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Abstract: Numerical integration is an important operation for scientific computations.
Although the different quadrature methods have been well studied from a mathematical
point of view, the analysis of the actual error when performing the quadrature on a computer
is often neglected. This step is however required for certified arithmetics.

We study the Newton-Cotes quadrature scheme and give enough details on the algorithms
and the error bounds to enable software developers to write a correctly-rounded Newton-
Cotes quadrature.
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Intégration de Newton-Cotes avec arrondi correct

Résumé : L’intégration numérique est une opération importante pour le calcul scientifique.
Bien que les différentes méthodes d’intégration aient été bien étudiées d’un point de vue
mathématique, ’analyse de ’erreur commise lors d’un calcul numérique est souvent omise.
Cette étape est cependant nécessaire dans le cadre de I’arithmétique certifiée des ordinateurs.

Nous étudions la méthode d’intégration numérique de Newton-Cotes en fournissant suf-
fisamment de détails concernant les algorithmes et les bornes d’erreurs pour permettre une
implémentation avec arrondi correct.

Mots-clés : intégration numérique, arrondi correct, Newton-Cotes
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1 Introduction

Numerical integration is an operation that is common in mathematical software (intnum in
Pari/GP, quadrature in MuPAD, evalf(Int(...)) in Maple for example). At first glance
this is a topic that seems well studied: several quadrature schemes with different convergence
properties are known as well as strategies to use them (e.g. adaptative error analysis) or
to combine them. When compared to the basic four operations (addition, subtraction,
multiplication and division) one notices however the lack of correct rounding.

Let us illustrate the problem by an example, and compare the values returned respectively
by Pari/GP and Maple for I = fllo(é 7 sin(cos(t)) — cos(sin(t))dt. On the one hand Pari/GP
gives:

7 \p19
? intnum(t = 1076, 10°6+Pi, sin(cos(t)) - cos(sin(t)))
%1 = -1.810600390080270954

while Maple returns:

> Digits:=19: evalf(Int(sin(cos(t)) - cos(sin(t)), t=1076..10"6 + Pi));
-1.810600390080269775

so clearly one software at least is wrong here.

The definition and normalization of rounding modes was a major advance in floating-
point arithmetic with respect to the portability and reproducibility of computations. It is a
challenging goal to extend this notion of correct rounding to more complex operations like
numerical integration.

The error analysis of quadrature methods however is often limited to the mathematical
error. In the context of correct rounding this is sadly not sufficient, because a precise bound
on the total error is needed to be able to decide of the actual accuracy of the result. Previous
works in the field includes the study of the adaptative quadrature function of MuPAD [9]
and dynamic error control of simple or multiple integral [10, 11]. What differentiates our
work is the careful study of the error term. It is often the case that the roundoff error is
merely estimated or sometimes even dismissed by computing with a precision that is “good
enough”. Instead, our goal is to give a rigorous formula bounding the total error made in the
computation (both the mathematical and roundoff error) in order to be able to guarantee
the final result.

In this paper f : [a,b] — R is the C*° function we want to integrate on a finite domain
[a,b], and n is the number of evaluation points in the Newton-Cotes method. Let

= / ! fa)dn

be the exact value value of the integral, assumed to be finite.

RR n° 5605



4 Laurent Fousse

Name Formula c

n n

2 trapezes I=(b— a)% _%
3 Simpson Is =2 (fo+4fi + fo) —=
4 | Simpon’s 3 rule Ii=32(fo+3f1+3f2+ fs) -2
5 Boole I = £h(Tfo+32/i +12/> +32f3+ 7fa) | —gp

Figure 1: Newton-Cotes integration formulas for small n. To simplify the notations we
define f; = f(x;).

The Newton-Cotes method uses equally-spaced evaluation points in the integration do-
main, commonly refered to as “abscissas” xg, x1,...Tp_1:

bh—
for0<i<mn, z; =a+ih Whereh:—olb is the step.

Since zg = a and x,,_1 = b, the bounds are used as abscissa and the method is said to
be closed. The principle of the method is to approximate the function with the Lagrange
interpolating polynomial with respect to the abscissas. The coming formulas follow directly
from this statement.

For i € [0,n — 1], let l;(x) = ][, ((;E;—ZJJ)) and w; = %f: l;(x)dz. The approximated
integral is then

n—1
=0

The mathematical error E,, = I — I, is of the form E,, = ¢,h" T f(")(¢) for n even and
B, = c,h"T2f(+1(¢) for n odd for some ¢ €]a, b] [8] (this will be detailed afterwards).

Firstly we describe the algorithms used in our implementation of the Newton-Cotes
quadrature scheme. Then we establish some facts about the mathematical error of the
method as well as a few useful lemmas relevant to floating-point arithmetic. These re-
sults allow us to proceed to a thorough study of the error made when using the Newton-
Cotes quadrature scheme on a computer using floating-point arithmetic. Then we state our
main theorem (Theorem 3.11). We conclude with some experiments and remarks about the
quadrature scheme studied.

2 Algorithm for the computation of the Newton-Cotes
coefficients

In the Newton-Cotes method we distinguish the computation of the coefficients from the
quadrature itself, since the coeflicients can be precomputed, and reused for several quadra-

tures using the same number of points. For example the composition technique splits the
initial integration interval in several parts and applies the same method on each part.

INRIA



Correctly Rounded Newton-Cotes Quadrature 5

We describe here the algorithm for the computation of the coefficients. The full quadra-
ture algorithm is explained in section 3.5 together with a discussion of the error.

First we show that the coefficients do not depend on the integration interval. This is true
of every linear quadrature scheme, even with non-equally spaced abscissas simply because
of the linearity of the integral. We include however the proof only for the Newton-Cotes
case because we want to derive the formula for the coefficients.

Proposition 2.1. The coefficients of the Newton-Cotes methods do not depend on the in-
tegration interval, and are symmetric with respect to the middle of the interval.

PROOF: We transform the expression of w; from section 1:

w; = %f: I;(z)dx
— fo"‘izi(a —&—(xﬁ)c}fx )
_ m- atzh—gg
OnflnjiiW €

- G e

= dm—1—! Jo Hj;éi(x_j)d'r'

The variable change x +— n — 1 — x shows that w,_1_; = w;. O
Let [;(z) = [];4(z —j) and L, the antiderivative of [} such that L;(0) = 0. Let
(n-t
Ui = T (ol
Then we compute the weights as

-1 n—1—1i

w; = ulLl(n - ].) (1)

From the formula one can notice the weights are rational. They can thus be computed
exactly as w; = % by Algorithm 1 below.

Algorithm 1 Newton-Cotes coefficients

1: 6« lem(2,3,...,n)

25— (x-1)(r—2)...(x—n—1)J

3: fori—0ton—1do

4 L; — fon_l I¥(x)dx > L; is an integer
5: 7, — —ilr > update is done in place
6
7
8

z—(i+1) "%
bi - (n;l)Li
: end for
: return (bo, by, ..., bn/2),0 - n!)

Timings were done on a Pentium-4 computer with MPFR[7] version 2.1.1 and are shown
on figure 2. The time complexity is O(n log? n) for each loop thus O(n? log? n) in total.

RR n° 5605



6 Laurent Fousse
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Figure 2: Coeflicients computation time for small n.

3 Error bounds

When performing a numerical integration by means of a Newton-Cotes method, there are
two sources of errors to consider: the mathematical error that comes from the method itself,
and the roundoff error in the computation which depends on the way we implement the
algorithm.

We first give bounds on the mathematical error with elementary proofs.

3.1 Bounds on the mathematical error

Theorem 3.1. For n odd, the Newton-Cotes integration method on [a,b] with n points is
ezact for polynomials of degree < n. For n even, it is exact for polynomials of degree < n—1.

PRrROOF: For any n, the method is exact for polynomials of degree up to n — 1 because in
that case the Lagrange interpolating polynomial is f exactly.

INRIA



Correctly Rounded Newton-Cotes Quadrature 7

Let now n be odd. The choice of the evaluation points for the method gives z; +x,_1_; =
a+b. Let g(z) = (x —x)(x —x1) ... (¥ — Tp—1)-

a+b L la+b
IETR (.

=0
n—1
b
= H(a;— _y—(a—&—b—xnli))
=0
_ "1:[1 _a+b_ n ,
- ‘ 92 € Tn—1—i
=0
n—1 Cl+b
= (—1)7Li11)< 5 +$—5Cn1i)

and then f;g(x)dx =0 = Y1 wig(a;) since g(z;) = 0. The Newton-Cotes method is
exact for polynomials of degree n — 1 at most, and for g which has degree n, hence by
linearity is exact for all polynomials of degree at most n.

3.2 Peano theorem

In this section we establish the expression of the mathematical error given in Section 1. For
this the formalism of the Peano kernel of an integration method is a powerful tool.

For a quadrature method I : C**1([a,b]) — R the error E : f ff f(z)dx — I(f) can
be seen as a linear function C**!([a,b]) — R. We have the following result:

Theorem 3.2. Define
K,(t) = =Elz — (z —t)}]
and

(x_t)l,_{(x—t)” if x>t

0 otherwise.

If E[p] = 0 for all polynomials p of degree at most v then for f € C**([a,b]),

E[f] = /bf(”“)(t)Kn(t)dto

K, is called the Peano kernel of order v of E.

RR n° 5605



8 Laurent Fousse

PRrOOF: writing the Taylor series associated with f at origin a:

fx) = p(z)+ /w %(x — t)uf(u+1)(t)dt

V!

b
pole)+ [ =0 0

b
Bl = E[ / %(x—t)if@*“(t)dt]

/ab E B(x — t)i} FEFD (1) dt.

This theorem links the mathematical error with the maximal degree of the polynomial
the method integrates exactly (its maximal order). In Theorem 3.1 we proved that the order
of an n-points Newton-Cotes method is at least n — 1 for n even and n for n odd. If we
admit that this is optimal and that the Peano kernel of the Newton-Cotes method does not
change sign on [a, b], then we have a method to compute the coefficient ¢,, given in table 1.
With the mean value theorem there exists ¢ €a, b[ such that:

b
E[f] = f**V(0) / K, (1)t @)

and we obtain
- e f: K,(t)dt if n is even,
" e [V K, (t)dt if nis odd.

For example for the 3-points method known as Simpson’s rule, we get

b—a
6

a+b
2

b
Bl = [ syt - [<f<a>+4f< )+ ro)).

K(0) = gBal(z ~ 0))),

INRIA



Correctly Rounded Newton-Cotes Quadrature 9

b
b—a a+b
6K(t) = /(x—t)idx—T[(a—t)i+4( —t)i+(b—t)i]
b —
- /(x—t)3dx—b a[4(a+b—t)i+(b—t)3]
_ %-%ﬂﬁ(%—t)%(b—t)ﬂ if ¢ < otb
e (A if £ > et

a+b

b b(b—t)* —a 2 —a), a
/K(t)dt = / (62;) —b36 (b—t)3dt—/ (bg )( ;b—t)3dt

(b—a)P® (b—a)P® (b—a)® 1<b—a)5

120 144 576 90

and we find the value c3 = —9—10 given in the third row of Table 1.

3.3 TUpper bound for the ¢, coefficients

In order to be able to give an absolute bound on the mathematical error we need to bound
the ¢, coefficients. We detail here the bound and the proof for n even, and give the result
only for n odd. Recall that for n even, the Newton-Cotes method is exact for all polynomials
up to degree n — 1.

Take for f a monic degree-n polynomial p in equation (2) to get:

b
Ealp] = p™(Q) / K1 (0)dt

and then ¢, = n%% since p(™(¢) = nl.
In particular for p(z) = (z — zo)(x —x1) ... (® — xp—1), we have

b n—1 b
En[p]Z/ p(x)dx—zwip(x¢)=/ p(x)dx
@ i=0 a

so it is enough to bound ‘ f; p(a:)dx’ in order to bound c,. We will use repeatedly the

following simple lemma:
Lemma 3.3. For (u,z,v) € R? such that u < x < v, |z — u||z —v| < %.

Proposition 3.4.

h™(n —1)!
i € fab], [p(a)] < “ D
PROOF: Let € [a,b] such that p(z) # 0. Then there is ig € [0,n — 2] such that z €

|%ig, Tig+1], and thus
2

h
|z — 2 || — ®ig11] < T [Lemma 3.3]

RR n° 5605
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Then
n—1
p) < JJlz— =l
i=0
h2
S T H |z — @i
i#{ioﬂ‘(r‘rl}
h2
< 7 IT G—ion| | J]Go+1—-0n],

1>i0+1 1<ip

l 11 (i—io)h] [H(io+1—i)h] < (n—1—7ig)(ip — 1)!R"2

i>ig+1 i<io
-2
< (n—=1)""7,

h*(n —1)!
Ip(z)| < —

On the other hand we have b — a = (n — 1)h, which yields

/bp(x)dx S/ﬂp(l,)'dxS K (n — D)l(n — 1)

4
With E,[p] = ¢, h""1n! we get

O

| Enlp]] =

For n odd we take p(z) = (z — 20)(z — 21)...(x — zn—1)(z — “E2); we have the evaluation
points and the middle of the interval as zeroes of p.
Similar computations give:

< Rt (n —1)/(n —1)

ple)] < .
then
b
h"t2(n — 1)!(n — 1)2
dz| <
/a p(z)dr| < S
and with E,, = ¢, h"t2p("t1) we get
oo < D7 1
"= 8n(n+1) T 8

INRIA



Correctly Rounded Newton-Cotes Quadrature 11

3.4 Ulp calculus

For the error analysis of Algorithm 2, we need a few useful lemmas concerning the “ulp!
calculus”, as well as some definitions. The floating-point numbers are represented with radix
2 (this could be generalized for any radix but radix 2 is simpler and is natural on computers).
For this section, p is the working precision, and we assume all floating-point numbers are
normalized, which means in our notations that the exponent range is unbounded.

Definition 3.5 (Exponent). For a non-zero real number x we define E(x) := 1+ |log, |z|],
such that 2F(@)~1 < || < 2F(@),

Definition 3.6 (Ulp). For a non-zero real number = we define ulp(x) := 2F@)-»,

For a real z # 0 and a working precision p we always have 27~ lulp(x) < |z| < 2Pulp(x). If
x is a floating-point number, then ulp(z) is the weight of the least significant bit — zero
or not — in the p-bit mantissa of x. For all real x, ulp(z) is always greater than zero by
definition.

Lemma 3.7. If ¢ # 0 and x # 0 then c¢ - ulp(x) < 2 - ulp(cx).

PRrOOF: if ¢ < 0 it is void. By definition of ulp(z) we have for all ¢ > 0:
2~ Lulp(x) < |al

and
|cx| < 2Pulp(cz)

S0
c- 2P tulp(z) < |ex| < 2Pulp(ex). O

Lemma 3.8. Assuming no underflow (flush to zero) occurs then in all rounding modes for
a non zero real x we have: ulp(z) < ulp(o(z)), where o(x) is the rounding of x in the chosen
mode with an unbounded exponent range.

PROOF: we have 28(®)~1 < |z| < 28(®) and ulp(x) = 2F®)~P_ After rounding we get
2E@)-1 < o (z)] < 2P®) since 2P(®) and 2F(®)~1 are exactly representable, therefore
ulp(o(z)) > 28®) =P > ulp(x). O

Lemma 3.9. Let  a non-zero real and o(x) its rounding to nearest on p bits. Then |z| <
(1+277)] o (2)].

PROOF: by definition of rounding to nearest we have
1 1.4
[z~ ()] < Julp(o(x)) < 527 o (2)]

2] <o (@) +27"|o(2)|. O

Lynit in the last place

RR n° 5605



12 Laurent Fousse

Lemma 3.10. Let a and b be two non-zero floating-point numbers of the same sign and
precision p then in all rounding modes

3
ulp(a) + ulp(b) < §u1p(o(a +0)).
PROOF: It suffices to consider the case where a and b are positive. The definition of ulp gives:
2P~ 1ulp(a) < a < 2Pulp(a),

2P~ tulp(b) < b < 2Pulp(b)

thus
2P~ [ulp(a) + ulp(b)] < a + b < 2P[ulp(a) + ulp(b)].

If ulp(a) = ulp(b) we get
2Pulp(a) < a+ b < 27T ulp(a)

and therefore ulp(o(a + b)) > ulp(a 4+ b) > 2ulp(a) = ulp(a) + ulp(b) (Lemma 3.8) and the
lemma holds.

Otherwise we can assume without loss of generality that ulp(a) > ulp(b), that is ulp(a) >
2 - ulp(b). We deduce:

ulp(a) + ulp(b) < Sulp(a),

and together with ulp(o(a + b)) > ulp(a + b) > ulp(a) (Lemma 3.8) this concludes the
proof. O

ExAMPLE: Let p = 4 and chose rounding to nearest: a = 1.010, b = 0.1001 in binary
notation.

a+b=11101, o(a + b) = 1.110,

ulp(a) + ulp(b) =273 4+ 27% = 3273 = Zulp(o(a + b)).

3.5 Roundoff errors

In order to provide an error bound on the numerical result given by the Newton-Cotes
method, we need to have a step-by-step look into Algorithm 2.

This step is often neglected when doing numerical integration, where error analysis stops
right after stating the well known bound for the mathematical error. In fact, the experiment
illustrated in Figure 3 shows that much remains to be done to control the error on the result.

For this section we denote by Z the value actually computed (i.e. with all roundoff
errors) for a given “exact” value x, as would be computed with an infinite precision from the
beginning of the algorithm.

In addition to the parameters of algorithm 2 we need an upper bound M of | f(™)| on [a, b]
if n is even, or an upper bound of | f (”+1)| if n is odd; p is the working precision expressed in

INRIA
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Algorithm 2 Newton-Cotes integration

INPUT: a,@f, n.
OuTtpuUT: I.
fori<— 0ton—1do
t—o(ax(n—i—1))
U — 0(3* i)
x —o(t+u)
z —ofz/(n—1))
yi < o(f(2))
Yi — o(yi * nl)
end for
S «—sum(y;, i =0...n—1)
U« o(S/d(n—1))
D «—o(b—a)
: return o(DU)

—= =
N = O

> with Demmel and Hida algorithm [2]

200

-400 |

log(error)

-600 |

-800

-1000

-1200 ! ! ! ! !

—— Measured error B
Method error

0 20 40 60 80 100
n

Figure 3: An example of error measurement for the Newton-Cotes method for f : z —

120 140 160 180 200

2

[a,b] = [0,9]. Computations were done with the default double precision of 53 bits, n the
number of points is displayed on the abscissa, and in ordinates the base-2 logarithm of the

error.
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14 Laurent Fousse

the number of bits of the mantissa, a and b rounded to nearest p-bit floating-point numbers
giving @ and b; m an upper bound of |f’| on [a,b]. In the rest of this section we will prove
our main theorem:

Theorem 3.11. When computing the numerical quadrature of f using Algorithm 2 the total
error on the result is bounded by:

45 ~ 1~ ~ 5
it = (5 +21-27")up(D) + 3|0] (ulp(d) + ulp(@))
1/b—a\"" . .
(1+2°7)n-D g(n—l M if n is odd,
+3—d(n Y max(dg,) + 1 /b gyt
- ( > M otherwise.
4 \n—1

The algorithm can be analyzed in several steps:

1. the computation of the weights w;, ¢ € [0,n — 1] of the method. For Newton-Cotes,
ng

those weights are rational and computed exactly : w; = = where n;,d € Z, so no
rounding error occurs at this step.

2. the computation of x;. This is done at line 5 of Algorithm 2:

_ <o(o((n— ) -a)+o(i.6))> |

Xr; = O
n—1

In order to simplify the notations we write t = (n — i — 1)a, w = ¢ - b and their inexact
counterparts ¢ = o((n —i — 1)a), @ = o(i b). If b =0 or i = 0 the error on @ is zero.
Otherwise the error estimation yields:

|o(i-b) — ib|

< i
> 9. 2
< 2ulp(o(ib)) = 2ulp(d). |Lemmas 3.7 and 3.8]

Similarly if @ = 0 or n —i — 1 = 0 the error on ¢ is zero, and otherwise we get
[~ t] < Bulp(d).
Let us now assume that a and b have the same sign (which can be zero); this leads
easily to the fact that ¢t and @ have the same sign (this assumption is necessary to be
able to use Lemma, 3.10). If this is not the case we can split the integration interval at
0. Moreover assume without loss of generality that 0 < a < b, which gives 0 < a < b.
lo(f+7) — (t+u)| < o(t + 1)) + 5 (ulp(?) + ulp(a))
< 1%ulp(o(t +1@)). [Lemma 3.10]

INRIA



Correctly Rounded Newton-Cotes Quadrature 15

Taking into account the error coming from the division by n — 1 we get:

Oz, = |wi — Ti 3ulp(Z;) + g gyulp(o(@ + d))
1ulp(@;) + L ulp(z;) [Lemmas 3.7 and 3.8]

6 - ulp(z;).

INIAINA

3. the computation of f(x;). We assume we have an implementation of f with correct
rounding, and we call the function f requesting the rounding to nearest of the exact
value with precision p. Such correctly rounded implementations of mathematical func-
tions with arbitrary precision on the result can be found for example in MPFR [7] for
non-trivial functions like exp, sin, arctan and numerous others.

With the already estimated error on T; we have:
|f(@i) = fla)| = [f'(0:)(@i — @), 6; € [min(w;,Z;), max(w;, T;)]

and with an upper bound on f’ we can bound this error absolutely. Let ﬁ =o(f(Z:))
be the floating-point number computed. At this step we now have:

Ji = F@)l < 17/(0:)@; — )| + Sulp(fy)

<
< 6m-ulp(Z;) + sulp(f;).

4. computation of the y; = f(x;) - n;. The accumulated error so far:

Il - | fi — fil + $ulp(@:) R
6|n;| - m - ulp(Z;) + I’;”ulp(fi) + %ulp@i)
6|n;| - m - ulp(Z;) + 2ulp(y;). [Lemmas 3.7 and 3.8]

517i = |§Z - y1|

IAIA A

Remark: when bounding the error on Z;, f; as well as 7, the term with ulp(Z;)
vanishes if the error on 7; is zero. One can easily show that with our assumption
that no underflow occurs, if Z; = 0 then the error on 7; is zero (i.e. z; = 0) and
the ill-defined quantity ulp(z;) vanishes. For the error bound we keep track of only
max(dg, ).

5. summation of the y;’s: this is done with Demmel and Hida summation algorithm[2],
which guarantees an error of at most 1.5 ulp on the final result. This algorithm uses
n—1

a larger working precision p’ ~ p + logy(n). Let S =>""" v;.

15— 5| < ;ulp(g) + n - max(dg, ).

6. division of S by d(n —1): U = ﬁ. The computation of d(n — 1) is done with
integer arithmetic and is exact. The error at this step is thus:

U-U| < 3ulp(U) + grregyulp(S) + grgymax(dy,)

< %ulp(ﬁ) + ﬁmax(é@). [Lemmas 3.7 and 3.8]

RR n° 5605
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7. multiplication by b — a: I = (b— a)U. We note D =b—a and D = o(g— a).
ID-D| < 1|ulp(D)+ ulp(@) + ulp(b)| -

We have by hypothesis

b o> b—lulp@),
a < a+ zulp(a)

where ulp(0) = 0 by convention and therefore

o~

b—a > b—a—32 (ulp(’\) + ulp(?)\))
> b—a-— ulp(b)

On the other hand we know b > @, so we have b — a > max(%ulp(@), b—a — ulp(b))
which gives ulp@) < 2(3 —a). Then

D<b—a+ulp(b) <3(b—a) <3(1+2")D. [Lemma 3.9 (3)

If we put all the results and bounds gathered so far, we can reach the following final
error on I = o(DU)

432 p)n D,
d(n—

I-1| < gup(d)+|DU - D-U|

< Lup(D)+[0]-1D—D|+D|- [0 -U|
< %u p(I) + U] - |D D|+3(1+277)|D|-|U - U| [Inequality (3)]
< Lup(l)+|U|-|D - DJ+

3(1+2- )|D|(2u1p(U)+d(n" 1)max(5gi))
< (2421 277)ulp(D) + 0] - 1D - D|

+3(1+fﬂ x(d5,) [Lemmas 3.7 and 3.§]
< (4 +21-277)ulp(D) + §10] (ulp(®) + ulp(@))

ax(

d3,)- [Lemmas 3.7 and 3.8|

This bound for the error is satisfactory for using it in the algorithm, because it is made
of quantities that we can compute before the algorithm itself (p, n), or which are naturally

computed in the flow of the algorithm (f, U,b,a, D, d, dg,)-
For the final error bound we need to add a bound on the mathematical error:

B n+2
% (z_‘i) M if nis odd,

1/b— n+1
- ( (i) M otherwise
n—

Emath <
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which is easily computed as well. In the course of the program we are able to chose the
rounding mode for every computation. This allows us to use pessimistic rounding modes and
thus avoid the problem of roundoff errors in the computation of the error bound itself. [

4 Experiments

Algorithm 2 was implemented using the MPFR library [7]. In addition to the result of the
integration, the program gives an error bound on the computed result split in four terms:

1. the mathematical error, whose expression is given in equation 4,

2. the “static” error Egay = (2 + 21 - 2_p)u1p(f),
3. the “difference” error Eqig = %|(/]\ | (ulp(g) +ulp(a) + ulp(ﬁ)),

4. the evaluation error Eeyq = 3%111&){(5@).

For our experiments we chose a function and an integration domain where the exact value
is known, so that we can measure precisely the actual error of the computation (denoted by
Eneas)- Figure 4 shows the different errors when computing the integral I = f03 edr with
113 bits of working precision, the number of evaluation points varying from 2 to 100.

The dominating error source is always the evaluation error Feya. The mathematical
error decreases rapidly but it appears clearly that it is well compensated by the roundoff
error as soon as more than about 10 evaluation points are used, for the considered function
and parameters. The theoretical gain of increasing the order of the method is lost. Figure 5
gives the smallest value of the number of points for which the mathematical error is inferior
to the sum of all other error terms, for different working precisions chosen. This is commonly
interpreted as the optimal value of n in the following sense: for higher values of n the benefit
of an higher order method is lost in the noise of the roundoff error, and for smaller values
the accuracy on the evaluation of the function is not exploited to its fullest. Although the
coeflicients generating algorithm is slow for high values of n, no particular attempts were
made to optimize it yet; this is motivated partly by the slow growth in Figure 5 (the other
reasons being the numerical instability discussed below as well as the possibility to use
composition).

The bound on the total error as given by the algorithm is somehow close to the measured
error. In the experimental data we observe a maximal ratio of about 46000 — which seems
to be huge, but with a logarithmic scale it means we lost a mere 16 bits of precision by our
estimation. In particular this means our algorithm is not too grossly pessimistic.

The numerical instability of the method when n grows is not surprising, and no news
either. The fact that negative coeflicients appear in the formula as soon as n > 8 partly
explains this fact which is demonstrated here. Considering the smoothness of the function
chosen for the experiment, the instability is to be attributed to the method. Small values of
n are therefore recommended for the Newton-Cotes quadrature method.

RR n° 5605



18 Laurent Fousse

100
ol ,
-100 +
—~ -200  — stat B
s | eval
s | diff
S method
o total
-300 - measured T
-400 i
-500 + =
600 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Figure 4: The different errors while computing f03 e”dx with 113 bits of precision.
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Figure 5: Optimal values of the number n of points for several working precisions (experi-
mental data gathered with [ e%dz).

INRIA



Correctly Rounded Newton-Cotes Quadrature 19

5 Conclusion and future work

The Newton-Cotes quadrature scheme is the simplest numerical quadrature method, which
made it the natural candidate for a detailed study. We were able to provide a rigorous
analysis of the method that is self-contained and covers every aspect that is relevant to an
implementation, that is, the description of the algorithms and the establishment of proven
error bounds.

However the Newton-Cotes family of quadrature methods were not a goal per se but
rather a proof of concept that such a study of the error is feasible and indeed desirable.
It is planned to perform the same kind of work with other quadrature schemes, notably
the Gauss-Legendre methods (which have order 2n for n points and are numerically more
stable). These analyses might serve as a mathematical foundation of a correctly rounded
quadrature library.
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