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Abstract: We revisit the formal modeling of relay stations, which are specific connection elements
used in the theory of Latency-Insensitive Design of Globally-Asynchronous/Locally-Synchronous
systems. Relay stations are in charge of taking into account the physical mandatory latencies, while
handling the regulation of signal/data traffic so as to avoid starvation, deadlock and congestion of
local IP synchronous computation blocks. Since proposed by Carloni et al, the structure and behav-
iors of these relay stations have been amply characterized and analysed. But previous works never
provided a fully formal and cycle-accurate description of these mechanisms, amenable to formal
verification for instance (instead, mainly simulation models were developed). Due to the needed
precision of the whole scheme we feel such a formal description might be needed. We describe such
an attempt here. On its way, this work also led us to a number of (hopefully insightful) remarks on
favorable and disfavorable graph topologies and initialization features, that are also reported here.
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Point de vue formel sur les stations relais dans la conception
insensible aux latences de modèles GALS

Résumé : Nous revisitons la modélisation formelle des stations relais, qui sont des éléments de con-
nection spécifiques utilisés dans la théorie du Latency-Insensitive Design (LID) pour la modélisation
de type Globalement Asynchrone, Localement Synchrone (GALS) de systèmes sur puce (SoC). Les
stations relais assurent la prise en charge des latences physiques imposées en décomposant les fils
de connexion en sections. Elles gèrent également la régulation du traffic des signaux et des don-
nées de manière à éviter famine, blocage et congestion des composants de calcul synchrones locaux.
Depuis que Carloni et al l’ont proposé, la structure et les comportements de ces relay stations ont
été amplement caractérisés et analysés. Mais ces travaux restent informels. Nous proposons ici une
modélisation formelle complète de ces éléments de nature synchrone. Avec la modélisation corres-
pondante des modules d’encapsulation (Shells) des composants de calculs, ceci permet la vérification
automatique des propriétés de correction attendues des composants et du système.
La modélisation passe par 3 étapes, dont une étape asynchrone entre la spécification purement syn-
chrone du départ et le résultat lui aussi synchrone incluant les latences requises. Ce modèle asyn-
chrone intermédiaire assimilé de manière abstraite à un graphe de marquage ou d’èvenement (sous-
classe des réseaux de Petri), permet de résoudre certains problèmes cruciaux traitant des contraintes
initiales permettant d’assurer les propriétés d’absence de famine et de congestion. D’autres condi-
tions, portant sur la topologie des connections, sont également exhibées.

Mots-clés : Latency Insensitive, Relay Station, Shell, GALS, Vérification Formelle, Synchrone,
Esterel, SyncChart
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1 Introduction

Long wire interconnect latencies may induce time-closure difficulties in modern SoC designs, with
propagation of signals across the dye in a single clock cycle becoming problematic. The theory of
latency-insensitive design (LID), proposed originally by L. Carloni, K. McMillan and A. Sangiovanni-
Vincentelli [14, 15], offers solutions for this issue. The theory can roughly be described as such: an
initial fully synchronous reference specification is first desynchronized as an asynchronous network
of synchronous block components (a GALS system). Then proper interconnect mechanisms are
introduced to resynchronize the global system, but allowing specified (integer-time) latencies at in-
terconnects, under the form of fixed-sized lines of so-called relay stations. These relay stations,
together with “shell” wrappers around the synchronous “pearl” IP blocks, are in charge of man-
aging the signal value flows. With their help proper regulation is performed between computation
blocks that may be temporarily unable to run, either because of input data unavailability, or because
of the unability of the rest of the network to store their results if they were produced. The second
problem comes from the boundedness of hardware resources, and the fixed-size buffering capacity
of the interconnects (the lines of relay stations).

Since their invention relay stations have been a subject of attention for a number of research
groups. Extensive modeling, characterization and analysis were provided in [8, 10, 9]. Still, the
modeling level never completely reached a fully formal stage, so that proofs of correctness are still
informal, either based on textual proof hints, or simulation model executions. We shall somehow use
a paper by Casu et Macchiarulo [18], which provides such an (excellent) modeling, as our starting
point. We depart from their description on a number of features, though (for instance they do not
include the output functions as part of their FSM state machines describing the control structure of
each relay station).

Each relay station can be conceived as a cell, to be part of a line of � , then composing the
sectioned wire with a latency of � clock cycles. Relay stations implement a given protocol, that
will in a sense be preserved by their chaining, only increasing the mandatory latency duration. Each
station can receive a valid signal data from its predecessor (either a shell around an IP block or
another station), and pass it down in the next clock cycle to its successor. The relay station can
also receive in the reverse direction a regulation signal, implementing a “back-pressure” feature,
to indicate that the successor node is unable to accept more data. In this case the station should
refrain from sending its value and keep it instead. It should also still be able to receive the next one
in this cycle (as the previous node was not warned of the congestion yet), and if necessary should
propagate the back-pressure congestion signal to the previous node in the next clock cycle. The
“next-cycle delays” are needed to respect the physical latency assumption. Of course there are also
times where no valid data is transmitted from the previous node because upstream computations
were temporarily halted due to lack of inputs. It should thus be noted that any relay station needs
a capacity to hold two values simultaneously, in case it cannot propagate the current one while a
new one simultaneously arrives. It can also be empty, if valid data are produced more slowly than
consumed.

Currently the role of relay stations is two-fold: they implement the on-line scheduling scheme
requested for proper handling of congestion risks, by back-pressure mechanisms; they also provide
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4 Julien Boucaron , Jean-Vivien Millo , Robert de Simone

the temporary storage for data for as long as they cannot be forwarded further down the line. The
second role is debatable: if the data were allowed to continue their route, they could be stored at
the destination shell, if it would provide a dedicated buffer with the same size as the accumulated
buffering capacity of all the relay stations on this line. Even better, moving all storage to a single
spatial location would then ease the physical synthesis burden. This was noted in [18]. Of course the
traffic regulation and the back-pressure mechanisms should still be applied in a mandatory fashion,
since otherwise the end destination buffer could overflow. But they would only stall back data traffic
and computation at shell level, not halfway through the interconnects. Back pressure mechanisms
now show the net effect of retropropagating information on the congestion and traffic jam reported
“downwards”. They to do so only when needed, but as early as feasible, while respecting the
latencies needed to travel through the long wires.

The paper is organised as follows:
In section 2 we recall briefly the basic contextual definition of synchronous circuits (for local com-
ponents) and GALS systems (as networks of local synchronous computation components connected
by unbounded buffers). We mention some initialization issues, solved as in [12] by the data valueless
abstraction of GALS models into Petri Net Marked Graphs. It should be noted here that the body
of theoretical results developed around Marked Graphs, also called Event Graphs in the literature,
can provide a number of useful analytical results for the characterisation of such systems [11, 3].
This is also true in the case of places with bounded capacity, and it provides answers to issues men-
tioned in previous papers on LID systems. In particular it provides sufficient conditions for proper
initialization of data in lines, so as to guarantee liveness as absence of deadlock but also congestion
altogether. On the other hand, Event Graphs (as all Petri Net subclasses) are inherently asynchronous
as a concurrency model, and their application to scheduling and “maximal progress” remains for us
to be investigated. Here again answers might already exist in the literature.
In section 3 we provide abstract requirements and formal constraints to be satisfied by relay sta-
tions models. Then we briefly recall the model of [18], which itself somehow summarizes previous
works. We provide our formal model, under the form of a synchronous (cycle-accurate) Mealy ma-
chine, with regular features and output signal clear timing specification. Our model is amenable to
description in Esterel [5] or SyncCharts [2], thereby allowing formal methods and model-checking
techniques. Of course this could also be possible by providing a direct netlist description in blif
format for instance, but we gain syntactic flexibility, to describe easily the combination of several
relay stations into a wire of great latency for instance.
In section 3.2 we specify formally a number of correctness properties, that can be established on a
line of relay stations. Of course brute-force model-checking does not allow to reason on parametric
models (where here the parameter would be the latency length � of the line), so we need to instanti-
ate several constant length values.
We describe the shell wrappers (here very close to the version of [18]) in section 4. Again we model-
checked them to establish correctness properties.
Section 5 is dedicated to (modest) considerations on network topologies that can adversely impact
the approach. We provide a simple family of strongly connected graphs for each no static (or off-
line) scheduling equalizing the latencies is feasible. Equalization is a desirable property; with it
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Another glance at Relay Stations in Latency-Insensitive Designs 5

one can get rid of the on-line scheduling required for congestion control and implemented by back-
pressure signaling altogether. Indeed, the purpose of the additional latencies is to ensure that all
proper input data are provided simultaneously to the local computing block. The “non-physical”
new latencies can then be shifted up and down the network, under some semantic-preserving con-
straint, to optimize the global cycle allocation of computation activities. Work in this direction was
started in [7, 17], under the naming of recycling and inspired by software pipelining cycle allocation
techniques. It extends and refers somehow to the paradigms of sequential circuit retiming [13].
We conclude with several open questions. The main topic for extension that attracts our attention
is the following one: currently the design methodology starts from a monolithic synchronous spec-
ification. This is needed to retain several important synthesis techniques from commercial EDA
flows. But if one can recognize that this seemingly synchronous description in fact contains infor-
mations indicating timing flexibility and potential decomposition into smaller synchronous “pearls”,
how could we efficiently extend the approach to use this extra knowledge ? Here we are refering
to so-to-speak asynchronous processes (with the word “asynchronous” here applied to the compu-
tation model), rather than to buffered connections (where the word “asynchronous” is applied to
the communication model. Examples of such extra information could be provided by the user (as
multirate/multiclock modeling extensions, or exclusive control modes) [1, 6, 19]. It could also be
extracted by dynamic semantic analysis, as is done in the iso/endochrony theory of Benveniste et al
[16, 4] (to the best of our understanding).

2 Preliminaries

Synchronous circuit: A synchronous circuit is associated with a clock. It has a signal interface
consisting of two sets of (Boolean) input and output signals, and an internal state consisting of a set
of (Boolean) registers (or flip-flops). On each clock tick, it produces current outputs and next-instant
register values from the current values of inputs and registers.

Formally, a synchronous circuit is thus a structure ���������	�
����������
������� , where

• � is a set of Boolean input variables ��������� � � �	� !#"%$'& . We call the vector �)(*�+���,� ��� �-��� !#"%$��/.0 ! an input event. It represents the valuation of all input variables at a given instant.

• � is the set of Boolean output variables �'�1�����2�3�2���546"%$�& , We call the vector �7(*�8�6�,� ��� �-���546"%$��/.0 4 an output event. It represents the valuation of all output variables at a given instant.

• � is the set of Boolean output variables �'9 � ���2�3�3��95: "%$ & , We call 9;(*�89 � ��� � ����95: "<$ �/. 0 :
the current state. We also use the next-state 9>=?(*�89�=� � � ��� ��9�=: "<$ � , using primed names.

• ���� is a vector �@���� � ��� ��� ������ 46"<$ � of Boolean functions, ����BA/CED 0 !GF 0 :,HJI 0
. So

each function ����BA defines the value of output variable �KA from the current values of input
and register variables.
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6 Julien Boucaron , Jean-Vivien Millo , Robert de Simone

• �
���?� is a vector �8�
���?� � � ��� �-���
���?�B: "<$ � of Boolean functions, �
���?� A1CED 0 ! F 0 : HJI 0
.

So each function �
���?�BA defines the next value of register variable 9>=A from the current values
of input and register variables.

Synchronous or asynchronous networks of synchronous circuits One can build larger circuits
by setting local (IP) synchronous components in parallel, establishing desired point-to-point inter-
connections of inputs to outputs of different blocks. This is displayed in figure 1, if one assumes for
the connections simple wires, and that all components run on the same clock. The result is then a
compound netlist, homogeneous in nature with the local component synchronous circuits.

Figure 1: Network of synchronous IP blocks (synchronous or asynchronous)

On the other hand one can also assumes that local synchronous components are not globally
synchronized, and that connections are established through “ideal” unbounded FIFO queues. This
builds another interpretation of figure 1, as a global data-flow network. Now each component can be
allowed to run only when all its input data values are present. The effect of its run is to consume one
input value on each input channel, and to produce one output value on its output channel. It can be
conceived of as a fully unrestricted GALS system. We shall use this stage of representation only as
an intermediate step for conceptual modeling.

As noted in [12], the unrestricted GALS model maps directly to Event/Marked Graphs (a well-
known subclass of Petri Nets) when disregarding values carried as signal data. This association helps
prove that, under some careful initialization conditions, this asynchronous version is functionally
equivalent to the previous, fully synchronous one (see below the discussion on initialization).

Marked Graphs Also called Event graphs in the literature, they form a specific subclass of Petri
Nets where places have exactly one input transition and one output transition [11]. In our case
transitions represent local synchronous components, which indeed consume one data on each input
channel, and produce one on each output channel in each step. With data abstracted as “tokens” the
place marking represent the number of data currently contained in the interconnect FIFO queue.

Marked/Event Graphs are “free-choice” nets. Various executions only differ in relative schedul-
ings of firings of individual transitions, and these behaviors are confluent: the firing of a given
transition cannot disallow the one of another if it was previously allowed. Also, the sum of all places
markings in a given graph cycle remains invariant all along any execution. A Petri Net (PN) is called
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Another glance at Relay Stations in Latency-Insensitive Designs 7

live if any transition can still be executed (possibly after a number of steps) from any reachable
marking. It can be proved that a Marked Graph is live if each graph cycle contains at least a token
in one of its place. Picture 2 shows a Marked Graph associated with the previous GALS network (in
its asynchronous form).

Figure 2: a live Marked Graph associated with the previous GALS picture

Marked Graphs with Place Capacities In GALS theories (such as Latency-Insensitive design
and others), the purpose is usually to build a model “in between” the fully synchronous and asyn-
chronous ones. In particular it is important in SoC design to be able to restrict interconnects so
as to use only bounded space. The general philosophy is thus: first, desynchronize the fully syn-
chronous specification; second, resynchronize it by careful scheduling mechanisms in a way that
respect mandatory physical latencies, while using only bounded communication resources. At the
abstract PN level, this boundedness can be modeled with place capacities (the scheduling issue will
be dealt with elsewhere later).

Capacities are introduced in Petri Nets by requesting that a given place cannot hold more than
� tokens, � being the capacity of that place. Capacities can be traced back to the foundation of PN
history, without a clear seminal paper (see [3] for definitions). In fact it is immediate to replace
a PN with capacity with another equivalent one without capacity by adding a new place for each
existing one, with as marking as the difference betwen the original place capacity and its current
initial marking. This new place is connected to transition in the reverse way as the original. Figure
3 displays a PN net with capacities (here of 1 for simplicity), and the equivalent PN with duplicated
backward places.

Of course the bounded capacity raises new liveness problems, this time because of congestion
and overflow instead of starvation and lack of available data tokens. Fortunately we can use the im-
portant fact that the above completion preserves the Marked Graph subclass, and inside this context
solutions will be found. As will appear later, the latency-insensitive relax-synchronized version of
our GALS system will possess a capacity of holding

�
� data token on a connection line comprising

of � relay-stations.
The final models produced in LID theory are (on first approximation) latency-bounded, resyn-

chronized versions of marked graphs with capacities. In the sequel we shall call them relaxed-
synchronous systems, as they combine both synchronous features (all components and interconnects
run on the same clock), and user-imposed interconnect minimal latencies (a constant integer delay
for the line to transmit its signal/data values. While the data are still in transit, computation parts
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8 Julien Boucaron , Jean-Vivien Millo , Robert de Simone

(a) a Petri net with capacity (b) Equivalent Petri net without capacity

Figure 3: From a Petri net with capacity (a) to an other Petri net without capacity but with the same
behaviour (b)

are paused by their surrounding shells, using clock-gating mechanisms. To respect the fixed-sized
bufering ability a back-pressure congestion control protocol is applied across relay-stations.

Initial and well-formedness conditions We consider here various issues of proper initialization
and structural well-formedness of the networks, ensuring for each semantics, be it synchronous or
asynchronous, both starvation-freedom (or PN liveness), and congestion-freedom (or PN safety).
We also briefly consider the quantitative issue of production rate (or throughput).

We recall the well-known fact that any graph can be decomposed as a directed acyclic graph
(DAG) of strongly connected components (SCC), with a SCC possibly containing a single node.

Concerning synchronous networks of synchronous components, a valid signal/data must be
present on each wire at the clock tick. In order to achieve this (while assuming it from the network
primary inputs), one usually imposes that there is no combinatorial loop across the network. In
other words each loop in the network graph must cross a register, which produces its output in the
next clock cycle than it received it as input. Here the network graph consists of the local dependen-
cies inside the components plus the interconnections between components. This is a strictly weaker
condition as to impose that all component outputs are latched (as in Moore fashion), even though
the second assumption is often recommended for composite design style, and is actually implicitly
adopted in some of the GALS literature. Note here that the programme of splitting up long combi-
natorial wires into sections is only fulfilled if not all local outputs are latched. Still, if it is the case
one remains capable of turning unit delays into arbitrarily chosen delays.

Concerning asynchronous networks of synchronous components it is also the case that the
network is live (so that all local components get fired infinitely often) ����� there is at least one
token in each network cycle loop (provided the primary inputs each provide an infinite stream of
signal/data of course). This is a direct consequence of the result of Marked Graphs liveness. This
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Another glance at Relay Stations in Latency-Insensitive Designs 9

matches closely the corresponding assumption on synchronous networks, provided the register is in
fact a latch on a local output (but still not all outputs need to be latched, only one in each network
communication cycle). The latched output can then be, in a sense, drawn from the local component
to become the seed initial value of the interconnecting FIFO queue. Of course initialization with
more values in the queues is feasible with liveness preserved (the more token the better in this case).
But it is problematic to figure out how to obtain these seed values in general if starting from a fully
synchronous specification with which to retain functional equivalence.

Considering relaxed-synchronous versions, where bounded capacity channels are replacing the
unbounded buffering capacity of FIFO queues, a new kind of liveness problem is raised. Because
of potential congestion, local computation blocks can now get blocked because their output hannels
are not ready to accept their results, which they could not store without overflow. This issue is
theoretically solved by requesting that the completed PN net do not allow any blank cycle. Here the
PN completion consists in adding the backward places to play the role of capacities. In other words
each graph cycle in the completed graph should contain at least a token mark in one of its places.
The net of figure 3 is a typical counterexample of this: with places each of capacity one, the net on
the left is blocked; this is made explicit as blank cycles in the completed net on the right.

As we shall see later, a channel of � relay stations has a buffering capacity of
�

� signal/data
values. In the (frequent) case where the line is assumed to be initialized with only one value, then
the virtual backward places all contain at least a token, thereby definitely disallowing blank cycles.

It has often been remarked in the GALS literature that, ultimately, a (simply connected) relaxed-
synchronous network could run no faster than the speed of its slowest simple cycle loop. First,
any SCC is restricted to the speed of its slowest cycle (after perhaps an initial phase where enough
internal tokens can allow some parts to take “almost one lap in advance”). Then, whenever the part
located upfront from a SCC starts running ahead, tokens accumulate at the entrance of this SCC until
the bounded buffer gets filled, after which point there is no choice but to run the SCC behavior part.
Similarly for the downstream parts, which needs data production from the upstream and SCC parts
to be fed to run. It was established that the rate of the slowest loop was computed as the ratio of the
number of data/token over the overall buffering ability over the loop.

3 Relay Station

We now come to the main part of this article. The purpose is to implement fixed-size communi-
cation channels that divide the long wires into sections, such that a signal/data can be propagated
from one section to the next only in the next clock cycle. Similarly the signals needed to implement
the congestion control back-pressure must also respect these traveling delays. To this end, relay
stations were introduced in [14]. They are specific hardware elements that provide the proper inter-
face between sections (and also the shells at the channel’s ends). These elements must have some
buffering activities, to store data “on route” of course, but also to park these additional data which
might discover that because of congestion, the cannel downstream cannot accept them.
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10 Julien Boucaron , Jean-Vivien Millo , Robert de Simone

3.1 Relay Station Modeling

Despite the number of publications describing relay stations in the literature, they are usually infor-
mally characterized. Neither their precise constraints representing the physical time requirements
(in clock cycles), nor their formal model and their proper satisfaction is full described. The paper
that comes nearest to this is [18]. However they do not use a pure synchronous modeling in their
FSM (Finite State Machine). We shall deal now with all these issues.

Figure 4: Relay Station - Block Diagram

We borrow from [18] the interface of input/output signals. It is depicted in figure 4. The data
reception is represented by an input signal ���

�
_ � � being raised (it corresponds to ��� in the former

articles on LID). It is a pure boolean signal (we can abstract the data values). Then the RS passes the
data with a corresponding ���

�
_ �'�� signal. Concerning back-pressure, the RS can receive an halting

order with the signal. The relay station receives input data with a valid signal 	��
��� _ �'�� being raised.
It then transmits it with a 	��
��� _ � � signal (so 	��
��� _ �'�� is an input, and 	��
��� _ � � is an output).

Pseudo-physical requirement: It is important to note that signal/data cannot be propagated com-
binatorially from one section to the next:

• ���
�
_ � �� I !��
������� � _ �'�� .

• 	��
��� _ �'��� I !��
��� 	��
��� _ � � .

On the other hand, there can be combinatorial relations between 	��
��� _ � � and ���
�
_ � � (resp.

between 	��
��� _ �'�� and ���
�
_ �'�� , as they belong the same section.

So relay stations need registers (flip-flops for instance) to retain the signal betwen reception and
propagation. In fact, as shown in [14], they need two such slots, in case a new data arrives while the
current one cannot be propagated. Then, the congestion mechanism is supposed to guarantee that
no further data can be received (and thus lost), because they are retained elsewhere upstream. This
provides the abtract architecture of figure 5.

3.1.1 Relay Station - FSM

We represent in figure 6 the relay station as a Mealy machine, with explicit states, handling thus
both the output and next state functions. Now we show a synchronous Mealy FSM using for state
encoding the number of registers free within the relay station.

The FSM contains 3 states, corresponding to the occupation of the registers:

INRIA



Another glance at Relay Stations in Latency-Insensitive Designs 11

Figure 5: Relay Station structure

Figure 6: Relay Station FSM

empty when no data are currently buffered in the RS; in this state the RS simply wait for a valid
input data, and store it in its main register (goes to state half). 	��
��� _ �'�� signals are ignored,
and not propagated upstream, as this cell can absorb traffic.
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12 Julien Boucaron , Jean-Vivien Millo , Robert de Simone

half when it holds one data; Then the RS cell only transmits its current, previously received
signal data if ever it does not receive an halting 	��
��� _ �'�� signal (remember this combinatorial
relation is ok, being inside a section). If halting, it retains its data, but must also accept a
potential new one from upstream (as it has not sent any back-pressure holding signal yet). In
the second case it becomes full, with the second value occupying its “emergency” auxiliary
register. If the RS can transmit ( 	��
��� _ �'�� false), it either goes back to empty or retrieve a new
valid data in, remaining then in the same state. On the other hand it still makes no provision
to propagate back-pressure (in the next clock cycle), as it is still unnecessary due to its own
buffering capacity.

full when it contains two data; then it raises in any case the 	��
��� _ � � signal, propagating to the
upstream section the hold-out 	��
��� _ �'�� signal received in the previous clock cycle. If it does
not itself receive a new 	��
��� _ �'�� , then the line downstream was cleared enough so that it can
transmit its data; otherwise it keeps it and remains halted.

Discussion With such a precise, cycle-accurate model, one can for instance wonder whether it
would be feasible to improve the design to be able, while full, to both propagate its current data
and accept a new one, remaining full. Of course this should be useless in practice, because the
���
�
_ � � signal could not be received (since the previous cell, when warned of its 	��
��� _ �'�� , blocks

its ���
�
_ �'�� to become the current RS’s ���

�
_ � � ). But if the RS is connected to another element, the

shell for instance, the constraint 	��
��� _ �'���� �����
�
_ �'�� has to be checked and guaranteed, or at least

appropriate behavior must be checked. This can easily be done using trivial model-checking on our
formal description.

3.2 Correctness properties and formal verification

Keeping with the kind of remarks of the previous discussion, one can phrase a number of correctness
properties to hold on a relay station, or a line of relay stations (or later, a network comprising shells
and pearls). Remember that correctness criteria for liveness (seen as freeness from both deadlock and
congestion) were already established as PN graph markings conditions, linked to data initialisation
in section 2. Instances of additional properties are:

• relay stations cannot overflow;

• data cannot be lost nor overwritten;

• data order is preserved;

• at any point in time, the number of valid data produced from a line is bounded relative to the
number entered:

� D ��� � _ � �
H�� � ��� � _ � � �%��� � D ��� � _ �'�� H � � D ��� � _ � �

H�� � ��� � _ � � �%� � � F � � ��� �
	 _
� � �%�

where � ��� � _ � � �%� is the number of data initially residing in the line of RSs, and
� � ���#�
	 _

� � �%�
is the number of RSs.
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• a line of � relay station cannot notify congestion to its source unless it receives enough similar
back-presure signals, given its initial content;

• conversely, a line receiving enough back-pressure hold-out signals and data will eventually
get filled and notice congestion.

The first property can be checked by adding a new state to the relay station, named overfull,
which can be attained by a transition for the full state triggered by the val_in and stop_out
signal combination. The check will then consist in proving that such states are unreachable in all
RSs. The second and third properties could be modeled in a restricted case by “tagging” the succes-
sive data signals with indices, and then checking that these indexes are returned by the line in the
same order as they were entered in the other end. The simplest scheme is to alternate � and � tags,
providing an alternated bit protocol type verification.

We checked these properties by model-checking, with (low-range) constants replacing the integer
parameters, and observers built from these formulas.

4 Shell wrappers

4.1 Shell modeling

Here our model follows rather closely the one of Casu and Macchiarulo [18]. It is depicted in figure
7.

As mentioned in section 2, one can consider the case where shells and pearls have potential zero-
delay propagation (as long as there is no combinatorial loop involving only shells, without crossing a
relay station). The shells will need the ability to store data that have already arrived, awaiting others
still missing.

The Shell works as follows:

• The internal pearl’s � � ����� and all ���
�
_ �'���� valid output signals are generated once we have

all ���
�
_ � � , while 	��
��� is false. The internal 	��
��� signal itself represents the disjunction of all

incoming 	��
��� _ �'��BA signals from outcoming channels;

• the buffering register of a given input channel is used meanwhile as long as not all other input
data are available;

• so, internal pearl’s � � ����� is set to false whenever a backward 	��
��� _ �'�� A occurs as true, or a
forward ���

�
_ � �	� is false. In such case the registers already busy hold their true value, while

others may receive a valid data “just now”;

• 	��
��� _ � �	� signals are raised towards all channels whose corresponding register was already
loaded (a data was received before, and still not consumed), to warn them not to propagate
any value in this clock cycle. Of course such signal cannot be sent in case the data is currently
received, as it would raise a causality paradox (and a combinatorial cycle).
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Figure 7: Shell - Circuitry

• flip-flop registers are reset when the pearl’s clock is raised, as it consumes the input data.
Following the previous remark, the signal 	��
��� _ � � � holding back the traffic in channel � is
raised for these channels where the data have arrived before the current instant, even in this
case.

We should remember the constraint demanded by the relay stations for proper functioning,
namely that on each output channel from the producer (is this case the shell), one has 	��
��� _ �'�� A �
�����

�
_ �'�� A , which holds here.

4.2 Correctness properties and formal verification

Keeping in mind relay stations, we want to show some properties such as:

• data cannot be accepted before the previous one is processed.

• data order is preserved.

• a shell cannot dead-lock.

The first property can be checked simply because the shell is connected synchronously to a relay
station (or another shell) and thus the relay station cannot send any data to the shell when the shell
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is holding a data. The shell can have only one datum from each channel as said before then it
cannot overwrite or loose this data until all neeeded datum are present to react. The data order is
preserved, because by hypothesis the interconnection network is only point to point, cannot loose
data or alter data ordering, the shell is waiting for all datum and then react, thus partial order of the
desynchronized design is compatible with the synchronous one. We can also apply the alternated bit
protocol verification in this case. The Shell is dead-lock free because we already established it as
PN markings conditions.

5 Graph shapes and static scheduling

So far the scheduling mechanism ensuring regulation inside the relaxed-synchronous system is dy-
namic (or on-line). One can also consider the case where a precise computation on latencies, pos-
sibly adding extra delays, would force all valid data to arrive simultaneously at the same computing
location. Then the whole back-presure mechanism would be made useless because of a static (or
off-line) scheduling. Of course the extra latency delays would be optional, unlike the former one that
were installed to respect some physical constraints. They could be moved and displaced to some
extend across the system, while preserving the “equal length” constraint on data trips. In a more
general scheme one can even consider that the delay figures obtained would allow resynthesis of the
local synchronous blocks, absorbing some of the delays to run more slowly but with less resource
consumption, or even a floorplan redesign to redistribute critical long wires.

Figuring criteria on network graph shapes that allow efficient and useful latency equalization
is an important problem. It gets rifd of the need for back-pressure signals, but can also reduce
greatly the rate of � symbol (that is, �����

�
_ � � ) emitted. Equalization in a Marked Graph strongly

connected component would amount in adjusting all cycle lengths to the longest one. Nevertheless
this equalization is not always feasible, as shown on the counter-example of figure 8.

Figure 8: Not Equalizable, No Static Scheduling

There are three cycles of length 2 :
{A1, A6}
{A2, A5}
{A3, A4}
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and two cycles of length 3 :
{A1, A2, A3}
{A4, A5, A6}
It is impossible to put integers on edges to get at the same time equal lengths on both exetrnal cycles
and on the “local ones”. The same would be true of any doubly-linked ring structures with more
than three nodes.

6 Further topics

So far the theory developed here only consider the case where local synchronous components all
consume and produce data on all input and output channels in each computation step, and where
they all run on the same clock. In this favorable case functional determinacy and confluence are
guaranteed, with latencies only impacting the relative ordering of behaviors. So it can be proven that
the relaxed-synchronous version produces the same output streams from the same input streams as
the fully synchronous specification (indeed the rank of a data in a stream corresponds to its time in
the synchronous model, thereby reconstructing the structure of successive instants. Several papers
considered extensions in the context of GALS systems, but then ignored the issue of functional cor-
respondance with an initial well-clocked specification, which is our important correctness criterion.

This strong assumption can be weakened in a number of ways. Some are related to the various
relative speeds and cadences of components in clock cycle rates, some are borne in the extension of
Marked/Event graphs to more general subclasses in Petri nets in the asynchronous setting, and the
most important ones are linking the two.

One can extend the framework by allowing different cadences (so that various processing blocks
run at different speeds, expressed as integer multiples of the master clock). More generally, each
component can be assigned its own clock, with the assumption that all clocks are subclocks of a
master clock, but not necessarily periodic. One can then build multi-rate/multi-clock systems. But,
unless global rates are perfectly equalized around each loops, this might require fact component with
different clocks be fed streams of data of unequal lengths. Usually the link with a fully synchronous
specification is attempted by introducing a specific absent value for every interconnection signal, so
that subclocks are defined as ticking only during the instants where a given triggering signal is not
absent.

In general PN theory a place can be supplied tokens (here abstracting the data put in a FIFO
channel) from various transitions (here processing elements). It thus merges the two flows (as a
mux). The place can also offer its tokens at the other end to various consumers, thus operating a
fork (or a demux) of the data flow carried through the channel. In other words tokens are shared.
It gets difficult then to imagine that the rank of a data in a channel stream will recall the instant it
was exchanged in a fully synchronous specification. Still, one can design a “locally-synchronous”
version of places (we consider here the case of two producers and two consumers to this place): it
has a main running clock, and two subclocks (one for input and one for output), so that data are taken
from one input channel when the input subclock is raised, from the other otherwise (and similarly
for output).
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Of course the two kinds of extensions are linked, since channel sharing imposes that multi-
ple productions or consumptions do not clash, so that it can be established that they are mutually
exclusive (by being driven on exclusive subclocks). The issue of success is to guarantee liveness
and throughput in the global system. This should be attained by devising the proper scheduling,
which should generate the clock pulses at proper rates (in latency and cadence), so that data flow in
the system smoothly. Several steps exist in this direction, with the notion of multiclock systems and
clock calculus in synchronous languages [1, 6].The correctness criterion is that no component should
ever require the presence of a signal data that is absent, and that signal data are not inappropriately
lost (sometimes it is ok to ignore and discard them). Studies were also conducted to as when the
seemingly monolithic synchronous specification in fact exhibited asynchronous behaviors based on
independent clocks underneath [19]

Finally, the goal would be to define a general GALS modeling framework, where GALS compo-
nents cold be put in GALS networks (to this day the framework is not compositional in the sense that
local components need to be synchronous). A system would consits again of computation and inter-
connect communication blocks, this time each with appropriate triggering clocks, and of a scheduler
providing the subclocks computation mechanism, based on their outer main clock and several signals
carrying information on control flow. .
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