View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by INRIA a CCSD electronic archive server

Laboratoire de I'ilnformatique du Parallélisme

(@]
%‘ Ecole Normale Supérieure de Lyon

Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL 5668

Evaluation of Meta-scheduler Architectures and
Task Assignment Policies for High Throughput
Computing

Eddy Caron,
Vincent Garonne , May 2005
Andrei Tsaregorodtsev

Research Report™N2005-27

Ecole Normale Supérieure de Lyon
46 Allée d'ltalie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électroniquel i p@ns- | yon. fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

https://core.ac.uk/display/50454197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evaluation of Meta-scheduler Architectures and Task Assigrime
Policies for High Throughput Computing

Eddy Caron, Vincent Garonne , Andrei Tsaregorodtsev
May 2005

Abstract
In this paper we present a model and simulator for many akistEheterogeneous
PCs belonging to a local network. These clusters are asstofiedconnected to each
other through a global network and each cluster is manageallecal scheduler which
is shared by many users. We validate our simulator by comgahe experimental
and analytical results of a M/M/4 queuing system. Theseissuihdicate that the
simulator is consistent. Next, we do the comparison withadlbatch system and we
obtain an average error of 10.5% for the response time andfaR%e makespan.
We conclude that the simulator is realistic and well deswithie behaviour of a large-
scale system. Thus we can study the scheduling of our systbed DIRACIn a high
throughput context. We justify our decentralized, adagpéind opportunistic approach
in comparison to a centralized approach in such a context.

Keywords: Simulation, Model, Multi-clusters platform, Meta-schdéidg, Grid Computing

Résumé

Dans cet article, nous présentons une modélisation et unlateur de grands sys-
temes de calcul distribué. Une telle plate-forme se comdesgrappes de PCs hété-
rogenes appartenant a un réseau local inter-connecté&esedias par un réseau glo-
bal. Ces grappes sont accessibles via un ordonnanceurelbsaeht partagées entre
les utilisateurs. La confrontation du simulateur avec éssiitats théoriques d'un sys-
teme M/M/4 nous permet de conclure qu'il est analytiquenvaiitle. Une deuxieme
confrontation avec un systéme batch réel, nous donne uéesttite moyenne de 10.5
% par rapport a la réalité pour les temps de réponse et de 1@PAgomakespan. Notre
simulateur est donc réaliste et décrit le comportement siysteme de batch réel. Fort
de cet outil, nous avons analysé I'ordonnancement de nggterse (appel®IRAC)
dans un contexte de calcul intensif. Nous avons justifipfaphe distribuée, adapta-
tive et opportuniste utilisée dans notre systéme par rappaore approche centralisée.

Mots-clés: Simulation, Modélisation, Plate-forme multi-grappesld@bsur la Grille

1 Introduction

In an institutional large scale systes] fesources are heterogeneous clusters which belong t@abrietwork (LAN)

and miscellaneous administrative domains. These cluatershared between many users or virtual organizatigjns [
and a local policy is applied to each cluster which defines Hueess rights. This policy is applied through a resource
management systeme. a batch system.

To aggregate theses clusters and manage the workload aaftohidecture must be defined paying special attention to
the size of these systems. For example, in the High Energsi€hgtomain the envisaged size is around a hundred sites
spread all over the world which is equivalent to 30,000 nodiéss domain also strongly favohégh throughput[12],
which attempts to maximize the number of jobs completed oailg,dr longer, basis. This is typical of situations
where the supply of computational jobs greatly exceeds\hitadle resources and jobs are generally not time critical
While batch systems are often used at the local level, theme mommon solution in a global context. TB¢RAC
system has been developed to meet these requirements agkepaeneric, robust grid computing environment.

In this paper we propose an evaluation of the performanattharbehavior of th®IRACsystem in &igh throughput
context The paper is organized as follows: Section 2 presents thkegbaund; Section 3 discusses the DIRAC
architecture and main components; Section 4 presents tdelrased; while Section 5 discusses the simulation tool
and section 6 descibes how it was tested; Section 7 showxegimental setup; Section 8 the results and finally
Section 9 finishes with conclusions and future plans.

2 Background

In a multi-site grid project18, 8, 1], decisions are often taken with a global view of the systdhe architecture
in Figurelis composed of a centralized meta-scheduler and a ceetlahiformation system. This approach put in
place as 'Push’ paradigm.

Information flow: -----

Tasks flow: ~ — Global Information)..........
Global Scheduler f-=======-" System :

Local Scheduler Local Scheduler Local Scheduler
& <

e @ D™

: Local Information Local Information
| Inf tion
Locasgs?érr?]a 0 System System

Update at time interval At

Figure 1: Example of an architecture with centralized salind

In this model, the global information system keeps all tlatictand dynamic information about the system state
in one place. Sensors deployed on the sites update the iafiommby first querying the local information system
and then updating their own information in the global infation system. Ideally these updates are done whenever a
change of state happens in the system which could, for exarbplthe arrival or end of a task. In fact, this solution
often generates a message storm and needs some kind notificeichanism. The use of a peridd seems most
appropriate and stems the flow of messages.

Some studies9] propose strategies which employ file queuing systeh$ \whilst others [L7] use simulation
mechanisms like BRICKSL]. Generally these work quite well but only in a simplified antrealistic model. Thus
far no project is able to manage the workload on more than dredrsites and the problem of a multi-site system for
high throughput computing has not yet been explored.

3 TheDIRAC system

DIRAC (Distributed Infrastructure with Remote Agent Contral) has been developed by the CERN LHCb physics
experiment to facilitate large scale simulation and usetyasis. TheDIRAC system has recently been used for an
intensive physics simulation involving more than sixtyesit90 TB of data, and in excess of one thousand 1 GHz
processor-yearsDIRAC is organized into &ervice Oriented ArchitectuSOA), with a number of independent
services including monitoring and resource management.

3.1 The resource management system: The 'Pull’ paradigm

Information flow: ----- Task generator (clients)

Tasks flow: —> m
global queues E E é
Match Maker
Servu:e

Local Scheduler [Local Scheduler] [Local Schedulea

Figure 2: TheDIRACscheduling model.

Figure2illustrates theDIRAC scheduling model which deploys agents on the sites and eséstglobal queues.
DIRACuses d@Pull’ paradigm where agents demand a task if they detect free blsitsg the cycle-stealing paradigm
borrowed from global computindlLl], tasks are only run when resources are not in use by the iseaks. DIRAC
extends this concept to different computing resources fipidg a criterion of availability. These resources could be
anything from a simple PC to whole batch systems. As soonesoaurce is detected to be available the dedicated agent
requests tasks from theat ch- maker service. This is accomplished using the resource desamipthich contains
the dynamic and static information about the resource. nidtech- maker service allocates tasks to resources by
viewing the global job queues and usi@tassadmatchmaking from th€ ONDORproject [L2].

The Matchmaker compares one-on-one requirements perfgraniound-robin on each of the job queues until it
finds a suitable job for a particular resource. This iS{n) operation, which, in the worst case, would involverall
queued tasks in the system being checked once against thegesharacteristics defined in the task request. This
operation is independent from the total number of resowaineghe total number of tasks.

4 The performance model

Let C represent the set of clusters present in the multi-sitefopta. Each cluste€; owns a set of worker nodes;
and belongs to a local domain, i.e. a LAN (Local Area Netwofi)is local network describes a graph for the nodes.
Each link of this graph has local bandwidth bwtc, anda local latency latencyc, .

4.1 The topology

A cluster(; is connected to the global network or WAN (World Area Netwdol a switch. Figure3 describes this
topology with links having the same properties as previpuséntioned. Lebwtc be theglobal bandwidth and
latencyce the global latency.

Many different approaches exist to generate the right gfaptie proposed model. Tools exist, such as ENY]
to describe the characteristics of a real topology. Althotingre is not sufficient information to suggest that theesksto

Figure 3: Example of a topology for a meta-scheduling pfatfo

scale well it was decided to use a generator topology. Somentetudies]3] show that networks follow specific
power laws. The graph generator according to these lawseaerglly random, degree-based or hierarchical.

4.2 The node characteristic

Let (i, j) be the pair defines thg* node of cluster;. Each nodei(j) has a processor capacitypacity; ; and to
express this we define one computing unit, ’i@U (Normalized Computing Unit). This unit is determined by cipé
application benchmarking on different referential maekirtaking into account the absolute time. So the capacdy of
node is simply the total number of computing units able todoaguted per unit time. We can then model the platform

heterogeneity and defiribe average platform capacity ascapacity,, = m Yice jec, capacity; ;.
ieC K ’ ¢

4.3 The workload model

We define two levels for the workload, local and global. Thabgl workload corresponds to the tasks submitted to
the metacomputing system, usually called meta-tasks. dda or background workload corresponds to tasks locally
submitted to a cluster. A meta-task; is mapped locally to a simple tagk

A typical taskk has four attributes attributes={tly, lengthy, procy, group;} wheretly is thelocal submission
date, lengthy the lengthexpressed in NCUWyrocy, is the total number of processorsrequired for the task execution
andgroupy, the organization who submits the task. A meta-taskk is composed of the task properties sub-set and
the global submission date;. So we haveneta-attributes,={ty, attributesy}.

Modelling the workload for a metacomputing system involdeterminingk for each task from the task sétthen
submitting the attributesttributsy to a cluster”;. The meta-tasks:k of the set of meta-task&17 and their meta-
attributes are also submitted to the system. The methodstaggenerate a workload are the following: a randomize
workload; a workload derived from real system traces anitllasstochastic workload.

A random workload and, in the same way, a workload derivethfeoreal system are not realistic. A workload
derived is judged to represent too many platform dependeariacteristic and so too specific. Instead, the stochastic
workload is chosen here. Some workg][studying computing centre traces propose a complete piligiac model
and so we writeS(7) for the distribution function which generates the length seffor a set of taskZ. Let CA
bethe cut applied to this length set which fixes the maximal and minimal lengtfe also denot¢he distribution
function which generates the submission date selby A(7) for a set task and finallthe average submission rate
by AT

4.4 The local model scheduling

At the local level, nodes of a same site are typically mandmyea resource management system, e.g a batch system.
Other implementations use queues which are defined by thaathastics of the task, for example, their length.
Shared time scheduling between users is done by the locadistgr which would normally apply policies based on
quotas or priorities. For a clustéf, we can defin@ queues seQ; . Each queugy; ; of Q; is composed of a set of

nodesNy, ;. Any particular node can belong to one or many queues. Ths tagmitted to the site are then added to
these queues to wait for their execution. Subsequentlyepaeqy ; will contain a task sef; ;. We definethe queue
depth depth; ; = card(7;,) asthe total number of tasks waiting in the queue a particular instant. Threximal
timethat a task could spend in execution on a node of the queuis denoted by,.4z, -

45 Measures and metrics

For a taskk, we define three following stategueuedrunninganddone The statequeuedmeans that a task is in a
waiting queue. When the task is executing it is intilneningstate and thedonestate signals that the task is completed.
The corresponding times for the changing statesunning, queuednd donefor a task k are respectivelyry, g
and dy,. the local waiting time for a task k is the execution beginning time minus the submission tipe ti;. The
execution timeis d;, — r; andthe local response times d;, — tl;. For a meta-tasknk, we have gylobal waiting
time which is the beginning execution time minus the global swsion time;;, — t;. The global response timds

dk — tk.

For the set of meta-task®17, we definehe average waiting time

1
waiti m = - . —t 1
warng card(MT) ke;j,(rk k) @)
the average execution time
) 1
execut'éonm = W kg/l:T(dk; - Tk) (2)
andthe average response time
1
TeESPONSEy, — W ke%qr(dk - tk) (3)

We also definghe makespanwhich is the full time to complete all the jobs i 7:

k - dy) — min (¢ 4
makespan klél/%l)’(]'(k) klgl/%}ll,[(k))

5 Simulation tool

Simgrid[2] is a discrete event toolbox which allows the modelling ardatiption of a platform for centralized,
hierarchical or fully distributed scheduling. The improvents made t&imgridare as follows:

A description platform module. Our simulator is interfaced with the hierarchical grapheyatorTiers[4]. We
have to specify the total number of WAN, LAN, nodes per LAN dhd redundancy links. For the capacity
information, we define a sample set of nodes where each nadeighted by a percentage. This percentage
expresses the proportion of this node type present in thopia The node NCU capacities and their weights
are inspired by the performances obtainedRAC for a physics application on the production platforgh [
This platform was composed of more than 4,000 nodes and yvdififerent node configurations. Based on the
total number of nodes and their proportions we generatedtie of all available capacity. Then for each node
we proceed by drawing lots in the setand one occurrence of this value would be removed from thE settil
the capacity attribute is filled for all nodes.

A workload generator. Simgridhas already got an implementation of the task concept. $ntladel, however, the
meta-data is addezlg.,the organization submitting tasks. The workload genemvrides different probability
density functions (p.d.f) like the Gamma law, Gaussian lad so on. To have a shared system we implement
an agent per client or organization. The simulation toavadl one to simulate different system users. Therefore,
it is possible to have different workloads submitted at #i@es time and evaluate their interactions.

A generic batch systemThe basic entity at the local level is the batch systemSisgriddoes not provide a model
for this, a generic one has been implemented. The designssrdted by Figurd.

End task

Information flow: ~ -----
Tasks flow: B
Notification: ~ ----- >

Submission —}[Switcher
: 1

Figure 4: The generic Batch system design.

A head node hosts the principal components: switcher, guéuf@rmation system and finally the local sched-
uler. Each node communicates with the head node. A task ssimmiis managed by the switcher which with
regard the task requirements, places itin a queue and sdtifescheduler. This then queries the monitoring and
accounting system to choose a candidate node. If no res@uasailable the task stays in the queue but once
the task is sent to the node it is executed. After the taskrigobeted, the scheduler is notified which triggers a
cycle where the scheduler looks at the queues and deterihangsther task could be executed. The scheduler
configuration is entered by file and includes properties sisahe total number of queues, the availability or not
of a node in a queue and the maximum number of tasks which exalclite on a node.

The meta-scheduling architectures. Two kinds of global architectures were implemented. Fingt tentralized
architecture outlined in Sectidh Second thé®IRACarchitecture described in the Secti&n

A monitoring and accounting system. For each simulation run the information relating to eacl tagecorded.
This helps the analysis of a particular strategy by fadiliaithe measures and metrics computation described
in Section4.5.

6 Validation of the simulation tool

6.1 Analytical validation

For the theoretical validation, experiments were perfatime M/M/m queuing systems.(].

Figure5 shows the response time differences between the simukegetts and the analytical theory for a M/M/4
system. The service time average is four units time. Thearrate follows an exponential law. The simulated
responses are derived from 16 independent runs of 1,00 amskthe root mean square error for all simulated arrival
rates. The results obtained are consistent with theory.

6.2 Experimental Comparison

A dedicated and heterogeneous cluster was used, desanibadlel.

A DIRACagent was deployed on the cluster with a task generator jplaice. This generator submits independent
and sequential tasks with no communications. The submmigsites follow a Poisson law and the benchmark used
was a program which implements a CPU consumed counter. dstake parameter which is the number of CPU to
consume before ending. This length is created for each tagKalows a Weibull law. The response time and the
waiting time are then captured by tBBRAC monitoring service. Then, we capture this workload to ihje@ our
simulator. To estimate the execution time according to thaercapacity we normalize this time with the node NCU
capacity. The NCU node capacity is determined by benchmgykiutlined in Tablel. A simple topology is assumed
where each node is connected to the head node by a simpleitink @0 mega byte/s bandwidth and a null latency,
as illustrated in Figurd .

—— Analytical

>-|3 Simulation

Logarithm of response time
o
[e)
T

0.7 -

0.6

0.5 PR S S S S S S S S I ST S S AN S S S S W
3

Inter-time(s)

Figure 5: Reponse time comparison between simulation ahdidtheory queueing system.

] Attributes | Values \
Total number of nodes:¢rd(N;)) 3
Type PIl Pl Pl
Processor(MHz) 350 | 400 600
Memory(mo) 128 128 128
Capacity(VCU.s~ 1) 32.12] 52.12 100.00
Scheduler openPBSv2.3
Politicy First Come First Serve(FCFS)
Local Network Megabyte Ethernet

Table 1: Platform caracteristics used for the simulatididasion.

6.3 Results

The total number of tasks is 330, i.eard(M7T) = 330. We observe for first instance an average error of 80% for
the response time as illustrated in Figéa). After a trace study we characterize two service times, andisepq-

Iree 1S the service time between task arrival and task sendingrmda or in queue and...q is the necessary time

to notify the scheduler of a task completion. This large agererror can be explained by the fact that the scheduler
made its choice with a different system state view. The nadesieterogeneous so the consequences are dramatic for
the response time. We correct this error by including theisettimesy,... and s, measured on the real system
injected as traces. Then, we obtain exactly what we woulé&xp reality which validates the code. The experiment
is then repeated by setting time services to constants.eldmsstants are the average service time observed in reality
(Hree = 3.758, lsena = 25). After this we observe an improvement in the average effr@®©®%. Figures(b) shows

the makespan evolution versus the total number of tasksthiéoconstant service time, we see an average error of
12%. From this it is possible to conclude that at the locatli¢ive simulator is realistic. It is now possible to proceed
to the strategies and meta-scheduling architecturesai@hu One further improvement could be to make the service
times ... andusenq @ distribution function approaching the real behavior.

R R R R R R R
60000 =
200 r 1
[— Real makespan
" . --- Simulated makespan with constant service time
175 £ Wih senvice fime q 50000 - Simulated makespan with no service time !
gz Without service time] [
x]
E150 b [
5 Z 40000 - -
o] 2 [
812] g
£] @ [
2] << 30000 |- y
E1oo 1 I i
S)]
=]
75 - r
] 20000 — —
50 f: 4
10000 1
25 - r
- L SRS PV P SR PP PR 0"“‘1““1““1““1““1““1“‘
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 50 100 150 200 250 300
Average response time deviation (s) Total number of tasks
(a) Deviation distibution for the response time (absoluteeja (b) Makespan evolution vs. the number of tasks.

Figure 6: Comparison between simulation and a real batctesy®ith . = fteny = 0 and p,. = constant,
Heny = constant.

7 Experimentals setup

The decentralize®IRAC architecture described in Secti8mand the centralized approach from Sectocan now be
compared. The message control size for both architectsir®@3 KB in the simulation. The workload characteristics
are inspired by an empirical stud¥1] and Table2 summarises the platform parameters and workload attsbute

| Parameters | Notations | Values \
Total number of sites card(C) 3
Total number of node per site card(N;) 20
€ || Total number of queue per site card(F;) 1
£ Average node capacity capacityy, 96 NCU.s~1
g Local policy M/M/ card(N;)IFCFS FCFS
Maximal execution time tmazs 24000s
Local/Global bandwith bwtclbwtc, 1000 Mbit/100 Mbit
Local/Global latency latencyc, latencyc, 0s
Task Type card(procy,) 1
Length distribution S(Mt) — {lengthy} | Weibull(a = 142.2, 3 = 0.45)
= Length cut C(lengthy) 37300 < lengthy < 242800
S| = Total number of task card(Mt) 500
=) Arrival time distribution A(Mt) = {t.} Poisson(m = 0.05,s = 4)
§ O Average inter-arrival 1/ A e 19s
= Total number of task per site card(7;) 500
S Avrrival time distribution A(T;) — {tx} Poisson(m = 0.011,s = 4)
- mean inter-arrival 1/ 7, 87s

Table 2: Experiments parameters.

The associateDIRAC strategy is detailed in sectid The criterion of availability is expressed®which implies
that tasks in the waiting state scheduled on a computingiresshould not exceed 30% of the total number of nodes.

depth;
card(Ng, ;)

The policy applied at the matchmaker level is that of FRF$REisource First Serve). That means that the first

<e, eg.c=0.3 5)

resource which matches well is chosen.

We also propose to evaluate the impact of the deploymeDtRAC. Let us consider two kinds of agent deploy-
ment. The static approach is described in Seciarnereas the dynamic approach is a concept similar to theireso
reservation. After detecting the availability, the ageepldyed on the site queries the match-maker to ask if tagks ar
available. In the case of a positive answer, it submits amtageapped in simple task to the cluster. Once the agent
arrives at the node, it checks the node capacity and envieohand creates the resource description accordinglyr Afte
that the agent queries a task from the match-maker. If noitaskurned the agent dies. In the simple reservation
mode 'Run Once’, the agent dies after the completion of tisé tiisk while in a "filling’ mode it queries for one more
task with respect to the available time.

The algorithm for the centralized scheduling is the follogui At each task arrival the scheduler looks for the least
loaded resourcé.e. the resource; ; from clusterC; which has the minimum measured deptlpth, ; with Vi € C
andVj € F;.

Now we compare two approaches which strongly favour highughput computing but the question is: what
architectures and implementations could influence thefopmance?

8 Results

Figure7 shows the evolution of total number of tasks in the stpteuedandrunningduring the experiment. The third
line is thedonecumulated task curve.

500 -

e Gkt

500

[O Cumulated done tasks

t O Cumulated done tasks f
[v Running tasks t v Running tasks F,m/
€ [r 4
% 400 - O Queued tasks B 400 - O Queued tasks pa e
S [e p)
— [) 1 7] [mﬁ/
° [] =
L300 [j;{ﬂ 4 ©300 |- ; 4
£ 4] 5 ¢
3 r] o
c sz{ 4 £ f
© 1 =]
‘5200 - E E200 - p]
[1 s £
) 2)
) L A
100 B 100 B/f -

e A
Dn‘_\k"@j/\ I I e~ STFM 0 aEfaaop®eg®) L1 1 el 1
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Time(s), A=1 Time(s)

(a) Centralyzed approach witht = 0. (b) DIRACapproach.

Figure 7: Tasks evolution vs. time in a dedicated platform.

The saturation phase gives us the platform maximal capadiigh is equivalent to the sum of all nodes,
> .ccNi, here 60. The two approaches saturate all resources bus ihierent in theDIRAC approach where the
evolution of the tasks in thgueuedstate is constant (Figui&b)).

The Figure8 shows the variation of th&t period versus average waiting timeiting,, for centralized scheduling
in first a dedicated context and then in a shared context DIRAC waiting times are qualitatively indicated because
they are independent in philosophy frafyt (Figure8(b)).

DIRAC does not use a central information service so does not depetids period. For @\t less than 95 s, the
waiting time is better than the centralized scheduling irdichted context and performs better by around 60 s in the
shared context. In the latter the performances rapidlyatkgand a more chaotic effect is observed. The upper bound
observed corresponds to the situation where all tasks heglated on the same site wheké > maxyc aq; L.

Figure9(a) compares the makespan as well as the local and global respores executed for the four evaluated
strategies. For a nulh\t, the best makespan is obtained for the centralized apprltubugh the smallest response
time came from th®IRACapproach in théilling reservation mode. The execution times are of the same adel f
strategies. This is explained by the platform characieribat sites have the same capacity on average. The response
time difference is mainly due to the local and global waittitge. The largest local waiting time is found with the
staticDIRAC scheduling however, the global waiting time in this sitaatis minimal.

12000 3000

S
i | VT

10000

8000 2000

J

@ w
2z EE? CSharled J Shared
E 6000 £ entralyze: DIRAC
2 1500
£ £
K [=
34000 =
[1000 MDedicated Dedicated
[DIRAC Centralyzed
L dedicated r
2000 platform l
At>max t 500 |-
r keMek
= 1 1 1 1 ol T b e e b e e e e e e ey
0 2000 4000 6000 8000 10000 0 100 200 300 400 500 600
At(s) At(s)
(a) Full variation. (b) Comparison wittDIRAC.

Figure 8: Average waiting time for meta-task vs. perittlifor the centralized approach in a shared and a dedicated
context.

Demands rate vs. Time(s)

600 — 7T
Metrics and measures vs. Time(s) r 1
400 - b
200 - 1
Centralyzed
25000 — B8 Decentralyzed | | ! ! ! | R
Decentralyzed wim reservation - 0 20 40 DIRAC‘);,obin _ 20082 100 T,1520
V72Z) Decentralyzed with reservation, mode filling 50
L e e A e e T B e e e e
20000 E 3
- M: Makespan 40 E 3
- RT: Average Response Time 30 ; ?
- GWT: Average Global Wait Time 20 E!
15000 - LWT: Average Local Wait Time 10 E 3
- ET: Average Execution TIme [}) —— = Al ity =k AL
0 20 40 60 80 100 120

DIRAC with reservation, bin = 200 s Ts
s

’
0000 50— ———————

5000

S P - PR S 1 et s - Y- R
A 5551 L 0 20 40 60 80 100 120
M RT GWT LWT ET DIRAC with reservation, mode filling, bin=200s T,s

0

(a) Strategies comparison for: centralized approd2tRAC (b) Traffic on the match-maker service vs. time for the three
with a static deployment and the tiRAC reservation mod®IRAC strategies.
simple and filling.

Figure 9: Results and caracteristics for strategies.

In the case oDIRAC reservation the local waiting times are null because thehiag is done directly from the
node. The waiting time is expressed for the agents in this.cClise effect of changing the deployment from static to
dynamic gives a improvement of 10% for the average respamse The reservation mod#ling nearly introduced a
50% improvement for the average response time in compawgbrthe centralized approach.

The graphs in Figur®(b) illustrate the rate of tasks demandihpe mat ch- maker servi ce in the tree
DIRAC deployment mode with the static approach (top), the simggenvation (middle) and the ‘filling’ reservation
mode (bottom).

During the platform initialization and at the experimeigatend, the load is important onhe service
mat chmaker in the static case. The total number of queries with thecsggproach is about 872 with about 699 for
the dynamic case. We also establish thattthe nat ch- maker load is more homogeneous for the dynamic case.

9 Discussion

In an ideal situation the centralized approach gives therbsalts but it is often impractical to assume that such & pla
form would stay stable. Common failures, by order of impactare: network failure; the disk quotas; unavailability
of services; incorrect local configuration and finally powat. With this large scope of error it is difficult to keep an
ideal view of a global system. The scheduling is totally defamt on the information system performance and this
system often does not scale well.

DIRAChypasses this problem because one of the main charac®issthe total absence of a system global view.
It takes its decisions with a partial and global view. Eackotgce, in conjunction with its current state, gets an
appropriate workload to suit its capacity. The tasks ararpatbuffer where the scheduling event is an attribute of the
resource availability which is the opposite to the certeliapproach where the triggered event is a task submission.

If a platform deterioration occurs, any drawback from udimg centralized approach is immediately paid back in
term of performance. This effect is also more significanh& &pproach is combined with predictions. A rapid state
change of a resource is taken into account only after a lajpme in the centralized model. During this lapse in a
high throughput context, the decisions made can be disesstRResource starvations and system information failures
are also two main drawbacks which do not affetRAC, where all available resources are utilized immediately.

DIRAC demonstrates adaptability. This dynamic aspect forcesdsdimg in an opportunistic, reactive and non-
predictive way. On the other hand, the results are quitelaimiith the centralized schedulinddIRAC is easy to
implement, stable and flexible. It also facilitates reseuservation which can significantly increase performance
Nevertheless it must be said that technically this impraseihrequired direct communication with worker nodes.
Within DIRAC passive communication mode relaying of outbound conngctvused to accomplish this.

The reservation mode causes a higher and more regulatedriddcte mat ch- maker servi ce. This penalty
for this improvement is the huge number of agents which alfigint after the non-task answer (299 in our case which
is non-negligible).

10 Conclusion and future works

In this paper we propose a model for a meta-scheduling phatfolWe measure an average error of 12% for the
makespan prediction. With this tool it is demonstrated thatentralized approach is better than a decentralized
approach in term of performances for high throughput coimgut However, this happens only in the ideal case
where the update period is quasi null. Above 95s in a dedicatatext, the 'pull’ approach had similar results and
importantly was more stable. The same observation is madesirared context. The 'pull’ approach also provides
an abundance of scenarios which allow a performance entmemtehe of just under fifty percent compared to the
centralized approach. This was most evident with resowgservation. It will be interesting to study the impact of
the migration from site to site with regard to their local Wload. The criterion for optimizing the scheduling is
specific to the application itself, therefore, since mangligations are executed concurrently on the same platform,
grid scheduling must be done with a multi-criteria scheawlkapproach. Future work will be into the study of this
aspect.

Acknowledgment

We gratefully acknowledge Stuart Paterson for helping &pare this document.

References

[1] Abhijit Bose, Brian Wickman, and Cameron Wood. Mars: Ataseheduler for distributed resources in campus
grids. INnGRID '04: Proceedings of the Fifth IEEE/ACM Internationabkishop on Grid Computing (GRID’04)
pages 110-118, Washington, DC, USA, 2004. IEEE Computdefoc

[2] H. Casanova. Simgrid: A toolkit for the simulation of djgation scheduling. IrProceedings of the First
IEEE/ACM International Symposium on Cluster Computing treGrid (CCGrid 2001) Brisbane, Australia,
15-18May 2001.

[3] J. Closier and al. Results of the Ihcb experiment datdiehge 2004. ICHEP'04, Interlaken, November 2004.
[4] Doar. A better model foor generating test networksIHEE GLOBECOM 1996.

[5] I. Foster and C. Kesselman, editorsThe Grid: Blueprint for a New Computing InfrastructureMorgan-
Kaufmann, 1998.

[6] lan Foster. The Anatomy of the Grid: Enabling Scalabletiél Organizations.Lecture Notes in Computer
Science2150, 2001.

[7] Garonne, V. and Stokes-Rees, |I. and Tsaregorodsev, RADI A Scalable Lightweight Architecture for High
Throughput Computing. I&rid 2004, 5th IEEE/ACM International Workshop on Grid Cartipg, November
2004.

[8] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yalogap Evaluation of job-scheduling strategies for grid
computing. InProceedings of the First IEEE/ACM International WorkshapGrid Computingpages 191-202.
Springer-Verlag, 2000.

[9] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, and &raR. Nudd. Optimising static workload allocation
in multiclusters. INPDPS 2004.

[10] L. Kleinrock, editor.Queueing Systems Volume | : Theadghn Wiley and Sons, 1975.

[11] Hui Li, David Groep, and Lex Walters. Workload charaigtcs of a multi-cluster supercomputer. Job
Scheduling Strategies for Parallel Processiggpringer-Verlag, 2004.

[12] Miron Livny, Jim Basney, Rajesh Raman, and Todd Tanaenh Mechanisms for high throughput computing.
SPEEDUP Journall1(1), June 1997.

[13] D. Lu and P. Dinda. Synthesizing realistic computadilogrids. InProceedings of ACM/IEEE SC 2003003.
[14] SETI@Homehttp://setiat hone. ssl. berkel ey. edu/ .

[15] G. Shao, F. Berman, and R. Wolski. Using effective nekwiews to promote distributed application perfor-
mance. InProceedings of the 1999 International Conference on Paralhd Distributed Processing Techniques
and Applications1999.

[16] A. Takefusa. Bricks: A performance evaluation systenstheduling algorithms on the grids.J8PS Workshop
on Applied Information Technology for Scien2601.

[17] Atsuko Takefusa, Satoshi Matsuoka, Henri Casanovd,Faancine Berman. A study of deadline scheduling
for client-server systems on the computational gridHPDC '01: Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing (HPID®1), page 406. IEEE Computer Society,
2001.

[18] S. Vadhiyar and J. Dongarra. A metascheduler for thd. g Proceedings of the 11th IEEE Symposium on
High-Performance Distributed Computing002.

http://setiathome.ssl.berkeley.edu/

	1 Introduction
	2 Background
	3 The DIRAC system
	3.1 The resource management system: The 'Pull' paradigm

	4 The performance model
	4.1 The topology
	4.2 The node characteristic
	4.3 The workload model
	4.4 The local model scheduling
	4.5 Measures and metrics

	5 Simulation tool
	6 Validation of the simulation tool
	6.1 Analytical validation
	6.2 Experimental Comparison
	6.3 Results

	7 Experimentals setup
	8 Results
	9 Discussion
	10 Conclusion and future works

