-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Modal specifications are a syntactic fragment of the
Mu-calculus

Guillaume Feuillade

» To cite this version:

Guillaume Feuillade. Modal specifications are a syntactic fragment of the Mu-calculus. [Research
Report] RR-5612, INRIA. 2005, pp.17. inria-00070396

HAL Id: inria-00070396
https://hal.inria.fr /inria-00070396
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50454227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070396
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5612--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Modal specifications are a syntactic fragment of the
Mu-calculus

Guillaume Feuillade

N° 5612
Juillet 2005

Théme COM

apport

derecherche







% I N RIA

RENNEsS

Modal specifications are a syntactic fragment of the
Mu-calculus

Guillaume Feuilladeﬂ

Théme COM — Systémes communicants
Projet S4

Rapport de recherche n® 5612 — Juillet 2005 —[I7 pages

Abstract: In this report we introduce modal specifications, a new object dedicated to
specify some branching-time properties for systems. Modal specifications are a useful tool for
studying Petri net synthesis although this aspect is not presented here. The main purpose of
this report is to establish the equivalence between a syntactic fragment of the Mu-calculus,
namely the conjunctive Nu-calculus and modal specifications. We give the algorithm for
constructing a conjunctive Nu-calculus sentence equivalent to a modal specification and the
converse. We also study the structure of the set of models of a modal specification.
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Spécifications modales : un fragment syntaxique du
Mu-calcul

Résumé : Ce document introduit un nouvel objet dédié & la spécification, pour un sys-
téme, de propriétés du temps arborescent : les spécifications modales. Les spécifications
modales sont un outil utilisé pour ’étude de la synthése de réseaux de Petri ; cet aspect
n’étant toutefois pas abordé ici. Le principal objectif de ce rapport est d’établir I’équivalence
d’expressivité entre un fragment syntaxique du Mu-calcul (le Nu-calcul conjonctif) et les
spécifications modales. Nous donnons ’algorithme permettant la construction d’une spéci-
fication modale équivalente a une sentence du Mu-calcul et réciproquement. Nous étudions
également la structure formée par ’ensemble des modéles d’une spécification modale.

Mots-clés : Mu-calcul, langages rationnels, spécification
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1 Introduction

Branching time logics are a powerful tool for specifying system properties; they are widely
used in the areas of verification and control. Most of these logics are subsumed by the
Mu-calculus which is a fix-point-based branching time logic. In our work, we consider Mu-
calculus as a basis in order to look at decidable logical fragment for Petri net synthesis.
As a consequence, we define a syntactic fragment of the Mu-calculus, called the conjunc-
tive modal Nu-calculus, which is well-suited for studying decidability bounds for Petri net
synthesis. However, the conjunctive modal Nu-calculus leads to complex proofs in the field
of Petri nets. Since we want a more language-based approach to branching-time properties
that can be expressed using this logic, we introduce modal specifications. Since these spec-
ification are designed as tuple of rational languages, it is easier to establish links between
Petri net synthesis for rational languages and Petri net synthesis for modal specifications
than for conjunctive modal Nu-calculus. In this report, we prove that conjunctive modal
Nu-calculus and modal specifications have the same expressive power and that we can switch
between both without loss of generality. We also prove that the set of models of a modal
specification is a lattice with finite models as extrema.

The report is organized as follows: first, in section II, we define the modal Mu-calculus from
which we extract the conjunctive modal Nu-calculus as a syntactic fragment; then, in section
III, we present modal specifications and we prove that the set of models is a lattice; and
finally section IV is dedicated to the proof of the equivalence between modal specifications
and modal Nu-Calculus.

1.1 Some definitions

Let ¥ = {a1,...an} be a finite alphabet. We consider the languages over ¥, with L, R...
as typical elements and with the usual notations: L*, L.a with a € X, etc. The empty word
is noted 1. When u and v are two elements of ¥*, u.v designate the concatenation of u and
v and u* = {u* | k € N} where u* is the concatenation of k times the word w.

Definition 1.1. Let L be a language, we say that L is prefiz-closed if and only if 1 € L and
for all word ay.... .a,, € L we have a;.... .ap—1 € L. The prefix-closure of a language L is
the least prefix-closed language which is a superset of L. We note L/, = {v € ¥* |w.v € L}
the set of suffizes of w in L.

Let us remark that the empty language is not prefix-closed by definition, we will have to
treat it separately when needed; in particular, for a prefix-closed language L, the language
L, is either prefix-closed -if w € L- or empty. In the following, L always denotes a prefix-
closed language.

RR n° 5612



4 Guillaume Feuillade

2 Modal mu-calculus and conjunctive modal nu-calculus

In this section we give the definition of modal mu-calculus formulas and of a syntactic
fragment of the modal mu-calculus - the conjunctive nu-calculus -. We also provide an
interpretation of formulas over prefix-closed languages instead of the one over processes
given for example in [ANOT]. These two interpretations are the same with the convention
that a language denotes the set of states of a process which can be reach by following the
transition sequence of each word of the language. However, the language presentation given
here brings more readable proofs.

2.1 mu-calculus over prefix-closed languages

We give the definition of modal mu-calculus formulas and an interpretation over prefix-closed
formulas. Let Var = {X, X, Xo,...} be a set of variables.

Definition 2.1. (Syntax of the Mu-calculus)
The set of modal mu-calculus formulas is noted L, and is defined by the following grammar:

(Lp3) Br,B2i=true| X | <a> B |1 |B1V Bz | pX.1(X)

where a € ¥ and with the requirement that all variable X is under the scope of an even
number of negation symbols — in 8;(X) for all formula uX.5;(X) -in order to ensure the
existence of fixed-points-.

We note false,[a]f1, 51 A B2, =2, A% and vX.0;(X) the respective formulas —true, - <
a> (—f1), (=1 V —B2), <a> true, [a]false and ~uX.—f;(—X).

We say that the X-variable is free in 3 if it is not under the scope of any p.X or v.X
operator. The set of free variables in 3 is noted var(8). A formula 8 without any free
variable is called a sentence.

We define an interpretation of modal mu-calculus formulas over prefix-closed languages
over the alphabet Y. The interpretation of a mu-calculus formula over a prefix-closed lan-
guage L is the set of words of L satisfying the formula according to a given interpretation
val over the free variables of the formula; this set is not necessarily prefix-closed.

Definition 2.2. (Semantic of L, over prefix-closed languages)
the interpretation over a prefix-closed language L C ¥* of a sentence 8 € L, according to a

valuation val : Var — L is the set [« ]]B-fal] C L which is inductively defined by:

[ true ]][Ifal] =L

[X13 = val (X)

[-aly™ =L\ [a]?™

[6v B =18 1 Ol B I

[<a> BV = {w e L|wae[B ]}

[uX. 8 (X) ] = (v L | [8 PV cvy

INRIA



Modal specifications 5

where the valuation val(V/X) : Var — P(L) is given by val(V/X)(X') = V(X') for all
variable X’ € Var such that X' # X and val(V/X)(X) =V.

The interpretation [ uX.5(X) [Lval] (resp. [vX.6(X) [Lval]) is the least fixed-point (resp.

greatest fixed-point) of the function V. — [ 8 ]][;jal(v/ X1 The semantic of mu-calculus

sentences does not depend on the valuation; in this case, we note [ 3], the interpretation of
B according to any valuation. We say that “the language L satisfies the sentence §” -L |= 8
for short- if and only if 1 € [ 8]z-

2.2 Conjunctive nu-calculus

We extract a syntactic fragment of L,. This fragment will be our basis for a new language-
based representation which is the main purpose of this report.

Definition 2.3. (Conjunctive modal Nu-calculus)
The set of nu-calculus formulas is noted L, and is the fragment of L, defined by the following
restriction of the grammar of L, with a € X:

(Ly 3) B, B = true| X | =% [[a]Bi]| A% |Br A B |vX.5i(X)

The interpretation of a formula 8 € L, over a prefix-closed language L C ¥* according
to a valuation val : Var — L is given by the semantic of the same formula in L,; that is :

[ true ]][Lml] =L

[X 17 = val(X)

[—2 81V = {we L|waeL}

[A°17" ={we L|wagL}

[[aB]F™ = {w e L |wae B8]} u{we L |wa¢L}
[8i A B IV =8 1 N[ B I

[vXBX) 1 =Uv < L | [817*T 2 v}

The operator <a> 3 of L, can be expressed by [a]3A —* in L,. However, the following
operators cannot be expressed in L, : 81V (2, uX.8(X), false. The disjunctive operator V
is now only implicitly present in the operator [a]5 which could be expressed by <a> SV /A¢
in L.

3 Modal specifications and its models
In this section, we propose a new mean for specifying a set of models, namely modal spec-

ifications. We show in the next section that modal specifications are strictly equivalent
to conjunctive nu-calculus sentences. However, the fist goal of modal specifications is to

RR n°® 5612



6 Guillaume Feuillade

ease the analysis of the set of models of a sentence of L,, while the second goal, which is
not presented in this report, is to permit the extraction of a structural fragment for which
unlabeled Petri net synthesis is decidable.

3.1 Definitions

Definition 3.1. (Modal specification)

A modal specification is a tuple S = ({C,}acx,I) where, for all a € X, C, is a rational
language of words that must enable an action a and I is the rational language of forbidden
words. The completion operator associated to S, noted Cg is the application Cg : P(X*) —
P(X*) defined by : Cs(L) = Uyex (LN Cy).a.

A modal specification defines a set of models which are prefix-closed languages. We
define the semantic of a modal specification as a set of models in the following way:

mod(S) = {L C¥*|Cs(L) CLALNI =0}

From this definition, we say that S is satisfiable if mod(S) # 0 and that L satisfies S if
L € mod(S). The models of S are then the languages satisfying the following two conditions:

e for each word w of L in C,, w.a must be a word of L,
e no word of L may be in I.

Remark that the models of a modal specification may not be rational languages. However,
as modal specifications are designed to be equivalent to a fragment of the mu-calculus, they
inherit the finite model property as we will show latter and then, when mod(S) is nonempty,
S has a rational model.

3.1.1 Graphical representation

In order to be able to give visual examples, we define a graphical representation of modal
specifications: modal automata. These automata put together all the components of modal
specification. A modal automaton is an automaton without final states where each arc is
either a plain line or a dotted line.

Let ¥ = {a,b,c}. We note £(q) the language of the automaton with g as a final state
and where each transition is considered as a normal transition i.e replacing the dotted lines
by plain lines to get an usual automaton. In figure[ll £(¢:) = (a*b*)* and L(gz2) = (a*b)*a.

e a continuous arc issuing a state ¢ and labeled by a means that the transition a must
be performed by the system from state ¢

e a dotted arc issuing a state ¢ and labeled by a means that the transition a is allowed
to the system from state ¢

INRIA



Modal specifications 7

Figure 1: a modal automaton

e 10 a-labeled arc issuing a state ¢ means that the transition a is forbidden from this
state

These three informal rules can be reformulated in terms of modal specification. Let
S = {{Cha}aex, I) be the modal specification associated with the automaton, the three rules
becomes :

e a continuous arc issuing a state ¢ and labeled by a stands for £(q) C C,

e a dotted arc issuing a state ¢ and labeled by a stands only for the structure

e 10 a-labeled arc issuing a state ¢ stands for £(g).a € I
Example 3.2. The automaton of the figure[ll represent the modal specification S = ({Cy}aex, I)
with C, =0, Cy, = (a*b)*a, C. =0 and I = T*.c.
3.1.2 Coherency and S-closure

We say that a specification S = ({C,}aex,I) is coherent if °S is satisfiable’ implies I N
Cs(¥X*) = 0. For a satisfiable modal specification, being coherent corresponds to requiring
that from every word w, no action a is both imposed by S (w € C,) and forbidden by S
(w.a €1I).

Lemma 3.3. Every modal specification is equivalent model-wise to a coherent modal speci-
fication.

Proof. From a satisfiable modal specification S = ({C,}sex, I), we construct the modal
specification S” = ({C’ }4ex,I) such that for all a € X, C!, = C, \ {w € ¥* |w.a € I}. By
construction INCs(X*) = @, hence S’ is coherent. It is obvious that mod(S) = mod(S’). O

From this point we consider only coherent modal specifications. Suppose a language L
verifies L NI = () but not Cs(L) C L, it is often possible to “complete” L in order to obtain
a model of S.

RR n°® 5612



8 Guillaume Feuillade

Definition 3.4. (S-closure)
The S-closure of a prefix-closed language L, noted L15, is the least language L’ such that
LC L' and L' € mod(S).

Lemma 3.5. The S-closure of a rational language is rational

Proof. We show this property by building a finite automaton recognizing the S-closure of a
given prefix-closed rational language L:

1. build the automaton A recognizing LU J, 5. C,.a,

a€EX

2. remove from 4 all the non-terminal states. This gives a new automaton A’ recognizing
the greatest prefix-closed language included in LUJ, .5, C, .a,

3. return L(A).

Since L is prefix-closed, then L C L£(.A’) and obviously I1°C L(A"); moreover if L15C L(A")
then, since L1 and L£(A’) are prefix-closed, there exist w € L1° and a € ¥ such that
w.a € L(A") and w.a ¢ I15, thus w € Cy, which contradict L1S€ mod(S) . O

a€EX

The following lemma gives another definition to the S-closure equivalent to the previous
one.

Lemma 3.6. The S-closure of a prefiz-closed language L is the least solution of the equation
R=LUCs(R).

Proof. By definition L1°€ mod(S), then Cs(L1%) C L1°. Since L C L1°, we get LUCs(L1°
) C I1°. From I1° being the least language we get the equality I15= LU Cg(L1%). O

Example 3.7. Let S be the modal specification of figure, let L = (a*). The S-closure of
L is I15= (a* U a*.b).
3.2 Set of models of a modal specification

We show in this part how to construct the two trivial models of a satisfiable modal specifi-
cation and that the set of models of a modal specification forms a lattice which extrema are
these two trivial models.

We fix S = ({Cy}aes, I) a coherent modal specification. We note L for {1}1° and LS
for ©* \ 1.5*.

Lemma 3.8. These four propositions are equivalent :
1. S is satisfiable
2. LS € mod(S)
3. LSNI=90

INRIA
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4. L5 € mod(S)
Proof. Since 2=1,4 = 1 et 2 = 3 are trivial, we show 3 = 2,1 = 4 and 4 = 3.

e 3 = 2: by lemma BH we get L7 = {1} UCs(LY), then Cs(LY) C LY and by
hypothesis LT NI = 0, thus L5 € mod(S) ;

e 1 = 4: S is coherent, meaning Cs(%*) NI = () holds, and Cs(L5) C Cs(X*), then
Cs(LF) C LY and LY N1 = 0, finally L5 € mod(S) ;

e 4= 3: L7 UCs(LY) = L5 then LY C {1} UCs(L3) C LS and LI N1 = (); we get
LSNnI=4.

O

From this lemma, we retrieve the equivalent of the finite model property of L,: if S is
satisfiable then it has a rational model (L9 is rational by lemma [I5 and L% is rational by
definition). In the case of modal specification, these rational models are, by construction,
the extrema of the models of S ordered by inclusion : L§_ is the greatest model and Lf_ is
the least one.

Theorem 3.9. If S is satisfiable then (mod(S),C) is a distributive complete lattice.
Proof. By definition of mod(S). O

Example 3.10. Let S be the modal specification of figure[d. Some of the models of S are
depicted in figure[d; the boxes represent the models and the arrows between boxes represent
the language inclusion relation. Clearly LT = L7 and L, = L1. There ezists an infinite
number of models between L2 and L4 as between L3 and L5 or L4 and L7. The model L6
shows that L4 U L5 # LT7.

Figure 2: The modal specification S

3.3 A compositional approach to modal specifications

We now give a compositional approach for modal specifications. We show that each modal
specification can be expressed as a composition of simple modal specifications with a set of
operators. Then in the following section, we use this expression in order to prove the model
equivalence with L,. First we give the operators.

RR n° 5612
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Figure 3: Some elements of the lattice of models of S

3.3.1 Atomic specifications and operators
Definition 3.11. Let S; = ({Cl}sex, I') and Sy = ({C?}aex, I?)

e The intersection of two specifications S = ({Cl}uex, I') and Sy = ({C%}aex, I?), is
the specification S; NSy = ({C} U C2}4ex, 1T U I?}).

e The prefizing of a specification S1 by a language R C X* is the specification R.S; =
({R.Co}aexs, R.I).

The intersection of two specification corresponds to the ‘and‘: a language is model of the
intersection if and only if it is model of the two specifications.

Lemma 3.12. Let S; and Sy be two modal specifications, mod(S, N S2) = mod(S;) N
mod(Sz).

Proof. For all L € mod(S1NS3), we have Cg,ns,(L) C L and Cs,ns,(L) = Cs, (L)UCs, (L),
thus Cg, (L) C L and Cs,(L) C L. Moreover (I; Ul)NL =, then 1NL = I,NL = {, thus
L € mod(S1) Nmod(S2). Reciprocally, L € mod(S1) Nmod(S2) implies C, (L) UCs, (L) C L
and [ N L =1,NL=0; finally L € mod(S; N S2). O

The prefixing of a specification S by a language R is the specification which is satis-
fied exactly by the languages for which each suffix language of a word in R satisfies the
specification S.

INRIA



Modal specifications 11

Lemma 3.13. For all L C ¥¥,
L € mod(R.S) & Yw € R,L;,, =0 or L,,, € mod(S)

where Ly, is the set of suffizes of w in L.

Proof. For this proof, the fact that L Nv.X* = v.L/, then LNv.L' = v.(L;, N L") and also
w.Ly C Ly = Ly C Ly, is used several times without mentioning it.

=) Let L € mod(R.S), by the construction of R.S:

Crs(L)=|J@ZNRCa= ] |JEZnwC)a=|]J |J w(LnCa).

a€EX a€EX wER aceX weER

Since Cr.s(L) € L, for all w € R and for all a € ¥*, w.(L;,, N Cy).a C L, then Cy(L,,,) C
L. Similarly, since LN R.I = (§, we get for all w € R, LN w.I = § and then L,, NI = .
Finally L,, = 0 or L,,, € mod(S).

<) We show first that for all a € X, (LN R.C,).a C L. Let v € LN R.C,, there exist w € R
and u € C, such that v = wu. Then u € L, N C, with L,,, # 0. By hypothesis, L,,, €
mod(S), then (L,,NC,).a C L, and in particular u.a € L,,. We deduce v.a = w.u.a € L.
We show now that LN R.I = (: for all w € R, if L, = 0 then L Nw.I = §; otherwise
L, € mod(S) then LNw.I = §; finally LN R.T = . O

Definition 3.14. We define the following set of atomic specifications:
Strue = <{m}a€E; @),

Spp = ({0} ges, {b}) and
S_t = ({Cs}aex, V), with C, =0 for a # b and Cj, = {1}.

The sets of models of the atomic specifications are then obtained by definition and are:

mod(Syre) = {L € X*}
mod(S,) = {LCS|bg¢r)
mod(S—,) = {LCX*|belL}

3.3.2 Compositional approach

Theorem 3.15. Each modal specification can be expressed as a composition of atomic ones
with the union and the language-prefixing operators

Proof. Let S = ({Cy}lacx,I) be a modal specification, for a in ¥ we define the set I® =
{u € ¥*|u.a € I}. Let S' = {({C)}sex,I') be the specification defined by

S'=JCaSa U |JI*S0a

a€EX a€X

By definition B0 and B.14] it is obvious that S = S’. O

RR n°® 5612



12 Guillaume Feuillade

4 Conjunctive modal nu-calculus and modal specifica-
tions are equivalent
This section is dedicated to the proof of the following theorem:

Theorem 4.1. For all set E of prefiz-closed languages, E is the set of models of a sentence
B of L, if and only if there exists a modal specification S such that E = mod(S).

In order to prove this theorem, we introduce the notion of variable paths:

Definition 4.2. (variable paths)

Let 3 be a formula of L,, we define an application P : var(8) — P(X*), by induction over
the structure of 3:

for all X € var(f),

e 3 € {true,—*, A"}, then Pg(X) =0,

e B=Y and Y # X, then Ps(X) = 0,

e 3 =X, then P3(X) = {1},

e 3 = [a]a, then P3(X) = a.Py(X),

* =1 A Ba, then Pg(X) = P, (X) U Ps,(X),

o B=vY.a(Y), then P3(X) = Py(Y)*.Po(X).
The language P3(X) is the set of variable paths of X in .
Example 4.3. Some ezamples of variable-paths:

e if B=[alX, then P3(X) = {a},

e if 3 =[a][b]X A [c] X, then P3(X) = (a.b+ ¢),

e if 3=vY.([a][b]Y A [c]X), then Ps(X) = (a.b)*.c

The variable paths of X are the words that ’lead’ to an occurrence of X in the formula:
when w € [ S ]]E-fal], Ps(X) is the set of words v such that wv € [ X ]][Lwl] or equivalently

w.w € val(X) C L.

4.1 From a sentence to a specification

We show here how to construct a modal specification Sg from a sentence 3 of L, such
that mod(S3) is the set of models of 5. This is a constructive proof for the implication of
theorem ELTE F is the set of models of a sentence of L, implies the existence of S such that
mod(S) = E.

This proof is achieved by induction over the sentence 3. Consequently, we need to prove it

INRIA



Modal specifications 13

for all formula of L,. Since modal specifications are not designed to deal with valuations,
we introduce the following hypothesis, related to a valuation wval, a formula 3, a language L
and a word w of L :

VX € var(B),w.Ps(X)N L Cval(X) (1)

The hypothesis ([Il) states that the words of L that coincide with words of a variable
path, say for a variable X, must be in val(X).

Definition 4.4. (Modal specification associated to a formula of L,)
We define the modal specification Sz associated to the formula 8 € L, inductively over the
structure of 3 :

o (€ {true, %, A%}, Sp is given by definition B4
o 3=2X, 53 = Strue,

o 0 =[ale, Sp = a.Sa,

* B=p1A B2, Sp =58 NSp,,

o B=vY.a(Y), Sg = Py(Y)*.S4.

Example 4.5. Let 8 = [a]lvX.([)]XA = A £A°), the modal specification associated to (3 is
(a.b*).(Soe NS e) i.e the specification Sg = ({Cy}aex, I) with:

C, = (a.b"),C, =0,C. = 0,1 = (a.b")

Proposition 4.6. Let 8 € L, val be a valuation, L be a prefiz-closed language and w be a
word of L.

w € [[5]]%’“” & Ly, € mod(Sg) and hypothesis () is verified

The first implication of theorem Bl appears as a corollary of proposition EL6

Corollary 4.7. (of proposition E.6)
For every sentence 8 of L,, Sg and B have the same set of models

Let 8 € L,, val be a valuation, L be a prefix-closed language and w be a word of L. To
prove proposition ELf, we prove these 3 following lemmas:

Lemma 4.8.
welp ]][Ij’al] = hypothesis (1)

Lemma 4.9.
w € [[ﬂ]][;fal] = Ly € mod(Sp)

RR n°® 5612



14 Guillaume Feuillade

Lemma 4.10.
L, € mod(S) and hypothesis (@) = w € [ 8 iperd

Proof. (of lemma H.8))
Let we [ ]][Lml]. The proof is by induction over the structure of 3:
e € {true, =%, A%}, var(B) = 0,
o 8 =X, var(f) = {X}, then Px(X) = {1} and w € [[X]][Ifal], thus w € val(X) =
w.{1} CwalX
o (3 = [a]a, var(B) = var(a) and Pg(X) = a.P,(X), then w.Pg(X)NL = w.a.P,(X)NL.
Since w.a € [ ]][Ifml], by induction hypothesis, w.Pz(X) N L C val(X),
o 3 =01 AP, then w.Ps(X)NL = (w.Pg, (X)NL)U (w.Ps (X)NL) and by induction
hypothesis, (w.Pg, (X) N L) U (w.Pg, (X) N L) € val(X),
e 8 =vY.a(Y), we show by induction on n that:

w.Py(Y)".Po(X) N L Cwal(X)

When using induction hypothesis, we precise whether they concern the induction over
n or over f3.
Let note V = |[[3]][Lml]; we have that w € [ﬂ]][Lm” is equivalent to w € ﬂa(Y)]][ijal(V/Y)].
— For n =0, by induction hypothesis over 8, w.P(X) N L C val(X)
— For n+ 1, w.Py(Y)" L. Py (X) N L = w.Py(Y).Py(Y)".P,(X) N L; by induction
hypothesis over 3, w € [ a(Y) [ /¥ then w.P,(Y) N L C V and then for all

v € w.P,(Y)NL, v € V; by induction hypothesis over n, we get v.P, (Y)". P, (X)N
L Cwval(X) and finally w.P,(Y).Py(Y)".Py(X) N L Cwal(X)

O

Proof. (of lemma H.9)
The proof is by induction over the structure of 3:

o (€ {true, =%, A% X}, by definition BT4, L,,, € mod(Ss),
e 3 = [ala, Sp = a.S,, if a € L, then w.a € [« [Ifal]; by induction hypothesis,
L;y.q € mod(S,). By lemma B.T3 we get L/, € mod(Sg).

o 3= (1 AP, by lemmaBI2Awe get mod(Sz) = mod(Sg, )Nmod(Sg,); then by induction
hypothesis, L,,, € mod(Sg).

o B=vX.aX) Let V=[8]"", we have V = [ a(X) ]2V We show for all n

and for all v € (Py(x)(X))", wv € L = Ly, € mod(S,) by induction over n.

INRIA
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—Forn =0, w € [aX) ]]gll(v/x) and by induction hypothesis over 38, L/, €
mod(Sy).

— Forn+ 1, w € V and since v = u.u’ with u € Py(x)(X), by lemma Y we have
(v € Ljyw) = Ljyuw € val(X) = V. It follows by induction hypothesis over
n, since u' € (Py(x)(X))™, that L,y 4. € mod(Sy).

Finally, for all v € (Py(x)(X))*, w.v € L = Ly, € mod(S,). We apply lemma B.T3
to get L/, € mod(Sp).

(]
Proof. (of lemma ET0)

The proof is by induction over j3:
o 3 € {true,—% A X}, by definition BT4 w € [/B]][EM],

¢ 3 =ldla, Sp = a.S,, if a € L, then lemmaB.T3 ensure L, , € mod (S,) and then

by induction hypothesis, w.a € [« ]][Iqjal]. We have then in both cases w € [ 8 ]]E-fal],

o 3 =p1ABs, Sz = Sp, USs,, by lemma BTAwe get L, € mod(Sp,) N mod(Sg,), and

by definition and by hypothesis (ll), for all v € P3(X), v € Pg, (X) U Pg,(X). We

can now apply induction hypothesis for 3; and (2 to get w € [ ]][Lval],

e 3 =vX.a(X), we show that (L Nw.P,(X)*) is a post fix-point:
(LNw.Py(X))CJa ]][;M(X/(Lﬂw.Pa(X)*)]
For all v € (L,,, N Po(X)*):

1. w € mod(Sg) = w.v € mod(S,) (lemma BT3),

2. ForallY € var(B) (Y # X), w.Pg(Y)NL Cwal(Y) and Pg(Y) = (Pa(X))*Py(Y)
implies
w.w.Py(Y)NL Coal(Y)

3. For X, v € (L, N Po(X)*) implies
w.w.Po(X)NL Cva(X/(LNw.Py(X)"))

The items 2) and 3) gives us hypothesis (@) which together with 1) allows to apply

the induction hypothesis in order to obtain w.v € [ o Ji¥@"*/(ENwP«(X)I] yye have

proved that (L Nw.P,(X)*) is a post-fixed-point and w € (L Nw.P,(X)*); we finally
[val]
getwe [B]; .

O

Now the proof of proposition ELfl is immediate:

RR n°® 5612
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Proof. (of proposition H.6)
=) is given by lemma ET0
<) is given by lemmas and L3 O

4.2 From a specification to a sentence

We show here how to construct a formula 8g of L, from a modal specification S such that
the set of models of 8g is equal to mod(S). This is a constructive proof for the second
implication of theorem LIl The idea is to express S with atomic specifications according to
theoremB.Thland to construct 8s step by step such that Sg, and S are equal component-wise
and then model-wise.

Lemma 4.11. For all rational language R C X* it is possible to construct a formula
ar(X) € L, such that for all sentence B of Ly, Sap,3/x) = R.Ss.

Proof. Since R is a rational language, it can be expressed as a regular expression over ¥. In
order to proceed inductively, we give a well-chosen grammar generating regular languages

{1} | a.Rq | R URy | R

where a € X. We construct inductively ag(X) and we prove at each step that for all 8 € L,,
SaR(B/X) = R.Sg and PaR(X) (X) =R:

e R={1}: let ar(X) = X, we trivially have S, s/x) = R.Sp and P, (x)(X) = R,

e R =a.R;: let ar(X) = [a]ag, (X), from definition Ei4 we have S, . (g/x) = R.Sp, and
from definition we have P, (x)(X) = R,
e R= RyURy: let ar(X) = ag,(X) Aag,(X), from definition B4l we have S, (g/x) =
R.Sa, and from definition we have P, (x)(X) = R,
* R =Rj: let ar(X) = vY.ag, (X/Y)AX. Since by induction hypothesis Ps, 5 =
1

R;.Sp, we have by definition B4l that Sacp/x) = Ri.Sg = R.Sp. It follows immediately
from definition B2 that P, (x)(X) = R.

O

Lemma 4.12. For all modal specification S, it is possible to construct a sentence Bs of L,
such that S and Bs have the same sets of models.

Proof. From theorem BTH, we have a decomposition of S from which we construct a formula
Bs such that Sg, = S, the only nontrivial operator being the language-prefixing one which
is given by lemma LTIl O

Example 4.13. Let S be the modal specification of figure[d, the decomposition of S is:
S =S, Ua.(a.(b.a)*.S_» Nb.(a.b)*.S_.a)
then the equivalent sentence is:

Bs = A =% Ala]([a]lvX.([b][a] XA =°) A BlvY.([a][B] XA —2))

INRIA
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4.2.1 L, and modal specifications are equivalent

At this point, we can translate a sentence of L, into a modal specification and reciprocally,
which is enough to prove the main theorem:

Proof. (of theorem E.TI)
If E is the set of models of a sentence (3, then by corollary 7, E € mod(Sg). Reciprocally, if
E = mod(S) then by lemma T2, there exist g such that E is the set of models of fg. O

A consequence of this proof is that, when considering modal specifications, the properties
we can prove are immediately the same for L,; this is the case for the lattice structure of
models stated in theorem B0

4.3 conclusion

Modal specifications form a language based approach to the syntactic fragment L, of L,.
They also provide an easy way to extract more structural fragments requiring some re-
stricting properties for their components. In our future work, we introduce a hierarchical
partition of the set of modal specifications based on their structural properties. We study
the decidability of unlabeled Petri nets synthesis from modal specifications regarding this
hierarchy, giving an upper bound and a lower bound for the decidability of the synthesis
problem.
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