bn)

≤





dj
∑

ij=0

max
{0≤ik≤dk,k 6=j}

bi1,...,in
Bij

(uj ; aj , bj)



 ×
∑

{0≤il≤dl,l6=j}

∏

k 6=j

Bik

dk
(uk; ak, bk)

≤ Mj(f ; uj).

A similar proof applies for mj(f ; uj).
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6 B. Mourrain & J.P. Pavone

As a direct consequence, we obtain the following corollary:

Corollary 1. For any root ζ = (ζ1, . . . , ζn) ∈ � n of the equation f(x) = 0 in the domain
D, we have µ

j
≤ ζj ≤ µj where

– µ
j

(resp. µj) is either a root of mj(f ; xj) = 0 or Mj(f ; xj) = 0 in [aj , bj ] or aj (resp.

bj) if mj(f ; xj) = 0 (resp. Mj(f ; xj) = 0) has no root on [aj , bj ],
– mj(f ; u) ≤ 0 ≤ Mj(f ; u) on [µ

j
, µj ].

Definition 2. For a system of polynomials f = (f1, . . . , fs), we define

mj(f ; uj) = sup{mj(fk; uj); k = 1, . . . , s}, Mj(f ; uj) = inf{Mj(fk; uj); k = 1, . . . , s}.

3 Univariate Root Solver

Our approach for solving multivariate systems is based on efficient methods for isolating
roots of univariate polynomials. In this section, we describe the different univariate solvers
that we use for this purpose.

Descartes rule 1 yields a simple subdivision algorithm, which isolated the roots, as de-
scribed in [MVY02] or [MRR04]. The behavior of the algorithm can be analysed using to the
two circles theorem (see [BPR03], [Meh] or [MRR04]), which shows that at if f(x) = 0 has
only simple roots on [a, b], an upper bound of the number of recursion steps of this algorithm
is at most dlog2

(

2
σ

)

e, where σ is the minimal distance between the complex roots of f .
In order to approximate a root within a given precision ε > 0, after it has been isolated,

a usual approach is by bisection, that is by splitting the interval into two subintervals and
by choosing the interval containing the root. This splitting can be performed

– either in the Bernstein basis by de Casteljau algorithm (which requires O(d2) arithmetic
operations),

– or in the monomial basis using Horner methods (which requires O(d) arithmetic opera-
tions).

– or by a secant-like method, which consists in intersecting the interval [a, b] with the line
with the lowest slope which is joining the first control point to another point, and by
using this point to split the Bernstein representation,

– by computing iteratively the first intersection of the convex hull of the control polygon,
with the x-axis and in subdividing the polynomial representation at this point [Roc90],

– or by a Newton-like method, which consists in splitting the interval at the point where
the tangent cuts the interval [a, b] if it exists or at the middle otherwise. These operations
are performed in the monomial basis.

The two first schema converge linearly to the root in the interval, whereas the other
have a superlinear and quadratic convergence speed [Hen77]. In the third method, each it-
eration requires O(d) arithmetic operations. This method can be improved by computing
the intersection of the convex hull of the control points with the x-axis, but it requires

INRIA



Subdivision methods for solving polynomial equations 7

O(d log(d)) arithmetic operations and interval arithmetic for a numerically stable imple-
mentation [PM02]. The fourth method requires O(d2) arithmetic operations.

By choosing the adequate arithmetic rounding mode during the iterations of these meth-
ods, we guaranty that the first (resp. last) root of the polynomial is approximated below
(resp. above) at the end of the computation.

Experimentations done on univariate polynomials with random roots or coming from ray
tracing problems tracing problems shows the superiority of Horner and Newton iterations
in terms of speed, compared to the other methods. Such algorithms allows us to solve more
than 106 equations of degree 9, within a precision ε = 10−12, on an Intel Pentium4 2.0Ghz,
512 Mo of RAM workstation. Newton iteration seems to be ahead in "simple" situations
where the speed of convergence compensates the arithmetic cost of the iteration.

4 Multivariate root finding

In this section, we consider a system of s polynomial equations in n variables:

f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0

with coefficients in
�

, that we will also denote by f(x) = 0. We are looking for an approx-
imation of the real roots of f(x) = 0 in the domain D = [a1, b1] × · · · × [an, bn], within a
precision ε.

4.1 The algorithm

The general framework of the families of algorithms that we will consider consists

1) in applying a preconditioning step on the equations;

2) in reducing the domain;

3) and if the reduction ratio is too small, in splitting the domain;

until the size of the domain is smaller than a given precision ε. We have several options for
each of these steps, leading to different algorithms with different behaviors, as we will see in
the last section. Indeed the solvers that we will consider are parameterised by the

– preparation strategy: a transformation of the initial system followed by a projection
on the xi axes;

– reduction solver: a method derived from univariate root finding techniques used to
reduce the initial domain, according to the available projections.

– subdivision rule: a technique used to subdivide the domain, in order to simplify the
forthcoming steps, for searching of the roots.

RR n° 5658



8 B. Mourrain & J.P. Pavone

4.2 Preconditioner

Let us describe here the two preparation steps that we use to improve, at each iteration, the
numerical quality of the system. Namely, we transform the system f = 0 into an equivalent
one M f = 0, where M is an s × s invertible matrix

As such a transformation may increase the degree of some equations, with respect to
some variables, it has a cost, which might not be negligible in some cases. Moreover, if for
each polynomials of the system not all the variables are involved, that is if the systems is
sparse with respect to the variables, such a preconditioner may transform it into a system
which is not sparse anymore. In this case, we would prefer a partial preconditioner on a
subsets of the equations sharing a subset of variables.

For the sake of simplicity, we will assume hereafter that the polynomials f1, . . . , fs are
expressed in the same Tensor product Bernstein basis, that we denote hereafter by B. We
are going to consider two types of transformation.

Global transformation A typical difficult situation for a method which exploits the value
of the functions (fi)i=1,...,s, is when two of these functions have closed graphs on the domain
D. A way to avoid such a situation is to transform these equations in order to increase
the distance between these graphs. As this distance is not straightforward to compute, we
replace it by the distance between the control points of the functions on the domain D: for
f, g ∈ �

[x], let dist(f, g)2 = ||f − g||2 with

||f ||2 =
∑

0≤i1≤d1,...,0≤in≤dn

|bi1,...,in
(f)|2, (1)

where b(f) is the vector of control coefficients of the function f in the Bernstein basis B.
This norm on the vector space of polynomials generated by the basis B is associated to
a scalar product that we denote by 〈 | 〉. The aim of this preconditioner is to optimize the
angles between the vectors, that is to produce a system which is orthogonal for 〈 | 〉. We
obtain it by eigenvector computation.

Proposition 1. Let Q = (〈fi|fj〉)1≤i,j≤s and let E be a matrix of unitary eigenvectors of

Q. Then f̃ = E f is a system of polynomials which are orthogonal for the scalar product 〈 | 〉.
Proof. Let E be the matrix of (real) unitary eigenvectors of Q and let f̃ = Ef = (f̃1, . . . , f̃n).
Then the matrix of scalar product (f̃i|f̃j) is

EtQE = diag(σ1, . . . , σn),

where σ1 ≥ 0, . . . σn ≥ are the positive eigenvalues of Q. This shows that the system f̃ is
orthonormal for the scalar product 〈 | 〉.
We illustrate the impact of the global preconditioner in figure 1, on two bivariate functions
which graphs are very closed to each other before the preconditioning, and which are well
separated after this preconditioning step. In this case, one of the new functions is even not
intersecting the zero-level (gray plane), so that we can deduce directly that there is no root
in the domain D.

INRIA



Subdivision methods for solving polynomial equations 9

Fig. 1. Global preconditioner

Local straightening In this section we consider square systems, for which s = n. Since
we are going to use the projection lemma 1, interesting situation for reduction steps, are
when the zero-level of the functions fi are orthogonal to the xi-directions. We illustrate
this remark in dimension 2, by figure 2: In the case (a), the reduction based on corollary
1, will be of no use (because the projection of the graphs cover the intervals), whereas
in case (b), a good reduction strategy will yield a good approximation of the roots. This

P

Q

M

Q

(b)(a)

Fig. 2. Local preconditioner

idea of this preconditioner is thus to transform the system f = 0, in order to be closed
to the case (b). Namely, we transform locally the system f into a system J−1

f
(u0)f , where

Jf (u0) = (∂xi
fj(u0)1≤i,j≤s is the Jacobian matrix of f at the point u0 ∈ D. See [GS01a] for

a previous application of this idea.

RR n° 5658



10 B. Mourrain & J.P. Pavone

A direct computation shows that locally (in a neighborhood of u0), the level-set of f̃i

(i = 1, . . . , n) are orthogonal to the xi-axes.

4.3 Reduction strategy

We describe several reduction strategies, which have been considered. See also [Spe94].
In [SP93], a method called Interval Projected Polyhedron (or IPP) is described, in order

to reduce the domain of search. It is based on the convex hull property 2.
A direct improvement consists in computing the first (resp. last) root of the polynomial

mj(fk; uj), (resp. Mj(fk; uj)), in the interval [aj , bj ], and keep the intervals [µ, µ] defined in
corollary 1. As we can see in the following example, figure 4.3 the improvement compared
with the IPP approach can be substantial. The actual implementation of this reduction steps

Fig. 3. Convex hull vs. root finding

allows us to consider the convex hull reduction, as one iteration step of this reduction process.
By increasing the number of iterations, we improve the interval containing the extreme roots.
The precision required in the approximation of the roots is not an important aspect of this
step, since we are more interested on the ratio of the size of the new interval by the size of
the initial one. This allows us to reduce more efficiently the domain, by computing several
subdomains or by rejecting it more quickly, as it is illustrated in figure 4, This method can
be even further improved by taking into account simultaneously all the projections of the
polynomials fj of the system. The guarantee that the computed intervals contain the root
of f , is achieved by controlling the rounding mode of the operations during the de Casteljau
computation.

4.4 Subdivision strategy

Here some simple rules that can be used to subdivide a domain. We will show in the last
section their impact on the performance of the solver

The subdivision method simply checks the sign of control coefficients of the polynomials
fj on the domain D. If for one of non-zero polynomial fk, its control coefficient vectors has

INRIA



Subdivision methods for solving polynomial equations 11

(a) (b)

Fig. 4. Convex hull vs. root finding

no sign change, than D does not contain any root and should be excluded. The domain D
is then split in half in a direction j for which |bj − aj | is maximal.

This is approach used in [EK01] who argued that the reduction approaches are not so
interesting because they cannot avoid anyway a lot of subdivisions. In section 6, we will
analyse through experimentations the effectiveness of this remark.

A variant of this approach consists in subdividing the domain in a direction j if |bj−aj | >

ε and if the control coefficients of Mj(fk; uj) are not all positive, those of mj(fk; uj) not all
negative. This allows us to have domains more adapted to the geometry of the roots, but
still a postprocessing step for gluing together connected domains may be required.

5 Analysis

In this section, we analyse the behavior of the method in terms of the invariants of f .
Hereafter, the || · || or || · ||∞ is the ∞-norm, a box B ⊂ � n is a product of intervals
I1 × · · · × In, |B| is the size of the box that is the maximum of the size of the intervals Il

l = 1, . . . , n. For any polynomial f ∈ �
[x1, . . . , xn] and any box B ⊂ �

n, we denote by
C(f ; B) the piecewise linear function B → �

, defined by the control points c(f) of f in the
Bernstein basis of B.

For any compact domain D ⊂ �
n and any f ∈ �

[x1, . . . , xn], we denote by K1(f,D) the
Lipschitz constant of f in D, satisfying

|f(x) − f(y)| ≤ K1(f,D)‖x − y‖∞.

Let K2(f,D) = maxx∈D,1≤i,j≤n |∂i∂jf(x)| and K2(f ,D) = max{K2(fi, B); i = 1, . . . , s}.
For any linear map M :

�
n → �

n, let m1(M) be the smallest singular value of M such

that if y = M x and det(M) 6= 0, then ||x||2 ≤ 1
m1(M) ||y||2 ≤

√
n

m1(M) ||y||∞.

An important property of the Bernstein representation that we will use hereafter is the
following:

RR n° 5658



12 B. Mourrain & J.P. Pavone

Proposition 2. [Dah86] [dB87] [PK94] Let B ⊂ �
n be a box and f ∈ �

[x1, . . . , xn], then
∀x ∈ B,

|f(x) − C(f ; B)(x)| < K2(f, B)|B|2.

5.1 Local quadratic convergence

We consider here the local preconditioner method described in section 4.2, and shows that
locally, it is converging quadratically to a simple root.

Proposition 3. Let B be a box of
�

n and u0 its center such that det(Jf (u0)) 6= 0. Then

|M̃j(f̃ ; uj) − m̃j(f̃ ; uj)| ≤
2 (n2 + 1)

√
nK2(f, B)

m1(Jf (u0))
|B|2,

where f̃ = J−1
f

(u0)f , m1(Jf (u0)) is the smallest singular value of Jf (u0) and m̃j , M̃j are the

corresponding bounding polynomials of the system f̃ .

Proof. By a Taylor expansion at u0, we have

f(u + u0) = f(u0) + Jf (u0)u + R(u)

where R(u) only involves monomials of degree ≥ 2. By the mean value theorem, for any u

with u0 + u ∈ B and any i = 1, . . . , n, we have

Ri(u) =
∑

1≤j,k≤n

ujuk∂j∂k(fi)(νi),

with νi ∈ B, so that |Ri(u)| ≤ n2K2(fi, B)|B|2. Thus

f̃(u + u0) = J−1
f

(u0)f(u0) + u + J−1
f

(u0)R(u) = v + u + F (u).

where v = J−1
f

(u0)f(u0) ∈ �
n and |Fi(u)| ≤ k̃2|B|2 with k2 = K2(f , B) and k̃2 =

n
5

2 k2

m1(J
−1

f
(u0))

.

By proposition 2, we have |C(Ri) − Ri(ui)| < k2|B|2 and

|C(Fi) − Fi(ui)| <

√
n

m1(J
−1
f

(u0))
k2|B|2 ≤ l̃2|B|2.

We deduce that for i = 1, . . . , n,

mi(f̃i; ui) ≥ vi + ui − (k̃2 + l̃2)|B|2, Mi(f̃i; ui) ≤ vi + ui + (k̃2 + l̃2)|B|2.

which proves the proposition.
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Subdivision methods for solving polynomial equations 13

This also proves that the distance between two consecutive roots, one of mi(f̃i; ui) and one
of Mi(f̃i; ui) is less than 2 (k̃2 + l̃2)|B|2.

As a consequence, we immediately deduce that any reduction strategy using this pre-
conditioner and the projection lemma 1 near a simple root, will converge quadratically.

Corollary 2. Let B be a box of
�

n and u0 its center such that det(Jf (u0)) 6= 0. Let B̃ be
the box obtained after one reduction step, then we have

|B̃| ≤ 2 (n2 + 1)
√

nK2(f, B)

m1(Jf (u0))
|B|2.

5.2 Global convergence

We consider here a domain D = [a1, b1] × · · · × [an, bn] ⊂ �
n in which we are searching the

roots of f = 0. We denote them by ζ1, . . . , ζt ∈ D ⊂ �
n.

For r ∈ �
+, we denote by Si(r) = {x ∈ � n; |fi(x)| ≤ r} and S(r) = ∩n

i=1Si(r). Notice
that S(0) is the set of real solutions of f1(x) = 0, . . . , fs(x) = 0.

Proposition 4. Assume that 0 < δ <
K1(f,D)
K2(f,D) , then for any box B of center u0 such that

u0 6∈ S(2 K1(f ;D)δ) and |B| < δ, the control coefficients of one of the polynomials fi

(i = 1, . . . , n) on B are of the same sign.

Proof. Let r > 0 and B be a box with center u0 6∈ S(r) with |B| ≤ δ. Assume that δ ≤ r
2 k1

,
where k1 = K1(f,D). Then u0 6∈ Si0(r) for some i0 in {1, . . . , n}. Consequently, |fi0(u0)| ≥ r.
We deduce that ∀x ∈ B,

|fi0(x)| ≥ |fi0(u0)| − k1 ‖x − u0‖∞ ≥ r − r

2
=

r

2
> 0.

As fi0 cannot vanish on the connected set B, it has a constant sign, say positive. By propo-
sition 2, we have

bi1,...,in
(fi0) ≥ fi0(pi1,...,in

) − k2 δ2 ≥ r

2
− k2 δ2 ≥ δ(k1 − k2 δ).

where k2 = K2(fi0 ,D). Thus if r = 2 k1 δ and δ < k1

k2

, we have bi1,...,in
(fi0) > 0 for all

coefficient indexes i1, . . . , in, which proves that the control coefficients of fi0 are of the same
sign on B.

We denote by N(δ) the minimal number of boxes of size δ in a binary subdivision of D,
which are covering S(2 k1 δ).

Corollary 3. For 0 < δ <
K1(f,D)
K2(f,D) , the number of boxes of size δ kept in the subdivision

algorithm is bounded by N(δ).
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14 B. Mourrain & J.P. Pavone

Proof. According to the previous proposition, for the boxes of size δ not covering S(2 k1 δ),
one of the polynomials fi0 has control coefficients in the box of constant sign. Thus such a
box is removed by the subdivision algorithm. Consequently the number of boxes of size δ in
the subdivision algorithm is bounded by N(δ).

Proposition 5. N(δ), δ > 0 is bounded.

Proof. ∀ε > 0, let V (ε) = ∪t
i=1V (ζi, ε) be a compact union of balls V (ζi, ε) around the

roots ζi (i = 1, . . . , t). As ∩r>0S(r) = {ζ1, . . . , ζt}, we have V (ε) ⊂ ∪r>0S(r)c ∩ D. As
V (ε) is compact, it is covered by a finite union of Sc(r1), . . . , S

c(rl). Thus, there exists
r0 = min{r1, . . . , rn} > 0 such that V c(ε) ∩ D ⊂ Sc(r0) ∩ D or S(r0) ∩ D ⊂ V (ε).

Let us choose σ > 0 such that B(ζi, σ) ∩ B(ζj , σ) = ∅ if i 6= j and det(Jf (u)) 6= 0 for
u ∈ ∪s

i=1B(ζi, σ). This is possible since the roots ζi are simple (Jf (ζi) 6= 0). We denote by
m1(σ) = minx∈V (σ){m1(Jf (x))}.

Let δ0 be such that S(2 k1 δ0) ⊂ V (σ) and δ0 <
K1(f,D)
K2(f,D) . For δ ≤ δ0 and x ∈ S(2 k1 δ) ⊂

V (σ), we have by the mean value theorem for j = 1, . . . , n fj(x) = (x− ζi0) · ∇fj(ν), where
x, ν ∈ V (ζi0 , σ). This implies that

||x − ζi0 ||2 ≤ 1

m1(σ)
|fj(x)| ≤ 2 k1 δ

m1(σ)
.

Consequently, the center of the boxes of size δ < δ0 kept by the algorithm are in ∪t
i=1V (ζi,

2 k1δ
m1(σ) ),

which implies that N(δ) ≤ t × ( 4 k1

m1(σ) + 1)n. This proves that for δ small enough and thus

for any δ > 0, N(δ) is bounded.

We consider now the following characteristic quantities of the system f = 0:

– We denote by ND(f) = maxδ>0 Nδ.
– Let σ > 0 be such that V (ζi, σ)∩V (ζj , σ) = ∅ if i 6= j and det(Jf (x)) 6= 0 for x ∈ V (σ) =

∪s
i=1V (ζi, σ).

– Let ρ = max{δ > 0 st. S(2 K1(f,D) δ) ⊂ V (σ)}.

Theorem 3. Assume that f is a square system, with simple roots ζ1, . . . , ζt in the domain
D ⊂ �

n. Then the roots of f = 0 can be approximated within the precision 0 < ε < 1
2 , by

performing at most

c0 ND(f) dn+1(log |D| + | log(ρ−1)| + log(m1(σ)−1) + log K2(f,D) + n3 log | log(ε)|),

arithmetic operations, where

– c0 > is a constant independent of f , D and n,
– d = max1≤i,j≤n degxi

(ffj
),

– K2(f ,D) is a bound on the second derivatives of the polynomials fi on D and K1(f ,D)
a bound on their Lipschitz constants on D,
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Subdivision methods for solving polynomial equations 15

– ND(f) is related to the entropy of f = 0 in D (or the number of roots) [YC04] and
K1(f ,D),

– ρ is related to the minimal distance between the roots and their distance to the variety
det(Jf (x)) = 0 and K1(f ,D).

Proof. Let k1 = K1(f ,D), k2 = K2(f,D), k̃2 = 2 (n2+1)
√

n k2

m1(σ) . Let δ0 = min(ρ, 1
2k̃2

, k1

k2

). Let

n0 ∈ � be such that 2−n0 |D| < δ0, that is n0 ≥ log |D|+ max(log(ρ−1), log(k̃2) + 1, log k2 −
log k1). We take n0 = log ρ−1 + log k̃2 + log k2. By applying the subdivision algorithm n0

times, we obtain boxes B0 of size < δ0 such that the center u0 is in S2 k1δ0
⊂ V (σ). Therefore,

we have m1(Jf (u0)) > m1(σ).

Let us denote by Bk a box obtained next by application of the reduction algorithm kth

times. By corollary 3, we have

k̃2|Bk| < (k̃2|Bk−1|)2 < · · · < (k̃2|B0|)2
k

< (
1

2
)2

k

.

Thus if 1

k̃222k < ε, we have |Bk| < ε. Since computing the inverse of Jf (u0) requires O(n3)

arithmetic operations and the de Casteljau algorithm O(dn+1), we deduce that the number
of arithmetic operations needed to approximate the roots within ε is bounded by

O(ND(f) × dn+1(n0 + log(k̃2) + n3 log | log ε|))

which yields the bound of the theorem.

6 Experimentations

The structure of the algorithm described in the section 4 has been implemented in the C++
library synaps

1. Our objective in these experimentations is to evaluate the impact of reduc-
tion approaches compared with subdivision techniques, with and without preconditioning.
The different methods that we compare are the following:

– sbd stands for subdivision; it is the simplest approach which looks to the minimum and
maximum control coefficients on an equation-per-equation basis. It is similar to [EK01].

– rd stands for reduction. Because it uses a more sophisticated reduction step it produces
less iterations than the method in [SP93].

– sbds stands for subdivision using the global preconditioner (section 4.2) we described.
It works in the same way as sbd but on a transformed system.

– rds stands for reduction using the global preconditioner (section 4.2).

– rdl stands for reduction using the local preconditioner (section 4.2).

1 http://www-sop.inria.fr/galaad/software/synaps
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16 B. Mourrain & J.P. Pavone

For each method and each example, we output the number of iterations of the solver, the
number of subdivisions steps, the number of domains computed at the end and the time in
milliseconds on a Intel Pentium 4 2.0Ghz with 512 Mo RAM, workstation. The interesting
characteristics are the number of iterations and the size of the output. In these experiments
we use a modification of the first reduction solver based on Descartes rule (section 3). It
handles all the projections associated to one variable, simultaneously and is able to reject
domains earlier. Simple roots are approximated using bisection. In these experimentations,
we use one of the simplest univariate root-finder we have described. Notice that changing
the root-finder can improve the computation time but not the number of iterations. The
subdivision rule consists in a splitting along the largest variable, when the reduction gain is
close to 1.

We consider examples of implicit curve intersection problems defined by bi-homogeneous
polynomials in examples (a) and (b) . Then we consider the intersection (c) and (d) and the
self-intersection (e) and (f) problems for rational curves.

(a) Bidegree: (8, 8), (8, 8)

method iter. subd. result time (ms)
sbd 84887 84887 28896 3820
rd 82873 51100 20336 4553
sbds 6076 6076 364 333
rds 1486 920 144 163
rdl 1055 305 60 120

(b) Bidegrees: (12, 12), (12, 12).

method iter. subd. result time (ms)
sbd 4826 4826 220 217
rd 2071 1437 128 114
sbds 3286 3286 152 180
rds 1113 748 88 117
rdl 389 116 78 44

Given two rational curves C0 = (x0(u), y0(u), z0(u)) and C1 = (x1(v), y1(v), z1(v)) we com-
pute their intersection by solving the system: S = C0×C1 = 0, where × is the cross-product.

For computing the self-intersection of a curve, we solve the system S = C(u)×C(v)
u−v

= 0 and
use a domain control class that clip the domain to {u < v}. In the following examples of in-
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Subdivision methods for solving polynomial equations 17

tersection (c) and (d) and self-intersection (e) and (f), the solutions are computed up within
the precision of 10−6.

(c) Bidegree: (4, 5)

method iter. subd. result time (ms)
sbd 2159 2159 21 40.8
rd 185 100 8 7.76
sbds 681 681 8 26.95
rds 108 38 7 10.45
rdl 75 28 7 4.72

(d) Bidegrees: (14, 16)

method iter. subd. result time (ms)
sbd 2193 2193 91 2750.55
rd 584 395 47 286.62
sbds 289 289 2 148.22
rds 70 20 2 51.95
rdl 49 15 2 28.26

(e) Degree: 19

method iter. subd. result time (ms)
sbd 3979 3979 39 3540.41
rd 560 376 15 537.11
sbds 1577 1577 16 1589.27
rds 282 63 13 344.9
rdl 126 36 13 134.21

(f) Degree: 12

method iter. subd. result time (ms)
sbd 4647 4647 47 1102.67
rd 1497 1012 23 409.9
sbds 255 255 2 69.47
rds 85 24 1 32.7
rdl 29 6 1 10.15

On these bivariate systems we conclude on the superiority of the reduction approaches,
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18 B. Mourrain & J.P. Pavone

namely reduction with local straightening (rdl) which have a good convergence (quadratic)
in theory as well as in practice. One the other hand in hard case (figure 6) preconditioned
reduction and subdivision methods (sbds, rdl, rds) outperforms classical subdivision and
reduction (rd, sbd). Notice that the improvement provided by the combination of reduction
and preconditioning is interesting in practice, not only because of the time saved, but also
because the size of the result is smaller. Notice that in most of the examples only rds and
rdl provide the good answer.

Since our reduction principle is based on projection, difficulties may arise when we in-
creases the number of variables in our systems. Hereafter we show some experiments for a
six variable problem of degree ≤ 2 in each variable, coming from the robotics community.
In this example we keep the three reduction methods: rd, rdl, rds and add combinations of
them that use projections: before and after local straightening (rd+rdl), before and after
global preconditioning (rd+rds), and the three techniques (rd+rdl+rds).

domain = [−3, 3]6 domain = [−30, 30]6

method iter. subd. result time (s)
rd 34125 6059 492 14.5
rdl 33471 10543 4 23.9
rds 9082 2288 8 12.3
rds+rdl 3555 872 4 6.4
rd+rdl 2814 655 4 2.7
rd+rds 3120 670 15 4.8
rd+rdl+rds 1863 409 4 3.7

rd 249578 54765 532 101.6
rd+rdl 27833 6623 4 26.9
rd+rds 9908 2051 18 15.3
rd+rdl+rds 7196 1483 4 14.3

As one can see the combination of projections is an improvement, but the important point
here is that the global preconditioner tends to be better than local straightening. If we look
at the first table, we see that the number of iterations of rdl is close to rd, but it is not the
case for rds. The reason is that rdl uses a local information (a Jacobian evaluation) while
rds use a global information computed using all the coefficients in the system.

In conclusion of this section, we first experiment that both subdivisions and reductions
methods are bad solutions if they are not preconditioned. But using the same preconditioner
reduction will, most of the time, beat subdivision.

7 Conclusion

Our approach can be seen as an enhancement of the previous works of Sherbrooke and
Patrikalakis [SP93]. They proposed a reduction method. We show how to generalizes it
by univariate root solving methods. Their convergence speed is locally linear, we show that
preconditioning can leads to quadratic convergence. We also show that subdivisions methods
can be improved by preconditioning. We give an answer to Elber and Kim [EK01], who
argued that the reduction approaches are not so interesting because they cannot avoid a lot
of subdivisions. Our experimentations shows that reduction can save a lot of subdivisions.
In cases of “tangents solutions”, a pure subdivision approach has no chance to compete with
a reduction approach. However it is better to use a preconditioned subdivision than a pure
reduction approach, our experimentations illustrate this phenomenon.
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