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Auto-Organisation de Réseaux d’Accès 802.11 Interférant
Résumé : Suite à la généralisation de l’usage des réseaux locaux sans fil de type IEEE 802.11, on
assiste à l’apparition de zones de haute densité de ces réseaux, notamment en milieu urbain. Une haute
densité de points d’accès 802.11 peut conduire à une dégradation significative des performances si les
réseaux interférant et leurs clients n’apprennent pas à partager le spectre radio de manière optimale. Dans
cet article, nous proposons une famille d’algorithmes distribués qui permettent (i) à des réseaux 802.11
interférant de sélectionner leur fréquence de manière à minimiser les interférences globales, (ii) aux clients
de ces réseaux de choisir leur point d’accès de manière à ce que la bande passante des divers réseaux
soit partagée de façon optimale. Les algorithmes proposés sont fondés sur l’échantillonneur de Gibbs. Ils
permettent une optimisation globale des performances du réseau tout en n’utilisant que des informations
locales. En particulier, ils n’exigent pas de coordination explicite entre les points d’accès. Nous établissons
diverses propriétés mathématiques de ces algorithms, notamment en ce qui concerne leur convergence, et
nous étudions leurs performances de manière analytique et par simulation. Les résultats que nous obtenons
montrent clairement l’intérêt de mécanismes d’auto-organisation de tels réseaux d’accès. Nous passons en
revue les pré-requis technologiques pour une implémentation pratique de ces algorithmes; nous montrons
aussi qu’un déploiement incrémental conduit à des gains en performance significatifs, même si certains
points d’accès ou certains clients n’adoptent pas ces algorithmes.

Mots-clés : WIFI, point d’accès, sélection de canaux radio, équilibrage de charge, échantillonneur de
Gibbs, partage de bande passante, équité des délais potentiels.



Self Organization of Interfering 802.11 Wireless Access Networks 3

I. INTRODUCTION

Wireless Local Area Networks (WLANs) are cur-
rently deployed in a variety of environments such as
in university campuses, enterprise buildings, public
places, or homes. WLANs are mostly used as a
flexible way to access the Internet while allowing for
user mobility. Their ease of installation and low cost
has led to highly dense IEEE 802.11 deployments
in urban areas, where users may be in range of
several Access Points (APs) belonging to private or
commercial entities.

Coexistence of multiple WiFi devices in an area
is bound to lead to high degree of interference and
sub-optimal performance due to the limited size of
the shared spectrum. Current 802.11 deployments
are typically not coordinated and in certain cases not
even managed (such as home APs). To make matters
worse, current 802.11 equipment typically ships
with static configuration that completely ignores the
utilization of the radio resources in the area of the
AP. It is not uncommon to find areas where multiple
APs operate on the same frequency, simply because
this was the default factory setting.

In this work we advocate that in order for the
WiFi model to survive its success, wireless de-
vices will need to become self-configurable. Con-
sequently, 802.11 devices need to be able to assess
the radio environment they operate within and adjust
their configuration appropriately. Within this generic
framework, we look at ways in which (i) APs can
individually identify the optimal frequencies to use,
so as to achieve optimal spatial reuse and (ii) clients
can identify the “best” APs to affiliate with, such that
the resulting configuration of the collection of inter-
fering networks is optimal in terms of bandwidth
sharing.

The most popular solution is to use a central
location responsible for the optimal configuration
of the entire network, operating on information
received by every single entity in the network. This
approach has two main drawbacks. First, it is not
always feasible as all APs do not belong to the same
administrative authority. Second, it is not robust
to failures and other impairment that are frequent
in wireless environments. Instead, we look at fully
distributed algorithms that require no coordination
between the different network entities (thus avoid-
ing inter-operability issues), and can be deployed
incrementally. We are interested in scenarios where

each network element (i.e. APs and end users) can
reach its optimal configuration simply based on local
measurements and minimal information dissemina-
tion to/from neighboring devices.

We do not address solutions that require changes
at the MAC level. This would not be compatible
with incremental deployment on existing 802.11
technologies. Therefore, we focus on solutions that
can be implemented through simple software modi-
fications that could be pushed to the wireless devices
through firmware upgrades (in line with current
proposals within the IEEE 802.11k task group).

We design a set of fully distributed algorithms
that rely on Gibbs’ sampler to optimize resources
in a group of interfering wireless access networks
(and their users). We prove the convergence of these
algorithms to a global optimum. We propose an im-
plementation through local optimization decisions.
Our optimization criterion is the minimal potential
delay fairness (defined for wired networks in [12]),
which captures the long term rate that a user should
expect to receive from a fully saturated network. We
show analytically that these algorithms can success-
fully minimize global interference while optimizing
bandwidth sharing across clients. This result stands
for both static and dynamic environments, where
APs and users may frequently join and leave the
network. In case of incremental deployment, our al-
gorithms can have a significant performance benefit
even for the first nodes that implement the suggested
functionality. Moreover, there is little incentives for
people to misbehave, as a more selfish choice does
not lead to significant individual performance gain.

The paper is organized as follows. The next
section discusses related work. In Section III, we
formulate the problem, introduce notation and as-
sumptions. In Section IV, we introduce our dis-
tributed channel selection algorithms and establish
their optimality analytically in the static case (i.e.
when the AP and client populations do not change).
The performance of the proposed algorithms is
extensively simulated and compared to currently
used strategies in Section V. Section VI addresses
deployment issues. We demonstrate the flexibility
of the proposed solution by relaxing three of the
underlying assumptions in the original model in
Section VII. We conclude and discuss future work
in Section VIII.

RR n° 5649
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II. RELATED WORK

The IEEE 802.11 family of protocols defines a
set of frequencies that can be used by wireless
devices in their communication. IEEE 802.11b/g
operates on the 2.4 GHz spectrum and defines 11
communication channels, 3 out of which are non-
overlapping. IEEE 802.11a operates on the 5 GHz
spectrum and defines 52 communication channels,
12 out of which are orthogonal. Devices operating on
orthogonal frequencies can operate independently.
In the opposite case, devices will need to share the
wireless resources with other occupants in overlap-
ping frequencies. The way the operating frequency
of a wireless device is chosen is, however, typically
left to implementation or may be simply statically set
by the manufacturer (a typical case for home APs).
Users are further associating to APs within range
either according to user policies or simply based on
the received signal strength, under the assumption
that APs with a stronger signal may offer better
performance, thus ignoring their load.

Leung and Kim analyze the problem of frequency
selection in [11], where they study how to optimally
allocate channels to cope with a given offered traffic
per AP. They study the complexity of the optimiza-
tion problem and propose a centralized algorithm to
compute channel selection. Similarly a centralized
algorithm for the association of clients to APs is
formulated by Bejerano et al. in [2] as the solution
of an “association control” problem. They analyze
its complexity and propose a centralized algorithm
based on fractional load balancing and routing, to
achieve a near optimal max-min fair allocation of
links.

In a similar spirit, numerous papers have ad-
dressed optimal channel allocation in wireless
meshed networks [8], [9], [15]. The association of
users to APs may be seen as a subproblem of
the wireless mesh routing problem: each user is
allowed to communicate with any AP and needs
to choose an optimal link. These algorithms also
require a centralized knowledge and computation,
that is most of the time not possible to deploy
in real life. In [5], Gambiroza et al. propose to
achieve fairness in a wireless meshed network by
an exchange of control messages, prescribing the
rate that should be used on each link of the mesh.
In a similar manner, Raniwala [17] proposes that
network elements should negotiate channel selection

to maximize the diversity of orthogonal channels
used while still preserving the connectivity of the
multi-hop architecture. Such protocols for link setup
and maintenance are used to build optimal routes in
wireless mesh networks. They imply an overhead
and a complexity in the wireless cards that may not
be needed in the setting that we examine here which
is that of interfering WLANs.

To the best of our knowledge, this paper is the first
to propose a set of algorithms that simultaneously
solves the problems of channel selection and user
association in a fully distributed way. Some com-
mercial products1 claim that they have a solution to
these problems. However, the technology used is not
disclosed.

The closest problem scenario to our work is
described in [1]. The authors look into the problems
arising in dense, unmanaged areas, which they call
“chaotic”. Within this framework, they propose new
mechanisms for power and rate control to alleviate
the performance degradation inherent in chaotic en-
vironments, due to interference. Channel assignment
is very briefly addressed in [1], but was found to
have limited impact in terms of performance; APs
are recommended to select an orthogonal frequency
that none of their neighbors uses if possible. Our
approach systematically targets channel selection by
APs, where channels can be selected among the
orthogonal channels or not. Moreover, our work fur-
ther targets user association which is not addressed
in [1].

In terms of our algorithmic contribution, [10]
appears to be proposing an algorithm that bears
similarities with our work. A method is proposed
that can minimize the expected transmission in a
single channel based on the estimation of local SINR
values. This point is discussed further in this paper,
and we compare by simulation in § VI-B.2 our
association algorithm and a simplified version of the
algorithm in [10].

What makes our approach unique is that we can
justify analytically that the algorithms we propose
lead to a globally optimal bandwidth sharing where
optimality is defined in terms of minimal poten-
tial delay fairness [12]; this contrasts the max-min
fair sharing of the network’s resource, previously
proposed. The aforementioned choice is motivated
by recent advances in the fundamental fairness effi-

1see e.g. http://www.propagatenet.com/ .
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ciency trade-off in wireless networks (see e.g. [16]
and references therein).

III. PROBLEM STATEMENT

As explained earlier, we consider geographical
areas where multiple wireless APs are available to
users. These APs will most probably interfere, and
in many cases, wireless clients will have to choose
among multiple wireless networks. Our intent is to
provide APs with a completely distributed method
to optimally select their operating frequency to
minimize global interference, and wireless clients
with a completely distributed method to select an
AP in order to lead to globally optimal bandwidth
sharing. This distributed optimization problem will
be addressed in two steps:

• Maximize the total capacity of the interfering
Wireless LANs. This is achieved by each AP
choosing its frequency in such a way that it
minimizes interference with neighboring APs.

• Assign each wireless client a fair share of this
capacity. Clients take into account the amount
of interference they experience and generate, as
well as the observed load of each AP (where
the load is defined in a precise way in §III-B)
to achieve an optimal bandwidth sharing.

The solution we propose to the problem described
above must meet the following challenges. (1) It
must be totally distributed in order to allow for
self-configuration of wireless APs and clients, in
the general case of dynamic populations and non
cooperative environments. (2) It should require a
minimal information exchange between the network
devices. (3) It should lead to an optimal configu-
ration, with respect to a well chosen performance
objective, while being robust to the join and leave
events of both APs and users. (4) It should be
easily deployable on existing equipment, and be able
to coexist with non cooperating or mis-behaving
equipment. In particular, we assume that any AP
may be selected for association and that all antennas
are omni-directional. The exact functionality and
features required from APs and from clients to
support our algorithms and the way for these devices
to gather the data needed to run these algorithms will
be discussed in detail in §VI.

Note that because of the dynamic nature of the
environment, we wish to make the assumption that
AP channel selection is independent from the AP’s

current user population. This channel selection must
be in particular independent of the current or average
loads of AP. Such a separation is an important
feature that allows to have simpler algorithms that
remain stable with fast user join and leaves. As a
consequence, AP channel selection is decided based
upon a global measure of spatial reuse, which is
defined precisely in the next section.

Our solution focuses on the optimization of the
performance experienced by UDP user traffic on the
downlink (from the APs to the users). The analysis of
uplink traffic and/or of TCP traffic is left for future
research.

In the downlink traffic case, we primarily consider
the following persistent traffic scenario: users always
have some data to download and their rates are only
limited by the wireless links they use. In this case,
there is always maximal interference between APs.
The method that we propose is extended to the case
of non persistent traffic in Section VII.

We initially consider our channel selection and
host association schemes when the populations of
users and APs are fixed. The more realistic case of
dynamic populations will be addressed in § V-D.

In the following subsection, we introduce notation
and give a formal description of the problem. Then
we formalize the bandwidth sharing problem in an
802.11 wireless access network.

A. Problem Formulation

The wireless access network that we consider in
this paper is described by :

• A set of APs A.
• A set of users u ∈ U .
• A set of available channels c ∈ C.
At first, we assume that these channels do not

interfere, this could correspond to channels 1, 6, and
11 of the 802.11b spectrum; the general case (i.e. in-
terfering channels) is amenable to a similar analysis
with small modifications as shown in Section VII.

Let ca ∈ C be the channel that is chosen by access
points a ∈ A. We introduce the function s(a, b) that
is equal to 1 if a and b are operating on the same
channel, and to 0 if they are orthogonal.

Let au ∈ A be the AP that is chosen by user u ∈
U . For each AP a, we introduce Ua ⊆ U the subset
of users associated with a. Note that the collection
of these subsets is a partition of the set U . We denote
by Ua the number of users associated with a. For all

RR n° 5649
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pairs of users u and v, let s(u, v) be the function
whose value is equal to 1 if u and v are associated
with the same AP, and to 0 in all other cases.

The AP channel assignment problem consists in
choosing a collection (ca)a∈A in C satisfying some
given criteria. Similarly we can define the user
association problem as the choice of a collection
(au)u∈U that verifies certain criteria. These two cri-
teria define a performance objective that we present
in Section IV. Before doing so, we describe more
precisely our model for APs.

B. Bandwidth Sharing in a Cell

We define a cell as an AP and all the users that
are associated to this AP. Within our traffic scenario
featuring a saturated AP, it makes sense to assume
that bandwidth is shared equally among all users
of the same cell as all users achieve the same long
term throughput. This is equivalent to assuming that
MAC layer mechanisms and higher level protocols
achieves a max-min fair allocation inside each cell,
as observed for instance experimentally in [4].

Two users associated with the same AP do not in
general receive the same signal because of different
distance to the AP and varying channel condition.
The auto-rate function of 802.11 adapts the encoding
rate of the transmitter to the channel conditions.
It is implemented as a stair function of the SNR.
It was shown (see [14]) that this function may be
well approximated by a piecewise linear function.
For simulations we approximate it as a continuous
linear function, with a specific maximum value, as
done for example in [16]. However, we note that
our algorithms do not rely on a specific relationship
between SNR and rate, since they rely on actual
measurements.

We assume that information is transmitted to each
user in data units of the same length, so that the
propagation delay experienced by a data unit sent
from the AP to user u is given by:

1

f(SNR(u))
,

where f(SNR(u)) gives the transmission rate on
the channel from a to u that is expressed in data
unit/seconds.

Within the persistent traffic scenario, the max-min
fair allocation of bandwidth in the cell implies that
the long term throughput obtained by each user u
associated with a is given by:

ru =
1

∑

v∈Ua

1
f(SNR(v))

. (1)

Note that despite the fact that the time to transmit
the same unit of information is different from one
user to another in the same cell, all the users of the
same cell receive the same long term throughput.
The inverse of this quantity will be referred as the
load of the AP in what follows. This egalitarian
feature of 802.11 was recently considered harmful
by several researchers, as a unique client with bad
channel condition (i.e. low SNR), impacts all users
in the same cell [6]. Modifying this mechanism for
802.11 cells was already proposed, to achieve a max-
min fair bandwidth sharing based on medium time
access, rather than rate. In this paper, we primarily
concentrate on the case where 802.11 cells imple-
ment a rate-based max-min bandwidth as described
above. The case of time-based max-min sharing can
however be handled in the same way as shown in
Section VII.

Within our persistent traffic scenario, the SNR

received by user u on the downlink is given by:

SNR(u) =
Pa(u)

Nu +
∑

b∈A | b6=a

s(b, a)Pb(u)
, (2)

where we denote by Pa(u) the power received by
user u from an AP a, which typically depends on
the transmission power of a and its distance to u;
Nu denotes the thermal noise seen by client u.

Note that this previous expression for the SNR ex-
perienced by user u relies on an approximation: the
interference from another cell is always estimated
by the interfering signal created by its associated
AP. This neglects periods of up-link traffic, where
packets are transmitted by users.

IV. OPTIMAL BANDWIDTH SHARING USING A

GIBBS SAMPLER

In this section we introduce the two algorithms
that we propose to achieve the two objectives de-
scribed earlier, i.e. the maximal spatial reuse among
channels selected by APs, and fair share of the
wireless bandwidth among all wireless clients in the
network. Both are modeled as the minimization of
a global energy function that is defined on state
variables. The state variable of an AP is its channel,
and the state variable of a user is its associated AP.

INRIA
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We present a series of distributed algorithms, based
on Gibbs sampler, that achieve this optimization. A
Gibbs sampler is a mechanism implemented by each
AP/user to update its state. It mimics locally the
evolution of a Markov Random Field. It is possible
to control the global evolution of this Random Field
with a temperature parameter T . This can lead, under
some condition, to a state realization in APs/users
that achieves a global minimal energy.

A. Performance Objectives

We describe in this section the detailed perfor-
mance objectives that are met by our scheme. We
start with the definition of a maximal spatial reuse
achieved by our channel selection. We then intro-
duce a fairness criterion that is used to define the
optimal bandwidth sharing that is implemented by
our association algorithm.

1) AP channel selection: The interference expe-
rienced by an AP a on channel ca is defined as
the amount of power it receives from other APs
operating in the same frequency, plus the inherent
noise on channel ca as perceived by the AP a
(which may include for instance transmissions of
non-802.11 devices). Consequently, when it comes
to the selection of a channel (ca)a∈A by an AP a,
our objective is to minimize the following energy
function:

F ((ca)a∈A) =
∑

a∈A



Na +
∑

b∈A | b6=a

s(a, b)Pb(a)



 ,

(3)
where Na denotes the level of thermal noise

estimated locally by this AP on its channel, and
Pb(a) denotes the power of the signal received in
a from AP b. In the rest of this paper we do not
write (ca)a as arguments of F in order to simply the
notation. However, it is important to keep in mind
that F always depends on these variables. F can be
further expanded as:

F =
∑

a∈A



Na +
∑

b∈A | b6=a

s(a, b)Pb(a)





=
∑

a∈A

Na +
∑

{a,b}⊆A

s(a, b)(Pb(a) + Pa(b))

=
∑

B⊆A

V (B) ,

where the function V is defined for all subsets of A
by

V (B) = Na for B = {a} ,
V (B) = s(a, b)(Pa(b) + Pb(a)) for B = {a, b} ,
V (B) = 0 for |B| ≥ 3 .

Following the terminology of Gibbs field the-
ory (see [3] Chapter 6), this rewriting shows that
the energy function F derives from the potential
{V (B)}B⊆A. In particular, we can define the local
energy of an AP a as:

Fa =
∑

a∈B

V (B) = Na +
∑

b6=a

s(a, b)(Pb(a) + Pa(b)) .

Assuming that each AP uses the same nominal
power to transmit, we have

Fa = Na +
∑

b 6=a

2s(a, b)Pb(a) .

2) User association: We assume that a user
would always try to associate with the AP that
offers the best long-term throughput. Massoulié and
Roberts [12] showed that an interesting optimization
criterion for such an allocation is one that achieves
minimal potential delay fairness, which can be ex-
pressed as an energy function:

E ((au)u∈U) =
∑

u∈U

1

ru
. (4)

The potential delay of a user is defined as the
inverse of its rate and may be interpreted as the
delay for the network to transmit one unit of in-
formation for this user. Hence, minimizing this sum
is equivalent to minimizing the sum of delays for a
unit of information to be transmitted for each user.
This property motivates the name of this fairness
criterion; it also provides an intuitive interpretation
of the energy as a cost function of the network.

We denote by {u, v} ⊆ U a pair of distinct ele-
ments of U . The energy function E can be expanded
as 2:

E =
∑

u∈U

1

ru
=
∑

u∈U

∑

v∈U

s(u, v)

f(SNR(v))

=
∑

u∈U

1

f(SNR(u))
+

∑

u,v∈U |u6=v

s(u, v)

f(SNR(v))

=
∑

u∈U

1

f(SNR(u))
+
∑

{u,v}⊆U

(

s(u, v)

f(SNR(v))
+

s(u, v)

f(SNR(u))

)

.

2As for the previous algorithm, we do not explicitly write (au)u as arguments of this
function to keep notation light, but they are always implicitly included in the following
mathematical expressions.

RR n° 5649
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This energy can be shown to derive from a po-
tential function V defined on the subsets of U :

E =
∑

V⊆U

V (V) , (5)

where V is defined for every subset V of U as

V (V) =
1

f(SNR(u))
for V = {u}

V (V) =
s(u, v)

f(SNR(u))
+

s(u, v)

f(SNR(v))
for V = {u, v}

V (V) = 0 for |V| ≥ 3 .

We can define the local energy of a given user as:

Eu =
∑

u∈V

V (V) =
∑

v∈Ua

1

f(SNR(v))
+ Ua

1

f(SNR(u))
.

(6)
Let us quickly comment on these expressions. The
energy E is a sum of local energies defined on
subsets of users. Indeed it is positive only for subsets
containing only one user, or two users associated
with the same AP. The local energy of user u is
the sum of the local energy for all subsets that
contain u. This can be interpreted as the part of the
global energy for which u can have an impact. It
contains in particular the inverse of its rate (the left
hand term of the RHS of (6)), as it was clear in
the first expression of the energy function (see (4)).
In addition, it contains another term that represents
its social cost, which translates the fact that traffic
toward this user increases the potential delay of all
other users of this cell. This social cost is that on
the right of the RHS of (6).

B. Algorithms for AP Channel Selection

The general idea is to trigger AP channel transi-
tions according to a rule that drives the network to
a state that minimizes energy (and thus converges to
the optimal channel selection). The difficult problem
is to orchestrate transitions from different APs that
are all sharing the same spectrum (at different levels
of interaction). In our solution each AP maintains
the value of an exponential timer, with mean ta;
whenever this timer expire, it follows the following
transition:

Algorithm 1 (AP transition)
1) Compute the temperature parameter: T =

K
log(2+t)

.

2) For all channels c, compute the local energy
experienced by a on this channel :

Fa(c) = Na + 2
∑

b∈A ; cb=c

Pb(a) .

3) For all channels c, compute the probability

π(c) =
(

e−
Fa(c)

T

)

/(

∑

c∈C

e−
Fa(c)

T

)

.

4) Sample a random variable with law π and
choose a channel according to this random
variable.

Here, t is an age variable (that roughly represents
the time elapsed since the most recent reconfigura-
tion of the network) which is re-initialized to zero by
certain events to be described later. K is a constant
that is chosen for initial condition.

The rationale for this algorithm is the following.
The channel chosen by each AP is a state variable.
Therefore, we have a collection of variables dis-
tributed on the plane. We denote this collection by
c = (ca)a∈A ∈ CA. For a given temperature T , and
an energy function F , the distribution π defined by

π (c) = e−
F(c)

T /

(

∑

c′CA

e−
F(c′)

T

)

is called the Gibbs distribution associated with this
energy. It is proven in §IV-D that for a fixed topol-
ogy this algorithm combined with the logarithmic
cooling performed in the first step allows the state
variables to converge to the state of minimal energy.

This algorithm can be adapted to a slowly varying
dynamic topology. To deal with the case of a dy-
namic population of APs, each AP should maintain
the list of the APs that it receives with their respec-
tive strength. If this list changes (because of an AP
joining or leaving), the age variable of the AP is re-
initialized to zero. For highly dynamic topologies a
reasonable and practical solution, used in the rest of
this article, is to fix the temperature parameter to a
given well chosen constant.

A greedy algorithm : The previous probabilistic
algorithm is rather complex as it needs to maintain
the value of t. In practice we could also use the
following simpler greedy local optimization.

Algorithm 2 (deterministic AP transition)
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Choose channel c as c = argminc∈C(Fa(c))

Algorithm 2 may be thought of as Algorithm 1,
when the temperature is fixed to 0 in the first step.
It is a very good approximation of Algorithm 1
if t is large. Algorithm 2 may then be interpreted
as a speedup version of Algorithm 1: instead of
a logarithmic temperature decrease, which drives
the distribution towards minimal energy states, this
algorithm chooses the state of minimum local energy
for each transition.

The difference between the performance of the
two algorithms is that the first can be shown to
converge eventually to a state of minimal interfer-
ence, for any fixed topology. The second algorithm
however can get blocked in local minima of the
energy F (see §IV-D). Choosing to implement the
second one is therefore trading long term efficiency
for quick improvement and simpler implementation.
Extensive simulations have shown that in all the
cases that we studied, these local minima provide
excellent approximations of the optimum obtained
by the first scheme.

The extension of this deterministic algorithm to
the case of a dynamic population of APs can be
done as before. Assuming that each AP maintains
a list of its closest neighbors, it might decide to
trigger a transition in case it senses a change. This
implementation is simpler as the value of t does not
need to be maintained nor re-initialized in each AP.

C. Algorithms for User Association

The algorithm for user association is very sim-
ilar to the one proposed in the previous section.
This algorithm assumes that each AP has selected
its channel. After collecting information from APs
(number of users and load) on the different channels,
each user can compute the local energy it would
experience when associated with AP a for all a
within range. Each user maintains an age variable
t and an exponential timer with mean tu. Whenever
its timer expires, each user follows.

Algorithm 3 (User Transition)
Follow the same steps as in Algorithm 1 and

choose AP a to associate with probability π defined
from energy Eu(a).

A greedy version of this algorithm may be simi-
larly defined as follows:

Algorithm 4 (User deterministic transition)
Choose AP a as

a = argmina∈A

(

Ua
1

f(SNR(u))
+
∑

v∈Ua

1

f(SNR(v))

)

.

On a fixed topology, Algorithm 3 may be
proved to eventually converge to the association that
achieves the minimal potential delay fairness. Its
simplified version, Algorithm 4, could be blocked in
local minima of the energy E , but simulations show
that it performs extremely well in practice. Note
that the population of users may vary quite rapidly
compared to the set of the active APs. Algorithm 4,
which is simpler and more reactive, seems to be a
good choice for robust quasi optimality.

D. Analysis for Static Population

Theorem 1 For a fixed populations of APs and
users that implement Algorithm 1 and 3, there exists
a value of K such that the AP channel selection and
client association verify:

F ((ca)a∈A) → min
(ca)a∈A

F

and E ((au)u∈U) → min
(au)u∈U

E

as time goes to infinity.

Proof: Algorithm 1 and 3 use a Gibbs sampler
together with a decrease of the temperature parame-
ter. This is a typical simulated annealing procedure.
From Theorem 8.1 in [3], it follows that for a
logarithmic decrease of T , the channel allocation
has a limit distribution that is only putting positive
probability on states of global minimum energy.

Theorem 2 We now consider fixed populations
of APs and clients which implement Algo-
rithms 2 and 4. The resulting AP channel selection
and client association are such that

(ca)a∈A → (c̃a)a∈A

and (au)u∈U → (ãu)u∈U

as time goes to infinity, where c̃ and ã are local
minima, in the following sense:

For any a ∈ A, c̃a = argminc∈CFa(c)

For any u ∈ U , ãu = argmina∈AEu(a) .
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Proof: The proof of this theorem is much
simpler. We include it here since it nicely illustrates
the combined behavior of the two algorithms. We
consider first the sequence of channel allocation of
APs. From the very definition of Algorithm 2, the
global energy function F can only decrease after
each transition, since the current AP transition is
bound to lead to a decrease in the sum of energies
of all subsets containing that AP, and that the energy
of other subsets is not changed. As the state space of
AP channels is finite, it is certain that this sequence
is constant after a finite number of steps, in a state
where no single transition of an AP can decrease the
local energy function. Once the sequence of channel
allocation is constant, the same argument can be
used to prove that the sequence of user associations
is also necessarily constant.

V. EMPIRICAL EVALUATION

For the evaluation of the proposed algorithm,
we built our own event-driven simulator using C.
Given a network topology of APs and wireless
users, as well as their power specifications and the
number of orthogonal channels in the spectrum, the
simulator implements the proposed algorithms by
constantly updating the state of the overall network.
Each device (AP or wireless user) in the network is
equipped with an exponential timer which triggers
the transition as defined by Algorithms 1-4. On all
simulations presented an AP makes a transition on
average every 3 hours, while users are expected to
make a transition on average every 15 minutes. The
outputs of the simulator are a map of the channels
used by APs and their associated wireless users in
time, accompanied by the current value of the energy
functions, and the long term rate that each wireless
user can achieve in the given topology.

As opposed to packet level simulation tools, such
as the ns-2 event driven simulator, our methodology
ignores packet level effects. At the end of this
section we compare our Gibbs simulator with ns-2
under a simple scenario that uses a small population
of APs and users to examine the impact of the
simplifying assumptions made. Given the memory
requirements of ns-2 when large topologies are taken
into account, any such scenario is going to be
investigated using the Gibbs simulator alone.

A. Methodological Approach

The outcome of the proposed algorithms is likely
to be affected by several parameters which will be
investigated in this section. Firstly, the topology
of the nodes can have a significant impact since
our algorithm is designed to resolve conflicts in
areas of high radio interference, i.e where nodes are
clustered. To address this aspect of the problem, we
look at topologies where APs and wireless users are
distributed in a square according to two different
distributions:

• Homogeneous topology: the locations of APs
and wireless users are sampled according to in-
dependent Poisson point processes (PPP) in the
square. The intensities of these PPPs are chosen
to be such that the square in question has 500
APs and 5000 wireless users on average. Note
that PPPs are bound to lead to certain areas of
higher concentration.

• Sporadic topology: same as above but now
users are sampled according to a non-
homogeneous PPP that results in regions with
very high density of users. We configured 10%
of the APs on the plane to have 10 times higher
user intensity than the global intensity.

For ease of comparison, the same overall mean
numbers are used in all cases: 500 APs distributed
in a square containing 5000 users.

A second aspect of the problem that may lead to
differences in terms of performance has to do with
how dynamic the overall topology is in time. We are
going to look into two different cases, that of (i) a
static topology, and (ii) a dynamic topology, where
users and APs may join and leave the network across
time. To facilitate the comparison between the two
aforementioned cases we implement changes such
that the overall number of APs and users remains the
same. More specifically, every “leave” event by an
AP or user is followed by an equivalent “join” event
(somewhere on the plane) so that the population
intensities are kept constant over time. Deletions
and additions are made at random. The frequency
of changes in the topology is expressed using the
percentage of the AP population (respectively user
population) that changes between two AP transitions
(respectively user transitions) and is varied across
our experiments. The case where the overall number
of network devices is changing with time was also
studied by simulation, but it is more difficult to
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interpret with regard to our performance objective
given the changing population.

In order to demonstrate the benefits of the pro-
posed algorithms we compare its performance with
what could be considered the state of the art chan-
nel assignment and user association algorithm. We
assume that APs select their channels randomly
(an assumption that may lead to a much better
baseline than what could be found in real wireless
environments due to the factory default frequencies),
and users affiliate with the AP with the strongest
signal strength.

B. Simulator Configuration

The formulation of the energy functions F and E
depends on estimates of the power received at a from
AP b, Pb(a), the noise level Na, and the relationship
of SNR with distance. Our Gibbs simulator uses
the 2-ray ground model for propagation, and is
calibrated against ns-2. More specifically, we have
tuned power, and noise levels such that a single
user associated with an AP at a particular distance
receives the same throughput in our Gibbs simulator
as he/she would in ns-2 (we assume that the rate of
a user is proportional to its SNR, and set the scaling
parameter accordingly). The SNR of a user u is then
given by

SNR(u) =
P |a − u|β

Nv +
∑

b∈A | b6=a s(a, b)P |b − u|β
, β = 4.

(7)
We should note at this point, that the Gibbs

simulator allows further flexibility to look into the
effect of specific simplifying assumptions, such as
the one of equal power transmitted by each AP
and user. In fact, multipath effects can be easily
integrated as follows:

SNR(u) =
PFa,u|a − u|β

Nv +
∑

b∈A | b6=a s(a, b)PFb,u|b − u|β
,

(8)
where Fa,u can be independent and identically dis-
tributed random variables, emulating the effect that
multipath shadowing may have on the transmission
range of APs and users.

C. Static Network Topology

In this section we discuss the performance of
the proposed algorithms when the network topology
remains static.

1) AP Channel Selection: If all APs are assumed
to initially use a randomly selected channel, out
of three orthogonal channels (resembling the IEEE
802.11b environment), we find that the Gibbs sim-
ulator is leading eventually to a 20% reduction in
terms of global energy in the channel selection step.
The effect of this algorithm alone for a static net-
work with sporadic topology is represented among
others in Figure 1 (left).

We observe that APs converge to the optimal
frequency after 6 hours, that is after 2 transitions
on average. The APs receive the majority of the
gain through a single transition. This statement holds
true for both sporadic and homogeneous topologies
(not presented here). As will be seen in the next
section, such a gain may be considered moderate
when compared to the actual benefit gained through
intelligent user association. This result confirms pre-
vious observation such as the one made in [1].

2) Wireless User Association: The second step
of our self-organization mechanism relies on users
intelligently affiliating with APs in range to achieve
optimal load sharing. Such an association can be
done either based on received signal stength (e.g.
state of the art), or using Algorithm 4. We present
the outcome of our user association algorithm for a
sporadic topology in terms of average potential delay
per user in Fig. 1 (left), with and without the APs
channel selection algorithm. This algorithm exhibits
a bigger improvement: more than 40% reduction
of the average potential delay per user, when only
Algorithm 4 is used, and more than 50% when
it is used in conjunction with Algorithm 2. This
improvement comes also faster, more than 30%
reduction observed after a couple of user transitions.

The association maps for different algorithms are
presented in Fig. 2 (the AP channel assignment on
this map is the result of Algorithm 2) Each of these
figures shows the locations of the APs, and their
associated users. The two graphs are color-coded
such that darker regions on the plane correspond to
areas where users receive lower throughput. If clients
associate with their closest APs (based on strongest
received signal), then depending on the distribution
of the users and APs on the plane, there may exist
regions of dense user population, and therefore low
throughput. Alg. 4 is able to spread the load across
the entire network. Some wireless users belonging to
a region with a dense population now associate with
more remote APs that may offer better performance
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Fig. 1. Average Potential Delay per user seen as a function of time for a static topology: comparison of different algorithms (left), effect of shadowing (right).

despite their distance. The natural consequence is
a more balanced distribution of throughput in this
region.

Figure 3 presents the distribution of throughput
for the scenarios in Fig. 2. Each plot gives the
empirical distribution of throughput obtained by the
entire user population in log-log scale. We observe
that closest association leads to a highly dispersed
throughput distribution. Throughput values range
across two orders of magnitude (from 10 Kbps to
1 Mbps). Given that we are looking at a sporadic
topology, closest association can lead to a significant
number of users that receive low throughput due to
the high user concentration around an overloaded
AP. In contrast, Alg. 4 is capable of leading to a
more even distribution of throughput, eliminating
its lower end. However, we note that Alg. 4 also
eliminates the very high throughput users, since
their APs now need to serve other users previously
associated with overloaded APs.

Note that the mean overall throughput is smaller
if our scheme is implemented. This should not come
as a surprise, as for closest association, each user is
associated to the AP with the highest signal strength,
such that the total capacity of the network, taken as
the sum of the rate achieved, is the highest. Such
a maximization leads to gross unfairness, as seen
here, and as it was shown several time before (see
e.g. [16]), and it is not suitable as a performance
objective for WLANs.

We repeated similar simulations on an homoge-
neous topology. Alg. 4 is still able to lead to a tighter
throughput distribution with a shape similar to that
of Fig. 3(b), thus improving the performance that
users at the low end would experience.

3) Shadowing: To study the effect of multipath
loss exponent on links between APs and users, we
consider SNR given by (8), where F follows a log-
normal distribution with parameters (ε, σ2), meaning
that the random variables with law F are of the
form X = 10(ε+σξ)/10, where ξ is a standard normal
random variable. Note that ε, σ2 can be interpreted
as mean and variance of X expressed in dB. In the
simulations, we choose ε = 0 and let σ vary.

The results are presented in Fig. 1 (right) for σ up
to 16dB. Note that, from the perspective of the same
user, the effect of multiple paths on the power of
signal received from several APs is different. When
σ increases, this effect tends to differ significantly
among APs due to the random variable, especially
when this variable is chosen independently among
APs, as done here. One consequence is that in some
cases the SNR received by a user from its optimal AP
may be improved. This is observed for instance on
the performance of the association using only signal
strength, that corresponds to the initial state and is
shown in Fig.1 (right) at the time t=0.

We see that our algorithms offer to less and less
improvement, compared with closest association,
when σ increases. This is caused by the loss of
locality in the optimization problem, as the value of
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Fig. 2. Maps representing the wireless users and the links that they select; the color represents the rate obtain by users (darker lines represent links with worse performance): (a)
Association to the closest AP (left); (b) Association via Algorithm 4 (right).

the random variable F becomes more dominant in
the value of the power received, as opposed to the
attenuation function given by the distance. On the
other hand, our algorithms still perform reasonably
well in improving performance, for moderate value
of σ (up to 12dB).

D. Dynamic Topology

The operation of the proposed algorithms relies on
exponential timers on each AP and user. Whenever a
timer expires, the network device assesses the “state”
of the different channels and decides whether to
make a transition or not. In the previous section
we showed that in the case of a static topology, the
algorithm converges quickly to a globally optimal
state. The question we address here is whether this
statement remains true when the topology itself
changes with time.

In the simulation of the dynamic topology case,
we use exponential timers to alter the topology.
An AP topological change occurs on average every
15 min and a user topological change every 90s.
The time between topological changes for the AP
(resp. user) population is hence on average ten times
smaller than the time between two AP (resp. user)
transitions. Each of these topological change events
may change between 1% and 7% of the populations
of APs (resp. users), so that the proportion of the

population that changed between two transitions is
between 10% and 70%.

The join and leave events have the following
effect: when some user joins, it automatically trig-
gers a transition to choose an AP association. A
user leaving has no other effect than improving the
throughput of the other users in the same cell. When
an AP joins, it triggers an immediate transition to
choose its channel, but users may not immediately
associate with it. When an AP leaves, all its users
immediately trigger a transition in order to choose
another AP to associate with.

Results are shown in Figure 4 for a sporadic
topology (results for a homogeneous topology are
very similar). From the plot, we can see that the
energy is still very much improved and that it stays
within 10 % of the optimal allocation for a variety
of levels of disruption. This is an encouraging result
as it means that the optimality of the network state
is not severely impacted by join and leave events.
As expected, AP join and leave events have a much
stronger disrupting effect on the energy and hence on
the rates achieved by the population of users; how-
ever, these events occur on a larger time-scale than
user join and leave, and they may be taken care of
via a more elaborate transition mechanism allowing
the network to adapt more quickly when such events
occur. Even in highly dynamic cases, our algorithms
still significantly improve fairness, compared with
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Fig. 3. Histograms of the distribution of long-term throughput, in the case of a sporadic topology: (a) closest association (left); (b) association using Algorithm 4 (right). AP channel
selection according to Algorithm 2.

the initial default configuration where users associate
with the closest AP.

Fig. 4. Average potential delay per user as a function of time for a dynamic topology
with different amounts of APs and user changes between two transitions.

E. Comparison with Packet-Level Simulations

All previous results are obtained using the Gibbs
simulator. As mentioned before, our simulator does
not take into account any packet level effects or
MAC layer specificities. In order to identify whether
such simplifying assumptions impact our findings,
we compare the quantitative results obtained using
the Gibbs simulator against the performance that
would be obtained with ns-2.

More specifically, we run a small scale simu-
lation using the Gibbs sampler (50 APs and 500
users) and obtain some final snapshot of channel
assignments and user associations. We then input

Fig. 5. Comparison of throughput achieves by 50 users in a 5 AP network using the
Gibbs simulator and ns-2.

the same topology in ns-23. We initiate exponential
traffic sources from APs to their users using 1470
Byte packets (burst and idle times are set to 100ms).
The APs’ queue length is set to 100 packets and
simulations are run for 300 seconds. We compare
the throughput value achieved by each user through
ns-2 with the respective values obtained using the
Gibbs simulator in Fig. 5. Despite the simplicity of
the Gibbs simulator, the results are highly accurate;
this accuracy comes with the additional benefit of
increased scalability and speed.

3In the ns-2 simulations, we use the default Wireless 802.11b MAC with RTS/CTS and
a fixed transmission rate of 11 Mbps. To simulate interfering APs, we use the Uniform
Error Model on both AP incoming and outgoing packets. Lastly, to model propagation, we
used the Shadowing model with a path loss exponent β = 4, and a shadowing standard
deviation σ(dB) =12.
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VI. PRACTICAL REQUIREMENTS

The aim of the solution proposed in this paper
is to alleviate the performance degradation expe-
rienced in today’s dense 802.11 environments due
to increased interference. Therefore, our two major
requirements are: i) the scheme should be imple-
mentable in today’s technology requiring simple
firmware modifications, and ii) it should be incre-
mentally deployable. In this section we will look
into these two requirements in detail, describing
the implications that our scheme could have on
wireless card functionality and the potential benefits
gained through the gradual adoption of the proposed
scheme.

A. Technological Requirements

The proposed algorithm relies on the following
basic principles:

1) APs and clients run exponential timers at the
expiration of which they evaluate whether a
transition is needed.

2) All wireless devices are able to scan all chan-
nels to collect information on all possible
“energy states”. Such a task can be performed
using a second radio or not.

3) For the APs, there is an “energy state” for each
channel, that can be evaluated using the power
received by all other APs within range, for that
particular channel.

4) For a user, there is a different “energy state”
for each channel and AP within range on
that channel. Each of these states depends on
the SNR received from the AP within range
operating on this channel, the number of users
on that AP and its associated load.

5) Each AP is able to notify all its users about
an upcoming change in its operating channel.

Except from the second item, which is already
supported in today’s 802.11 equipment, all other
functionality could be part of software upgrades
to the WLAN devices. Some of these changes,
moreover, have already been considered for stan-
dardization within the IEEE 802.11h and 802.11k
task groups. The former defines the mechanisms that
need to be implemented by an AP for Dynamic Fre-
quency Selection (DFS) and Transmit Power Control
(TPC). The driving need behind 802.11h is the safe
coexistence between radar and WLAN devices if
they happen to use the same frequency. Within the

proposed standard APs can initiate channel switch
announcements to their users so that they vacate a
frequency that is used for radar communication. A
similar principle could be employed by our scheme
in case a change in frequency is deemed desirable
by the AP. The IEEE 802.11k further defines a
framework to facilitate radio resource management
within which WLAN devices exchange statistics,
say to make more informed roaming decisions. The
number of users supported by an AP is a part of the
802.11k specification and the long-term delay/load
could easily be added and communicated to the hosts
inside the beacon probes. Notice that 802.11k is
meant to describe functionality that can be imple-
mented in software so that changes can be quickly
disseminated to currently functional WLAN devices.

Consequently, we believe that the proposed algo-
rithm could be easily integrated in the framework
already considered by the standardization bodies.
In such a case, a natural second issue to discuss
concerns the feasibility of incremental deployment,
and the potential danger arising from misbehaving
wireless devices.

B. Unresponsive or Selfish APs and Users

The friendliest environment for the deployment
of our algorithms with obvious benefits both to the
network operator and the users is the one of a single
administrative authority, e.g. campus or enterprise
network. In such a case, all WLAN devices are likely
to be upgraded at the same time establishing the
information flow needed by our scheme. However,
the major benefits from a distributed scheme like the
one presented here arise in environments where the
WLAN devices are not managed by the same entity,
such as hotspots, neighborhood networks, etc. In this
latter case, APs and users experience interference
from other 802.11 devices that fall under different
administrative authorities, and may not support the
functionality required by the algorithms, either be-
cause they have not been upgraded or because they
choose not to.

Within a non-cooperative environment APs may
decide not to adjust to the overall network state and
remain on the same channel, as done today. Fur-
thermore, users may choose to associate to specific
APs in the set of those within range, due to secu-
rity considerations or charging schemes employed
by the APs. These two aforementioned issues fall
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outside the scope of this work since they depend
more on policy rather than technological aspects of
the problem. From a technical standpoint, however,
interesting non-cooperative cases arise when a user
either does not employ the suggested functionality,
which we call unresponsive user, or prefers to act
selfishly and to always affiliate with the AP that
offers the lowest potential delay, and therefore the
highest long-term throughput.

If cooperating nodes/APs in an incremental de-
ployment end up receiving worse performance when
complying to the scheme, there is no incentive to
adopt the described mechanism. Moreover, if acting
selfishly in such an environment leads to significant
gains, then counter mechanisms may need to be de-
veloped. Given that the benefit from our distributed
channel assignment algorithm are self-evident this
section focuses on the users.

Fig. 6. Comparison of throughput obtained by a user for closest association and
association with Algorithm 4, in the case of several levels of deployment

1) Unresponsive Users: Focusing on the same
AP/user topology, Figure 6 compares the through-
put obtained by a user if he/she implements to-
day’s default closest association mechanism, and
if he/she decides to switch to Algorithm 4. Each
point represents the two possible throughput values
achieved by a given user under the two difference
scenarios. We further include three sets of points
that correspond to different numbers of users already
using Algorithm 4. The largest set of points in
this figure, in light color, represents cases when a
single user adopts our algorithm in an otherwise

legacy environment. Most of the users (80% in our
simulations) gain significant performance improve-
ment; when switching to our algorithm, users always
avoid the worst-case throughput values. In some less
likely cases (6% of the studied cases), it is however
possible for users to lose throughput by applying the
algorithm, going typically from a very large value to
a smaller one. However, this decrease is moderate
and amounts to a 60% decrease in the most extreme
cases.

In Figure 6, the set of points in the middle,
represented in grey, shows the throughput achieved
by a new user switching to our scheme when 10% of
the overall user population employs Algorithm 4. In
comparison to the first case, gains are more moderate
for a smaller number of cases (66%), while 8% of
the cases may lead to a smaller throughput value,
even though such a loss is typically smaller in mag-
nitude than in the case where all users implement
the legacy association algorithm.

In the same Figure 6 we also study the benefit
gained by a new user when 50% of the popula-
tion already uses Algorithm 4 for their association.
As shown by the set of black points, gains and
losses under such conditions are more moderate. In
essence, at this point the system has reached a state
of optimal load balancing across space, and users
that adopt Algorithm 4 are bound to receive their
fair share.

Indeed for this last case, a mixed population where
only half of the clients use our association algorithm,
the histogram of the obtained throughput, shown in
Figure 7, is already matching quite well the his-
togram of the throughput obtained for a population
with all users associating with our algorithm. The
histogram for users that did not choose to adopt
our algorithm is in fact very similar. It appears
that only half of the population implementing our
scheme is sufficient to achieve a reasonably accurate
fair resource allocation. This proves that optimal
bandwidth sharing may be reasonably attained with
proportion of user that use legacy mechanism.

2) Selfish Users: In the previous section we con-
sidered a mixed user population where some users
associate to the closest AP, today’s default option,
while other implement Alg. 4. In almost all cases,
users have a strong incentive to adopt our algorithm
as it improves their performance. However, one
could imagine that some wireless users might be
interested in maximizing their performance but not
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Fig. 7. Histogram of throughputs obtained by users for a mixed population where a half
of users use closest association, and the other half Algorithm 4.

in an altruistic fashion as the one we investigate.
We call such users selfish. Indeed they can be
thought of as “intelligent users” which collect all
the information needed by Algorithm 4 but choose
to implement the following selfish variant:

Algorithm 5 (Selfish User Deterministic Transi-
tion)

Choose AP

a = argmina∈A

∑

v∈Ua

1

f(SNR(v))
.

Recall that the energy Eu(a) of a user associated
with AP a, defined by Equation (6), comprises two
terms. The first term is the potential delay (i.e. the
inverse of the throughput) that user u would obtain
in this cell. The second term represents the increase
of potential delay experienced by other users of this
cell if this user were to join. It could be the case
that associating with a given AP a minimizes the
sum of these two terms, whereas associating with a
different AP b minimizes the first term alone. We
call a user “selfish” if it is inclined to choose b.

To observe the performance of the system in the
presence of selfish users, we perform three new
experiments using the settings in §V-C.2. In the first
experiment we assume all users are selfish. In the
second experiment we assume one user is selfish.
In the third experiment we assume a percentage
(10%,50%,90%) of the users are selfish.

In the case of all-selfish wireless users we ob-
serve that the throughput distribution, shown in
Figure 8(b), tends to be much narrower than the
distribution of throughput achieved with association
using Algorithm 4. This can be explained by the
fact that a max-min fair rate is implemented in
each cell, and that any lightly loaded cell will be
selected by a selfish user, even if it does increase
its performance by a very small amount and at
the cost of a large decrease in the performance of
others. This is confirmed by the association map
that is shown in Figure 8(a). One can see that in
a selfish scheme, users tend to associate to APs
that may be far away to benefit from a lighter
load. A direct consequence of the “selfish” scheme
is that only a very small number of users see an
improvement employing such algorithms (5% in
our simulations), compared to the throughput they
would have obtained with Algorithm 4. In addition,
selfish users lead to a large number of users actually
experiencing a 50% reduction in the throughput they
would receive under a more fair scheme, like the one
we propose. Essentially, if all users act selfishly they
end up with less throughput than if they cooperate
(Figure 8(c)).

This effect is also demonstrated in Figure 8(c),
where we compare the throughput achieved by users
when they all act selfishly and when they all adopt
the proposed scheme. We notice that most data
points fall below the diagonal indicating that there
is a significant number of users that benefit from
employing our scheme, while the number of users
that experience smaller throughput is rather limited
(the data points above the diagonal).

Note that the algorithm proposed in [10], where
users associate to the AP that gives them the least
expected time to transmit a data unit, may be thought
as a “selfish” algorithm. In fact Algorithm 5 is
a simplified version of this association decision,
where the evaluation of the rate is made only on
the downlink. Our simulations show that if a self-
ish mechanism is chosen as the default association
option for 802.11 networks, the overall performance
seen by the population of users might be degraded.

Nonetheless, an interesting question within this
context concerns the potential benefit one client
could gain if it were to act selfishly in an otherwise
compliant set of APs and clients. Figure 9 presents
this case. The y-axis gives the throughput that a user
would obtain if it were the only new selfish client in
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Fig. 8. Selfish association algorithms for sporadic topology: (a) map association (left), (b) histogram of the distribution of throughput (middle), (c) comparison between selfish and
fair user throughput (right).

the system as a function of the throughput (x-axis)
obtained when using Algorithm 4. The data set span-
ning the largest region, represented in light color, is
the one where all other users are not misbehaving.
We notice that indeed when one user has the choice
of acting selfishly, it can achieve higher throughput
than under the fair scheme. However, the gain is
rather small: it reaches a throughput that is twice its
fair value only in a few extreme cases. In many cases
throughput achieved under a selfish scenario is even
almost equivalent to the fair rate (48% of the cases).
We note that the scenario we discuss essentially
corresponds to the best scenario for a selfish user,
since he/she is the only misbehaving user in the
network. As one may expect, in the case of a mixed
population, where other clients might have chosen
to be selfish already, the individual gain from using
a selfish algorithm is even smaller. The set of points
represented with darker colors in Figure 9 shows the
same comparison for a population which contains
10% and 50% of selfish users. For a population
containing 50% of selfish users, shown in black,
the gain is already marginal, only 26% of the users
receive greater than their fair throughput.

VII. EXTENSIONS

In this section we relax some of the assumptions
made during the presentation of our generic frame-
work to demonstrate the flexibility of our solution.
More specifically we first look into the potential
for our algorithms to optimize the network state in
terms of time fairness; we then investigate the use
of overlapping frequencies, and lastly we consider
the case of non-persistent traffic.

Fig. 9. Comparison of throughput obtained by a user deciding to adopt a selfish
association algorithm.

A. Time Fairness vs. Rate Fairness

Several researchers have argued that the rate-
based implementation of max-min fair bandwidth
sharing in a 802.11 cell is not adapted to the wireless
medium. Some have called this an anomaly. As
pointed out for the first time by Heusse et al. in [6],
and further explored by Radunovic et al. in [16],
this mechanism is responsible for a sharp decrease
in the performance experienced by all the users of
a cell, when a single user joins under poor channel
conditions. Such an observation led to a significant
amount of research to recommend a max-min fair
bandwidth sharing mechanism based not on rate but
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on channel access time: the medium access time
allocated to a client cannot be increased without
decreasing that of a customer that was allocated
less medium access time. Some mechanisms were
proposed to achieve this objective in a single cell at
the link layer (see e.g. [7]).

It turns out that our algorithm can be extended
to this case. More precisely it can be extended to
incorporate time fairness without modification.

Within this framework, user u, which associates
with AP a with a time max-min fair share MAC,
achieves a rate equal to

ru =
f(SNR(u))

Ua

=
f(SNR(u))
∑

v∈U s(u, v)
. (9)

so that we can rewrite the energy E as defined by
(4):

E =
∑

u∈U

1

ru
=
∑

u∈U

∑

v∈U

s(u, v)

f(SNR(u))
.

Our first observation is that even if the rate that
each user obtains in a cell is different with a time-
based bandwidth sharing, the global energy that
defines the minimal potential delay allocation is un-
changed. In particular it is straightforward to check
that it is the same for a network where different cells
may implement one or the other paradigm.

Similarly, the local energy function for a client u
associated with a remains equal to:

E(u) =
∑

v∈U ;a(v)=a

1

f(SNR(v))
+ Ua

1

f(SNR(u))
.

The following remarkable observations can be
made about it:

• If the cell associated with u and a implements a
max-min fair rate share, the left term represents
the potential delay of each client of this cell,
whereas the right term represents the social cost
of this client on this AP. The social cost is the
sum of the increases of potential delay for other
clients in this cell.

• If the cell associated with u and a implements
a max-min fair time share, the opposite holds:
the left term represents the social cost whereas
the selfish cost of a client, given by its potential
delay in this cell, is given by the right term.

This inversion of the social and selfish compo-
nents of the same energy function could also create

an incentive to play the social game of minimal
potential delay fairness, as it does not require knowl-
edge of the implementation, being based on rate or
time. A selfish association scheme, by opposition,
requires to know whether bandwidth is shared ac-
cording to time or rate.

B. Overlapping Channels

In this paper we have assumed that channels are
non interfering, so that two APs either fully interfere,
if they choose the same channel, or dot not interfere
at all. There are several good reasons to study a
more general case: first, it was observed that in
practice the performance degradation experienced on
overlapping channels may not be detrimental [18].
Secondly, adding the possibility to use overlapping
channels in a channel selection algorithm may pro-
vide a performance gain, as it increases channel
diversity.

This case is actually easy to introduce in our
algorithm. A first remark is that this has no impact
on the user association algorithm, which remains
unchanged. This is because the SNR measured di-
rectly by each user already contains interference
coming from all channels, and it is therefore al-
ready included in the optimal selection that we
have presented. For AP channel selection this case
requires the introduction of a more general definition
for s(a, b): instead of taking value in {0, 1}, this
function takes value in the interval [0; 1], which
translates the fraction of the power transmitted by
b that is received by a when these two APs use
overlapping channels. The values taken by this nor-
malizing factor for 802.11b overlapping channels
are presented in [13], where a distributed scheme is
proposed for efficient channel assignment in wireless
LANs, presented as a vertex coloring problem for
weighted graphs.

C. Non-Persistent Traffic

So far, we have considered a scenario where users
always have data to send. In this section, we first
give the conditions under which the wireless link is
the bottleneck and then analyze the case of a wireless
access networks with non persistent users. Finally,
we show that this case may be handled by a Gibbsian
algorithm as well.

We assume in this section that the autorate func-
tion is continuous and linear. Hence the rate obtained
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by a user is its associated SNR, multiplied by a
normalizing constant. To avoid heavy notation in the
following formula, we do not include this constant
explicitly. In other words, the size of the unit of
information used for the rate was chosen so that this
constant is 1.

For a ∈ A and t a time slot, let act(a, t) be equal
to 1 if the cell associated with a is active during slot
t and to 0 otherwise. For any a ∈ A, we define the
long term activity factor as:

ρa =

+∞
∑

t=1

act(a, t) .

During slot t, the SNR of user u associated with
AP a is given by the following variant of (2):

SNR(u, t) =
Pa(u)

Nu +
∑

b∈A | b6=a

s(b, a)Pb(u)act(b, t)
,

(10)
Hence the time to transmit a unit of information

to user u is given by:

1

SNR(u, t)
=

Nu

Pa(u)
+

∑

b∈A | b6=a

s(b, a)act(b, t)
Pb(u)

Pa(u)
.

(11)
We assume that data packets to be transmitted

to u arrive to a according to some stationary point
process with a finite intensity denoted by λu. We
assume that the FIFO queue in the AP is stable
(otherwise, we would be in the saturated case of
the earlier sections), so that the transmission times
of the packets of user u in AP a form a stationary
point process with the same intensity. The workload
introduced by user u in a is then equal to:

λuE[
1

SNR(u, t)
] = λu

Nu

Pa(u)
(12)

+
∑

b∈A | b6=a

s(b, a)ρbλu
Pb(u)

Pa(u)
.

Summing on all users u associated with a, we
obtain the following linear equation on the vector
ρ = (ρa)a∈A:

ρ = Aρ + B, (13)
where

Aa,b =

{
∑

u∈U s(a, u)s(b, a)λu
Pb(u)
Pa(u)

for b 6= a,
0 for b = a,

Ba =
∑

u∈U s(a, u)λu
Nu

Pa(u)
.

The terms of this linear equation may be inter-
preted as follows: Ba is the sum of the durations
needed to serve all users associated with a in the
absence of interference; it is equal to ρa if either
a is the unique AP or the only one operating on
this channel. The coefficient Aa,b of the matrix is
describing how much time needs to be spent in
addition, when b is active, for AP a to serve all its
users.

The solution of (13) is given by:

ρ = A
∗B, where A

∗B = B + AB + A
2B + . . . .

(14)
Note that A

∗ may have some infinite coefficients
if the spectral radius of A, that we denote spec(A) is
not smaller than 1. In this case, a finite solution for
(13) cannot exist, proving that the network is always
unstable.

If the spectral radius of A is smaller than 1, one
can define formally a load vector with finite coeffi-
cient. Hence a wireless access network is stable/not
saturated if and only if:

{

spec(A) < 1
|A∗B|∞ < 1.

(15)

Note that this condition depends on the asso-
ciation scheme used, as this is contained in the
coefficients of A, and B. Finding a good associ-
ation mechanism that satisfies (15) is not easy in
general. Intuitively the most stable user association
is the one minimizing the norm |A∗B|∞; solving this
optimization problem implies analyzing the power
series of matrix A, and the maximum of certain sums
of coefficients.

We introduce the following lower bound and
upper bound vectors for ρ:

ρ̌a ≤ ρa ≤ ρ̃a, (16)

for all a ∈ A, where

ρ̌a = (B + AB)a

=
∑

u∈Ua

λu
Nu

Pa(u)

+
∑

u∈Ua,v∈Ub | b6=a

s(a, b)λuλv
Nv

Pb(v)

Pb(u)

Pa(u)

ρ̃a = (B + A1)a

=
∑

u∈Ua

λu
Nu

Pa(u)
+

∑

u∈Ua | b6=a

s(a, b)λu
Pb(u)

Pa(u)
.
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It is interesting to observe that for all integers
p ≤ 1, the norm |ρ̌|p, |ρ̃|p may be seen as an
energy function which derives from a potential.
Let us consider for example |ρ̌|1; in the following
formula we always denote by a (resp. b) the AP
corresponding to user u (resp. v).

|ρ̌|1 =
∑

a∈A

ρ̌a =
∑

u∈U

λu
Nu

Pa(u)
+

∑

{u,v}⊆U ,a6=b

s(a, b)λuλv(
Nv

Pb(v)

Pb(u)

Pa(u)
+

Nu

Pa(u)

Pa(v)

Pb(v)
) .

(17)
It is thus possible for users to choose their

association in a distributed manner based on the
minimization of |ρ̌|1, as long as they are able to
compute their own local energy given in this case
by:

Gu = λu
Nu

Pa(u)

(

1 +
∑

b6=a

∑

v∈Ub

s(a, b)λv
Pa(v)

Pb(v)

)

+λu

∑

b6=a

s(a, b)
Pb(u)

Pa(u)

∑

v∈Ub

λv
Nv

Pb(v)
.

(18)
The terms of this energy can be computed and

communicated in an efficient manner: we assume
that user u associated with AP a measures the
ratios λuNu/Pa(u) and λuPb(u)/Pa(u) for all APs b
operating on the same channel. These two variables
are reported to a, which computes the cumulated
sum of these variables taken on all users in its
cell. AP a reports the value of these sums to any
AP designated by one of its users. When a user
needs to make a transition, it can compute its local
energy based on these values that are maintained and
advertised by each AP. The same type of algorithm
can be thought of for ρ̃ and for any norm.

VIII. CONCLUSION

The fast and unmanaged deployment of wireless
LANs makes the need for self-configuration capa-
bilities on wireless devices of utmost importance.
There is an imminent need for distributed algorithms
that will allow both WLAN operators and users
to extract as much benefit as possible from the
shared spectrum, adjusting to network conditions
and efficiently sharing the wireless resources.

We have proposed two self-configuration algo-
rithms that can be deployed today in 802.11 Access

Points and clients. These algorithms use local mea-
surements in order to (1) allow APs to select a chan-
nel that will experience minimal interference with
neighboring APs and (2) give WLAN clients a fair
share of the global resource (i.e. the total capacity
of the network created by all the interfering wireless
LANs). We have shown that our algorithms are
stable under various conditions and that they perform
better than currently used techniques. Moreover, they
are flexible enough to incorporate effects such as
shadowing, the use of overlapping channels, and
various traffic hypotheses. We discussed scenarios of
incremental deployment and showed that clients and
APs using our algorithms will not have a handicap
in non cooperative environments, while the incen-
tives to misbehave remain small. Implementation of
the proposed algorithms relies on simple software
modifications that could be incorporated within the
efforts of the IEEE 802.11k task group. It allows
us to make more generally several recommendations
for the design of self organized wireless networks.
In particular we demonstrate in this paper that
implementing distributed decision which takes into
account the individual gain as well as the social
cost could easily lead to much higher efficiency of
spectrum use, and improved performance for a large
class of users.

In addition to our extensive simulations, we now
need to implement the proposed algorithms and
deploy them on real-life testbeds. More analysis is
also needed to understand the performance of these
algorithms when APs belong to different operators
(such as hot-spot networks). We further intend to
study extensions to support wireless meshed net-
works.

IX. ACKNOWLEDGMENT

We would like to thank Alexandre Proutière for
pointing to us the minimal bandwidth delay fairness,
as defined by Massoulié and Roberts in [12]. We
would also like to thank Laurent Fournier and Va-
leria Baiamonte for their support in conducting the
ns2 simulations used in this paper, and Vivek Mhatre
for his kind help on the presentation of this paper.

REFERENCES

[1] Aditya Akella, Glenn Judd, Peter Steenkiste, and Srinivasan Seshan. Self manage-
ment in chaotic wireless deployments. In MobiCom ’05: Proceedings of the 11th
annual international conference on Mobile computing and networking, 2005.

RR n° 5649



22 B. Kauffmann, F. Baccelli, A. Chaintreau, K. Papagiannaki & C. Diot

[2] Yigal Bejerano, Seung-Jae Han, and Li (Erran) Li. Fairness and load balancing
in wireless LANs using association control. In MobiCom ’04: Proceedings of the
10th annual international conference on Mobile computing and networking, pages
315–329, 2004.

[3] P. Brémaud. Markov Chains, Gibbs Field, Monte Carlo Simulation and Queues.
Springer-Verlag, 1999.

[4] Sunwoong Choi, Kihong Park, and Chong kwon Kim. On the performance
characteristics of wlans: revisited. In SIGMETRICS ’05: Proceedings of the 2005
ACM SIGMETRICS international conference on Measurement and modeling of
computer systems, pages 97–108, 2005.

[5] Violeta Gambiroza, Bahareh Sadeghi, and Edward W. Knightly. End-to-end
performance and fairness in multihop wireless backhaul networks. In MobiCom
’04: Proceedings of the 10th annual international conference on Mobile computing
and networking, pages 287–301, 2004.

[6] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Performance anomaly
of 802.11b. In Proceedings of IEEE INFOCOM’03 (The Conference on Computer
Communications), 2003.

[7] M. Heusse, F. Rousseau, and A. Duda. Idle sense: An optimal access method for
high throughput and fairness in rate diverse wireless LANs. In Proceedings of
the 2005 conference on Applications, technologies, architectures, and protocols for
computer communications, 2005.

[8] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference on multi-
hop wireless network performance. In MobiCom’03: Proceedings of the 9th annual
international conference on Mobile computing and networking, pages 66–80, 2003.

[9] Murali Kodialam and Thyaga Nandagopal. Characterizing achievable rates in multi-
hop wireless networks: the joint routing and scheduling problem. In MobiCom ’03:
Proceedings of the 9th annual international conference on Mobile computing and
networking, pages 42–54, 2003.

[10] T. Korakis, O. Ercetin, S. Krishnamurthy, L. Tassiulas, and S. Tripathi. Link
quality based association mechanism in IEEE 802.11h compliant wireless LANs.
In Proceedings of the first workshop on Resource Allocation in Wireless NET-
works (RAWNET’05), April 2005. (available at: http://www.rawnet.org/
rawnet_korakis.pdf).

[11] B.-J. Leung, K.K.; Kim. Frequency assignment for IEEE 802.11 wireless networks.
In Proceedings of the 58th IEEE Vehicular Technology Conference (VTC 2003-Fall),
volume 3, pages 1422–1426, oct 2003.

[12] Laurent Massoulié and James Roberts. Bandwidth sharing: objectives and algo-
rithms. IEEE/ACM Trans. Netw., 10(3):320–328, 2002.

[13] Arunesh Mishra, Suman Banerjee, and William Arbaugh. Weighted coloring based
channel assignment in WLANs. under submission for Mobile Computing and
Communications Review, 2005.

[14] C. Na, J. Chen, and T. Rappaport. Measured traffic statistics and throughput of
ieee 802.11b public wlan hotspots with three different applications. submitted to
IEEE Transactions on Wireless Communications, 2005.

[15] Lili Qiu, Ranveer Chandra, Kamal Jain, and Mohammad Mahdian. On the
placement of integration points in multi-hop wireless networks. In Proceedings
of IEEE International Conference on Network Protocols, 2004.

[16] B. Radunovic and J. Y. Le Boudec. Rate performance objectives of multi-hop
wireless networks. In Proceedings of IEEE International Conference on Computer
Communications, March 2004.

[17] A. Raniwala and T. Chiueh. Architecture and algorithms for an IEEE 802.11-
based multi-channel wireless mesh network. In Proceedings of IEEE International
Conference on Computer Communications, March 2005.

[18] J. Robinson, K. Papagiannaki, C. Diot, X. Guo, and L. Krishnamurthy. Experi-
menting with a multi-radio mesh networking testbed. In 1st workshop on Wireless
Network Measurements (WiNMee), April 2005.

INRIA



Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399


