
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Evaluation of Meta-scheduler Architectures and
Task Assignment Policies for High Throughput

Computing

Eddy Caron,
Vincent Garonne ,
Andreï Tsaregorodtsev

May 2005

Research Report No 2005-27

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50454197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evaluation of Meta-scheduler Architectures and Task Assignment
Policies for High Throughput Computing

Eddy Caron, Vincent Garonne , Andreï Tsaregorodtsev

May 2005

Abstract
In this paper we present a model and simulator for many clusters of heterogeneous
PCs belonging to a local network. These clusters are assumedto be connected to each
other through a global network and each cluster is managed via a local scheduler which
is shared by many users. We validate our simulator by comparing the experimental
and analytical results of a M/M/4 queuing system. These studies indicate that the
simulator is consistent. Next, we do the comparison with a real batch system and we
obtain an average error of 10.5% for the response time and 12%for the makespan.
We conclude that the simulator is realistic and well describes the behaviour of a large-
scale system. Thus we can study the scheduling of our system calledDIRAC in a high
throughput context. We justify our decentralized, adaptive and opportunistic approach
in comparison to a centralized approach in such a context.

Keywords: Simulation, Model, Multi-clusters platform, Meta-scheduling, Grid Computing

Résumé
Dans cet article, nous présentons une modélisation et un simulateur de grands sys-
tèmes de calcul distribué. Une telle plate-forme se composede grappes de PCs hété-
rogènes appartenant à un réseau local inter-connectées entre elles par un réseau glo-
bal. Ces grappes sont accessibles via un ordonnanceur localet sont partagées entre
les utilisateurs. La confrontation du simulateur avec les résultats théoriques d’un sys-
tème M/M/4 nous permet de conclure qu’il est analytiquementvalide. Une deuxième
confrontation avec un système batch réel, nous donne une différence moyenne de 10.5
% par rapport à la réalité pour les temps de réponse et de 12% pour le makespan. Notre
simulateur est donc réaliste et décrit le comportement d’unsystème de batch réel. Fort
de cet outil, nous avons analysé l’ordonnancement de notre système (appeléDIRAC)
dans un contexte de calcul intensif. Nous avons justifié l’approche distribuée, adapta-
tive et opportuniste utilisée dans notre système par rapport à une approche centralisée.

Mots-clés: Simulation, Modélisation, Plate-forme multi-grappes, Calcul sur la Grille

Évaluation of Meta-scheduler architectures ... 1

1 Introduction

In an institutional large scale system [5] resources are heterogeneous clusters which belong to a local network (LAN)
and miscellaneous administrative domains. These clustersare shared between many users or virtual organizations [6]
and a local policy is applied to each cluster which defines their access rights. This policy is applied through a resource
management system,i.e. a batch system.
To aggregate theses clusters and manage the workload a global architecture must be defined paying special attention to
the size of these systems. For example, in the High Energy Physics domain the envisaged size is around a hundred sites
spread all over the world which is equivalent to 30,000 nodes. This domain also strongly favorshigh throughput[12],
which attempts to maximize the number of jobs completed on a daily, or longer, basis. This is typical of situations
where the supply of computational jobs greatly exceeds the available resources and jobs are generally not time critical.
While batch systems are often used at the local level, there isno common solution in a global context. TheDIRAC
system has been developed to meet these requirements and provide a generic, robust grid computing environment.
In this paper we propose an evaluation of the performances and the behavior of theDIRACsystem in ahigh throughput
context. The paper is organized as follows: Section 2 presents the background; Section 3 discusses the DIRAC
architecture and main components; Section 4 presents the model used; while Section 5 discusses the simulation tool
and section 6 descibes how it was tested; Section 7 shows the experimental setup; Section 8 the results and finally
Section 9 finishes with conclusions and future plans.

2 Background

In a multi-site grid project [18, 8, 1], decisions are often taken with a global view of the system.The architecture
in Figure1 is composed of a centralized meta-scheduler and a centralized information system. This approach put in
place as ’Push’ paradigm.

node

node
node

nodenode
node

node
node

node node

node

Local Scheduler

node

Information flow:
Tasks flow:

Task generator (clients)

Global Scheduler System
Global Information

Update at time interval ∆t

System
Local Information System

Local Information
System

Local Information

Local Scheduler Local Scheduler

Site Site Site

Figure 1: Example of an architecture with centralized scheduling

In this model, the global information system keeps all the static and dynamic information about the system state
in one place. Sensors deployed on the sites update the information by first querying the local information system
and then updating their own information in the global information system. Ideally these updates are done whenever a
change of state happens in the system which could, for example, be the arrival or end of a task. In fact, this solution
often generates a message storm and needs some kind notification mechanism. The use of a period△t seems most
appropriate and stems the flow of messages.

Some studies [9] propose strategies which employ file queuing systems [10] whilst others [17] use simulation
mechanisms like BRICKS [16]. Generally these work quite well but only in a simplified andunrealistic model. Thus
far no project is able to manage the workload on more than a hundred sites and the problem of a multi-site system for
high throughput computing has not yet been explored.

2 E. Caron , V. Garonne , T. Tsaregorodtsev

3 TheDIRAC system

DIRAC (Distributed Infrastructure with Remote Agent Control) [7] has been developed by the CERN LHCb physics
experiment to facilitate large scale simulation and user analysis. TheDIRAC system has recently been used for an
intensive physics simulation involving more than sixty sites, 90 TB of data, and in excess of one thousand 1 GHz
processor-years.DIRAC is organized into aService Oriented Architecture(SOA), with a number of independent
services including monitoring and resource management.

3.1 The resource management system: The ’Pull’ paradigm

node

node
node

nodenode
node

node
node

node node

node

Local Scheduler

node

Match-Maker
Service

global queues

Information flow:
Tasks flow:

Task generator (clients)

Local Scheduler Local Scheduler

Site
agent

Site
agent

Site
agent

Figure 2: TheDIRACscheduling model.

Figure2 illustrates theDIRACscheduling model which deploys agents on the sites and uses central global queues.
DIRACuses a’Pull’ paradigm where agents demand a task if they detect free slots. Using the cycle-stealing paradigm
borrowed from global computing [14], tasks are only run when resources are not in use by the localusers.DIRAC
extends this concept to different computing resources by defining a criterion of availability. These resources could be
anything from a simple PC to whole batch systems. As soon as a resource is detected to be available the dedicated agent
requests tasks from thematch-maker service. This is accomplished using the resource description which contains
the dynamic and static information about the resource. Thematch-maker service allocates tasks to resources by
viewing the global job queues and usingClassadmatchmaking from theCONDORproject [12].

The Matchmaker compares one-on-one requirements performing a round-robin on each of the job queues until it
finds a suitable job for a particular resource. This is anO(n) operation, which, in the worst case, would involve alln
queued tasks in the system being checked once against the resource characteristics defined in the task request. This
operation is independent from the total number of resourcesand the total number of tasks.

4 The performance model

Let C represent the set of clusters present in the multi-sites platform. Each clusterCi owns a set of worker nodesNi

and belongs to a local domain, i.e. a LAN (Local Area Network). This local network describes a graph for the nodes.
Each link of this graph hasa local bandwidth bwtCi

anda local latency latencyCi
.

4.1 The topology

A clusterCi is connected to the global network or WAN (World Area Network) by a switch. Figure3 describes this
topology with links having the same properties as previously mentioned. LetbwtC be theglobal bandwidth and
latencyC the global latency.

Many different approaches exist to generate the right graphfor the proposed model. Tools exist, such as ENV [15]
to describe the characteristics of a real topology. Although there is not sufficient information to suggest that these tools

Évaluation of Meta-scheduler architectures ... 3

node

node

node

node

node

node

node

node

node node

node
node

node

node

node

node

node

node

WAN

node

LAN
Local domain

Figure 3: Example of a topology for a meta-scheduling platform.

scale well it was decided to use a generator topology. Some recent studies [13] show that networks follow specific
power laws. The graph generator according to these laws are generally random, degree-based or hierarchical.

4.2 The node characteristic

Let (i, j) be the pair defines thejjth node of clusterCi. Each node (i, j) has a processor capacitycapacityi,j and to
express this we define one computing unit, theNCU (Normalized Computing Unit). This unit is determined by special
application benchmarking on different referential machines, taking into account the absolute time. So the capacity ofa
node is simply the total number of computing units able to be computed per unit time. We can then model the platform
heterogeneity and definethe average platform capacity ascapacitym = 1∑

i∈C
card(Ni)

∑

i∈C,j∈Ci
capacityi,j .

4.3 The workload model

We define two levels for the workload, local and global. The global workload corresponds to the tasks submitted to
the metacomputing system, usually called meta-tasks. The local or background workload corresponds to tasks locally
submitted to a cluster. A meta-taskmk is mapped locally to a simple taskk.

A typical taskk has four attributes :attributes={ tlk, lengthk, prock, groupk} wheretlk is thelocal submission
date, lengthk the lengthexpressed in NCU,prock is the total number of processorsrequired for the task execution
andgroupk the organization who submits the task. A meta-taskmk is composed of the task properties sub-set and
the global submission datetk. So we havemeta-attributesk={ tk, attributesk}.

Modelling the workload for a metacomputing system involvesdeterminingk for each task from the task setT then
submitting the attributesattributsk to a clusterCi. The meta-tasksmk of the set of meta-tasksMT and their meta-
attributes are also submitted to the system. The methods used to generate a workload are the following: a randomize
workload; a workload derived from real system traces and lastly a stochastic workload.

A random workload and, in the same way, a workload derived from a real system are not realistic. A workload
derived is judged to represent too many platform dependant characteristic and so too specific. Instead, the stochastic
workload is chosen here. Some works [11] studying computing centre traces propose a complete probabilistic model
and so we writeS(T) for the distribution function which generates the length setfor a set of taskT . Let CA
be the cut applied to this length set which fixes the maximal and minimal length.We also denotethe distribution
function which generates the submission date setby A(T) for a set task and finallythe average submission rate
by λT .

4.4 The local model scheduling

At the local level, nodes of a same site are typically managedby a resource management system, e.g a batch system.
Other implementations use queues which are defined by the characteristics of the task, for example, their length.
Shared time scheduling between users is done by the local scheduler which would normally apply policies based on
quotas or priorities. For a clusterCi, we can definea queues setQi . Each queueqi,j of Qi is composed of a set of

4 E. Caron , V. Garonne , T. Tsaregorodtsev

nodesNqi,j
. Any particular node can belong to one or many queues. The tasks submitted to the site are then added to

these queues to wait for their execution. Subsequently, a queueqi,j will contain a task setTi,l. We definethe queue
depth depthi,j = card(Ti,l) asthe total number of tasks waiting in the queue a particular instant. Themaximal
timethat a task could spend in execution on a node of the queueqi,j is denoted bytmaxi,j

.

4.5 Measures and metrics

For a taskk, we define three following states:queued, runninganddone. The statequeuedmeans that a task is in a
waiting queue. When the task is executing it is in therunningstate and thedonestate signals that the task is completed.
The corresponding times for the changing statesrunning, queuedand donefor a task k are respectivelyrk, qk

and dk. the local waiting time for a task k is the execution beginning time minus the submission timerk − tlk. The
execution time is dk − rk andthe local response timeis dk − tlk. For a meta-taskmk, we have aglobal waiting
time which is the beginning execution time minus the global submission time,rk − tk. The global response timeis
dk − tk.
For the set of meta-tasksMT , we definethe average waiting time:

waitingm =
1

card(MT)

∑

k∈MT

(rk − tk) (1)

the average execution time:

executionm =
1

card(MT)

∑

k∈MT

(dk − rk) (2)

andthe average response time:

responsem =
1

card(MT)

∑

k∈MT

(dk − tk) (3)

We also definethe makespanwhich is the full time to complete all the jobs inMT :

makespan = max
k∈MT

(dk) − min
k∈MT

(tk) (4)

5 Simulation tool

Simgrid [2] is a discrete event toolbox which allows the modelling and description of a platform for centralized,
hierarchical or fully distributed scheduling. The improvements made toSimgridare as follows:

A description platform module. Our simulator is interfaced with the hierarchical graph generatorTiers [4]. We
have to specify the total number of WAN, LAN, nodes per LAN andthe redundancy links. For the capacity
information, we define a sample set of nodes where each node isweighted by a percentage. This percentage
expresses the proportion of this node type present in the platform. The node NCU capacities and their weights
are inspired by the performances obtained byDIRAC for a physics application on the production platform [3].
This platform was composed of more than 4,000 nodes and twenty different node configurations. Based on the
total number of nodes and their proportions we generate the setP of all available capacity. Then for each node
we proceed by drawing lots in the setP and one occurrence of this value would be removed from the setP until
the capacity attribute is filled for all nodes.

A workload generator. Simgridhas already got an implementation of the task concept. In this model, however, the
meta-data is addede.g.,the organization submitting tasks. The workload generatorprovides different probability
density functions (p.d.f) like the Gamma law, Gaussian law and so on. To have a shared system we implement
an agent per client or organization. The simulation tool allows one to simulate different system users. Therefore,
it is possible to have different workloads submitted at the same time and evaluate their interactions.

A generic batch system.The basic entity at the local level is the batch system. AsSimgriddoes not provide a model
for this, a generic one has been implemented. The design is illustrated by Figure4.

Évaluation of Meta-scheduler architectures ... 5

Scheduler
Local

Submission Switcher

System
Information

Head Node Informations

New task

End task

node

node

node

node

node

Information flow:
Tasks flow:
Notification:

Figure 4: The generic Batch system design.

A head node hosts the principal components: switcher, queues, information system and finally the local sched-
uler. Each node communicates with the head node. A task submission is managed by the switcher which with
regard the task requirements, places it in a queue and notifies the scheduler. This then queries the monitoring and
accounting system to choose a candidate node. If no resourceis available the task stays in the queue but once
the task is sent to the node it is executed. After the task is completed, the scheduler is notified which triggers a
cycle where the scheduler looks at the queues and determinesif another task could be executed. The scheduler
configuration is entered by file and includes properties suchas the total number of queues, the availability or not
of a node in a queue and the maximum number of tasks which couldexecute on a node.

The meta-scheduling architectures.Two kinds of global architectures were implemented. First the centralized
architecture outlined in Section2. Second theDIRACarchitecture described in the Section3.

A monitoring and accounting system.For each simulation run the information relating to each task is recorded.
This helps the analysis of a particular strategy by facilitating the measures and metrics computation described
in Section4.5.

6 Validation of the simulation tool

6.1 Analytical validation

For the theoretical validation, experiments were performed on M/M/m queuing systems [10].
Figure5 shows the response time differences between the simulated results and the analytical theory for a M/M/4

system. The service time average is four units time. The arrival rate follows an exponential law. The simulated
responses are derived from 16 independent runs of 1,000 tasks and the root mean square error for all simulated arrival
rates. The results obtained are consistent with theory.

6.2 Experimental Comparison

A dedicated and heterogeneous cluster was used, described in Table1.
A DIRACagent was deployed on the cluster with a task generator put inplace. This generator submits independent

and sequential tasks with no communications. The submission times follow a Poisson law and the benchmark used
was a program which implements a CPU consumed counter. It takes one parameter which is the number of CPU to
consume before ending. This length is created for each task and follows a Weibull law. The response time and the
waiting time are then captured by theDIRACmonitoring service. Then, we capture this workload to inject it in our
simulator. To estimate the execution time according to the node capacity we normalize this time with the node NCU
capacity. The NCU node capacity is determined by benchmarking, outlined in Table1. A simple topology is assumed
where each node is connected to the head node by a simple link with 100 mega byte/s bandwidth and a null latency,
as illustrated in Figure4 .

6 E. Caron , V. Garonne , T. Tsaregorodtsev

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6

Simulation

Analytical

Inter-time(s)

L
o
g
a
ri
th

m
 o

f
re

s
p
o
n
s
e
 t
im

e

Figure 5: Reponse time comparison between simulation and M/M/4 theory queueing system.

Attributes Values
Total number of nodes (card(Ni)) 3

Type PII PII PIII
Processor(MHz) 350 400 600

Memory(mo) 128 128 128
Capacity(NCU.s−1) 32.12 52.12 100.00

Scheduler openPBSv2.3
Politicy First Come First Serve(FCFS)

Local Network Megabyte Ethernet

Table 1: Platform caracteristics used for the simulation validation.

6.3 Results

The total number of tasks is 330, i.e.card(MT) = 330. We observe for first instance an average error of 80% for
the response time as illustrated in Figure6(a). After a trace study we characterize two service times,µrec andµsend.
µrec is the service time between task arrival and task sending on anode or in queue andµsend is the necessary time
to notify the scheduler of a task completion. This large average error can be explained by the fact that the scheduler
made its choice with a different system state view. The nodesare heterogeneous so the consequences are dramatic for
the response time. We correct this error by including the service timesµrec andµsend measured on the real system
injected as traces. Then, we obtain exactly what we would expect in reality which validates the code. The experiment
is then repeated by setting time services to constants. These constants are the average service time observed in reality
(µrec = 3.75s, µsend = 2s). After this we observe an improvement in the average error of 10.5%. Figure6(b) shows
the makespan evolution versus the total number of tasks. Forthe constant service time, we see an average error of
12%. From this it is possible to conclude that at the local level the simulator is realistic. It is now possible to proceed
to the strategies and meta-scheduling architectures evaluation. One further improvement could be to make the service
timesµrec andµsend a distribution function approaching the real behavior.

Évaluation of Meta-scheduler architectures ... 7

0

25

50

75

100

125

150

175

200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Average response time deviation (s)

T
o

ta
l
n

u
m

b
e

r
o

f
ta

s
k

Without service time

With service time

(a) Deviation distibution for the response time (absolute value).

0

10000

20000

30000

40000

50000

60000

0 50 100 150 200 250 300

M
a

k
e

s
p

a
n

(s
)

Total number of tasks

Real makespan

Simulated makespan with no service time

Simulated makespan with constant service time

(b) Makespan evolution vs. the number of tasks.

Figure 6: Comparison between simulation and a real batch system with µrec = µenv = 0 andµrec = constant,
µenv = constant.

7 Experimentals setup

The decentralizedDIRACarchitecture described in Section3 and the centralized approach from Section2 can now be
compared. The message control size for both architectures is 30 KB in the simulation. The workload characteristics
are inspired by an empirical study [11] and Table2 summarises the platform parameters and workload attributes.

Parameters Notations Values

P
la

tfo
rm

︷
︸
︸

︷ Total number of sites card(C) 3
Total number of node per site card(Ni) 20
Total number of queue per site card(Fi) 1

Average node capacity capacitym 96 NCU.s−1

Local policy M/M/card(Ni)/FCFS FCFS
Maximal execution time tmaxi,j

24000s
Local/Global bandwith bwtC /bwtCi

1000 Mbit/100 Mbit
Local/Global latency latencyC , latencyCi

0s

W
or

kl
oa

d
︷

︸
︸

︷ Task Type card(prock) 1
Length distribution S(Mt) → {lengthk} Weibull(α = 142.2, β = 0.45)

Length cut C(lengthk) 37300 < lengthk < 242800

G
lo

ba
l

︷
︸
︸

︷ Total number of task card(Mt) 500
Arrival time distribution A(Mt) → {tlk} Poisson(m = 0.05, s = 4)

Average inter-arrival 1/λMt 19s

Lo
ca

l
︷

︸
︸

︷ Total number of task per site card(Ti) 500
Arrival time distribution A(Ti) → {tk} Poisson(m = 0.011, s = 4)

mean inter-arrival 1/λTi
87s

Table 2: Experiments parameters.

The associatedDIRACstrategy is detailed in section3. The criterion of availability is expressed in5 which implies
that tasks in the waiting state scheduled on a computing resource should not exceed 30% of the total number of nodes.

depthi,j

card(Nqi,j
)

< ε, e.g. ε = 0.3 (5)

The policy applied at the matchmaker level is that of FRFS(Fit Resource First Serve). That means that the first

8 E. Caron , V. Garonne , T. Tsaregorodtsev

resource which matches well is chosen.
We also propose to evaluate the impact of the deployment inDIRAC. Let us consider two kinds of agent deploy-

ment. The static approach is described in Section3 whereas the dynamic approach is a concept similar to the resource
reservation. After detecting the availability, the agent deployed on the site queries the match-maker to ask if tasks are
available. In the case of a positive answer, it submits an agent wrapped in simple task to the cluster. Once the agent
arrives at the node, it checks the node capacity and environment and creates the resource description accordingly. After
that the agent queries a task from the match-maker. If no taskis returned the agent dies. In the simple reservation
mode ’Run Once’, the agent dies after the completion of the first task while in a ’filling’ mode it queries for one more
task with respect to the available time.

The algorithm for the centralized scheduling is the following. At each task arrival the scheduler looks for the least
loaded resource,i.e. the resourceqi,j from clusterCi which has the minimum measured depthdepthi,j with ∀i ∈ C
and∀j ∈ Fi.

Now we compare two approaches which strongly favour high throughput computing but the question is: what
architectures and implementations could influence their performance?

8 Results

Figure7 shows the evolution of total number of tasks in the statequeuedandrunningduring the experiment. The third
line is thedonecumulated task curve.

Cumulated done tasksCumulated done tasks

Running tasksRunning tasks

Queued tasksQueued tasks

Time(s)

T
o

ta
l
n

u
m

b
e
r

o
f

ta
s
k
s

(a) Centralyzed approach with△t = 0.

Time(s)

T
o

ta
l

n
u

m
b

e
r

o
f

ta
s

k
s

Cumulated done tasksCumulated done tasks

Running tasksRunning tasks

Queued tasksQueued tasks

(b) DIRACapproach.

Figure 7: Tasks evolution vs. time in a dedicated platform.

The saturation phase gives us the platform maximal capacitywhich is equivalent to the sum of all nodes ,i.e.
∑

i∈C Ni, here 60. The two approaches saturate all resources but thisis different in theDIRACapproach where the
evolution of the tasks in thequeuedstate is constant (Figure7(b)).

The Figure8shows the variation of the△t period versus average waiting timewaitingm for centralized scheduling
in first a dedicated context and then in a shared context. TheDIRACwaiting times are qualitatively indicated because
they are independent in philosophy from△t (Figure8(b)).

DIRACdoes not use a central information service so does not dependon this period. For a△t less than 95 s, the
waiting time is better than the centralized scheduling in a dedicated context and performs better by around 60 s in the
shared context. In the latter the performances rapidly degrade and a more chaotic effect is observed. The upper bound
observed corresponds to the situation where all tasks are scheduled on the same site where△t > maxk∈Mt tk.

Figure9(a)compares the makespan as well as the local and global response times executed for the four evaluated
strategies. For a null△t, the best makespan is obtained for the centralized approachalthough the smallest response
time came from theDIRACapproach in thefilling reservation mode. The execution times are of the same order for all
strategies. This is explained by the platform characteristic that sites have the same capacity on average. The response
time difference is mainly due to the local and global waitingtime. The largest local waiting time is found with the
staticDIRACscheduling however, the global waiting time in this situation is minimal.

Évaluation of Meta-scheduler architectures ... 9

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000

W
a

it
in

g
 T

im
e

(s
)

∆t(s)

platform
shared

platform
dedicated

∆t>max
kk Mt

t

(a) Full variation.

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

W
a
it
in

g
 T

im
e
(s

)

DIRAC

∆t(s)

DIRAC Centralyzed
Dedicated

Shared
Centralyzed

Shared

Dedicated

(b) Comparison withDIRAC.

Figure 8: Average waiting time for meta-task vs. period△t for the centralized approach in a shared and a dedicated
context.

Metrics and measures vs. Time(s)

0

5000

10000

15000

20000

25000

RT GWT LWT ET

Decentralyzed

Centralyzed

Decentralyzed with reservation

Decentralyzed with reservation, mode filling

M: Makespan

RT: Average Response Time

GWT: Average Global Wait Time

LWT: Average Local Wait Time

ET: Average Execution TIme

M

(a) Strategies comparison for: centralized approach,DIRAC
with a static deployment and the twoDIRAC reservation mode
simple and filling.

Demands rate vs. Time(s)

DIRAC, bin = 200 s

DIRAC with reservation, bin = 200 s

DIRAC with reservation, mode filling, bin = 200 s

(b) Traffic on the match-maker service vs. time for the three
DIRACstrategies.

Figure 9: Results and caracteristics for strategies.

In the case ofDIRAC reservation the local waiting times are null because the matching is done directly from the
node. The waiting time is expressed for the agents in this case. The effect of changing the deployment from static to
dynamic gives a improvement of 10% for the average response time. The reservation modefilling nearly introduced a
50% improvement for the average response time in comparisonwith the centralized approach.

The graphs in Figure9(b) illustrate the rate of tasks demandingthe match-maker service in the tree
DIRACdeployment mode with the static approach (top), the simple reservation (middle) and the ’filling’ reservation
mode (bottom).

During the platform initialization and at the experimentation end, the load is important onthe service
matchmaker in the static case. The total number of queries with the static approach is about 872 with about 699 for
the dynamic case. We also establish that thethe match-maker load is more homogeneous for the dynamic case.

10 E. Caron , V. Garonne , T. Tsaregorodtsev

9 Discussion

In an ideal situation the centralized approach gives the best results but it is often impractical to assume that such a plat-
form would stay stable. Common failures, by order of importance are: network failure; the disk quotas; unavailability
of services; incorrect local configuration and finally powercut. With this large scope of error it is difficult to keep an
ideal view of a global system. The scheduling is totally dependant on the information system performance and this
system often does not scale well.

DIRACbypasses this problem because one of the main characteristics is the total absence of a system global view.
It takes its decisions with a partial and global view. Each resource, in conjunction with its current state, gets an
appropriate workload to suit its capacity. The tasks are putin a buffer where the scheduling event is an attribute of the
resource availability which is the opposite to the centralized approach where the triggered event is a task submission.

If a platform deterioration occurs, any drawback from usingthe centralized approach is immediately paid back in
term of performance. This effect is also more significant if the approach is combined with predictions. A rapid state
change of a resource is taken into account only after a lapse of time in the centralized model. During this lapse in a
high throughput context, the decisions made can be disastrous. Resource starvations and system information failures
are also two main drawbacks which do not affectDIRAC, where all available resources are utilized immediately.

DIRAC demonstrates adaptability. This dynamic aspect forces scheduling in an opportunistic, reactive and non-
predictive way. On the other hand, the results are quite similar with the centralized scheduling.DIRAC is easy to
implement, stable and flexible. It also facilitates resource reservation which can significantly increase performances.
Nevertheless it must be said that technically this improvement required direct communication with worker nodes.
Within DIRACpassive communication mode relaying of outbound connectivity is used to accomplish this.

The reservation mode causes a higher and more regulated loadonthe match-maker service. This penalty
for this improvement is the huge number of agents which abortright after the non-task answer (299 in our case which
is non-negligible).

10 Conclusion and future works

In this paper we propose a model for a meta-scheduling platform. We measure an average error of 12% for the
makespan prediction. With this tool it is demonstrated thata centralized approach is better than a decentralized
approach in term of performances for high throughput computing. However, this happens only in the ideal case
where the update period is quasi null. Above 95s in a dedicated context, the ’pull’ approach had similar results and
importantly was more stable. The same observation is made ina shared context. The ’pull’ approach also provides
an abundance of scenarios which allow a performance enhancement the of just under fifty percent compared to the
centralized approach. This was most evident with resource reservation. It will be interesting to study the impact of
the migration from site to site with regard to their local workload. The criterion for optimizing the scheduling is
specific to the application itself, therefore, since many applications are executed concurrently on the same platform,
grid scheduling must be done with a multi-criteria scheduling approach. Future work will be into the study of this
aspect.

Acknowledgment

We gratefully acknowledge Stuart Paterson for helping to prepare this document.

References

[1] Abhijit Bose, Brian Wickman, and Cameron Wood. Mars: A metascheduler for distributed resources in campus
grids. InGRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04),
pages 110–118, Washington, DC, USA, 2004. IEEE Computer Society.

[2] H. Casanova. Simgrid: A toolkit for the simulation of application scheduling. InProceedings of the First
IEEE/ACM International Symposium on Cluster Computing andthe Grid (CCGrid 2001), Brisbane, Australia,
15-18May 2001.

Évaluation of Meta-scheduler architectures ... 11

[3] J. Closier and al. Results of the lhcb experiment data challenge 2004. InCHEP’04, Interlaken, November 2004.

[4] Doar. A better model foor generating test networks. InIEEE GLOBECOM, 1996.

[5] I. Foster and C. Kesselman, editors.The Grid: Blueprint for a New Computing Infrastructure. Morgan-
Kaufmann, 1998.

[6] Ian Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.Lecture Notes in Computer
Science, 2150, 2001.

[7] Garonne, V. and Stokes-Rees, I. and Tsaregorodsev, A. DIRAC: A Scalable Lightweight Architecture for High
Throughput Computing. InGrid 2004, 5th IEEE/ACM International Workshop on Grid Computing, November
2004.

[8] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of job-scheduling strategies for grid
computing. InProceedings of the First IEEE/ACM International Workshop on Grid Computing, pages 191–202.
Springer-Verlag, 2000.

[9] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, and Graham R. Nudd. Optimising static workload allocation
in multiclusters. InIPDPS, 2004.

[10] L. Kleinrock, editor.Queueing Systems Volume I : Theory. John Wiley and Sons, 1975.

[11] Hui Li, David Groep, and Lex Walters. Workload characteristics of a multi-cluster supercomputer. InJob
Scheduling Strategies for Parallel Processing. Springer-Verlag, 2004.

[12] Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum. Mechanisms for high throughput computing.
SPEEDUP Journal, 11(1), June 1997.

[13] D. Lu and P. Dinda. Synthesizing realistic computational grids. InProceedings of ACM/IEEE SC 2003, 2003.

[14] SETI@Home.http://setiathome.ssl.berkeley.edu/.

[15] G. Shao, F. Berman, and R. Wolski. Using effective network views to promote distributed application perfor-
mance. InProceedings of the 1999 International Conference on Parallel and Distributed Processing Techniques
and Applications, 1999.

[16] A. Takefusa. Bricks: A performance evaluation system for scheduling algorithms on the grids. InJSPS Workshop
on Applied Information Technology for Science, 2001.

[17] Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, and Francine Berman. A study of deadline scheduling
for client-server systems on the computational grid. InHPDC ’01: Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing (HPDC-10’01), page 406. IEEE Computer Society,
2001.

[18] S. Vadhiyar and J. Dongarra. A metascheduler for the grid. In Proceedings of the 11th IEEE Symposium on
High-Performance Distributed Computing, 2002.

http://setiathome.ssl.berkeley.edu/

	1 Introduction
	2 Background
	3 The DIRAC system
	3.1 The resource management system: The 'Pull' paradigm

	4 The performance model
	4.1 The topology
	4.2 The node characteristic
	4.3 The workload model
	4.4 The local model scheduling
	4.5 Measures and metrics

	5 Simulation tool
	6 Validation of the simulation tool
	6.1 Analytical validation
	6.2 Experimental Comparison
	6.3 Results

	7 Experimentals setup
	8 Results
	9 Discussion
	10 Conclusion and future works

