-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Information Hiding, Inheritance and Concurrency
Qin Ma, Luc Maranget

» To cite this version:

Qin Ma, Luc Maranget. Information Hiding, Inheritance and Concurrency. [Research Report] RR-
5631, INRIA. 2005, pp.74. inria-00070376

HAL Id: inria-00070376
https://hal.inria.fr /inria-00070376
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50454244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070376
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5631--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

| nformation Hiding, I nheritance and Concurrency

QinMa Luc Maranget

N° 5631
18th July 2005

THEME 1

apport
derecherche

Zd I N RIA

ROCQUENCOURT

Information Hiding, Inheritance and Concurrency

Qin Ma Luc Maranget

Théme 1 — Réseaux et systémes
Projet Moscova

Rapport de recherche n°® 5631 — 18th July 2005 — 74 pages

Abstract: We aim to provide information hiding support in concurrent object-oriented
programming languages. We study the issue of information hiding at the object level and class
level, in the context of an object-oriented extension of the Join calculus — a process calculus in
the tradition of the Pi-calculus. At the object level, we improve a privacy mechanism proposed
in prior work by defining a simpler chemical semantics for privacy control. At the class level,
we propose a hiding mechanism by designing a new operation on classes. We define its formal
semantics in terms of alpha-converting hidden names to fresh names, and its typing in terms
of eliminating hidden names from class types. We study the standard soundness property of
the type system, as well as specific properties concerning hiding. Some, if not most, of our
choices in designing our system are motivated by implementation. As an evidence of practical
significance, we implement our model in a prototyping system. From that experience we draw
guidelines for a full-scale implementation.

Key-words: language design, information hiding, access control, type abstraction, concur-
rency, object-oriented programming type system, join calculus

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 139 63 53 30

Visibilité des noms, héritage et concurrence

Résumé : Nous considérons la question du contréle de la visibilité des noms dans les lan-
gages concurrents et orientés-objet. Nous procédons dans le cadre d’une extension objet du
Join calcul — un calcul de processus dans la tradition du Pi-calcul, et traitons la question
a la fois au niveau de 'objet et de la classe. Pour ce qui est des objets, nous améliorons les
travaux précédents en proposant une sémantique chimique plus simple et plus réaliste pour
le contréle de la visibilité & ’exécution. Pour ce qui est des classes, nous ajoutons un nouvel
opérateur de masquage (hiding) au calcul des classes, dans le but de rendre inaccessible partie
des classes parentes lors de I’héritage. Nous définissons la sémantique du nouvel opérateur
par le renomage des noms masqués en des noms frais, tandis que son typage entraine la dis-
parition des noms masqués des types des classes. Nous formulons et prouvons les propriétées
usuelles de sureté du systéme de types, ainsi que quelques propriétés supplémentaires liées
au controle de visibilité. Certains choix de conceptions de notre modeéle s’inspirent du souci
d’implémentation, réalisée pour le moment sous la forme d’un prototype. De ce prototype
nous tirons les grandes lignes d’une intégration en vraie grandeur de nos classes dans le langage
JoCaml.

Mots-clés : conception de langages, controle de la visibilité des noms, abstraction dans les
types, concurrence, programmation orientée-objet, join calcul

Information Hiding, Inheritance and Concurrency 3

1 Introduction

Object-oriented programming concepts are often claimed to provide a practical view of con-
current systems. Basically, objects exchanging messages while managing their internal states
in a private fashion seem a plausible model of computers or agents interacting over a network.
To give solid semantical foundations to this idea, numerous fundamental studies [25, 3, 17,
34, 28, 26, 27, 37, 33, 19, 7, 24] propose calculi that combine objects and concurrency.

But there exists another connection between object-oriented design and concurrent sys-
tems. Concurrent programs are highly complex and extremely difficult to get right, while
object-oriented design offers strong support for modular and incremental design, usually by
the means of classes. Unfortunately, the idea of taming the complexity of concurrent sys-
tems by object-oriented design is hindered by inheritance anomalies [23], i.e., the inability
to program the objects internal synchronization behaviors by class inheritance. From that
perspective, Fournet et al. make a significant progress with their work [15]. Fournet et al.
supplement the the Join calculus [11, 12] with classes and objects, so as to actually propose
a solution to all the inheritance anomalies of [23].

However, as we describe in our previous work [22], Fournet et al.’s model falls short
in forming the basis of a practical implementation. Briefly, Fournet et al.’s class calculus
does support the incremental programming of synchronization policies, but its type system
is somehow counter-intuitive and significantly restricts the classes that can be produced by
inheritance, when compared to those that can be written directly. In [22], we improve Fournet
et al.’s model by designing a new type system, of which the main contribution is the inclusion
of complete synchronization behavior in class types. Our more expressive class types actually
support synchronization inheritance better. But, being quite verbose, they make even more
visible another shortcoming of the original design, namely the lack of abstraction in class
types, which in our design express how classes are seen from the outside world.

Generally, information hiding allows the separation between a restricted interface and a
full implementation, and imposes limitations on how a name can be referenced. In a nutshell,
this principle brings two advantages: first, irrelevant details are gotten rid of, favoring code
comprehension, maintenance, and reuse; second, critical details are protected, favoring system
robustness and invariant guarantee. However, few formalisms are reported in the literature
that either address the implementation of hiding in concurrent settings, or investigate its
impact on synchronization. In fact, Fournet et al. have supplied a rigid privacy policy (private
annotations on names) to their model in [15] for this purpose. However, their design suffers
from complexity, and more seriously, only supports limited information hiding. Specifically,
we classify users of a class into two categories: object users who create objects from the class;
and inheritance users who derive new class definitions by inheriting the class, and the privacy
policy applies solely to object users while always leaves full access to inheritance users.

In this paper, we follow Fournet et al.’s model for concurrent object-oriented programming,
and we study information hiding in it. Our main contribution is twofold. First, we define a
simpler privacy control mechanism at the object level, which improves the one of [15]. Second,
we introduce a new explicit hiding operation in the class calculus. This amounts to significant
changes in both the semantics and the typing of class operations. As rewards, the benefit is
also twofold: first, we gain abstraction in class types while still preserving safety; second and
more importantly, we reach a more powerful concurrent object-oriented calculus, with flexible
visibility control.

RR n°® 5631

4 Ma,Maranget

The rest of this paper is organized as follows. In Section 2, we present the ObJoin calculus
— a variant of the Join calculus with concurrent objects proposed by Fournet et al. in [15],
and meanwhile feature a simpler chemical semantics with privacy. In Section 3, we design
a class language on top of ObJoin, called OJoinyg. This class language extends the one
of [15] with the capability of hiding. The semantics of OJoiny is defined in Section 4 in
terms of evaluating classes into plain object definitions. A ML-style type system is provided
for OJoingy in Section 5. We state the standard soundness property of the type system
in Section 6, as well as some other specific properties concerning hiding. Proof details are
organized as an appendix at the end of this paper. Finally, a prototyping system is coded
for OJoiny in OCaml for experimental purpose. Discussions stimulated by the prototyping
work can be found in Section 7, mainly concerning how to incorporate the improved model
into the current JoCaml system [13].

2 The ObJoin calculus and privacy policy

2.1 A one-place buffer object

Objects arise naturally from the Join calculus when join-definitions are named and lifted to
be the values of the calculus. For instance, a one-place buffer object is defined as follows:

obj buffer =
put (n,r) & Empty() > r.reply() & this.Some(n)

or get(r) & Some(n) > r.reply(n) & this.Empty()

init this.Empty()

Just as join-definitions, objects are collections of channel definitions. However, values are
now the collections of channels themselves, while channels become labels attached to objects.
That is, channel names now behave as method names in object-oriented languages. As an
important consequence, channel names are no longer lexically scoped. The basic operation
of the calculus remains asynchronous message sending, but it is now expressed with object-
oriented dot notation. For instance, process buffer.put(n,r) sends a put (n,r) message to
the object buffer, where put is the destination channel and (n,r) is the content. Notice that
the message possesses a r component, an object accepting messages on the reply label, so as
to acknowledge put success.

Labels defined in one object are organized by several reaction rules that specify how
messages sent on these labels will be synchronized and processed. For the one-place buffer
example above, four labels are defined and arranged in two reaction rules. Following the
join-pattern synchronization mechanism, object buffer will behave as follows:

e If the buffer is empty (i.e. an Empty() message is pending), and a put attempt is made
(by sending a put(n,r) message), then the buffer will react by shifting itself into the
Some (n) state.

e Symmetrically, the value n stored in the buffer (i.e. a Some(n) message is pending)
can be retrieved by get(r). The buffer sends back the value on label reply of the
continuation object r and, concurrently, returns back to the empty state.

e Any put requests sent to a full buffer (or get request to an empty buffer) will be delayed
until the object is changed into the complementary state by other messages.

INRIA

Information Hiding, Inheritance and Concurrency 5

e Finally, the (optional) init process initializes the object as an empty buffer.

A similar example with more implementation-oriented description is also used in [2].

Note that we use the keyword this for recursive “self” references. (Fournet et al. use
object names themselves.) This is one of the modifications we introduce. In general, when
an object is created, it can be referenced in two kinds of positions: either recursively from its
guarded processes and the init process (internal positions); or otherwise (external positions).
The usage of this allow us to distinguish the two kinds of positions syntactically, in the
sense that in internal positions, references are always through this, while in external ones,
references are always through object names.

2.2 Privacy policy

The usage of the two labels Empty and Some in the buffer object above is special. More
precisely, the state of the one-place buffer, either empty or full, is encoded as a message
pending on either Empty or Some. Moreover, to keep the buffer consistent, such messages
should never appear simultaneously. We define buffer carefully to respect this. Object
buffer is initially empty and switches alternatively between states full and empty according
to the operations applied to it. However, this kind of guarantee is fragile: a single message
sent on either Empty or Some from outside suffices to break the invariant. To avoid this,
Fournet et al. adopt a rigid privacy policy in their model [15], to restrict the views of object
users. Conventionally, labels starting with an uppercase letter (such as Empty and Some) are
private and messages sent on those labels should always originate from internal positions.
Other labels are unrestricted (such as put and get). They are public and work as ports
offered by the object to the external world.

It is worth noticing that the privacy policy is enforced statically, while typing. Namely,
typing environments bind object names to object types which list public labels only, while the
types associated to this are complete and list all labels.

2.3 Formalization
2.3.1 Syntax

The formal syntax of the ObJoin calculus is defined in Figure 1. We assume two disjoint sets
of identifiers: for variables (or object names) z,y,z,0 € O, and for labels | € L. For privacy
purpose, the set of labels £ is further partitioned into two disjoint subsets, with f € F for
private labels and m € M for public labels. In general, we write u for either a name from O
or the keyword this, which refers to the self object.

Three syntactic categories are defined: processes P, join-definitions D, and join-patterns
M. A process can be either a null process 0, a (group of) message destined to the same object
.M, a parallel composition of processes P, & P;, or an object defining process obj o = D init
P in Q). A join-definition D is a disjunction of reaction rules of form M > P that associate a
join-pattern M with a guarded process P. A join-pattern defines a set of synchronized (&)
labels with formal arguments, and the corresponding guarded process specifies the behavior
when messages on these labels are consumed simultaneously. Note that although we write
[(@) for message patterns in Figure 1, we in fact additionally state that this can only appear
in message sending but never as formal arguments of join-patterns.

RR n°® 5631

6 Ma,Maranget

P,Q::= Processes
0 null process
.M message sending
this. M recursive message sending
P &P parallel composition

obj o= D init Pin () object definition

D= Join-definitions

Mb>P reaction rule

D or Dy disjunction of definitions
M = Join-patterns

) message pattern

My & M, synchronization

Figure 1: Syntax of the ObJoin calculus

STR-NULL STR-PAR
Fo 40 =1k Fo# (P&Q) =k # P, ¢ #Q
STR-JOIN

¢ # u(My & My) =1 ¢ # uMy, ¢ # u.M,

STR-OBJ
z & fv[D] U fv[P]

IF¢ # objz =D init Pin Q = z.(D or init() > P) IF & # z.init(), ¢ # Q

THis-CoMM OBJ-CoMM
Ik ¢ # thisl(d) — IF & # ¢(this).l(H(a)) IF¢ # z.m(a) — IF @ # z.m(d(a))
REACT

(.. M>P..)IF® 4 2.Mo — z.(...M>P...) I (this — z) # Po

CHEMISTRY CHEMISTRY-OBJ
Dy l-Py = Dy I+ Py ¢ # P =axDIFP z¢ND UNP]
D,DylFP1,P = D,Dy Py, P D¢ # P,P = D,z.DIFP P

Figure 2: RCHAM of ObJoin with privacy

Join-patterns bind formal arguments in corresponding guarded processes. In addition,
the object definition obj o = D init P in @) binds the object name o in () and the keyword
this to 0 in P and in the guarded processes in D. We denote the set of free variables as
fv[-], the set of formal arguments (or received variables) as rv[-|, and the set of defined labels
as dI[-]. See Figure 4 for the formal definitions of these sets in the context of OJoiny— the
richer model with classes. As in Join, we require every join-pattern M to be linear in the

INRIA

Information Hiding, Inheritance and Concurrency 7

strong sense that all the label defined (dI[M]) and all the formal arguments bound (rv[M])
are pairwise distinct. The definitions of Figure 4 specify the linearity of join-patterns by
using the disjoint union operator “@”. Non linear join-pattern would significantly improve
expressiveness, by providing a way to check equality of channels (through formal arguments).
Accordingly, program equivalence and implementation would become more difficult.

2.3.2 Chemical semantics with privacy

We design the operational semantics of ObJoin as a reflezive chemical abstract machine [12],
refined with a notion of privacy. Such a notion is critical to stating the properties of type
systems, namely, to demonstrating that the privacy policy enforced by static typing is more
restrictive than the one checked by the implementation.

A chemical solution D IF P denotes the state of the machine, where D is a set of active
objects (named join-definitions), ranged over by x.D, and P is a multiset of running processes
prefixed with privacy annotations, ranged over by ¢ # P. A privacy annotation ¢ is a function
that maps this to either an object name or this. Such a function can also be undefined,
written (this — 1). We call this last annotation empty, and we usually omit it. That way,
the ObJoin process P corresponds to a chemical solution IF P.

Formal chemical rewriting rules appear in Figure 2. They are of two kinds: structural rules
= represent the syntactical rearrangement of the terms, and reduction rules — represent
the computation steps. Privacy annotations are used in rules to limit communications on
private labels. (See discussion below on how communications are implemented.) Generally
speaking, privacy annotations serve two purposes: first, to pass around the binding of this
(cf. rule REACT); second, to indicate the success of privacy check by the trivial function
® = (this — this).

Rules STR-NULL and STR-PAR make parallel composition of process associative and com-
mutative, with unit 0. Rule STR-JOIN organizes messages sent to the same object. And
rule STR-OBJ activates an object definition with a fresh name z. Note that we use the side
condition z ¢ fv[D]Ufv[P] to guarantee freshness. During activation, we treat init process P
as a special guarded process by appending it into the object body D in terms of init() > P,
and explicitly sending a message init () to launch P. To ensure that initializations run just
once, we reserve the definition of label init to semantics only, i.e., init not accessible by
programmers. This somehow indirect way to initialize objects reflects implementation, where
initializers are compiled code, as guarded processes are. From the point of view of privacy
control, the message on channel init should always be authorized, hence is prefixed with ®.
By contrast, the process () inherits the original privacy annotation ¢.

We implement communications in two steps: first privacy check then message consump-
tion. Rules THis-CoMM and OBJ-COMM are here to check privacy. We substitute real
object name for this in messages according to the original privacy annotation ¢, and prefix
any messages sent through this or any public messages sent through named objects with a
new annotation @, indicating authorization. Rule REACT delivers authorized messages from
senders to receivers (the success annotation ® is checked), and triggers a copy of the appro-
priate guarded process Po, whose formal arguments are replaced by message contents, and
whose privacy annotation binds this to the name of the receiver object z. The latter reflects
implementation, where a binding for the current object is created.

By convention, chemical rules mention only the components that take part in the rewriting,
while in fact apply to any solutions that contain those. This is made explicit by the two context

RR n°® 5631

8 Ma,Maranget

rules: CHEMISTRY-OBJ (for rule STR-OBJ) and CHEMISTRY (for other rules). In CHEMISTRY,
we write =» for either = or —. In CHEMISTRY-OBJ, the side condition z ¢ fv[D] U fv[P]
precludes the fresh name z of the newly activated object from being captured. (The sets fv[D]
and fv[P] are defined in a member-wise mannerFigure 4.)

Fournet et al. also supply a privacy control mechanism in [15]. Compared to their design,
our design is much simpler and mainly syntactical thanks to the straight distinction of internal
and external positions through keyword this. By contrast, Fournet et al. use object names
in all references to objects, including recursive (or “internal”) ones. To express privacy, they
equip processes P in the chemical soup with sophisticated privacy annotations, which basically
are lists of active object names. Thereby, they express that P is in internal position w.r.t. the
objects in the list. When process P is some private message sending z.f(...), a check that z
occurs in the privacy annotation is performed by a dedicated chemical rule. Overall, the the
setting of Fournet et al. is more tolerant than ours, as illustrated by the following example:

obj x = Ch() » P or m(o) > 0.Ch() in x.m(x)

Following Fournet et al., message sending o.Ch() is legal when o is object x itself, which
happens to be the case above. By contrast, if o is bound to some object y other than x
that possesses a private Ch label', message sending 0.Ch() is rejected at runtime because of
a privacy violation. Our model cannot emulate such a situation, since all message sendings
on private labels are performed through the special binding this. It is clear that the model
of Fournet et al. is more expressive than ours, and one may find that it is legitimate for x to
access its own private labels in a slightly indirect fashion. However, the typing system of [15]
is unable to make a distinction between objects x and y. As a result, the above example is
rejected at typing, leaving the additional expressiveness unexploited.

3 The OJoiny calculus and hiding mechanism

3.1 A one-place buffer class

Classes act as templates for sets of objects with the same behavior. For instance, the following
class defines one-place buffers:

class c_buffer =
put (n,r) & Empty() > r.reply() & this.Some(n)
or get(r) & Some(n) > r.reply(n) & this.Empty()
init this.Empty()
And to instantiate an object from the class, we do:
obj buffer = c_buffer
The init process is an inseparable part of an object definition, hence is also lifted into
the class definition, called initializer (analog to constructors or makers in other languages).
Initializers will be triggered whenever objects are created from the class. Compared with
the design of Fournet et al., where initialization remains at the object level with each object
defining its own independently, uniform initialization given at the class level enjoys the fol-
lowing advantages. First, our way supports more code reuse: objects of the same class share
their initialization code, and during inheritance, the initializer of the derived class is implicitly
composed in parallel with the ones of all the original classes. Moreover, initialization is also

!Such a situation arises naturally when x and y are built from the same class

INRIA

Information Hiding, Inheritance and Concurrency 9

an internal position. Gathering it with other internal positions, namely guarded processes, is
more practical than having internal positions scattered at both class and object levels.

3.2 Class operations

In order to derive new definitions from existing ones, two operations on classes are provided
in [15]: disjunction for accumulation or reaction rules, and selective refinement for rewriting.

For example, a possible modification of the previous one-place buffer may be to log buffer
content on the terminal for debugging purpose. We implement in terms of the disjunction of
class c_buffer and two new reaction rules 2

class c_log_buffer =
c_buffer

or log() & Some(n) > this.Some(n) & out.print_int(n)

or log() & Empty() > this.Empty() & out.print_string(“Empty”)
Class c_log_buffer inherits c_buffer, defines a new label 1log, and “overrides” the two in-
herited labels Some and Empty. However, in contrast to overriding in sequential settings, where
new definition replaces old one, here, definitions cumulate, yielding competing behaviors for
messages on that channel (e.g. label Some synchronized with both log and get). The order
among disjunction components does not matter. Note that the initializer of class c_buffer is
also implicitly inherited, meant to be composed in parallel with the one of class c_log_buffer.
Since class c_log_buffer has no definition for its own initializer, the inherited one becomes
its initializer.

Another interesting debugging requirement may be to log every put and get operation. We
implement this in terms of the selective refinement of class c_buffer against two refinement
clauses:

class c_log_buffer_bis =
match c_buffer with
| put(n,r) = put(n,r) > out.print_int(n)
| get(r) = get(r) > out.print_string(“get”)
end
The match-with-end construct can be understood by analogy with ML-style pattern match-
ing. The selective pattern (to the left of =) of the first clause is put(n,r). It matches any
reaction rule whose join-pattern has the form ... & put(...) & ..., and replaces the sub-
pattern put(n, r) by the refinement pattern (to the right of =). Here, because the refinement
pattern is exactly the same as the selective pattern, the join-pattern remains the same during
refinement. However, the guarded process becomes the parallel composition of the original
one and the refinement process out.print_int(n). Similarly, the second clause matches re-
action rules containing the get label, and adds the printing process. The reaction rules of
c_buffer are matched following the order of refinement clauses. They are either rewritten
according to the first matching clause if it exists, or remain unchanged. As a consequence,
c_log_buffer actually behaves as:

class c_log_buffer_bis =
put(n) & Empty() > r.reply() & this.Some(n) & out.print_int(n)
or get(r) & Some(n) > r.reply(n) & this.Empty() & out.print_string(“get”)
init this.Empty()

2The terminal is implemented as an object named out, with labels print_int, print_string etc.

RR n°® 5631

10 Ma,Maranget

3.3 Inheritance and hiding

At the moment, all labels defined in a class are visible during inheritance, since our privacy
policy only applies to message sendings to objects. However, this complete knowledge of
class behavior may not be needed for building a given class by inheritance. For instance, the
designer of the previous class c_log_buffer_bis needs no information on the private labels
Empty and Some. Moreover, exposing full details during inheritance sometimes puts program
safety at risk, and designers of parent classes may legitimately wish to restrict inheritance
users freedom.

As an example, an inheritance user may attempt to extend the class c_buffer with a new
channel put?2 for putting two elements:

class c_put2_buffer =
c_buffer
or put2(nmr) & Empty() >
r.reply() & this.(Some(n) & Some(m))
Unfortunately, this naive implementation breaks the invariant of a one-place buffer. More
specifically, the put?2 attempt, once it succeeds, sends two messages on label Some in parallel.
Semantically, this means turning a one-place buffer into an invalid state where two values are
stored simultaneously.

In order to protect classes from (deliberate or accidental) integrity-violating inheritance,
we introduce a new operation on classes to hide critical labels. We reach a more robust
definition using hiding;:

class c_hidden_buffer = c_buffer hide {Empty, Some}
The hiding clause hide {Empty, Some} hides the critical channels Empty and Some. They are
now absent from the class type and become inaccessible during inheritance. As a result, the
previous invariant-violating definition of channel put2 will be rejected by a “name unbound”
static error. Nevertheless, programmers still can supplement one-place buffers with a put2
operation as follows:

class c_buffer_bis =
c_buffer_hidden
or put2(n,mr) >
class c_join =
reply() & Next() b r.reply()
or reply() & Start() » this.Next()
init this.Start() in

objk = c_join in

this. (put (n,k) & put(mk))

In the code above, the reactions rules of the (inner) class ¢_join serve the purpose of con-
suming two acknowledgements from the one-place buffer before acknowledging the success of
the put2 operation to the appropriate object r. One may remark that the order in which
values n and m are stored remains unspecified.

It is important to understand that hiding does not reduce to erasing the hidden labels
from class types. Hiding also is an operation of the class semantics, whose design is governed
by two concerns. On the one hand, once hidden, labels disappear; for instance, redefining a
new label homonymous to a previously hidden label yields a totally new label, and selective
patterns can no longer match the hidden label. On the other hand, hidden labels still exist

INRIA

Information Hiding, Inheritance and Concurrency 11

P,Q = Processes

0 null process
.M message sending
this. M recursive message sending
P &P parallel composition
objo=Cin P object definition
class ¢ = C hide F in P class binding with hiding

C == Classes
c class name
L abstract class
Mv P reaction rule
Cq or Cy disjunction
match C with S end selective refinement
C init P initializer

S = Refinement Sequences
0 empty sequence
Ky = Ky>P|S refinement clause

M ::= Join-Patterns
I(w) message pattern
M1 & M, synchronization

K := Selection-Patterns
0 empty pattern
M join-pattern

Figure 3: Syntax of the OJoiny calculus

inside the class that underwent hiding; for instance, objects created by instantiating the class
c_buffer_hidden must somehow possess labels to encode the state of a one-place buffer.

3.4 Syntax of OJoiny

The OJoiny calculus provides a class layer on top of ObJoin. It enriches the class language
of [15] with a hiding mechanism. Equipped with this support, class designers thus can combine
at will privacy policy and hiding mechanism, to achieve more precise and flexible visibility
control of their classes. We use an additional set of identifiers for class names ¢ € C. The
grammar of the OJoing calculus is defined in Figure 3.

OJoiny extends ObJoin with class definitions, thus objects are now created from classes:
obj o = C in P. Class definitions C' are built from a full variety of constructs. Reaction rules
are basic classes. We write L C L for a set of labels. Such L stands for abstract classes, whose
labels are declared but not defined. Abstract labels are useful to force inheritance users to
define certain labels, but they are also necessary to the semantics of selective refinement which
may erase a given label from all the join-patterns of a class. Three operations are possible
to manipulate classes: disjunction C; or Cs to combine two definitions; selective refinement
match C with S end to rewrite reaction rules; and C init P to add and initializer. We
extend join-patterns M to selective-patterns K with empty patterns 0, which serve as the

RR n°® 5631

12

Ma,Maranget

For join-patterns :
@] <

rv[My & My] def
rv[0]

{a}
rv[Mi] W rv[Ms)]
et g

For processes:
fv[0]
fv[z. M]
fv[this. M|
V[P & Py
fvjobj 0 = C in P]
fv[class ¢ = C in P]

For classes :
fv[c]
fv[L]
fv[M > P]
fv[C} or O]
fvimatch C with S end]
fv[C init P]

dl[c]

di[L]

di[M v P

di[C; or]

dlifmatch C with S end]
dI[C init P]

For refinement sequences :
fv[0]
fV[Kl = Kop> P | S]

di[0]
di[K; = Ky P | S]

For solutions :

def

WDl = Uspep({z} UVD])

dii(a)] = {i}
dM & My] % diMy] W dI[M)]
djo] ¥ ¢

0

{z} Urv[M]

{this} U rv[M]

fv[Py] U fv[P]

(FV[C]\ {this}) U (V[P]\ {o})

WCTU (V[P]\ {c})
{c}

0

fv[P] \ rv[M]

fV[Cl] U fV[CQ]

fv[C] U fv[S]

fv[C] U fv[P]

0

0

dI[M]

dIl[C1] U dI[Cs]
di[C]udI[S]

di[C]

0

(fv[P] \ rv[K3]) U fv[S]
0

(dI[K2] \ dI[K7]) U dI[S]

def

fv[P] = U¢#Pe7>fV[P]

Figure 4: Free variables fv[-], received variables rv[-], and defined labels dI[-] in OJoiny

INRIA

Information Hiding, Inheritance and Concurrency 13

wild-card and match any reaction rules during selective refinement. Finally, inheritance is
expressed by referring to the names of parent classes.

Process class ¢ = C hide F in P is new. It is the only binder for class name c. We apply
hiding at class binding time, where F' denotes a set of private labels defined in C. The result
of hiding is a new class definition, whose implementation is the same as the one of C, but
exports a restricted interface where the labels in F' are absent. When F' is empty we omit it,
getting the simple class binding construct class ¢ = C in P.

Besides class name binders, object name binders include: object definitions (binding de-
fined objects) and join-patterns (binding formal arguments). In particular, we follow the
scoping of reaction rules for refinement clauses K; = Ky > P, i.e. the formal arguments of
K> are bound in process P. Moreover, a well-formedness condition is imposed on the formal
arguments of K and Ks: rv[K;] C rv[K3]. This condition is needed so as to prevent selective
refinement from introducing free variables in guarded processes. Formal scoping rules appear
in Figure 4.

4 Evaluating OJoiny into ObJoin

The semantics of the class language is expressed by evaluating class definitions to plain object
definitions, i.e. join-definitions together with an optional initializer: D init P. Such classes
are the only ones that can be be instantiated. However, abstract labels introduce a slight
complication. In general, classes are evaluated to the following class normal forms 3:

Cy ::= (D or L) init P,

Semantic rules that transform OJoiny terms into ObJoin terms appear in Figure 5. They
are deterministic big-step evaluation rules [29], expressing call-by-value reduction. Note that
the choice between call-by-value and call-by-name strategies is not critical because both yield
the same results as observed in [21]. However, motivated by reality, we prefer to avoid
repetitive evaluation of the same class definition, based upon the assumption that all classes in
a program are useful. Compared with the reduction semantics proposed in [15], our evaluation
semantics provides a more direct formalism of implementation.

4.1 Evaluation judgments

The following judgments are used in this big-step semantics.

Process evaluation {p : T'EP |p P,
Class evaluation Uc: TEC |c C,
Filter evaluation s : DwithS |s C

Note that we use evaluation environment I' (in stead of substitution as in [15]) in process and
class judgements, which again reflects implementation better.

Denoting the set of class normal forms as Cy, an evaluation environment I' is a function
from class names to class normal forms, I' : C — Cy. We say an environment I' is empty if
it is defined nowhere on C, that is: Yz € C,I'(z) = L. Empty environment is written [], and

3Processes of ObJoin are explicitly denoted by P, or Q. when there is an potential ambiguity.

RR n°® 5631

14 Ma,Maranget

Rules for processes

EvAL-HIDE '
BUALN TEC Uc C, (fi €dI[C,),h; fresh)s!
VAL-NULL i
T+ (¢ Cyl{hi/f;'€}y) E P P,
TEO Up O (C ’U{ /fz }H) Ip Py

I E class ¢ = C hide {f;"*!}in P |p P,

EvAL-OBJECT EVAL-PARALLEL

I'eC Jc (Dor(Z))initQ,, 'EP |p P, I'EP |p P, '@ Up Qo
I'Eobjz=Cin P |p objz =D init Q, in P, reP&Q p P, &Q,
EVAL-SEND

r'euM |Jp u.M

Rules for classes

EvAL-CNAME) _ EVAL-REACTION
Tc)=C, {h'}y=dl[C,)IH (K fresh)*s’ CEP |p P,

TEc lc Cofhi/n; 1€} n TEMb>P |c M>P,

EVAL-DISJUNCTION
E A T ': Cl *U’C (D1 or Ll) inlt Pv r '= 02 *U’C (D2 or Lg) lnlt Pé
FV':;J fSTzACT L = (L \ dI[D3)) U (L2 \ dI[D1])
¢ TF Cyor Cy Y (Dy or D; or L) init (P, & P!)

EVAL-REFINEMENT
I'EC |Yc (Dor L) init P, D with S |sg ' T'EC'orL Ic DorlI'
I' F match C with S end ¢ (D' or L) init P,

EVAL-INITIALIZER
I'EC |c (DorL)initQU I'EP |p P,

I'ECinit P |c (D or L) init (Q, & P,)

Rules for filters

FILTER-OR FILTER-NEXT

Dy withS |)s C; DywithS s C;, MoP,withS s C dI[K;] ¢ dI[M]
DlorDQWithS “U’S 0101‘02 MDPvWithKlﬁKQDQ|S ~UsC

FIiLTER-END
Dwith® |s D

FILTER-APPLY
M=K &K rv[KQ]ﬂrv[K] =10 dI[KQ]ﬂdI[K] =0 L:dl[Kl]\dI[KQ]
MDvaithK1:>K2|>Q|S s Ko& K> P, & Q or L

Figure 5: Class evaluation rules of the OJoiny calculus

INRIA

Information Hiding, Inheritance and Concurrency 15

we simply write E P {p P, (FC |c C,) for [[EP |p P, ([]EC |c C,). We define the

extension of environments as follows:
(T + (e Cy))() = {

4.2 Evaluation rules

Rules for processes Rule EVAL-HIDE describes how class binding class ¢ = C hide
{fi*!} in P is performed. Definition C is first evaluated to normal form C,. Then a
hiding procedure C,{hi/f;i€I}4 is called for before we bind the resulting class value to c.
Represented by the indexed set {f; “’}, hidden labels are required be private. Moreover, the
condition in the premise (f; € dI[D])*€! requires them also to be concrete. We implement
{hi/ f;i€1}4, by a-converting the hidden channels {f;**’} to fresh labels {h; *“’}. In order
to guarantee the freshness, we isolate a subset of F, called h € H, and we require A not be
accessible by programmers. Whenever a channel is to be hidden, we pick a fresh label from H,,
and do the a-conversion. Here {h; !} are the fresh labels picked up for {f; *¢!} respectively.

A formal definition of our hiding procedure is given in Figure 6. We simply write {-/-}»
for {hi/f;i€1}5 in inductive cases. The a-conversion applies to both definition occurrences
(in join-patterns) and reference occurrences (in guarded processes and the init process) of
the f;sin Cy. It is important to notice that we can rename all reference occurrences of hidden
labels because hidden labels are private. Moreover, in the last rule, we do not recursively go
into new object definitions because they rebind this. Additionally, abstract labels L are not
influenced by renaming because only concrete labels can be hidden. To give some intuition,
the normal form of class ¢_hidden_buffer (Section 3.3) looks as follows:

class c_hidden_buffer =
get(r) & Some'(n) > r.reply(n) & this.Empty’' ()

or put(n,r) & Empty' () > r.reply() & this.Some’(n)

init this.Empty’ ()
Here, we assume Empty’ and Some’ to be the two fresh labels replacing Empty and Some
respectively.

Rule EVAL-OBJECT describes how objects are created from classes. We explicitly require
the abstract part of the corresponding class normal form be empty in the premise, in order
to rule out any attempt of instantiating abstract classes.

Rules for classes These rules evaluate a class definition to its normal form. Classes may
refer to some class name in definitions as in Rule EVAL-CNAME, and following the call-by-
value strategy, the definitions listed in the environment I' is already in normal form. However,
these normal forms can not be return directly. As we have discussed, hidden names should
never be touched by later inheritance and overriding. Consider the following situation: we
have a class ¢ whose normal form C, contains a hidden name h and other two classes ¢; and
co both derived from class ¢, namely referring to ¢ in their definitions. If we returned C,
directly, then both ¢; and ¢o would also have the hidden name h in their normal forms. As
a consequence, when we combine ¢; and ¢, in disjunction, the two occurrences of h will have
an influence on each other, which is against the spirit of hiding. Therefore, we require the
re-freshening of the hidden names whenever a class is inherited in the EVAL-CNAME rule to
avoid the collision.

RR n°® 5631

16 Ma,Maranget

((Dor L) init P){-/.}u = (D{/.}n or L) init P,{-/.}x
stz {0 L
(My & Mo){-/ 3 & Mi{/ 3 & Mo{:/ I
(M>P){/3n © M{-/ > P{/}n
(Dror Do){-/3u % Di{-/}n or Dy{/}n
o/} ¥ o
(this.M){-/-}n jéi this. M{-/-}n
(@M){/n ¥ zM
(PL&P){ /I ¥ P{/)Yn& B/}
(obj z = D init P in Q){-/-}» o objz = D init Pin Q{-/-}3

Figure 6: a-converting hidden names to fresh names in class normal forms

Rule EVAL-DI1SJUNCTION describes how two definitions are cumulated. We evaluate both
sub-definitions into normal forms and combine the results together. Abstract labels that
are defined elsewhere are discarded, and the two initializers from both sub-definitions are
composed in parallel. Selective refinement applies to class normal forms (D or L) init P,.
Rule EVAL-REFINEMENT evaluates selective refinements by means of evaluating filters of the
form D with S to C’, defined below. Another round of evaluation of C’ or L is subsequently
called for, in order to combine the new class with original abstract part and to evaluate the
newly-added processes to normal forms. Note that selective refinement has no impact on
initializer. Finally, rule EVAL-INITIALIZER tells how new init process is composed in parallel
with the existing one.

Rules for filters The extra bunch of rules presented at the bottom of Figure 5 evaluates
filters. A filter refines a join-definition D against a sequence of refinement clauses S. Each
reaction rule in D is refined independently from the others according to the leftmost matching
clause if any (rules FILTER-NEXT and FILTER-END), and the resulting classes are combined
by class disjunction (rule FILTER-OR). We say a clause (K; = K> > Q) matches a reaction
rule (M > P,) when the selective pattern K is a sub-pattern of the join pattern M, namely,
dI[K;] C dI[M]. More precisely, with necessary a-conversion of formal arguments, and com-
mutativity and associativity of the operator “&” in join-patterns, it is equivalent to require
M be structurally congruent to K; & K as stated in rule FILTER-APPLY, where K is an-
other pattern. Once a matching clause is found, the reaction rule is rewritten by substituting
K, for K; in M, and composing P, in parallel with). To preserve the linearity of formal
arguments and labels in join-patterns, two other side conditions are also required, i.e. (1)
rv[Ko] Nrv[K] = 0, (2) dI[K2] NdI[K] = 0, as stated in the premise. Condition (1) can be
guaranteed by a-conversion, and the type system will check for condition (2). The replace-
ment of K; by Ky has two effects: some new channels may be introduced into this reaction

INRIA

Information Hiding, Inheritance and Concurrency 17

rules by Ky, they are dI[K3] \ dI[K;]; and on the contrary, the channels in dI[K;] \ dI[K>]
loose their definitions and become abstract. For more detailed discussion on new labels and
abstract labels, please refer to our previous work [22]. Finally, if no matching clause is found,
the reaction rule remains the same (rule FILTER-END).

4.3 Evaluation errors

We enforce certain conditions in the premises of some evaluation rules in Figure 5. For
example, we require the abstract label set L be empty when a class is instantiated in rule
EvAL-OBJECT. However, any of these conditions may fail and we then say that an “error”
occurs in those cases. By convention, as soon as an error is reported, the whole evaluation
terminates and returns the error as result. In order to specify those errors, we give some
error rules in the following , to accompany the correct ones given in Figure 5.

e Abstract class instantiation:

EvAL-OBJECT-ERROR
'=EC |c (Dor L) init Q, L#£0D

Il'Eobjz=CinP |p error

Unbound class name:

EvAL-CNAME-ERROR
¢ ¢ dom([I']

I'Ec |c error

e Non-linear join-pattern generation:

FILTER-APPLY-ERROR
M=K &K rv[Ko] Nrv[K] =0 di[Ko] NdI[K] # 0

Mpv P, with K1 = K> Q| S s error

Hiding public labels:

EvAL-HIDE-ERROR1
Jj € I, such that [; €e M

T E class ¢ = C hide {I;°’}in P |lp error

Hiding abstract labels:

EvAL-HIDE-ERROR2
reC Jc C, 3j € I, such that f; ¢ dI[C,]

I E class ¢ = C hide {f;**/}in P |p error

5 The type system of OJoingy

We define a ML-style type system for OJoiny. It enriches our previous design [22] to type
the hiding operation, and consequently, features more abstract class types.

5.1 Type algebra

The grammar of type expressions appears in Figure 7.

RR n°® 5631

18 Ma,Maranget

Types:
Tu= allp] Object type
pz= 0lo|m:7p Row type
Fu= (r;%€) Tuple type
¢ = ((r)B"Y Class type
B:= 0|l:7;B Internal type
78 := BRE Refinement sequence type
R:= (| m = m; R Refinement rules
Types schemes:
cu= VX1 Object type scheme
¢ = VX.r¢ Class type scheme

Figure 7: Type algebra

Types There are two kinds of type variables: object type variables, ranged over by «; and
row type variables, ranged over by p. We use 0 for type variables, regardless their kinds, and
denote the set of all possible type variables as ©. We use X and Y to range over sets of type
variables, namely, we have X, Y C ©. As in the ML type system, polymorphism is parametric
polymorphism, obtained essentially by generalizing the free type variables.

Object types T = [p] list the types of public channels. They may end with a row variable,
which means that, besides channels listed in p, there may be some other channels. Such
trailing row variables enable a useful degree of subtyping polymorphism by structure.

Class types 7¢ = ((p) B"*V consist of four parts. Objects created from the class have type
[p]. Internal type B collects the types of all (non-hidden) channels in the class, defined or
declared, public or private. We shall describe V later. Finally, W reflects existing synchro-
nization amongst channels. Component W is a set of sets of channel names, with one member
set w C L corresponding to one join-pattern, and all together representing the whole structure
of join-patterns in the class normal form. Note that with the effect of hiding, hidden labels
are eliminated from B and W. However, wild elimination endangers safe polymorphism. As
an example, the type of class c_buffer from Section 3.1 is:

class c_buffer:
object
label get: ([reply: (0); o]) ;
label put: (0,[reply: O); 0'1) ;
label Some: (6) ; label Empty: O ;
end W = {{get, Some}, {put, Empty}}
As detailed in [22, 14, 6], labels from the same join-patterns are identified as correlated and
any free type variables shared by correlated labels cannot be generalized in object types.
In this example, because 6 is shared by two correlated labels get and Some (from the same
member set of W), it should not be generalized. By contrast, class c_hidden_buffer from
Section 3.3 hides labels Some and Empty and has type:

class c_hidden_buffer:

INRIA

Information Hiding, Inheritance and Concurrency 19

object
label get: ([reply: (0); 0l) ;
label put: (0,[reply: O); 0'1) ;
end W = {{get}, {put}}
where the hidden labels disappear from both the label list and W. Without other restriction,
this type allows the generalization of # in object types because labels get and put are not
correlated (coming from two different member sets of W). Generalized € then could be
instantiated incompatibly for get and put, for instance, as integer and string, which would
result in a runtime type error: attempting to retrieve a string when an integer is present.
To tackle the problem, we keep track of such dangerous type variables in class types,
denoted by V. Type variables appearing in V are prohibited to be generalized. As a result,
the complete type of class ¢c_hidden_buffer is:

class c_hidden_buffer:
object
label get: ([reply: (8); o]) ;
label put: (0,[reply: O; 0'1) ;

end W = {{get}, {put}} V = {0}

In spite of the discrete technicality of component V', this type obviously achieves information
hiding towards the inheritance users of class c_hidden_buffer.

Which of the channels appearing in B are abstract can easily be inferred from our types,
since abstract channels never appear in join-pattern. Hence we can compute the set of abstract
channels as dom[B]\W, where dom[B] is the set of channels listed in B, and W is the flattening
of W, namely, union of all member sets.

Refinement sequence types 7° = Bf abstract the external features of selective refinement
sequences S, in which the internal type B lists the types of all the labels appearing in S, and
R sketches refinement clauses into refinement rules.

Usually, we omit the trailing () in p, in B or in R. Note that names bound in p or B are
pair-wise distinct, and the order of them does not matter. Thus, they can also be seen as
sets of (label, tuple type) pairs. However, the order of refinement rules in R does matter. It
reflects the order of refinement clauses.

Type schemes For class types, we generalize all the free type variables and get the cor-
responding class type scheme. While for object types, only those are neither annotated as
dangerous, nor shared by any correlated channels can be made polymorphic.

Usually, we omit the empty set of generalized variables in a type scheme, namely we
abbreviate V0.7 (V0.7¢) as 7 (7°).

RR n°® 5631

20 Ma,Maranget

5.2 Type checking processes and classes

The following typing judgments are used in the type system. Recall that u stands for either
object names or the keyword this.

Arwu:T object u has type 7 in A

Aruld =T label [of object u has type 7 in A
AFP process P is well-typed in A

A-K: B pattern K has type B in A

AFC ¢ class C has type 7¢in A

AFS 78 refinement sequence S has type 7° in A

FWwith R: W' refining W against R gives W'

Typing judgments rely on type environments A that bind class names, object names or this
to corresponding type schemes:

Au=[]|c:sGAluggA|u:VX.B;A

An object u may have two complementary bindings in A, namely, u : ¢ (external scheme)
for public labels, and u : VX.B (internal scheme) for private labels, where dom[B] C F. For
simplicity, we omit empty environments [] in typing judgments.

Typing rules appear in Figure 8 and Figure 9. Before looking at them, we first summarize
the used notations as follows.

o {79/6°S*} expresses the substitution of type variables of domain X by types. Note that
g is either an object type (7) or a row type (p).

e dom[A] is the set of identifiers bound in A. A + A’ equals (A \ dom[A]) U A’, where
A\dom[A'] removes the bindings for dom[A’] from A. More specifically, A+u : VX.[p],u :
VX.B means A\ {u} Uu:VX.[p|Uu:VX.B.

e B[L restrict B to a set of labels L. And B(l) refers to the tuple type bound to [in B.
B W By is the union of By and Bs, provided dom[B;1] N dom[Bs] = () holds. Predicate
B; T B, expresses that By and By coincide on the types of their common channels. And
B1 @ By is the union of B; and Bs, provided By T By holds.

e ctv[B"] computes the free type variables in B that are common to types of at least two
correlated channels according to W. Namely,

ctv[BY] = Uwiewctv[B{”’i}]
ctv[BW] = Urcw,pewze fv[B)] N fv[B(I')]

where ftv[-] denotes the set of free type variables.

e Gen(p, B, A) returns the set of type variables free in p or B, but not free in type envi-
ronment A. Namely, Gen(p, B, A) = (ftv[p] U ftv[B]) \ ftv[4].

INRIA

Information Hiding, Inheritance and Concurrency 21

Rules for object names and labels

TyYPE-ONAME TYPE-PUBLAB TYPE-PRILAB
u:VX.1€A AbFwu:[m:7;pl u:VX.(f:7;B)€ A
Al—u:T{’)’a/aaex} AFum= 7T AFu.f T{Va/eaex}

Rules for processes

T N TYPE-SEND) TypPE-JOIN
AY:EO' ULL AFul = (AFu:n)el AruM, AbuM,
At ud(u; € AF u.(M; & My)
TyYPE-HIDE
A+ this : [p];this: (B [F) F C :: ¢(p)B"Y p=DB|M;o
!
TYPE-PARALLEL B'=B\F VUF w' :_VV \F
AFP AFQ A+ c:VGen(p,B', A).L(p)BW VVIWIBIFIL p FCW
AFP&Q At class c= C hide F in P

TyYPE-OBJECT
A+ this : [p];this: (B | F) F C :: ((p)BVY
X = Gen(p, B,A) \ ctv[BV]\V p=BIM

A+z:VX.[p|FP dom[B] =W
AFobjz=CinP

Figure 8: Typing rules for processes in the OJoiny calculus

Typing processes Processes are typed following the second bunch of rules in Figure 8. In
rules TYPE-HIDE and TYPE-OBJECT, we explicitly extend the environment A with bindings
for the recursive self reference this when typing the class definitions. As a side note, it should
perhaps be noticed that the conditions p = B [M;p and p = B | M in these rules enforce
that all public labels are listed in the B component of class types and allows us to omit
component p in our examples of class types.

With the notion of dangerous type variables, the polymorphism control of object type
elaborates into two parts in rule TYPE-OBJECT for object definitions. Besides the common
free type variables that are shared by correlated channels (i.e. computed by ctv[B"]), the set
of dangerous type variables V is also prevented from generalization.

Rule TYPE-HIDE types class binding with hiding. Because W lists all the defined labels,
the condition F C W in the premise checks whether all the hidden private names are actually
defined. The type of objects created from the class (object user interface) [p] remains the
same, because p contains only public labels. However, the interface for inheritance users,
namely BW is restricted to B'"", where B = B\ F removing from B the binding of labels in
F ,and W' = W \ F removing from W labels in F . W \ F is defined as {w; \ F' | w; € W},
where w; \ F refers to usual set difference. Moreover, to assure safe polymorphism, all the
free type variables of the hidden channels (ftv[B | F|) are considered as dangerous, and are

appended into V. One might wonder why we did not add those from ctv[BW]\ ctv[B’ W’],

RR n°® 5631

22 Ma,Maranget

which at first glance seems feasible and would allow more polymorphism. Unfortunately, the
answer is “we can’t” and the reason is of no surprise: this would not be safe.

We temporarily replace ftv[B [F] by ctv[BY]\ ctv[B’ W’] in rule TYPE-HIDE and demon-
strate why this change may impair safety by the following examples. Consider a class defini-
tion:

class c; =
a(x) >0

or b(y) & Ch(nj, ny) > this.(a(n;) & b(ng))

hide {Ch}
Its normal form is:
a(x) >0

or b(y) & Ch'(n1, ny) b this.(a(n;) & b(ny))
where the label Ch is a-converted to Ch' € H during hiding. The type system gives the
following types respectively for the definition (on the left) and the normal form (on the
right):

object object
label a: (0); label a: (0); label b: (8");
label b: (0") label Ch'’: (0, 6")

end W = {{a},{b}} V = {0’} end W = {{a},{b,Ch'}} V =10

If we create an object from class c1, both types render the same object type: V6.[a : (6);b :
(0")], in which the type variable 6’ is monomorphic. (The type on the left restricts the
generalization of # because §' € V, and the type on the right does so because ¢ is shared by
two correlated labels b and Ch'.) We then modify class c; by selective refinement as follows:

class co = match c¢; with
b(y) = b(y) & d(z) > this.a(z) end
This yields the following class in normal form:
class co =
a(x) > 0
or b(Y) & d(z) & Ch’(nl, n2) >
this. (a(n;) & b(ny) & a(z))
The type system infers the left type for the selective refinement based on the type of class
c1, and the normal form has the type on the right:

object object
label a: (6); label a: (0); label b: (0');
label b: (8"); label Ch': (0, 8");
label d: () label d: ()

end W = {{a},{bd}} V = {6} end W = {{a},{b,Ch',d}} V =10

We create an object from class co, and here comes the problem. The left hand type gives
the polymorphic type: V6.[a : (0);b: (0');d : (8)] to the object. However, the type variable
0 is apparently forbidden to be generalized according to the normal form, because Ch’ and
d correlated and they share §. The wrong polymorphism authorized by the typing is safety-
violating.

INRIA

Information Hiding, Inheritance and Concurrency 23

Rules for patterns

TYPE-SYNCHRONIZATION

T E p TYPE-MESSAGE AFM :: By
AYI—P?)_ l\épTY ATTERN (AFz; 1) = AF My :: By
N ARz ") o (17 %) A M, & My :: B; & By
Rules for classes
TyrPE-CNAME TYPE-ABSTRACT
c:VX.C(p)B"Y € A dom[B] =L
At e (C(p)B™Y){1/6"<} AFL:¢(p)B™

TYPE-REACTION
ArM=:B A+A'FP dom[A'] = r[M]

AFMpP:: C(p)B{dI[M]}’(D

TYPE-DISJUNCTION
AFCL=Cp)BI"™YY AR Gy C(p) BNV

AFCror Cy:: ((p)(B1 & BQ)WlUWQ,VﬂJVz

TYPE-REFINEMENT TYPE-INITIALIZER

AFC:=C¢(P)B™ W with Rz W' AFC:((pB™Y
A+ S:BE Bt B AR P
A+ match C with S end :: ¢(p)((B' | W) @ B)V" AF C init P :: ¢(p)BMY

Rules for refinement clauses

TyPE-CLAUSE

AI = Kl i Bl ,
A'F K5 :: By dom[A'] = rv[K>]
A+ AR P AL S: BR TYPE—EMgTYCLAUSE
AFQ 0
AFKy = KypP|S:(Bi®By & B)(d|[K1]:>d|[K2])\R
Rules for filters
TYPE-APPLY TyPE-END ;FHTPE_EEXT b w with R = '
Fw Ww with w) = we | R we Ww Fwwith::w - ;
Fwwithw, = wy | R w
TyPE-OR

(F w; with R :: w}) !
F {w; "'} with R :: {w}*"}

Figure 9: Typing rules for patterns, classes, and filters in OJoingy

RR n°® 5631

24 Ma,Maranget

TYPE-SOLUTION
A=U,pepAs (AME 3D Ay)=PEP
(AM - P) PeP (A - P) ® # PecP (AM + A;c{this/g;} = P)(this»—)x)#PEP

F (DI P)

TYPE-DEFINITION
A+ this : [p], this : (B | F) F D :: ¢(p)B"?
X = Gen(p, B, A) \ ctv[B"] p=BIM dom[B] =W
Atrz.D:z:VX.[p,z :VX.(B|F)

Figure 10: Typing rules for chemical solutions in OJoiny

Typing classes The typing rules of class definitions appear in the middle of Figure 9. Rule
TYPE-INITIALIZER is new for typing initializers. It is straightforward. We require both the
class definition and the initializer be typable. Not surprisingly, the rest rules are almost
kept the same as before in [22], except for the parts managing V. Dangerous type variables
only come from hiding at class binding time (i.e. outside class definitions). However, for safe
polymorphism reason, they should be preserved during class operation. Moreover, in rule
TvyPE-CNAME, the substitution of type variables in class types is redefined to deal with V' as

n(C(p)B™Y) = ¢(n(p))n(B)""(V) where:

n(V) = (v \ domli)) UlUpe(y ndomp fvin(6)]

Intuitively, this means when a dangerous type variable is replaced by a type, all the free type
variables in that type are dangerous.

5.3 Type checking chemical solutions

The typing is finally extended to chemical solutions in Figure 10 in order to illustrate the
properties of the type system. The judgment - (D Ik P) states that the chemical solution
D Ik P is well typed. And the auxiliary judgment A+ z.D :: z : VX.[p],z : VX.(B | F) means
that in the environment A, the active object x.D defines an object x with polymorphic public
type VX.[p], and polymorphic private type VX.(B [F).

In rule TYPE-SOLUTION, we require all the active objects from D and all the processes
from P are well-typed, and we record the public and private types of all the active objects
in A. A, refers to the types of object . We simply write AM for A | M, namely the
public part of A and A{v'/y} for renaming u to u' in A. Processes with different privacy
annotations are typed differently. Authorized processes, namely those with annotation @,
are typed in the complete environment A defined by D. Internal processes of some object z,
namely those with annotation (this — z) are typed in the public part of A plus the private
type of object z referred through this. And all the other kind of processes with an empty
annotation (this — 1) are typed only in the public part of A.

The typing rule TYPE-DEFINITION for active objects z.D is similar to the TYPE-OBJECT
rule for typing obj z = D in 0, but we return the polymorphic types for typing the solution.
Note that the V part is always empty because no hiding happens in chemical solutions.

INRIA

Information Hiding, Inheritance and Concurrency 25

6 Properties of the Type System

6.1 The type system is sound

One of the main goal of static typing is to exclude programs that will cause errors at runtime.
We discuss the soundness of our type system with respect to both class evaluation semantics
and chemical reduction semantics.

Soundness w.r.t. class evaluation The main result is: no closed, well-typed process can
evaluate to an error during the class evaluation, moreover, the result process is well-typed,
too.

Theorem 1 (Soundness w.r.t. class evaluation). Let P be a process. If - P, then
EP |p P, P, is not an error and F P,.

The empty evaluation environment and the empty type environment in the theorem above
are not sufficient to allow an inductive proof. We prove a stronger result in Lemma 1. For
that purpose, we should first extend the typing to type class normal forms and evaluation
environments with polymorphism, as we did for active objects in chemical solutions in rule
TyYPE-DEFINITION. However, because of hiding, the relation between the type inferred for a
class definition and the type of its normal form is different from the one between the type
inferred for an object definition and the type of its runtime value (i.e. the active object). In
the later case, these two types are the same, while in the former case, a class definition and
its runtime class normal form have different types. More specifically, when a definition for
class c is typed and bound in the type environment A as (c : <), its corresponding normal
form C, bound in the evaluation environment I' do not have exactly the polymorphic type
¢¢. Instead, C, reveals ¢¢, written A + C} :> ¢C.

Intuitively, the notion of revealing conveys the same idea of hiding but in the opposite
direction: (C hide F') “hides” C i.e. C “reveals” (C hide F'). As a consequence, we define
the revealing typing rule for A F C), :> ¢¢ similar to the hiding typing rule (TYPE-HIDE) as

follows:
TYPE-REVEAL

A+ this : [p];this: (B | F) F C, :: ¢(p)B™Y
B'=B\H =B [M;o
W' =W\ H cCwW

A+ Cy, > VYGen(p, B"A).C(p)BIW’,VUftV[B[H]

mﬁ

where the revealed type VGen(p, B',A).g“(p)B'WI’VUftV[BrH] is just the polymorphic type of
class (C, hide H) for some H C H. Notice that revealing brings a very controlled form of
subtyping.

Lifting the revealing relation to evaluation environments, we define A F ' :> A’ in a

member-wise manner as:
TypPE-T'.5

(AFT(c) > A'(c)) ccdomir]
AT > A

For any type environment A, we write A® for its segment of all object bindings, and
A€ for its segment of all class bindings. The stronger result for the soundness w.r.t. class
evaluation with hiding is stated as the following lemma:

RR n°® 5631

26 Ma,Maranget

Lemma 1 (Strong soundness w.r.t. class evaluation). Let A be a type environment and
T be a class evaluation environment, such that A° =T :> AC. If A+ P, then TEP |p P,
P, is not an error and A° + P,.

Proof. See Appendix A.2. O

Soundness w.r.t. chemical reduction We go on to discuss the soundness with respect
to chemical reduction in terms of subject reduction and safety properties.

Theorem 2 (Subject reduction). Let D |- P be a chemical solution. If = (D I- P) and
DIFP =» D'I-P, thent (D' IFP').

Proof. See Appendix A.3. O

As far as safety is concerned, we first specify chemical reduction failure in the following
definition.

Definition 1 (Chemical reduction failure). We say a chemical solution D I+ P is a
chemical reduction failure, if one of the following holds:

e Free this: (this+— 1) # P € P (briefly P € P), and this € fv[P].

Undefined object name: ¢ # P € P, x € fv[P] or ¢ = (this — z), and z is not defined
in D.

Failed privacy: ¢ # z.f(4) € P, and ¢ # .

Undefined channel name: ® # z.l(Z) € P, z.D € D, and | ¢ dI[D].

Arity mismatch: ® # x.l(2) € P, z.D € D, I(y) appears in a join-pattern of D, and §
and Z have different arities.

The following theorem guarantees that the type system statically rejects any failures men-
tioned above.

Theorem 3 (Safety). Well-typed chemical solution is never a failure as defined in Defini-
tion 1.

Proof. See Appendix A 4. O

Finally, to combine class evaluation and chemical reduction together, we have the following
theorem stating the overall soundness property of the type system:

Theorem 4 (Soundness). Let P be a process. If - P, then E P |p P,, P, is not an error
and the chemical reduction of Ik P, never fails.

Proof. Because - P <= F (IF P) by typing rules, this theorem holds as a corollary of
Theorem 1, Theorem 2, and Theorem 3. U

INRIA

Information Hiding, Inheritance and Concurrency 27

6.2 Our hiding is “hiding”

Besides the basic soundness property, the type system and the hiding semantics conform
to what common sense suggests about hidden names. We argue informally in this section,
through examples.

First, the type system rules out any inheritance that tries to access a hidden name. For
example, in the following definitions:

class c¢; =

a() > this.Ch() or Ch() > P

hide {Ch}
class d; =

C1

or b() > this.Ch()
Although channel Ch is defined in class c1, it is hidden. Hence in the derived class d;, Ch is
not accessible. The type system will report a “unbound name” error when typing class d;.

Moreover, once a name is hidden, it is reasonable to define an unrelated channel that
happens to have the same name. For example, in the following code:

class coy =
a(x) > this.Ch(x)
or Ch(i) > out.print_int (i)
hide {Ch}
class dy =
C2
or Ch(s) > print_string s
or b(x) > this.Ch(x)
Both classes ¢y and dy are well-typed in spite of the fact that the two definitions for channel
named Ch have incompatible types and behaviors: one receives and prints an integer and the
other receives and prints a string. Besides, our hiding semantics guarantees that late-binding
is not applicable during the inheritance. Namely, if o is an object created from class ds, then
0.a(x) actually sends a message to the fresh name corresponding to the hidden Ch, which
requires x be an integer, and will print out this integer. While on the other hand, o.b(x)
calls the newly defined channel Ch, which waits for a string argument x, and will print out
this string.
Finally, the exact name of the hidden channel does not matter. For example, if we define
a variant class for class cq as follows:

class c, =
a(x) o this.A’'(x)
or A'(i) > out.print_int (i)
hide {A"}
Then both ¢y and ¢, are well-typed, and provide the same interfaces to their users. Replacing
co by cb in the definition of class do makes no difference.

7 Prototyping OJoiny

As a proof of concepts, we coded a prototyping system for OJoing. This prototype is not to
be confused with JoCaml, our implementation of the join-calculus on top of the OCaml sys-

RR n°® 5631

28 Ma,Maranget

tem [13, 20]. Shortly, the JoCaml runtime system is a minimal extension of the thread systems
of OCaml— There are three different thread libraries in OCaml. It is mostly implemented by
calls to a specific library referred to as “J” in the following. Library J is written in OCaml.
It relies upon the essential features of ML, such as full functionality and pattern matching,
and upon libraries. Those libraries are both user-level ones, such as the thread library, and
system-level ones, such as the 0bj library that handles runtime values in an untyped manner.

Apart from showing that our design is of practical significance, our prototype aims at
demonstrating how object semantics and class operations can be integrated into the JoCaml
system. Writing the prototype gave us some insight on how we can perform such an extension
of JoCaml. In the following, we present those ideas. We pay significant attention to issues
such as static typing and separate compilation. As a matter of fact, JoCaml (like OCaml) is
a multi-module system that features separate compilation of implementations and interfaces,
and a fully static type system. More concretely, separate compilation implies that not all the
class definitions are available at compile time. Therefore, at least some of the class operations
have to be performed at runtime. Types are totally absent at runtime, this means that
compiled code has no access of any kind to type information. However the code may assume
some properties, since it results from the compilation of well-typed source. This context
should be kept in mind while considering our design.

7.1 Type inference

Type checking takes place at the early stage of compiling. The type system of OJoiny has
been carefully designed to allow type inference. We claim that, given a typing environment
A and a process P (or a class C), it is decidable whether P (or C) is typable in A. Moreover,
we claim that if C' is typable then it has a principal type. In the prototyping system, the type
inference has been implemented on top of using in-place graph unification. Additionally, we
adopt some of the efficient techniques from [30].

7.2 Compilation of message sending

From a runtime perspective, objects are very similar to join-definitions. In JoCaml [20] join-
definitions are essentially implemented as data structures that, amongst other things, hold
an array of message queues. Abstractly, channels are pairs of such a data structure and of
a slot number. Channels defined conjointly (in the same join-definition) have the same first
component, and the slot number is an index into the sub-structures of the join-definition —
for instance, into message queues. In practice, the only operation performed on channels is

sending messages on them and, for that reason, channels are compiled into functions*:
let d =...in (* join—definition %)
let ¢ = (fun arg — J.send d ¢, arg) (* channel *)

Sending a message m on channel ¢ amounts to applying function ¢ to m. The library func-
tion J.send performs the actual sending of m to the channel whose slot number in definition d
is .. Observe that the variable d occurs free in the function above. Library function J.send
will first record message m into the appropriate queue (the one whose index is i.), then de-
pending on the current status of message queues, it may fire the appropriate guarded process,
or return immediately. Notice that all operations on the join-definition data structures (such

“We present the compiled code in OCaml syntax. In the actual JoCaml system, such code is “lambda-
code” i.e. loosely typed enriched A-calculus.

INRIA

Information Hiding, Inheritance and Concurrency 29

as queues) are protected by a mutual exclusion lock (in short a mutex), which is part of the
join-definition data structure. One of the first step of J.send consists in locking this object
mutez.

We will not elaborate on the implementation of J.send, that is, on how the join-pattern
matching can be performed efficiently by using the automata of [20]. Instead, we wish to
stress on the important point that, in JoCaml, the slot number 7. is computed at compile
time, since the definition is known completely at compile time, with all its join-patterns. By
contrast, in the object-oriented extension, the slot numbers result from class operations and
can no longer be known by the compiler. Thus a new compilation strategy is called for.

As regards message sending, we make a distinction between internal message sending (i.e.
through explicit this, as in this.c(m)), and external message sending (i,e, through a variable,
as in o.c(m)). In this section, we treat external message sending. Every object o holds a
field referring to its class that, amongst other things, includes a mapping from labels to slot
numbers. We will abstract on the details of this mapping and represent it as another library
function J.get_slot that takes an object and a label as arguments. And we compile o.c (m)
by using J.get_slot as:

let slot = J.get_slot o “c” in
J.send o slot m
Basically, when compared with message sending in join, there are two changes:

e In plain join, the binding d for join-definition is a compiler convenience that expresses
the sharing of a data structure by all channels. By contrast, in the object-oriented
extension, the join-definitions (i.e. the objects) are first class values, and bindings for
them originate from source.

e The mapping from labels to slot numbers must now be performed at runtime, at least
in the case of external message sending. The efficiency penalty is not as high as it
may seem at first. Faced with a similar problem, the developers of OCaml tested
various techniques, which achieve reasonable efficiency. To some extent, this efficiency
comes from replacing string comparisons by integer comparison. Labels get translated
into integers by a first, global, injective mapping, which is performed once at runtime
[35, Chapter 4] by means of a hash table, or even at compile time by using compile-
time hashing [16]. A second, per-class, mapping then translates those integers into
slot numbers. Some unpublished experiments seems to show that binary search is a
reasonable implementation of this second mapping. As usual, caching at call sites,
called in-line caching in [8], is also an option.

By contrast, retrieving slot numbers for internal message sending can be done more effi-
ciently, by one memory indirection. We explain the idea in the next section along with our
discussion about the compilation of class definitions.

7.3 The class layer

7.3.1 Basic classes

A basic class, i.e. one whose source trivially yields a class already in normal form, can be seen
as a join-definition with an optional set of abstract labels and an optional initializer. The
simplest form of a basic class is a single reaction rule. However, even the compilation of basic
classes cannot produce the automata of [20] immediately. The reason is that class definitions

RR n°® 5631

© 00 S Ok W N

o G O e
St WO N = O

30 Ma,Maranget

are open to class operations, while automata are too low-level data structures to allow such
operations. Instead, the runtime value of class definitions in normal form is some structure
which attempts a good balance between abstraction (for efficiency) and expressiveness (to
allow class operations). More specifically, on the one hand, to carry out class disjunction
and selective refinement, we require the join-patterns to be kept concrete in the runtime data
structure for classes. On the other hand, guarded processes have to be compiled into functions
now, for the sake of separate compilation. However, because of the possibility of a later
hiding of some private labels — that causes a-conversion of those labels, the code of guarded
processes has to be abstracted w.r.t. private labels. Moreover, additional implementation
concerns lead us into considering abstraction w.r.t. all labels (including public ones) and
channel formal arguments. Based on these considerations, we compile reaction rules as a list
of records. Those records possess three fields: field “jpt” is the join-pattern (which we write
in source syntax and enclose in single quotes, see below), field “tbl” is an array of labels
and channel formal arguments (or received variables), and field “c1o” is the guarded process
compiled as a function (a closure in runtime terms). We illustrate our ideas by the following
example:
class ¢ =
a(x) > this.A(x)
or A(y) > out.print_int(y)
We compile the reaction rules of class ¢ as the following list of two records:
let rules =
[{ipt ="a(x)’;
tbl = [| 'x’;’A” |];
clo = (fun dict this —
let x = J.get_queue this dict.(0) in
J.unlock this ;
J.spawn (fun () — J.send this dict.(1) x))};
{ipt =AM
tbl = [| 'y’ I1;
clo = (fun dict this —
let y = J.get_queue this dict.(0) in
J.unlock this ;
J.spawn (fun () —
let slot = J.get_slot out "print_int” in
J.send out slot y))}]
Functions “clo” have an uniform interface so that they can be called easily by generic code.
They take two arguments, the dictionary dict, and this, a binding for self. A dictionary is
an array of slot numbers that exists at runtime, of which the array “tbl” is the representation
at the class level. While dictionaries associate indices to slot numbers, “tbl” arrays associate
indices to formal arguments and labels, which we write in single quotes, as ’x’, A’ etc. so
as to avoid confusion with program variables. formal arguments are here for the purpose of
fetching arguments from message queues, while labels are for performing internal message
sending. The OCaml notation for the array ¢ of which elements are xg, 1, ...xn is [zo;
z1; ...; T |1 and array access is t. (4). Internal message sending are performed through
dictionaries. For instance here, the first guarded process performs an internal message send-
ing this.A(x), In the corresponding compiled code (line 7), the slot number of channel A is

INRIA

Information Hiding, Inheritance and Concurrency 31

retrieved as the second element of dictionary dict. Such compiled code that directly origi-
nates from the source of guarded processes is collected into functions that take argument “()”
(void of type unit). Those functions are used as argument to the library function J.spawn of
type (unit — unit) — unit. When applied to function f, J.spawn creates a new thread to
execute f applied to void. Before guarded processes are spawned, two tasks are performed:
first, the values of guarded process arguments (x and y above) are consumed from the ap-
propriate message queues (by library function J.get_queue at lines 5 and 11); second, the
object mutex is released (by library function J.unlock at lines 6 and 12). In other words,
closures “clo” are responsible for releasing the mutex taken by the library call J.send that
fired them. Most of the compilation of guarded processes is the one of the JoCaml system.
The key addition is the extra dictionary argument.

Basic classes are compiled into another kind of records with a first field “rules” holding
reaction rules, a second field “hidden” keeping the sets of hidden labels. Additionally, we
compile the initializer process as a special reaction rule init() > P. However, we omit the
trivial join-pattern init() and only keep the remaining two fields of the reaction rule: “tbl”
and “clo” in the third “init” field of the class structure. In case there is no initializer (class
initializer are optional), the “init” field holds a distinguished constant null. To sum up, the
class ¢ above is compiled into the following record:

let ¢ =

{rules = rules;

hidden =); init = null}

Note that, in our example, the last two fields are empty. Without ambiguity, we refer to this
data structure as a class value. It may be surprising that we do not record abstract labels
in class values, in spite of the fact that class normal forms actually comprise abstract labels
(as L in (D or L) init P,). As a matter of fact, L parts in class normal forms are there
only to express errors: an attempt to instantiate a class whose labels are not all concrete, or
an attempt to hide abstract names (rules EVAL-OBJECT-ERROR and EVAL-HIDE-ERROR2 in
Section 4.3). While all those errors cannot occur at runtime because of static typing, hence
no check is performed at runtime. As a consequence, there is no need to keep abstract labels
in class values. This does not mean that abstract labels are totally absent from class values:
some of the labels in “tbl” fields may in fact be abstract, when guarded processes try to send
messages on them.

7.3.2 Class initializers

Class initializers are simplified reaction rules in two aspects. First there is no join-pattern.
Second, guarded process compilation is simplified, because such guarded processes take no
argument. As a consequence, they do not modify the object data structures directly, and no
part of them need to execute in critical section. More specifically, initializer P is compiled
into the function:
(fun dict this — [[P])

where [[P]] is the informal notation for “compilation of process P”. By contrast, the general
compilation of guarded processes (as shown in the previous subsection) has to introduce calls
to J.unlock and J.spawn. Nevertheless, initializers must execute in their own thread. Later,
at the creation time of an object of some class ¢, the runtime support will spawn a new thread
to call function c.init.clo with appropriate dictionary and self arguments.

RR n°® 5631

32 Ma,Maranget

7.3.3 Hiding and class variable reference

Hiding is implemented by giving the ‘hidden” field some non-empty value. Freshening of
hidden labels is performed by the library function J.freshen at the time when the classes
are referred to by their names (cf. rule EVAL-CNAME in Figure 5). Notice that, since we
maintain an explicit set of hidden labels, the initial freshening of hidden labels performed by
rule EVAL-HIDE is not necessary. As an example, we slightly alter our previous example of a
class c, so that label A is hidden.

class ¢’ =
a(x) > this.A(x)
or A(y) > out.print_int (y)
hide {A}
...c L.
Then, compilation simply yields:
let ¢’ = {rules=rules; hidden={"A’}; init=null}

...J.freshen c’...

The library function J.freshen performs the freshening of the hidden labels in the class value
given as argument. The operation of freshening is defined in Figure 6. In practice, J.freshen
will first build a mapping from hidden labels to fresh names, or return immediately if the set
of hidden labels is empty. Notice that it is very easy to get fresh names in an implementation,
by means of a global counter. Actual freshening is not performed over guarded processes as
described in Figure 6, but rather on the “tbl” field of reaction rules. Here, assuming that
label A is mapped to the fresh label A’, the class value resulting from freshening, will be:

{rules =
[{jpt="a(x)’; tbl = [| 'x’; 'A” |];
clo = (fun dict this — ... };
{jpt ="N(y);5tbl = [y I];
clo = (fun dict this —...)}];
hidden={"A"}; init=null}

7.3.4 Class disjunction

In a separate compilation setting, class operations may apply to some free class names that are
defined in another module and whose normal forms will thus not be accessible until runtime.
As a consequence, performing complex class operations at compilation time is impossible.
Instead, we compile class operations as code which, when executed at runtime, will compute
the resulting class values. In practice, because of the complexity of class operations, most of
class operations will be performed by calling generic library functions. We do not believe that
inlining and specializing those calls is a good idea. Instead, we think this would probably
yield little benefit as regards execution time, but cause a significant penalty as regards code
size. In our view of application programs, class operations are less frequent than object layer
operations (i.e. object creation and message sending). Hence we more focus on producing
efficient code for objects.

Class disjunction aims at combining two compiled class values, essentially by accumula-
tion of reaction rules. Following the evaluation rule EVAL-DISJUNCTION, we mostly perform

INRIA

Information Hiding, Inheritance and Concurrency 33

list concatenation (written “@”) of the “rule” fields of the argument classes. Compilation
transforms class disjunctions into calls to the library function J.disjunct, which takes two
class values as arguments.
let disjunct c; co =
{ rules=cj.rules@cy.rules;
hidden=Set.union c;.hidden cy.hidden;
init=conjunct_init c¢;.init cy.init; }

At runtime, variables c; and c¢s are bound to the class values that we now operate on.
Function Set.union refers to standard library function for sets, with obvious semantics.

Initializers require a slightly more complicated treatment during disjunction. The com-
putation of new initializers is encapsulated in another library function J.conjunct_init.

let conjunct_init i; iy =

if i} == null then ig
else if iy == null then i;
else

let n; = Array.length i;.tbl

and ny = Array.length is.tbl in

{tbl=Array.append i;.tbl is.tbl;

clo=(fun dict this —
spawn (fun () — ij.clo dict this) ;
ig.clo (Array.sub dict nj ny) this);}
Function conjunct_init takes two initializers as arguments, which are the compilation out-
put of init processes P; and P», and returns a new initializer that should act as process
Py & P,. Following the JoCaml system, P; & P, is compiled as
J.spawn (fun () — [P ; [P2]

That is, the parallel composition “&” gets translated into explicit thread creation and se-
quence. As regards conjunct_init, in case either initializer is empty, then the result is the
other initializer. Otherwise, both initializers are non-empty, and the dictionary of the re-
sulting initializer is the array built by appending dictionaries, as reflected by the new “tbl”
field. The new “clo” function simply calls both initializers with appropriate dictionaries
(Array.sub t p £ computes the subarray of array ¢ whose length is £, starting at position p).
It is worth noticing that such a composition of initializers is possible because initializers do
not use the object mutex. Would it be the case, the above code would release the object mu-
tex twice. Such a simple composition will not be adequate for composing guarded processes
during selective refinement, which we examine now.

7.3.5 Selective refinement

Selective refinement is by far the most sophisticated amongst class operations. In fact, it is a
real challenge in compiler design. We illustrate our ideas by means of an example. We first
consider the example of one refinement clause.

| a(z) = a(y) & b(z) > this.B(z+y)

RR n°® 5631

© 00~ Ok W

o S TG S S o S S
YU W N~ O

17

34 Ma,Maranget

Observe that the clause above operates a change in formal arguments. Before the refinement,
variable z refers to the message sent on label a, while, after refinement, variable z is the
formal argument of label b. Furthermore, a new formal argument y is introduced.

We first review how reaction rules are rewritten by matching clauses (rule FILTER-APPLY
of Figure 5). The general form of a refinement clause is K; = Ko > @, and a matched
reaction rule is of the form M > P, with M = K; & K, where the congruence “ =" on join-
patterns means structural equality up to the commutativity and associativity of the parallel
composition “&”, and a-conversion of formal arguments. Then, the resulting rule is Ky & K >
Q@ & P. In practice, the commutativity and associativity of parallel composition are not very
annoying: all involved join-patterns can be represented as sorted lists of message patterns. By
contrast, a-conversion deserves attention. For instance, we assume some matched reaction
rule ’a(x)’ & K > P, then the rewritten rule with explicit formal arguments shown is
’a(y) & b(2)’ & K> Q & (P{’2’/>x’}). That is, we substitute 'z’ for ’x’ in process P.
Additionally a-conversion should guarantee that no name clash of formal arguments occurs,
that is, neither 'z’ nor ’y’ are formal arguments in K. In the following, for the sake of
simplicity, we shall assume that this last condition holds. It can be implemented by a prior
freshening of all formal arguments in refinement clauses, whenever rewriting is performed.

Rewriting of matched reaction rules will be performed by code compiled from clauses.
More specifically, given a clause, the compiler produces a “class builder” function. Here is
for instance the class builder resulting from the compilation of the clause above:

let builder rule =
let n = Array.length rule.tbl in
let new_rule =
{ jpt=J.refine_jpt ['a’] 'a(y) & b(z)’ rule.jpt;
tbl=
Array.append
(J.subst_tbl
[(z’, J.get_formal rule.jpt ’a’)]
rule.tbl)
[l ’z%y% B |];
clo=(fun dict this —
let z = J.peek_queue this dict.(n+0)
and y = J.get_queue this dict.(n+1) in
J.spawn (fun () — J.send this dict.(n+2) (z+y)) ;
rule.clo dict this) } in
{rules=[new_rule] ;
hidden=0; init=null;}
The new join-pattern is built by some external function J.refine_jpt (line 4). Func-
tion J.refine_jpt takes a list of labels (dI[K1]), a join pattern (K3) and another pattern (M,
the join-pattern of the matched reaction rule) as arguments. It returns a new join-pattern M’,
which is M with all message patterns whose label is in the list removed, and with K9 added.
The new dictionary is built by appending some additional slots at the end of the a-converted
dictionary of the original reaction rule (lines 6-10). The performed a-conversion is the one
we wrote as P{’z’/>x>} in the previous paragraph. However, we cannot change anything
in the “clo” function resulting from the compilation of P. Thus, a-conversion operates on
dictionaries, using the library function J.subst_tbl. The formal argument of label 'a’ in M

INRIA

Information Hiding, Inheritance and Concurrency 35

(x in our exemple) is extracted from M by another external function J.get_formal. One
should remark that the existence of such a-conversions of formal arguments explains why we
introduce formal arguments in dictionaries.

We now describe the new “clo” function, which should act as @ & P (lines 11-15). Ac-
cording to the structure of the new dictionary, process @ (which is this.B(z+y)) is compiled
with an explicit offset n over dictionary accesses (lines 12-14). The exact value of n will be
known at runtime, as the dictionay size of the matched rule (line 2). It is worth noticing that
the values of the formal arguments of Ky (’z’ and ’y’) are fetched in different ways depend-
ing upon whether they occur in both K; and Ks, or in K5 only. In the former case, (formal
argument ’z’, line 12) we use a new library function J.peek_queue, while, in the latter case
(formal argument ’y’, line 13), we use the normal J.get_queue. Function J.peek_queue
returns the value that stands first in the queue, without removing it from the queue. By
contrast, J.get_queue removes the value from the queue. We do so because the value of
argument 'z’ is consumed from the appropriate queue by function rule.clo, while function
rule.clo knows nothing about argument ’y’. The closure of the matched reaction rule (i.e.
rule.clo) is simply called as the last operation of the new “clo” function (line 15). One
should remember that the object mutex of this is released by rule.clo. The mutexes of
OCaml have the following behavior: when a thread attempt to lock a mutex owned by an-
other thread, then this thread suspends, until re-activated when the current owner of the
mutex releases the mutex. As a consequence, the call to J.spawn at line 14 is enough to
prevent deadlock.

Application of refinement clauses is performed by the library function J.filter. This
function takes two arguments. The first argument is a list of pairs, of which first components
are the selective patterns Ky and second components are the class builders compiled from
clauses K1 = Ko >). The second argument is a reaction rule. The task of J.filter is to
identify the matching clause and to return the rewritten reaction rule:

let rec filter clauses rule = match clauses with
| [— (% cf. rule FILTER-END %)
{rules = [rule] ; hidden=0; init=null; }
| (Ki, builder):rem —
if Set.subset (dl_jpt K;) (dl_jpt rule.jpat) then
builder rule
else (x cf. rule FILTER-NEXT *)
filter rem rule
The function above makes use of OCaml pattern matching on lists of pairs to find the first
clause that matches reaction rule rule in the sense of Section 4.2 (subsection Filter eval-
uation). The matching condition is that dI[K7] is included in the labels defined by the rule
pattern. We here make use of the trivial external function J.d1_pat to compute labels defined
by a join-patterns (see Figure 4 for the definition of dI[-] over join-patterns). If no matching
clause is found, the argument reaction rule rule is returned, packed as a simple class value.
Finally, selective refinement is performed by a call to another library function J.refine.
Function J.refine takes a list of compiled clauses and a class value as arguments. It returns
the new class value resulting from selective refinement.

let refine clauses c =
let ¢cs = List.map (filter clauses) c.rules in
let r = disjuncts cs in

RR n°® 5631

36 Ma,Maranget

{ rules=r.rules;
hidden=c.hidden;

init=c.init; }
The code above applies J.filter to all the reaction rules of the argument class c, yielding
a list of rewritten classes. The library function List.map, when given a function f and a
list [zo; x1; .- .; zp] as arguments, returns the new list [f zo; f z1;...; f z5]. Function J.refine
then combines the results of filtering with class disjunction (cf. rule FILTER-OR in Figure 5).
Function J.disjuncts is a simple extension of the previously introduced function J.disjunct.
Function J.disjuncts takes a list of class values as argument, while J.disjunct operated on
two class values only. (cf. previous section Class disjunction). Note that because selective
refinement has no influence to hidden names and initializers, the hidden field and the init

field remain the same.

7.4 The object layer
7.4.1 Classes in objects

Class values turned out to be adequate for class operations. However, they are not adequate to
be used as the class field in objects. First, for code to execute, the arrays of formal arguments
and labels in the “tbl” field have to be replaced by arrays of slot numbers. Second, keeping
the concrete join-patterns in the “jpt” field would yield inefficient computations for deciding
whether to fire a guarded process or not when receiving messages.

Objects will thus hold a pointer to a different kind of class value, a run class value.
Computing run class values from class values is conceptually simple. One should first collect
all defined labels and allocate slot numbers for them as successive integers, starting from zero.
This yields a mapping ¢ from labels to slot numbers. Then, a more low level representation
of reaction rules is computed. For each reaction rule, we extend o with mappings from formal
arguments to slot numbers in the sense that: given pattern [(u) we add the the binding
u — o(l). This augmented mapping is then applied to the “tbl” field of the reaction rule,
yielding the final dictionary. Join-patterns are translated into bitfields that represent sets of
slot numbers, a compact representation for sets of labels. Closures in the “clo” fields are of
course left unchanged. The same transformation from labels to slot numbers is performed on
the initializer, when present. Finally, run class values need an extra “slots” field that holds
the mapping from public labels to their slot numbers.

As an exemple, we consider the class ¢ of Section 7.3.1 and the selective refinement of
Section 7.3.5:

class ¢ =
a(x) > this.A(x)
or A(y) > out.print_int(y)

class d =
match ¢ with
| a(z) = a(y) & b(z) > this.B(z+y)
end
or B(x) > out.print_int(x)
Following the rules of Figure 5, class evaluation yields the class normal form:

a(y) & b(z) > this.B(z+y) & this.A(z)

INRIA

Information Hiding, Inheritance and Concurrency 37

or A(y) » out.print_int(y)
or B(x) > out.print_int(x)
And at runtime, the corresponding class value is:
{ rules=[
{jpt="aly) & b(2)’;
tbl=[|"z";’A 'z’ ; y’; B’ |1;
clo=... };
{jpt="A(y)’ ; tbl=I[] 'y’ |1 ; clo=...};
{jpt="B(2)’ ; tbl=[l| 'z’ |1 ; clo=...} 1;
hidden=0; init=null }
We assume the slot allocation is ’a’ — 0,°b’ +— 1,’A” — 2, B’ +— 3. Then the resulting
run class value is:

{ rules=[
{ jpt=0B0011 ; tbl=[] 1;;2;1;0;3 |1 ;
clo=... };

{ jpt=0B0100 ; tbl=[| 2 |1 ; clo=...};
{ jpt=0B1000 ; tbl=[]| 3 |1 ; clo=...} 1;
init=null;
slots=[(“a”,0); (“b”,1)]1;}
In the code above, bitfields are written as integers in binary notation. The mapping from
public labels to slot numbers is represented as a list of pairs of strings and integers. However,
more efficient implementations are possible (see the end of Section 7.2 on external message
sending). Without further detail, we state that the computation of run class values from class
values is performed by the library function J.create_runclass.

7.4.2 Object instantiation

The computation of run class values is performed at object instantiation time. In order to
perform this computation at most once, run class values are cached in a new, yet unshown,
field “runclass” of the class value structure. We assume a default value of null for the
field “runclass”. More concretely, the creation of objects is performed by the library func-
tion J.create_instance, which takes a class value as argument.

let create_instance ¢ =
if c.run_class == null then
c.runclass < create_runclass c ;
let runclass = c.runclass in
let o =
{ status=0;
mutex=Mutex.create () ;
queues=... ;
class=runclass } in
let i = runclass.init in
if i != null then
spawn (fun () — i.clo i.tbl o) ;
o

RR n°® 5631

38 Ma,Maranget

First, if necessary, the run class value is computed. Then the object value, shown here as
another kind of record, is computed. The record for objects holds four fields: field “status”
expresses the current status of message queues as a bitfield; fields “mutex” holds the object
mutex; field “queues” holds an array of message queues; and field “class” holds the run
class value of the object. This last field is shared by all objects created from the same class.
Before returning the created object, the initializer process is spawned, when present.

We now have produced the automata of the JoCaml system [20]. They are represented by
the bitfields in the “jpt” fields of run class values and the “status” field of objects values.
We interpret those as sets of slot numbers. In the case of the “jpt” fields, such sets simply
encode join-patterns in a compact way. By contrast, the “status” field evolves over time and
expresses the current status of message queues: the queue of slot i, is empty if and only if
the value of bit number . in the “status” field is zero. The behavoir of objects is abstracted
by automata. The states of those automata are possible values of the “status” field, while
the transitions of them express status evolving upon message receiving. During transitions,
some actions may be performed.

As a concrete example of a join-matching automaton, we show the one of an object of the
previous class d, as the diagram in Figure 11. The mapping from labels to slot numbers is
recalled at the bottom of the figure.

3210

slot allocation: |B|A|b|a

queue message: —» launch G4: - --

launch Ggp: ----- - launch Gg: ------ -

Figure 11: The automaton of objects of class d

Observe that there are only three states present in the automaton but not 2*. This is due
to the policy of firing guarded processes as soon as possible, which in practice removes all the
matching status from the automata. Transitions are decorated by channel names, meant to
pointing out messages received on which channel actually cause the transitions. Four different

INRIA

Information Hiding, Inheritance and Concurrency 39

kinds of arrows denote four different kinds of actions taking place along with transitions. The
action attached to a solid arrow is simply to store the message in an appropriate queue,
while the other three kinds of arrows express the firing of either of the three possible guarded
processes as shown in Figure 11. We denote the guarded process of the first reaction rule as
Gp, the second as G 4 and the last as Gg. As an exemple of automata behavior, consider
the situation when all queues are empty (state 0000). Messages received on either label A
or B will immediately trigger either G4 or Gp, and the object status does not change. By
contrast, messages on either label a or b will result in queueing the message and changing
the state to 0001 or 0010 respectively. Note that the non-determinism from the state 0001
upon message receiving on channel b is a “faked” one. Although it seems to have two possible
transitions, the behavior will always be to trigger guard G,p, and the resulting state is decided
deterministically according whether some messages are still present in the queue of channel a.
Similarly, the two possible transitions starting from state 0010 upon message receiving on
channel a do not introduce non-determinism, either.

7.4.3 Relations between class and object layers

In our semantical model, which we use for proving type soundness, there is a clear separation
between the evaluation of classes and objects. Classes are first rewritten to class normal
forms (Section 4), yielding valid input for the object chemical machine (Section 2.3.2). It
is obvious that the simple model of chemical semantics does not account for the functional
part of our implementation (i.e. ML). Nor does it account for more basic computations,
such as computing on numbers. Although models that combine concurency and functional
programming [4] or concurrency and ordinary values [1] exist, we do not attempt such a
combination. Instead, we think that our relatively simple framework is sufficient to guide a
sound implementation, given that functional and concurent aspects do not interfer much.

However, a noticeable discrepancy exists between our model and our proposed implemen-
tation. In the semantical model, the class layer and the object layer are clearly separated,
while, in the implementation, the execution of class and object operations mix. The discrep-
ancy is particularily salient when class operations occur inside guarded processes. Consider
the following exemple, where C is a class definition and P a process:

class ¢ =

a(x) > class d = b(y) > this.A(x+y) or C in P
In the semantical model, class d is reduced to class normal form once, prior to chemical eval-
uation; whereas, in the implementation, class d is computed whenever a message is sent on
label a. The model behavior stems from rule EVAL-REACTION in Figure 5. The implementa-
tion behavior stems from the compilation of class operations in guarded process: the process
guarded by pattern a(x) is compiled into a function f that performs class operations and
class d will be rebuilt whenever function f is called.

In fact, we can explain the discrepancy between model and implementation more precisely.
In the model, object variables can occur free in class normal forms, while in the implementa-
tion, class values, like all values, resemble ground terms. A clean solution is to restrict class
operations and to enforce that they occur at toplevel only. In OCaml, toplevel bindings are
computed once only, and this solution accords with semantics better. But then, to recover
expressiveness, we should allow class definition parameterized by ordinary (i.e. non-class)
variables.

class d(x) = b(y) > this.A(x+y) or C

RR n°® 5631

40 Ma,Maranget

class ¢ = a(x) > P{d(x)/4}
We could even have the compiler to change such “inner classes” into toplevel classes, so as to
allow inner classes in users programs. However, we have no theory of parameterized classes,
nor have attempted to implement them. We expect difficulties, especially as regards typing.
Nevertheless, it is worth noticing that the bindings of OCaml are immutable, that is, variables
cannot be assigned. As a consequence, we do not face the same difficulties with free variables
in inner classes as Java does.

8 Related work

The idea of using join-patterns for class synchronization abstraction in object-oriented pro-
gramming is also followed by other language design, such as polyphonic C! [2] and Join
Java [18]. However, classes in those only support limited inheritance of Join abstractions.
Fournet et al. study this problem based on a theoretical foundation in [15]. They extend the
Join calculus with a class language, in which various operations are designed to support a
variety of inheritance paradigms. Our previous work [22] improves their model by proposing
a more expressive type system. This paper introduces further improvement from another an-
gle. We enrich Fournet et al.’s calculus with information hiding. To draw a comparison, the
model presented in this paper on one hand allows more precise and flexible visibility control
of classes than in [15], on the other hand allows more degree of type abstraction than in [22].

Our hiding mechanism is inspired by the design of its counterpart for sequential classes
in OCaml, which is not described in its theoretical calculus [31] but is present in its real
system. Briefly, in the sequential case, hiding amounts to freezing method names, while
our extension additionaly performs a similar action on synchronizations policies defined by a
class. From typing point of view, hiding method name in OCaml also amounts to removing
the hidden names from class types. However, hiding in OCaml (and in MOBY [10]) is
performed implicitely by specifying restricted class types. Given the sophisticated class types
of OJoinyg, such an option would not be convenient for concurrent classes. In particular, it
seems impractical to deprive programmers from compiler help in figuring out the impact of
hiding on synchronization and, above all, polymorphism. Thus, in contrast to OCaml, we
provide an explicit class operator for hiding, and the type of the resulting class is inferred
automatically.

Fisher and Reppy design a ML style module system to take care of the visibility control
of classes in MOBY [10, 9]. One significant difference between MOBY and our design is
in the hiding of public members of a class. Such a difference originates in the problems
between hiding public names and supporting advanced features, such as selftype (also known
as mytype) and binary methods [5]. As observed by Rémy and Vouillon [31, 36], and also by
Fisher and Reppy [10], these two aspects do not trivially get along without endangering type
soundness. A simple solution to these problems is to support either. We choose to support
the notion of selftype while limit hiding to private channels, as is the case with OCaml. By
contrast, Fisher and Reppy choose complete visibility control over selftype in MOBY. Notice
however that Vouillon proposes a comprehensive solution [36].

More specifically, problem manifests itself when selftype is assumed outside the class and
we hide a public name afterwards. As an example, consider the following class definitions:

class cg = f(x) > x.b(1)

INRIA

Information Hiding, Inheritance and Concurrency 41

class c; =
a() » obj x = ¢g in x.f(this)
or b(n) > out.print_int(n)
Label f of class ¢y expects an object with a label b of type int. This condition is satisfied
when typing the guarded process of label a in class ci, because the self object this does have
a label b of type int. However, later inheritance may hide the label b (in class c3), and then
define a new label also named b but with a different type string (in class c3).
class co = c; hide {b}
class c3 =
C2
or b(s) > out.print_string(s)
Apparently, although the above code is type correctly, the following process will cause a
runtime type error: providing an integer when a string is expected.
obj o = c3 in o0.a()
Furthermore, another kind of problem may happen when selftype appearing as the argu-
ment type of some labels, i.e. binary methods, as in the following example:

class cg =
a(x) > xm()

or b() > this.a(this)

orm() > ...

Because of the second reaction rule, the argument of label a is of selftype, and moreover,
with a label m, as expected by the guarded process of label a. If we allow to hide the publica
name m during inheritance as in:

class ¢; = ¢o hide {m}
the selftype changes to without label m a posteriori. As a consequence, messages can be sent
to label a with an object that may not have a m label. This is clearly unsound.

A simple solution to these problems is to support either. We choose to support the notion
of selftype while limit hiding to private channels, as is the case with OCaml. By contrast,
Fisher and Reppy choose complete visibility control over selftype in MOBY. However, Vouillon
proposes a comprehensive solution by making use of views [36]. All those works [10, 9, 36] use
Riecke-Stone style dictionaries [32] to capture the dynamic semantics of hiding. It is worth
noticing that dictionaries, which basically are bindings from labels to labels, appear explicitely
in the cited calculi, but also in the language of [36], thereby adding significant complexity.
Compared with their approach, our semantics of hiding by a-conversion is simpler, and suffices
to the purpose of hiding private names only. Note that we also employ dictionaries, but only
at the implementation level for efficiency.

Another way of hiding is by subtyping, structural or inheritance-based, at object level.
Namely, an object of sub-type can be used as an object of super-type. This kind of hiding
is also referenced as coercion (or subsumption). However, as we address parametric poly-
morphism rather than subtyping polymorphism in our calculus, this kind of hiding is not
discussed in this paper.

9 Conclusion and future work

We extended the hiding mechanism from sequential to concurrent object-oriented settings.
Along with the privacy mechanism, the hiding mechanism provides a flexible way to control

RR n°® 5631

42 Ma,Maranget

class accessibility, both at object level and class level. We designed the hiding mechanism as
yet another operation on classes. The semantics is formally defined by a-converting hidden
names to fresh names, which exploits the usage of the keyword this. We believe our semantics
of hiding could also be easily adapted to formalize the corresponding mechanism in OCaml,
and thus could be applied to the theoretical model of OCaml [31].

We also designed a type system in the tradition of ML to accompany the hiding operation.
Hiding has been achieved by eliminating the hidden names from class types. However, wild
elimination endangers safety. More precisely, the eliminated class types can only express par-
tially the set of free type variables shared by correlated labels, thus falls short in manifesting
the impact of synchronization on polymorphism [22, 14, 6] to the full extent. This deficiency
is critical to type safety. As a solution, we equipped class types with a set of “dangerous
variables” to recover some of the polymorphism impaired by hiding. We claim that types
for hidden classes can be automatically inferred. Although lacking a formal treatment, we
prototyped a type inferer to demonstrate the idea.

We proved the soundness of our type system, both at the class evaluation level and the
chemical machine level. The use of big-step semantics with evaluation environment demands
changes to the proof techniques of [15, 22]. More specifically, additional typing rules are
needed to type evaluation environments polymorphically. Moreover, the different effects of
hiding to the semantics (i.e. a-converting the hidden names) and to the type system (i.e.
eliminating the hidden names) causes further impact to the soundness proof. An extra typing
rule called TYPE-REVEAL was actually called for to bridge the gap, where revealing intuitively
reflects the reverse of hiding. Besides the standard soundness property, we informally argued
that our mechanism deserves the name “hiding”.

We have achieved significant improvements over the original of Fournet et al. [15], that
is, [22] as regards the class system expressiveness and this paper as regards visibility control
and simplification of runtime semantics. We claim that those improvements yield a calculus
mature enough to act as the model of a full-scale implementation, which we plan as the
integration of our class-based design into the JoCaml system [13]. We have not yet performed
this extension, but rather wrote a prototype implementation from which we draw some precise
implementation guidelinesMore precisely, we explain how to perform class operations in a
separate compilation setting and how to implement message sendings to objets at a small
additional price over ordinary message sendings in Join.

Future work. We believe our hiding mechanism can be easily adapted to module systems,
where modules become the boundary of hiding. In analogy to OCaml, a module will consist
of two parts: the implementation and the interface. Implementations are .ml files containing
definitions, and interfaces are the corresponding .mli files. Then, to carry out hiding, we just
list the hidden channels in the .ml% file and let the type system infer the restricted class types
and replace the hiding clause by the inferred types.

Hiding also makes it possible for several classes implemented differently to have a unified
external interface. Extending the semantics of inheritance so that we can support a generalized
version of selective refinement will be a challenge. Generalized selective refinement will apply
to class types instead of class definitions, thereby acting more like an autonomous class-to-
class operator.

INRIA

Information Hiding, Inheritance and Concurrency 43

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In the
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’01), pages 104-115, 2001.

[2] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C*. ACM
Transactions on Programming Languages and Systems, 26(5):769-804, 2004.

[3] P. D. Blasio and K. Fisher. A calculus for concurrent objects. In the Proceedings of the
7th International Conference on Concurrency Theory (CONCUR’96), LNCS 1119, pages
655-670, 1996.

[4] G. Boudol. The 7-calculus in direct style. In the Proceedings of the 24rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’97), pages 228—
241, 1997.

[5] K. Bruce, L. Cardelli, G. Castagna, G. T. Leavens, and B. Pierce. On binary methods.
Theory and Practice of Object Systems, 1(3):221-242, 1995.

[6] G. Chen, M. Odersky, C. Zenger, and M. Zenger. A functional view of join. Technical
Report ACRC-99-016, University of South Australia, 1999.

[7] S. Dal-Zilio. An interpretation of typed concurrent objects in the blue calculus. In the
Proceedings of the International Conference IFIP TCS 2000, LNCS 1872, pages 409-424,
2000.

[8] L. P. Deutsch and A. M. Schiffman. Efficient implementation of the smalltalk-80 system.
In the Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL’8), pages 297-302, 1984.

[9] K. Fisher and J. Reppy. Foundations for Moby classes. Technical memorandum, Bell
Labs, 1998.

[10] K. Fisher and J. Reppy. The design of a class mechanism for MOBY. In the Proceed-
ings of the ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation (PLDI’99), pages 37-49, 1999.

[11] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming. PhD
thesis, Ecole Polytechnique, Nov. 1998.

[12] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-
calculus. In the Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’96), pages 372-385, 1996.

[13] C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. The JoCaml system. Software
and documentation available at http://pauillac.inria.fr/jocaml, 2001.

[14] C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Implicit typing & la ML for the
join-calculus. In the Proceedings of 8th International Conference on Concurrency Theory
(CONCUR’97), LNCS 1243, pages 196-212, 1997.

RR n°® 5631

44

Ma,Maranget

[15]

[16]

[17]

C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Inheritance in the join calculus.
Journal of Logic and Algebraic Programming, 57(1-2):23-69, 2003.

J. Garrigue. Programming with polymorphic variants. In the Proceedings of ML work-
shop, 1998.

A. D. Gordon and P. D. Hankin. A concurrent object calculus: reduction and typing.
In the Proceedings of 3rd International Workshop on High-Level Concurrent Languages
(HLCL’98), ENTCS 16(3), 1998.

G. S. Itzstein and D. Kearney. Join Java: An alternative concurrency semantics for Java.
Technical Report ACRC-01-001, University of South Australia, 2001.

J. Kleist and D. Sangiorgi. Imperative objects as mobile processes. Science of Computer
Programming, 44(3):293-342, 2002.

F. Le Fessant and L. Maranget. Compiling join-patterns. In the Proceedings of 3rd
International Workshop on High-Level Concurrent Languages (HLCL’98), ENTCS 16(3),
1998.

Q. Ma. Prototyping on object oriented join calculus. Master’s thesis, D.E.A. Program-
mation: Sémantique, Preuves et Langages, Université Paris 7-Denis Diderot, Sept. 2001.

Q. Ma and L. Maranget. Expressive synchronization types for inheritance in the join
calculus. In the Proceedings of the 1st Asian Symposium on Programming Languages and
Systems (APLAS’03), LNCS 2895, pages 20-36, 2003.

S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented con-
current programming languages. In G. Agha, P. Wegner, and A. Yonezawa, editors,
Research Directions in Concurrent Object-Oriented Programming, pages 107-150. MIT
Press, 1993.

M. Merro, J. Kleist, and U. Nestmann. Mobile objects as mobile processes. Information
and Computation, 177(2):195-241, 2002.

O. Nierstrasz. Towards an object calculus. In the Proceedings of the ECOOP’91 Satellite
Workshop on Object-Based Concurrent Computing, LNCS 612, pages 1-20, 1991.

M. Odersky. Functional nets. In the Proceedings of the 9th European Symposium on
Programming (ESOP’00), LNCS 1782, pages 1-25, 2000.

M. Papathomas. A unifying framework for process calculus semantics of concurrent
object-oriented languages. In the Proceedings of the ECOOP’91 Satellite Workshop on
Object-Based Concurrent Computing, LNCS 612, pages 53-79, 1991.

B. C. Pierce and D. N. Turner. Concurrent objects in a process calculus. In the Pro-
ceedings of the International Workshop on Theory and Practice of Parallel Programming
(TPPP 94), LNCS 907, pages 187-215, 1995.

G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

INRIA

Information Hiding, Inheritance and Concurrency 45

[30] D. Rémy. Extending ML type system with a sorted equational theory. Research Report
RR-1766, INRIA-Rocquencourt, 1992.

[31] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension to ML.
Theory And Practice of Object Systems, 4(1):27-50, 1998.

[32] J. G. Riecke and C. A. Stone. Privacy via subsumption. Information and Computation,
172(1):2-28, 2002.

[33] D. Sangiorgi. An interpretation of typed objects into typed m-calculus. Information and
Computation, 143(1):34-73, 1998.

[34] V. T. Vasconcelos. Typed concurrent objects. In the Proceedings of ECOOP’9; Workshop
on Object-Based Concurrent Computing, LNCS 821, pages 100-117, 1994.

[35] J. Vouillon. Conception et réalisation d’une extension du langage ML avec des objets.
PhD thesis, Université Paris 7-Denis Diderot, Oct. 2000.

[36] J. Vouillon. Combining subsumption and binary methods: an object calculus with views.
In the Proceedings of the 28rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’01), pages 290-303, 2001.

[37] D. J. Walker. Objects in the pi-calculus. Information and Computation, 116(2):253-271,
1995.

RR n°® 5631

46 Ma,Maranget

A Typing proofs

We present the detailed soundness proofs of the OJoing calculus in this appendix.

A.1 Basic properties

Let us first establish some auxiliary lemmas. Let A range over any right hand side of a typing
judgment except for chemical typing judgements. (Because for chemical typing judgments,
the type environments are always empty.) We have that the following lemmas hold.

Lemma 2 (Useless variable). For any judgment of the form A F A, and any variable x
that is not free in A we have:

AFA << A+ A FA

where A’ is either z : ¢, or z: ¢,z : VX.B.

Lemma 3 (Substitution of type variables). Let n be a substitution on type variables.
We have:
AFA = n(A)Fn(A)

Definition 2 (Instance of type scheme). We say that a type 7 (7€) is “an instance of” of
a type scheme VX.19 (VX.7§), denoted by 7 X VX.19 (1¢ X VX.7§), if and only if there exists
an substitution n whose domain is a subset of X and n(mo) =71 (n(7§) = 7¢).

Definition 3 (More general type scheme). Given two type schemes, we say that one is
“more general” than the other if and only if any instance of the latter is also an instance of
the former.

and we have the following lemma:

Lemma 4 (Generalization). If A F A, if A" replaces some assumptions in A by more
general ones, then A' = A.

Proof. A formal proof can be derived by induction on the structure of A. Here we give some
intuition. Let N denote the set of names bound in A (A’). If judgment A F A holds, there
must exist a typing tree which has this judgment as root. Then replacing A by A’, and A(n)
by A'(n) for any name n € N, in this tree, we get a new tree with root A’ - A. To demonstrate
that this new tree is also a valid typing tree, i.e. A’ - A holds, the only tricky point worth
elaborating is in cases when the type of some name n € N is referred to. For any name n, if
AF n: 1, following typing rule TYPE-ONAME or TYPE-PRILAB or TYPE-CNAME, we must
have 7 < A(n). Then because A’ is more general than A, following the definition, we also
have 7 < A'(n), hence A’ u : 7. The replacement of the new type environment A’ in other
places in the tree preserves typing trivially. O

A.2 Strong soundness w.r.t. class evaluation with hiding

We first show the soundness with respect to the filter evaluation s .

INRIA

Information Hiding, Inheritance and Concurrency 47

Lemma 5 (Soundness w.r.t. filter evaluation). Given a filter D with S, if for some
type environment A the following conditions hold:

AFD:=((p)BYY A+S=B® +WwithR:W' B1tB

then we have:

D with § s C

where C is not an error and:
AFC =) ((B'1TW)eB)"Y

Proof. We reason by induction on the depth of the evaluation of D with S. We distinguish
the root rule we use according to the structure of D with S.

Case (Filter-End): We assume S = (). Then for any D, we always have:

D with(s D

By assumption, we also have:

AF D:(¢(p)BVY (1)
At-¢=B'E (2)
W with R W' (3)
Bt B

and we should show A F D :: ((p)((B' | W) @ B)W”V-

In (2), by typing rule TYPE-EMPTYCLAUSE, we have B’ =), R = (), hence in (3) we
have W' = W, hence we have ¢(p)((B'|[W")@B)"W"Y = ¢(p)B"Y. We conclude by (1).

Case (Filter-Apply): We assume D = K; & K > P,and S = K1 = Ko Q | S'. By
assumption, we have the following typing derivation for D. Note that we are going to
number some premises in the derivation tree and some formulas in-lined in order to be
able to refer to them later and this style will be followed throughout this appendix.

TYPE-SYNCHRONIZATION
(6) A1 F K1 HN Bl (5) A1 FK: Bk

All_Kl&K::BlLﬂBk
dom[Al] = rv[K1 & K] (4) A+ A FP,

AFK & K> P, :: ¢(p)BVY

TYPE-REACTION

where B = By W By, (7) W = {dI[K; & K]} = {dI[K;] WdI[K]}, and V = 0.

Meanwhile, we have the following typing derivation for S:

TyYPE-CLAUSE

(8) A2 F K1 = Bkl

(9) Ag - Ky :: By dom[As] = rv[K>]
(10) A+ A2 FQ AF S :: B,

AFK = KoQ| S8 = B"

RR n°® 5631

48

Ma,Maranget

where B' = (By; @ By @ Bs), (11) R =dI[K;] = dI[K3] | Rs, and rv[K;] C rv[K>].
By (7) and (11), the typing derivation of - W with R :: W' must look like:
TYPE-APPLY
FdI[K;] wdI[K] with dI[K;] = dI[K3] | Rs :: dI[K2] W dI[K]

TYPE-OR
F W with dI[K;] = dI[K3] | R :: w'

where W' = {dI[K;] WdI[K]} = {dI[K2 & K]}. Note that the disjoint union & in W’
guarantees the linearity of the derived join-pattern Ko & K as regards labels. In other
words, we have:

di[Ko]NdI[K] =0 (12)
Moreover, by the linearity of received variables in join-patterns and a-conversion, we
can always have:
rv[Ka] Nrv[K] =0 (13)
Hence following rule FILTER-APPLY, we have:
Ki& Ko P, withK; = Ky Q| S s Kb & Ko P, & Qor L (14)
where L = dI[K;] \ dI[K}3].

We go on to show:

Ar Ky & Ko P, & Qor L : C(p)((B' | W) @ B)W'"Y

According to the typing rules of join-patterns, if A - K :: B, we must have the following;:
dom[B] = dI[K]; rv[K] C dom[A]; and assuming K = ... & I(...,z,...) & ... and
z:17 €A, B(l) =(...,7,...). Then from (6) and (8), we have rv[K;] C dom[A;] and
rv[Ki] C dom[As]. And because dom[A;] = rv[K; & K| and dom[A2] = rv[K3], by (13),
we thus have dom[A4;] N dom[A2] = rv[K;]. Moreover, we have dom[B;] = dI[K;] =
dom([By;] also from (6) and (8). And because B T B’, we have B; = Bj;. Therefore,
in (6) and (8), A; and A intersect and coincide on rv[K;]. By applying Lemma 2 to ()
and to (g), we have:

A1+ Ay - K :: By, (15)
A2 + Al F K2 N Bkg (16)

where dom[By] = dI[K], dom[Bys] = dI[K3]. Remark that we have A; + A2 = Ay + A;.
Let A3 denote the resulting type environment. By (12), we have dom|[Bys]Ndom[By] = 0.
Applying rule TYPE-SYNCHRONIZATION to (15) and (16), we thus have:

Astk Ko & K :: By W Byo a7

Besides, by a-conversion of received variables, we always have dom[A] N dom[4;] = 0,
for i = 1,2. Then similarly, by applying Lemma 2 to (4) and to (10), we get:

A+A1+AF P, (18)
A+A+ A1 FQ (19)

INRIA

Information Hiding, Inheritance and Concurrency 49

Applying typing rule TYPE-PARALLEL to (18) and (19), we have:

A+ AP, &Q (20)
Moreover, we also have:
dom[A3] = dom[A;] U dom[A3]
= dom[A44] \ rv[K1] U dom[A,] because rv[K1] C dom[As]
=r[K; & K]\ rv[K1] Urv[Ky] (21)
= rv[K| U rv[K>]
= FV[KQ & K]

Applying typing rule TYPE-REACTION to (17), (20), and (21), we thus have:
At Ky & Ko P, & Q iz ((p)(Bg & Byy) (dIK2&KIL0

Because L = dI[K;] \ dI[K2] and dom[By; \ dI[K3]] = dI[K;] \ dI[K2], by typing rule
ABSTRACT, we have:
AF Lz ((p)(Byr \ dI[K])™

Because dom[By1] N dom[By] = dI[K1] N dI[K] = § by join-pattern linearity, we have
dom[By, W Bys] Ndom[Byy \ dI[K3]] = 0, hence (By W Bys) @ (By; \ dI[K3]) makes sense.
Then by typing rule TYPE-DISJUNCTION, we derive:

At Ky & Ko Py & Qor L :: ¢(p)((By W Bra) © (Byy \ dI[K])) (aIK2&K10

To conclude, we check the following;:

W) &

(B @ Bk2 ® B;) [dI[K2 & K]) @ B

(((Bg1 \ dom[Bys]) @ Bgo @ (Bs \ dom[Bys])) [dI[Ks & K|) @ B
(((Bg1 \ dI[K3]) @ Bga @ (Bs \ dI[K>])) [dI[K2 & K]) & B

Because dom[By; \ dI[K>]] NdI[Ky & K] = 0, dom[Bys] C dI[K2 & K], and dI[K3] N
dom([B; \ dI[K3]] = 0, we have:

TRTRT ?1

= By @ ((Bs \ dI[K3]) [dI[K]) ® B
=By @ (Bs |dI[K])® B by (12), i.e. dI[Ko] NdI[K] =0
= By @ (B; [dI[K]) & (B1 ¥ By)
= B2 @ (Bs | dI[K]) ® (Bg1 W By,)
([K])

d
d
:Bk2® B, [dI[K @Bkl@Bk

—_— — —7 —

RR n°® 5631

50 Ma,Maranget

Because dI[K] C dom[B], we have dom[B | dI[K]] D dom[B’ | dI[K]], in other words
dom[By] D dom[B’' | dI[K]] = dom[(By1 @ Bks @ B;) | dI[K]]. Because by linearity,
dom[By;] NdI[K] = 0, for i = 1,2, we thus have dom[By] D dom[B; [dI[K]]. Therefore:

= Byo @ Bi1 @ By,

= Byo @ (By1 \ dom[Bys]) & By

= By @ (By1 \ dI[K3)]) @ By

= (By @ Bys2) @ (By1 \ dI[K3))

= (By W Bya) @ (By1 \ dI[K3]) because dom[Byz] Ndom[By] = 0

Case (Filter-Or): We assume D = D; or D,. The typing derivation of D thus looks like:

TyPE-DISJUNCTION
(23) AF Dy :: {(p)BYVl’Vl (22) AF D5 : §(p)Ber"’V2

AF Dy or Dy :: ((p)BVY

where B = B ® By, W = W1 UW5y, and V = V; U V5. Because B T B’, we also have
(24) B1 T B, and (25) B2 1t B'.

We assume W = {m; "€V} W, = {r;'€11}, and Wy = {m; *€/2}. A derivation of
F W with R :: W’ then looks like:

Or
(F m; with R :: 7)) ieh (F m; with R :: 7)) el
FW with R:: W'

where W' = {n!*€[1V2} Hence we can build the following two derivations:

Or '
(F m; with R = 71',1) ieh

(26) + Wy with R :: W]

and
ORr

(F m; with R :: «r}) *€12
(27) + W, with R :: W,
where W] = {n!*€l1} and Wj = {n}*€2}, hence (28) W' = W] U WJ. Applying
induction hypothesis to (23), (26), (24), and A+ S :: B'®, we thus have:

D; with S |s Cy (29)
where C; is not an error and:
AR Cy o ((p) (B 1W]) @ By (30)

Similarly, applying induction hypothesis to (22), (27),(25), and A + S :: B'%, we also
have:

Dy with § |s Co (31)

INRIA

Information Hiding, Inheritance and Concurrency 51

where C5 is not an error and:

AF Gy C(p)((B' | W)) @ By)"'2 " (32)
By evaluation rule FILTER-OR, we thus have:

FILTER-OR
(29) (31)

D1 or D2 with § Us 01 or 02

where C] or (5 is not an error. Moreover applying typing rule TYPE-DISJUNCTION
to (30) and (32), and since B’, B; and B; are compatible with each other, we also have:

At Cyor Gy C(p)(B' | W) @ By @ (B' | W) @ By)W"V

where:

)) @ (B1 & By)

by (28) and definition of W

Case (Filter-Next): We assume D =M > P,, S = K1 = Ko > Q| §', and dI[K;] € dI[M].

According to the typing rule TYPE-REACTION, we must have W = {dI[M]} and V = (
in A M P, :: ((p)BV'V.

Meanwhile a typing derivation of S looks like:

TvYPE-CLAUSE

A, = K1 M B1 ,
A'+ Ko it By dom[A"] = rv[K>]
A+ A +Q (33) AF S":: B

AFK = Kyp Q|8 = BE

where B' = B; @ By @ By, and R = dI[K;] = dI[K3] | Rs. Because B 1T B’, we have
(34) B 1 Bs.
By the assumption dI[K;] ¢ dI[M], the typing derivation of - W with R :: W' must
look like:
di[K1] ¢ di[M] (35) F dI[M] with R, : '
(36) F dI[M] with dI[K;] = dI[K>] | R, :: 7'
F{dI[M]} with dI[K;] = dI[K>] | Rs :: W'

TYPE-NEXT

TYPE-OR

where W' = {r'}.

Applying typing rule TYPE-OR directly to (35), we have - {dI[M]} with Ry :: {n'},
namely:

W with Rs :: W' (37)

RR n°® 5631

52 Ma,Maranget

Applying induction hypothesis to D, S’ (33), (37), and (34), we thus have:
M P, with §' s C (38)
where C is not an error and:
AFC = () ((Bs W) @ BV (39)
Then applying rule FILTER-NEXT to (38) and because dI[K;] € dI[M], we have:
Mv P, withK; = Ko Q| S s C
Following the design of the type system, we have that for any class type ((p)B""Y, the

channels organized in W are included in the ones bound in B. Namely, W C dom|B].
Therefore, we have:

dom[(B; @ By) | W] C W' C dom|(B; | W') @ B]

Hence, we have:

Because dom[(B1 @ Bs) [W'] C W' and W’ C dom[(B; | W') @ B] from above, we have:
= (B, |W)®B
U

In the class evaluation semantics, process evaluation |p makes use of class evaluation
lc (see Figure 5). The following lemma states the soundness w.r.t. class evaluation ¢ .

Lemma 6. Let A be a type environment and T be a class evaluation environment, such that
A9 T :> AC. If A+this: [p],this: (B;B,) | F) - C :: ((p)BV'Y, then T E C ¢ C,, Cy
is not an error, and A® + this : [p], this : ((B"; B.) [F) F C, = {(p)B'W,’VI. Moreover the
type of C and the type of Cy satisfy the following conditions, for some fresh H C H.:

1. HCW'.

2. B=B'\H.

3 W=W'\H

4. V=V'Uftv[B' | H]

We recall the lemma that states the soundness w.r.t. process evaluation |p as follows:

Lemma 1 (Strong soundness w.r.t. class evaluation with hiding). Let A be a type
environment and T be a class evaluation environment, such that A® - T :> AC. If A+ P,
thenT'E P |p P,, P, is not an error and A° - P,.

We prove Lemma 1 and Lemma 6 simultaneously.

Proof. We reason by induction on the depth of process terms and class definition terms.

INRIA

Information Hiding, Inheritance and Concurrency 53

1.Base cases : Terms of depth 1
Case (P is 0): Trivial.

Case (P is u.M): First of all, according to rule EVAL-SEND, the evaluation of u.M always

returns u.M itself. Moreover, because u.M has no occurrence of class names, then by
Lemma 2, we have A - u.M = A° Fu.M.

Case (C is L): According to rule EVAL-ABSTRACT, the evaluation of L returns L itself. We
assume A + this : [p], this : ((B; B.) [F) - L :: ((p)B™V. Because L has no occurrence
of class names and by Lemma 2, we have A® + this : [p],this : (B;B,) | F) - L :=:
C(p)B™Y. Taking H = (), we have that any class type satisfies the conditions of
Lemma 6 with itself.

Case (C is c¢): We assume:

A+ this : [p],this : (B;B,) [F) F c¢:: ¢(p)BVY

Because this does not appear in ¢, by Lemma 2, we have A - ¢ : ((p)B""Y. Then
according to typing rule TYPE-CNAME, ((p)B">V is an instance of A(c), i.e. :

((p)B™Y < Ao) (1)

Because A° T :> A¢, A and T have the same domain for class bindings, we have
¢ € dom[I']. Then by rule EVAL-CNAME, we have:

I'Ec lc C,

where I'(c) = C, modulo some a-conversion to freshen the hidden names in I'(c).

By definition, A9 T :> A€ implies A° T'(c) :> A%(c), i.e. A9 T'(c) :> A(c).
Following rule TYPE-REVEAL, we thus have for some p’, B, W', V', and H' C H:

A + this : [, this : (B' | F) F T(c) = ¢(0)B" " 2)
BII — BI \ Hl (3)
W= W (@
Hew (5)
A(e) = YGen(sf, B, A°) ¢ (/) B""" V1] 6)

Because of (1) and (6), there must exist a substitution on type variables n with domain

dom([n] C Gen(p', B", A®), such that ((p)B"Y = n(C(p’)B"W”’V’UftV[BI rH'}). Following
the definition of substituting a class type, we thus have:

p=n(p)

B =n(B") (7)
W=w" (8)
V =V Uft[B' | H) (9)

RR n°® 5631

54

Ma,Maranget

Applying the substitution 7 to (2), and by Lemma 3, we have:
A® + this : [p],this : (n(B') | F) F T(c) == ¢(p)n(B")W V")

We express the a-conversion from I'(¢) to C, by subscripting with ,. We thus get:
A + this : [p]this : (n(B}) [F) = Cy = (p)n(By) =" (10)

We show that ¢(p)B"-Y and ¢(p)n(B!,)VaV") satisfy the conditions of Lemma 6 w.r.t.
the fresh H),. By (3) — (5) and (7) — (9), we have:

H! CW! C dom[B/]

B =n(B") =n(B"\ H') = n(By \ Hy) = n(B,) \ H,,

W=w"=w'\H =W/, \ H,

V =n(V'Uftv[B'| H') = n(V') Uftv[n(B) | H] = n(V') U ftv[n(By,,) | H,)
Because H), is fresh, dom[B,] N H) = (). Moreover, because dom[B,] N dom[B] = () by
assumption and B = n(B.,)\ H/, from above, we also have dom[B,|Ndom[n(B.)\H.] = 0.

Then as a consequence, we have dom[B,]Ndom[n(B)] = 0. Adding the useless B, into
the assumption of (10), (intuitively similar to Lemma 2,) we finally get:

A9 4 this : [p], this : ((1(BL); B.) | F) i C, = C(p)n(Bl) VeV

2.Induction cases We suppose that for any processes or class definitions of depth < n,
Lemma 1 and Lemma 6 hold. We prove it is also the case for terms of depth n. We distinguish
the top-most structure the terms may have.

Case (P is P & QQ): We assume:

AFP&Q

According to the typing rule TYPE-PARALLEL, this judgment is derived by the following
two hypotheses:

AP AFQ
Because depth[P] is < n, by induction hypothesis, we have:
TEP |p P, (11)
A°F P, (12)

Similarly, applying induction hypothesis to (), we have:

Q@ Ip Qv (13)
A%+ Q, (14)

Applying rule EVAL-PARALLEL to (11) and (13), we thus have:
FEP&Q Ip P& Qy

where P, & (), is not an error, and by applying rule TYPE-PARALLEL to (12) and (14),
we also have:

A° P, & Q,

INRIA

Information Hiding, Inheritance and Concurrency

55

Case (P is obj z = C in P'): We assume:
AFobjz=Cin P

A typing derivation of this judgment looks like:

TyYPE-OBJECT

(16) A+ this : [p],this: (B | F) F C :: ¢(p)B™Y

X = Gen(p, B, A) \ ctv[BV]\V (15) p=B M
(17) A+ z:VX.[p| - P dom[B] =W

AFobjz=Cin P
Because depth[C] < n, applying induction hypothesis to (16), we have:

'HC Jc (DorL)init Q,
A® 4 this : [p], this : (B' | F) F (D or L) init Q, :: ¢(p)B""V"

where B = B'\ H, W = W'\ H and V = V' U ftv[B' | H], for some H C H and
H C W' C dom[B']. Then because dom[B] = W, i.e. dom[B'\ H] = W'\ H, i.e.

dom[B']\ H = W'\ H, we have:
dom[B'] = W'
Then following the typing rules for classes, we must have L = (), namely:

T'HC ¢ (Dor0) init Q,
A© + this : [p], this : (B' | F) - D init Q, =: ((p)B""'

By (15), we have:

p=BIM=(B\H)[M=BIM

Let:
= Gen(p, B', A% \ ctv[B"V' |\ V"
Because:
ctv[B" UV’ C (etv[B VD U fv[B' | H)) UV
= (ctv[(B'\ H) "D U fev[B' | H]) UV
= (ctv[BY]Uftv[B' | H]) UV’
= ct v[BW] (ftV[BI] U V’)
=ctv[BYUV
and

Gen(p, B, A) CGen(p, B, A®) C Gen(p, B, A°)

RR n°® 5631

(18)

56

Ma,Maranget

we have:
xXcx

Therefore, we have that VX'.[p] is more general than VX.[p]. Then by applying Lemma 4
to (17), we have:

Atz :VX' [P (23)

By a-conversion, we can alway assume that = does not appear free in I'. Hence applying
Lemma 2 to A9 T :> A€, we have A +z : VX'.[p] F T :> A i.e. (A+z : VX .[p])° F
[:>(A+z:VX"[p])¢. Let A’ = A+ z:VX'.[p]. Applying induction hypothesis to A’
and I" with (23), we have:
CEP |p P (24)
A° +z:VX'[p) F P! (25)

Applying rule EVAL-OBJECT to (19) and (24), we have:
I'+objz=Cin P |p objz =D init Q, in P,
Moreover, by rule TYPE-OBJECT, we also have:
(20)
(22) (21)
(25) (18)
A® Fobj z = D init Q, in P,

TYPE-OBJECT

Case (P is class ¢ = C hide F in P'): We assume:

Al class ¢ = C hide F in P’

A typing derivation of this judgment looks like:

TyPE-HIDE
(27) A+ this : [p],this: (B[F) F C :: ¢(p)BVY (26) p=B | M;o0
B'=B\F W' =W\ F

(28) A+ c: VGen(p, B', A).C(p)B'W”VUftV[BrF] P FCW
At class ¢ = C hide F in P'

Because depth[C] < n, applying induction hypothesis to (27), we have:

T'EC |c (D or L) init Q, (29)
A® + this : [p], this : (B; | F) (D or L) init Q, = ¢(p)B}"*"* (30)

INRIA

Information Hiding, Inheritance and Concurrency 57

where B = By \ Hi, W = W1\ H; and V = V} U ftv[B; | Hy], for some H; C H and
H; C Wi C dom[By]. Following typing rules for classes, for (30) to hold, we must have:
di[D] = W,
L =dom[B;]\ Wy

— ((dom[B1] \ Hy) & (dom[B1] |) \ (W7 \ Hy) & (W5 | Hy)

= ((dom[B1]\ Hy) & Hy) \ (W1 \ H1) W Hy) because H; C Wi C dom[B]

= (dOm[Bl \Hl] (©] Hl) \ (W1 \H1 (] Hl)

= (dom[B] W H;) \ (W W Hy)

=dom[B]\ W
Then because F C W and W C W, we have:

F C d[D] (31)

and F N L = (. Taking a fresh H C A and renaming channels F to H in (30), we get:

A® + this : [p], this : (Bi{H/F} | F) F
(D{H/F}3 or L) init Qu{H/F}y = ((p)By{(H/py" H/FHVi (39

Note that p remains intact during the renaming because dom[p] N F = 0. As none of
H, F, H, contains labels from M, by (26), we have:

p=B[Mo
= (B1\ H1) [M;0 (33)
=B1 [M;pe
= (BI{H/F}) I M;0
Besides, we also have:
B'=B\F
= (B1\ Hi)\ F
= (B1\ F)\ H (34)
= (B1{H/F}\ H)\ H, because dom[B; \ FIN H =0
=B {H/F}\{H1 UH}
and similarly:
W'=wi{H/F}\ {Hi UH} (35)

Moreover, because H; N F = Hy N H = (), we have:

HUH=(HUH){F/g}){H/F}=(H UF){H/F}

RR n°® 5631

58

Ma,Maranget

And because:
H1UFQH1UW2H1UW1\H1:W1
we have:

HiUH CW{H/F} =W {H/F} (36)

Applying rule TYPE-REVEAL to (32), (33), (34), (35), and (36), we thus have:

AP+ (D{H|F}y or L) init Qu{H/F}y :>
VGen(p, B', A).(p) BW VivftviBi L Fyimum)]

Because:

ViUftv[Bi{H/F} | (H, U H)]
=ViUftv[Bi{H/F} | H]|Uftv[B{H/F} | H]

=V Uftv[B; | Hi]U ftv[B1{H/F} | H] because H1NF =H, NH =
=ViUfw[Bi | Hi] U V(B {H /F}){F/H} | H{F/H}]
= Vi Uftv[B; | Hi| U ftv[By | F] because dom[B; \ FIN H = ()
= Vi Uftv[B; [H1] U ftv[(B1 \ H1) | F] because Hi N F = ()
=V Uftv[B | F|

that is:

AC b (D{H/F}3 or L) init Q,{H/F}s :> YGen(p, B, A).C (p) B VIIVIBIF] (37)
Let:

A= A+ c:VGen(p, B', A).C(p) BV ItVIBIF]
I"=T+ (¢ (D{H/F}3 or L) init Q,{H/F}3)

Because A° F T :> A€ and by (37), we have A'° I :> A’°. Applying induction
hypothesis to (28), we thus have:

I'eP |p P (38)
O
A+ P (39)

Applying rule EVAL-HIDE to (29), (31), (38) and because H is fresh, we have:
[k class c= C hide Fin P' |p P,

Moreover, because A° = A’®. we also have A I P! by (39).

Case (C is M > P): We assume:

A+ this : [p],this: (B;B,) | F)F M P :: ((p)BYY

INRIA

Information Hiding, Inheritance and Concurrency 59

The typing derivation of this judgment looks like:

TYPE-REACTION
dom[Aps] = rv[M] Ay+FM:B
(40) A+ this: [p],this: ((B;Bs) | F)+ Ay F P

A+ this : [p], this: (B; B.) | F) F M » P :: ¢(p)BldIM]}0

where W = {dI[M]}, and V = .

Let A" = A+this : [p], this : ((B; B.)|F)+An. By a-conversion, we can always assume
rv[M] fresh with respect to dom[A], namely dom[As] N dom[A] = (). Besides, following
rules TYPE-I'.. and TYPE-REVEAL, we also know that extra bindings of this do not
matter because this is always rebound. Hence applying Lemma 2 to A® T :> A we
have AC + this : [p], this : (B;B,) | F) + Ay F T :> A€ ie. A9 T :> A€ as there
is no class name binding in A;;. Applying induction hypothesis to (40), we get:

TEP |p P, (41)
A + this : [p],this: (B;B,) | F) + Ay - P, (42)

Applying rule EVAL-REACTION to (41), we thus have:
'EMbv>P |Jc Mv> P,

Moreover, replacing (40) by (42) in the typing derivation, we can also build a typing
derivation of the following judgment:

A® + this : [p], this : ((B; B,) | F) F M > P, :: ((p)B™Y
where taking H = (}, we have that ((p)B">" and itself satisfy the conditions of Lemma 6.
Case (C is C; or (y): We assume:

A+ this : [p], this : ((B;B,) | F) F C; or Cy :: ((p)BVY

A typing derivation of this judgment looks like:

TYPE-DISJUNCTION
A + this : [p], this : ((B; B,) | F) F C1 :: ((p) B
A+ this : [p], this : ((B;B,) | F) F Cy :: ((p) By "

A+ this : [p], this : ((B; B,) | F) F C; or Cy :: ((p)BV'Y

where B = B1 ® By, W = W7 UWs, and V = V; U V5. Hence the two premises can also
be written as:

A+ this : [p], this : (Bi; (Bz \ dom[B1]); B,) | F) - Cy == ((p) BV
A+ this : [p], this : (Bs; (By \ dom[Bs]); B.) | F) b Cs = ((p)BY>"

RR n°® 5631

Ma,Maranget

Because both C; and Cs are of depth < n, by induction hypothesis and typing rule
TYPE-INITIALIZER, we have:

TEC; Yc (D or Ly) init P,y (43)
I'ECy ¢ (D2 or Ly) init Py (44)
A© + this : [p], this : ((B}: (B \ dom[B1]); By) | F) - Dy or Ly = ((p)B,"*Y1 (45)
A© + this : [p], this : (Bl (B \ dom[Bs)); B) | F) - D or Ly = C(p)B">"2 (46)
A® 4 this : [p], this : (B]; (B2 \ dom[B1]); B,) | F) F Py (47)
A® 4 this : [p], this : ((Bj; (B1 \ dom[By]); B.) | F) F Py (48)

where ((/))B{Wl’v1 and ((p)B;"*'"1 satisfy the conditions of Lemma 6 w.r.t. fresh
Hy CH and Hy C W] C dom[B!]; and so do ¢(p)By">"? and ((p)B,">"> w.r.t. fresh
Hy CH and Hy C W) C dom[Bj].

Applying rule EVAL-DISJUNCTION to (43) and (44), we thus have:
I'ECiorCy |c (D or L) init P,
where D = D; or Dy, P, = P,; & Py, and L = (L1 \ dI[D2]) U (L2 \ dI[D1]).
We are left to check the typing of (D or L) init P,. Because H; and H, are fresh, we
have:
By \ dom[B;] = By \ dom[B] \ Hi]
= By \ (dom[Bj] \ H1)
= By \ dom[B]] because dom[Bs] N Hy = ()
= (B3 \ H3) \ dom[Bj]
= (B3 \ dom[B1]) \ Hz

and similarly:
B; \ dom[By] = (Bj \ dom[B})) \ H;

Because adding fresh labels into the assumptions of (45) — (48) will still keep the judg-
ments true, (intuitively similar to Lemma 2,) we thus have:

A® 4 this : [p], this : (B); (B} \ dom[B}]); B,) | F) F Dy or Ly =: ¢(p)B," """
A© + this : [p], this : ((B); (B, \ dom[B})); By) | F) I Dy or Ly == ¢ (p) B,">"2
A® + this : [p], this : ((B]; (Bj\ dom[B}]); B,) | F) F Py
A® + this : [p], this : ((B}; (B \ dom[B})); B.) | F) I Py,

Besides, since By @ By makes sense and by the freshness of H; and Hs, we also have
that B} ® B, makes sense. Hence, we have:

A© + this : [p], this : (B, @ BY); B,) | F) F Dy or Ly = C(p) BV YT (49)
A® 4 this : [p], this : (BY @ B); B,) | F) F Do or Ly = C(p)BL">"2 (50)
A® + this : [p], this : (B, ® BY); B,) | F) F P, (51)
A® 4 this : [p], this : (B ® B}); B,) | F) F Py (52)

INRIA

Information Hiding, Inheritance and Concurrency 61

Let B'=B| @ By =B, ® Bj, W = W] UW,, and V' = V] UVj. Applying rule TYPE-
DISJUNCTION to (49) and (50) we thus have:
A© 1 this : [p], this : (B'; B,) | F) F Dy or Ly or Dy or Ly =: ((p)B'"""""
Namely:
A© + this : [p], this : (B'; By) | F) b (Dy or D) or (L U Ly) =: ¢ (p)B""V
Because L = (L \ dI[Ds]) U (Ls \ dI[D1]) and D = D; or Ds, this can be rephrased as:
A© 4 this : [p],this: (B';B,) [F)F Dor L :: ¢(p)B""" (53)
Meanwhile, applying rule TYPE-PARALLEL, to (51) and (52), we get:
A® + this : [p], this : (B';B,) | F) F P, (54)
Hence, applying typing rule TYPE-INITIALIZER to (53) and (54), we get:
A© + this : [p],this : (B; B,) | F) I (D or L) init P, = ¢(p)B"""Y
It remains to check against the conditions in Lemma 6. Let H = H; W Hy. We have:
H=H, 4 Hy
C (WIuUW)) by condition 1 of Lemma 6
=WIuw; by definition of W
=W’

B =B ® By
= (B} \ H) & (B} \ Hy) by condition 2 of Lemma 6
= (B]\ (H1 & Hy)) @ (B \ (Hy & Hy)) because H1 N By = HyN B} =)
= (Bi®By) \ H
—B'\H

W =W; UW,
= (Wi \ Hi) U(W;\ Hy) by condition 3 of Lemma 6
= Wi\ H)uU W\ H) because H; N W} = Hy N W] =0
=(WieWw;)\H
=W'\H

V=1ruW
= (V{ Uftv[B] | Hy]) U (V2 Uftv[B) | Hy))
= (V] UVy) U (ftv[B] | H1] U ftv[B) | Ho))
= V' Uftv[(B] [H1) U (B3 | H>)]
=V'Uftv[(B] | H) & (B) | H] because H1 N By = Hy N B} =0
= V' Uftv[(B, @ Bb) | H]
=V'Uftv[B' | H]

RR n°® 5631

62 Ma,Maranget

Case (C is match C; with S end): We assume:

A+ this : [p], this : ((B; B,) | F) - match C; with S end :: ¢((p)B""Y

A typing derivation of this judgment looks like:

TYPE-REFINEMENT
(57) A+ this: [g], this: ((B;B,) | F) F C1 = C(p)B1""Y (55) - Wy with R= W
(58) A+ this : [p], this: (B; B,) | F) F S :: Bg® (56) By 1+ Bs

A + this : [p], this : ((B; B,) | F) I match C; with S end :: ¢(p)B""Y

where (59) B = (Bs | W) & Bj.

Writing (B; By) as (B1; B\ dom[B1]; B,) and applying induction hypothesis to (57), we
have:

TECy Uc (D or Ly) init P, (60)
A® + this : [p], this : ((B]; B\ dom[B,]; B,) | F) - (D, or L) init P, :: C(p)BiW{,V/

As no free class names appear in (D; or L;) init P,, by Lemma 2, we have:

A+ this : [p], this : ((B}; B\ dom[B1]; B,) | F) F (D1 or L) init P, :: €(p)BiW{’V'

(61)
where for some fresh H; C H, we have:
H CW]
By =B} \ Hi (62)
W1 = Wll \Hl
V =V'Uftv[B] | Hi] (63)

By rules TYPE-INITIALIZER and TYPE-DISJUNCTION to (61), we have:

A + this : [p], this : (B); B\ dom[Bi]; B) | F) F D1 : ((p)Bp,"1"V" (64)
A + this : [p], this : (B}; B\ dom[Bi]; B,) | F) F Ly :: ¢(p)Bg, " (65)
A + this : [p], this : (B}; B\ dom[Bi];B,) | F) F P, (66)

where B} = Bp, ® Br,. Writing (B; B,) as (By; B\ dom[Bi]; B) in (58), too, we have:
A + this : [p], this : ((B; B\ dom[B1]; B,) | F) F S :: BT
By (62), that is:
A + this : [p], this : ((B] \ Hy; B\ dom[By];B,) | F) F S :: Bs®

Because H; is fresh and adding fresh labels in the assumption keeps the judgment above
true, (intuitively similar to Lemma 2,) we thus have:

A + this : [p], this : ((B}; B\ dom[B,]; B,) | F) F S :: B (67)

INRIA

Information Hiding, Inheritance and Concurrency 63

Meanwhile, following definition of 1 and typing rules for filters, the freshness of H; also

gives:
Bi 1 Bs by (56) (68)
FW| with R:: W' by (55) (69)

where:
H CW (70)
W=W'\H (71)

Applying Lemma 5 to (64), (67), (69), and (68), we have:

Dy with S s Co (72)
A+ this : [p], this : (B; B\ dom[Bi]; B) | F) F Cs :: ¢(p)(Bs | W @ Bp,)WV’

Following rule TYPE-DISJUNCTION and by (65), we have:
A + this : [p], this : (B}; B\ dom[Bi]; B,) | F) F Cy or Ly =: ¢(p)(Bs | W' & B)W'V
Because H; is fresh, i.e. H; Ndom[Bg] = (), and by (71), this can be rephrased as:

A + this : [p], this : (B}; B\ dom[Bi]; B,) | F) F Cs or Ly :: ((p)(Bs | W & B)V"V

(73)
Let B' = B{; B \ dom[B;]. We have:
B' = B{; B\ dom[B4]
= B1; ((Bs | W) & Bi) \ dom[B] by (59)
= Bi;(Bs | W) \ dom[B]
= Bi; (Bs [W) \ dom[B] \ Hi] by (62)
= B};(Bs | W) \ dom[B]] because H; Ndom[Bg| =
—Bs|Wea B, by (68)
Hence, applying induction hypothesis to (73), we have:
'eCyorL; {c DorL (74)
A© + this : [p], this: (B";B,) | F) F Dor L= ((p)B"™"V" (75)

where for some fresh Hy C H:

Hy CW" (76)
B'=B"\ H, (77)
W' =W"\ Hy (78)
V' = V" Uftv[B" | Hy] (79)

RR n°® 5631

64

Ma,Maranget

Applying rule EVAL-REFINEMENT to (60), (72), and (74), we thus can build a derivation
of the following judgment:

I' F match C; with S end ¢ (D or L) init P,

We go on and check the typing of (D or L) init P,. Because B' = B{; B\ dom[By],
judgment (66) is rephrased as:

A + this: [p],this: (B';B.) | F) - P,

Because H, is fresh and adding fresh labels in the assumption keeps the judgment above
true, (intuitively similar to Lemma 2,) we thus have:

A+ this : [p],this: (B";B,) | F) F P, by (77)
As no free class name appear in P,, by Lemma 2, we have:
A® + this : [p], this : (B";B,) | F) + P, (80)
Hence applying rule TYPE-INITIALIZER to (75) and (80), we have:

A© 4 this : [], this : (B"; B,) | F) - (D or L) init P, =: ((p)B"" """

BI/W”7V”

It remains to check that the conditions of Lemma 6 hold between ((p) and

C(p)B™WV. Let H = Hy W Hy. We have:

H=H ¥ H
C (Wuw") by (70)(76)
_ (W U W) by (78)
=W
B=Bs|W & B by (59)
= Bs |W @ (B1 \ Hi) by (62)
= (Bs |W o B))\ H, because H; fresh in Bg
=B'\ H; because B' = Bs | W @ Bj
— B"\ H,\ H, by (77)
—B'\H
W =W\ H by (71)
=W"\ Hy\ H, by (78)
W\ H

INRIA

Information Hiding, Inheritance and Concurrency 65

V =V'uftv[B] | Hi] by (63)
= V" Uftv[B" | Hy) U ftv[B] | H1] by (79)
= V" Uftv[B" | Hy) U ftv[(Bs | W @ BY) | Hi] because H; fresh in Bg
= V" Uftv[B" | Hy) U ftv[B' | Hy] because B' = Bg | W @ B/
— V" Uftv[B" | Hy) U ftv[(B" \ Ha) | Hi] by (77)
= V" Uftv[B" | Hy) U ftv[B" | Hy] because Ho N Hy = ()
= V" Uftv[B" | H]

Case (C is C) init P): We assume:

A+ this : [p], this : (B; B,) | F) I Cy init P :: ¢(p)B"Y

A typing derivation of this judgment must be an instance of TYPE-INITIALIZER as:

TYPE-INITIALIZER
(81) A+ this : [p], this: (B; B,) | F) F Cy =: ¢(p)BVY
(82) A+ this: [p],this: ((B;By) [F)F P

A+ this : [p], this : ((B; B,) [F) - C; init P :: ¢(p)B""Y

Because the depth of C} is < n, applying induction hypothesis to (81), we have:
F'EC) Jc (Dor L) init Q, (83)
A° + this : [p], this : (B;B,) | F) (D or L) init Q, = C(p)B™"Y (84)

where ¢ (p)B’W”V, and ((p)B"™V satisfy the conditions in Lemma 6 for some fresh
HCH.

Because the depth of P is < n, applying induction hypothesis to (82), we have:

CEP |p P (85)
A© + this : [p], this : (B;B.) | F) - P!

Because H is fresh and B = B’ \ H, we rephrase the judgment above by adding fresh
labels in the assumption and we have:

A® + this : [p], this : (B';B,) | F) + P! (86)

Applying rule EVAL-INITIALIZER to (83) and (85), we thus can build a derivation for
the following judgment:

T E Cinit P |c (D or L) init (Q, & P,)

We check the typing of (D or L) init (Q, & P)). Applying rule TYPE-INITIALIZER
to (84) to decompose (D or L) init @), into D or L and Q,, we have:

A© + this : [p], this : (B;B.) | F)FDor L= ¢(p)B"" (87)
A® 4 this : [p], this : (B';B,) | F) F Q, (88)

RR n°® 5631

66 Ma,Maranget

By (86) and (88), we compose @, and P, in parallel following rule TYPE-PARALLEL,
and we have:

A® 4 this : [p], this : (B';B,) | F) F Q, & P, (89)
Finally, applying rule TYPE-INITIALIZER again to (87) and (89), we get:

A® + this : [p], this : (B'; B,) | F) F (D or L) init Q, & P, :: ¢(pB™Y

A.3 Subject reduction of chemical reduction

The chemical semantics is given in Figure 2. Taking place successively after class reduction,
the chemical semantics has its initial solution of the form I P, where P is the result of class
evaluation and its privacy annotation is empty. As the only way to add an annotation is by
rule REACT, it is not difficult to check that the following lemma holds.

Lemma 7. For any chemical solutions D I+ P, if (this — z) # P € P, then z.D € D, i.e.,
z € fv[D].

Moreover, rule STR-OBJ requires that the current defined object name does not occur free
in its internal positions, namely, = ¢ fv[D] U fv[P], and this condition can always be satisfied
by a-conversions. Hence, we also have the following lemma:

Lemma 8. For any chemical solution D I+ P,
1. if z.D € D, then x ¢ fv[D];
2. if (this — z) # P € P, then « & fv[P].

We now prove the subject reduction of chemical semantics. We recall the theorem as
follows:

Theorem 2 (Subject reduction w.r.t. chemical reduction). Let D I+ P be a chemical
solution. If - (DI P) and DI+ P =» D'I- P, thent (D' Ik P').

Proof. According to the chemical semantics given in Fig 2, for D IF P = D' Ik P’ to happen,
either STR-OBJ is applied followed by CHEMISTRY-OBJ, or one the rules: STR-NULL, STR-
PAR, STR-JOIN, THIS-CoMM, OBJ-COMM, REACT, is applied followed by CHEMISTRY. We
distinguish cases according to the rule applied.

Case (Str-Null): We have:
DiF¢ #0,P = DIFP

And we should prove:
F(DIF¢ #0,P) <=+ (DIFP)

According to typing rule TYPE-SOLUTION, it suffices to prove that A I 0 always holds
for any A, which follows directly from typing rule TYPE-NULL.

INRIA

Information Hiding, Inheritance and Concurrency 67

Case (Str-Par): We have:
D¢ # (P& Q),P = D¢ # P¢p # Q,P
And we should prove:
F(DIF¢ # (P&Q),P) «=F(DIF¢ # P,¢p # Q,P)

According to typing rule TYPE-SOLUTION, it suffices to prove that A - P & @Q is
equivalent to A F P, A+ @ for any A, which follows directly from the typing rule
TYPE-PARALLEL.

Case (Str-Join): We have:
DIF¢ # u.(M & Mz),P = DI ¢ # u.Mi, ¢ # u.My, P
And we should prove:
F(D ¢ # u(M & M),P) <+ (DIF ¢ # uMy, ¢ # u.Ms,P)

Similarly to the previous case, it suffices to prove A F u.(M; & Ms) is equivalent to
AFu.M, AF u.M; for any A, which follows directly from the typing rule TYPE-JOIN.

Case (This-Comm): We have:
DIk ¢ # thisl(d),P — DIF & # ¢(this).l(4(q)), P

where ¢ = (this — z) and .D € D. Let @ = {u; e/l By Lemma 8, we have
(us #) <.

And we should prove:
F(DIF ¢ # thisl(a),P) =+ (D Ik ® # ¢(this).l(¢(a)),P)
According to typing rule TYPE-SOLUTION, it suffices to prove:
AM + A {this/z} | thisl(d) = AF z.1(é(0))

where A = J, pcp A» and we assume Ay =z : VX.[p],z : VX.(B [F).

For the left hand side to hold, the following two premises must hold by typing rule
TYPE-SEND:

AM 4 this : VX.[p], this : VX.(B | F) I this.l :: 7;°¢] 1)
(AM + this : VX.[p],this : VX.(B [F) I u; = 7;) i€l)

Applying Lemma 2 to (1), we have:
this : VX.[p], this : VX.(B | F) - this.] :: 7; ¢!
Then by a-conversion, we have:

Ay Fxl Tiie[

RR n°® 5631

68 Ma,Maranget

Again by Lemma 2, we have:
Al 7€l (3)

Similarly, by applying Lemma 2, a-conversion to (2), and because the derivations of (2)
do not use any private assumption (thus adding private assumptions into the typing
environment has no influence), we have:

(AF () = 73) " (4)
Hence, by (3) and (4), we have:
At zl(p(a))

Case (Obj-Comm): We have:
DIk ¢ # zm(a),P — DIF® % z.m(p(a)),P
And we should prove:
FDIF¢ # zm(a),P) =+ (DIF® # z.m(é(a)),P)
We distinguish the possible values of ¢.

Case (¢ = ®): Trivial, because the chemical solution remains the same after the re-
duction.

Case (¢ is empty): We should show AM F z.m (@) = A+ z.m(@), and it follows
directly from the fact that the typing derivation of z.m(%) does not use any private
assumptions because m is public.

Case (¢ = (this — 7)): We have y # z, (u; # y)*€!, and y.D € D. Then as in Case
(TH1s-COMM), we prove:

AM + A {this/y} b z.m(d) = A+ z.m(¢(@))
Case (React): We have:
D,z.DIF® # x.Mo,P — D,z.D I- (this — z) # Po,P

where D= (...M > P...), and M is of the form &;¢c l;(@;).

And we should prove:
F(D,z.DIF® # z.Mo,P) =+ (D,z.D I (this — z) # Po,P)

Assume the left hand side holds, then according to rule TYPE-SOLUTION, the following
premises must hold:

A=, pep4s) U4y
AM V2D A, (5)
AFz.Mo (6)

INRIA

Information Hiding, Inheritance and Concurrency 69

where for (5) to hold, according to TYPE-DEFINITION, we in turn have the following

premises:
AM 4 this : [p], this(B | F) - D :: ¢(p)B"? 1)
p=BIM
dom[B] = W
X = Gen(p, B, AM) \ ctv[B"]
and

Ay =z : VX [pl,z :VX.(B|F)

Therefore, to demonstrate - (D, z.D I+ (this — z) # Po,P), it suffices to show that:

AM 4 this : VX.[p], this : VX.(B | F) F Po

Because D = (...M > P...) and M is of the form &;cl;(%;), following the typing rule
TYPE-DISJUNCTION, a derivation of (7) must have the following sub-derivation:

TYPE-REACTION
dom[A'] = rv[M] A M:: B
(8) AM 4 this : [p],this(B | F) + A'+ P

AM 4 this : [p], this(B | F) - M > P =: ((p) B}

where B; C B, Wy = {dI[M]} C W, and A’ = (@; : B1(l;))*!, namely:

A = (a; : B(ly) "'
Moreover, by typing rules TYPE-JOIN, TYPE-SEND, TYPE-PUBLAB, and TYPE-PRILAB,
a derivation of (6) must have the following premises:

(AF z.l; = 7)€t

(A F O’(ﬂz) : ’7‘1) el (9)

where 7; = n;(B(l;)), and 7; is a substitution of domain X N ftv[B(l;)]. Because
{dI[M]} C W, we have that any two channels /;, and [;, defined in M are correlated,
hence ftv[B(l;,)] N ftv[B(l;,)] N X = 0, hence dom([n;,] N dom[n;,] = . Let 1 be the sum
of n; *¢!. Applying Lemma 3 to (8) with 7, we thus have:

AM 4 this : [n(p)], this : (n(B) | F) +n(A)F P (10)

where AM remains the same, because dom(r)] is a subset of X, thus is disjoint from the
free type variables in AM. Because ftv[B(l;,)] N dom[n] C dom[n;,], we have:

n(A") = (@; : n(B(1:)) "' = (@; : mi(B(:))) " = (@ = 73) "
Applying Lemma 4 to (10), we can make this polymorphic, namely:

AM 4 this : VX.[p], this : VX.(B [F) + (@ : 7;) ' F P (11)

RR n°® 5631

70 Ma,Maranget

Moreover, because the derivations of (9) do not use any private assumption, nor any
this assumptions, by Lemma 2, we have:

(AM + this : VX.[p], this : VX.(B | F) F o (i) : 7;) 17
Hence we can replace 4;s by 7(4;)s in (11) and get:
AM 4 this : VX.[p], this : VX.(B | F) F Po

Case (Str-Obj): We have:
DIF¢ # objz =D init Pin Q,P = D,z.(D or init()>P) IF & # z.init(),¢ # Q,P
where z ¢ fv[D] U fv[P] and z ¢ fv[D] U fv[P]. We should prove:

F(DIF ¢ # objz = Dinit Pin Q,P) <
F (D, z.(D or init() > P) IF ® # z.init(),¢ # Q,P)

We distinguish the possible values of ¢.

Case (¢ = (this — y)): According to Lemma 7, we have y € fv[D]. Because z ¢ fv[D],
we have y # z. Let z.D' denote the active objects in D, that is, z € fv[D]. Again
because z ¢ fv[D], we have z # x. Moreover, following Lemma, 7, the processes in
P can only be one of the following three kinds: P', ® # P’, or (this+— z) # P'.
On one hand, for the left hand side to hold, the following typing derivation must
hold:

TYPE-SOLUTION
A=, pepAs) (16) (AMF 2D 2 A,)D'€P
(15) AM + A {this/y} Fobjz = Dinit PinQ (14) (AMF P)F'€P
(13) (AF P)®#PEP (13) (AM + A {this/,} |- P')(thism2)# P'eP

F (D I (this — y) # obj z = D init P in Q,P)

For (15) to hold, by typing rules TYPE-OBJECT and TYPE-INITIALIZER, the fol-
lowing premises must hold:

AM + this : [p,], this : (B, | F) b D :: ¢(py) BV (17)
AM 4 this : [py],this: (B, | F) F P (18)
AM 4 A {this/y} +z: VX,.[0:] F Q (19)
pz = Bz [M (20)
dom[B;] = W, (21)
X, = Gen(pg, By, AM) \ ctv[B}'?] (22)

On the other hand, for the right hand side to hold, the following typing derivation
must hold:
TYPE-SOLUTION
A" = (U,.pep A7) UA;
(29) (AMF 2D AL*P'ED (28) AM & 2.(D or init() b P) = A,
(27) A’ Fzinit() (26) AM + A {this/y} FQ (25) (AM - PP
(24) (A/ - PI)CI)#P’EP (23) (AIM + Alz{thls/z} - PI)(thisn—)z)#P’EP
F (D, z.(D or init() > P) IF & # z.init(), (this — y) # Q,P)

INRIA

Information Hiding, Inheritance and Concurrency

71

RR n°® 5631

For (28) and (27) to hold, by typing rules TYPE-DEFINITION, TYPE-DISJUNCTION,
TYPE-REACTION, TYPE-SEND, and TYPE-PRILAB, the following premises must

hold:
A™M {4 this : [p,], this : (Bl;init : () [F) F D = ¢(p,)B,"*"
A™ 1 this : [p}], this : ((BS;init : () | F) F P
py = (Bysinit : () [M
dom[B.;init : ()] = W, U {{init}}
X! = Gen(g,, BL; init : (), A™) \ ctv[Bl; init : ()= 1R
where:

Ay =z VX5 (o], @ - VX ((By; init - () [F)

(30)
(31)
(32)
(33)
(34)

Because init is a special private channel of empty tuple type and never occurring
in programs, premises from (30) — (34) thus are equivalent to the following list of

premises:

A™ 4 this : [p}], this : (B, | F) + D = C(p;)B;Wé’m
A™ 4 this : [p)],this: (B, | F) P
=B, | M
dom[B.] = W!
X!, = Gen(pl,, By, AM) \ ctv[BL ")

We show the equivalence of corresponding premises of both sides. We first have

the following equivalence:
Ay = A;l A, =4,
pw:p; Bz:B;Ic Wx:W;é
A= AUz : VX, [ps), T : VX ((Bg;init : () [F)

Hence we have the following equivalence between premises:

(20),(21) < (37),(38)

Moreover, by (22) and (39), we also have:

— Gen(pl, B, A™M)\ ctv[B,""]

— Gen(pg, Be, A™) \ ctv[B, "]

= Gen(pz, By, AM) \ ftv[V Xz [pz]] \ CtV[wam]
= (Genpe Ba AM) \ ctv[BW) \ ftv[¥ X, o]
= Xy \ ftv[VXy.[ps]]

— X,

72 Ma,Maranget

Because z ¢ {y, z} Ufv[D'] U fv[P'] U fv[D] U fv[P], by Lemma 2, we can also draw
the following equivalence between premises:

(16) <= (29)
(17), (18) <= (35),(36)
(19) < (26)
(12) — (14) <= (23) — (25)

To conclude, following the equivalence we draw between premises, if the left hand
side holds, letting A’ = AUz : VX,.[ps], 2 : VX;.((Bg;init : ()) [F), a derivation
tree can also be built for the right hand side; conversely, if the right hand side
holds, letting A = A’ \ {z}, a derivation tree can also be built for the left hand
side.

Case (¢ is empty): For the left hand side to hold, we must have the following typing
derivation:

TYPE-SOLUTION
A=U,pepds (44) (AME 2D A,)7D'EP
(43) AFobjz = D init Pin Q (42) (AM = p’)P'EP
(41) (AF+ P/)CD#P’EP (40) (AM + Az{this/z} = P/)(thist)#P’EP
F (D IFobjx =D init Pin Q,P)

And for the right hand side to hold, we must have the following typing derivation:

TYPE-SOLUTION
A" = (U,.prep A U A4,

(51) (AME 2D A)ZP'ED (50) AM & 2.(D or init() > P) = A
(49) AM b zinit() (48) AMEQ (47) (AME P)TEP
(46) (A/ - PI)Q#P’EP (45) (AIM + A{z{this/z} - PI)(thisr—)z)#P’EP
F (D, z.(D or init() > P) IF & # =z.init(), Q, P)

Similarly to the previous case, we let A’ = A U Al, and draw the equivalence
between the premises of the two sides as:

(44) <= (51)
(43) <= (50),(49), (48)
(42) <= (47)
(41) <= (46)
(40) <= (45)

A.4 Safety

We prove the safety property of the type system with respect to chemical reductions. We
recall the definition of chemical reduction failure and the safety theorem as follows:

INRIA

Information Hiding, Inheritance and Concurrency 73

Definition 1 (Chemical reduction failure). We say a chemical solution D I+ P is a
chemical reduction failure, if one of the following holds:

e Free this: (this— 1) # P € P (briefly P € P), and this € fv[P].

o Undefined object name: ¢ # P € P, z € fv[P] or ¢ = (this — z), and = is not defined
in D.

e Failed privacy: ¢ # x.f(a) € P, and ¢ # .

e Undefined channel name: ® # z.l(Z) € P, x.D € D, and | ¢ dI[D].

o Arity mismatch: ® # z.l(2) € P, z.D € D, I(§) appears in a join-pattern of D, and §
and Z have different arities.

Theorem 3 (Safety w.r.t. chemical reduction). Well-typed chemical solution is never
a failure as defined in Definition 1.

Proof. We assume + (D |- P). By typing rule TYPE-SOLUTION, we have:
A= Uz.DED Aq (1)
(AMFz.D:: A,)"PEP (2)
We show that the chemical failures defined in Definition 1 are prevented.

No free this. We assume P € P. By typing rule TYPE-SOLUTION, we have AM P.
Because this is not bound in A, we have that this does not appear free in P.

No undefined object name. We assume ¢ # P € P. According to the value of ¢, by rule
TYPE-SOLUTION, we have A - P, or AM - P, or AM4-this : VX.[p], this : VX.(B|F) F
P. In either case, if z € fv[P], we always have that z is bound in A, hence z.D € D.

No privacy failure. We assume ¢ # z.[(%), and ¢ # ®. Then according to typing rule
TYPE-SOLUTION, no matter whether ¢ is empty or is (this — y), we always have
that z.[(%) is typable under an environment where there is no assumption for private
channels, hence we must have [€ M.

No undefined channel. We assume ® # z.[(Z) € P and z.D € D. We show [€ dI[D]. As-
sume Ay =z : VX.[p],z : VX.(B[F). Then according to typing rule TYPE-DEFINITION,

we have:
A + this : [p],this : (B | F) F D :: ¢(p)B™? (3)
p=BIM (4)
dom[B] = W (5)

Moreover, we also have A - z.l(Z), hence the following two premises:
Arzl 7 (6)
ArFa:7 (7)
Depending on whether [is public or private, for (6) to hold, we must have that either
p is of the form [l : 7;...], or B | F is of the form (I : 7;...), where 7/ is an instance of

7. Because p = B | M, in both cases, we have [€ dom[B], hence | € W by (5), hence
I € dI[D] by (3).

RR n°® 5631

74 Ma,Maranget

No arity mismatch. Following the previous case, we further assume that [(7) appears in
one join-pattern of D. Hence the derivation of (3) must have a sub-derivation that looks

like:
TYPE-MESSAGE

Arg:7
ARG = (= 7)
Namely, we have that the arity of § is equal to the arity of 7. From the previous case,

we also know that the arity of 4 is equal to the arity of 7/, and 7' is an instance of 7.
Hence we have that ¢ and @ are of the same arity.

O

INRIA

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

