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Abstract: Let X be a random element in a metric space (F,d), and let Y be
a random variable with value 0 or 1. Y is called the class, or the label, of X.
Assume n i.i.d. copies (X;, Y;)1<i<n- The problem of classification is to predict
the label of a new random element X. The k-nearest neighbor classifier consists
in the simple following rule: look at the k£ nearest neighbors of X and choose
0 or 1 for its label according to the majority vote. If (F,d) = (R<,|].||), Stone
has proved in 1977 the universal consistency of this classifier: its probability
of error converges to the Bayes error, whatever the distribution of (X,Y"). We
show in this paper that this result is no more valid in general metric spaces.
However, if (F,d) is separable and if a regularity condition is assumed, then
the k-nearest neighbor classifier is weakly consistent.
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Classification par les plus proches voisins
en dimension infinie

Résumé : Soit X un élément aléatoire dans un espace métrique (F,d), et
soit Y une variable aléatoire prenant pour valeur 0 ou 1. Supposons n copies
iid. (X, Yi)i<i<n. Le probléme de classification consiste a prédire la classe
d’un nouvel élément aléatoire X. Le classifieur des k£ plus proches voisins
applique la simple régle suivante : on considére les k£ plus proches voisins
de X et on décide s’il est de la classe 0 ou 1 par un vote & la majorité. Si
(F,d) = (R4 ]|.||), Stone a prouvé en 1977 la consistence universelle de ce
classifieur : sa probabilité d’erreur converge vers I’erreur de Bayes, quelle que
soit la loi de (X,Y’). Dans cet article nous montrons que ce résultat n’est plus
valide dans un espace métrique quelconque. Cependant, si (F, d) est séparable
et si on fait une hypothése de régularité, alors le classifieur des & plus proches
voisins est faiblement consistant.

Mots-clés : Classification, Consistence, Statistiques non paramétriques



Nearest neighbor classification 3

1 General definitions and results about classifi-
cation

Let X be a random element with values in a metric space (F,d), and let Y be
a random variable with values 0 or 1. The distribution of the pair (X,Y) is
defined by:

e the probability measure p of X:
u(B) = P(X € B) for all Borel sets B on F,

e and the regression function n of Y on X:

n(z) =P(Y =1|X =xz) for all z € F.

Assume n independent and identically distributed copies (X;, Y;)1<i<n: they
are called the training data, and briefly denoted by D,,. Now we would like
to guess the label Y of a new random element X, with X ~ p independent
of the training data. In this aim, one has to construct a function g, : F —
{0,1}, called a classifier. This classifier is usually obtained by thresholding an
approximation 7, of 7. It is easy to prove that the best possible solution is the
Bayes classifier (see Figure 1):

ar o\ A
9°(2) = L2172
We shall precise this point (see 7] for a proof).

Proposition 1 (Optimality of the Bayes classifier). The quantity L* =
P(g*(X) # Y) is called the Bayes (probability of) error, or the Bayes risk.
For every classifier g, : F — {0,1}

P(gn(X)#Y) > L".

More precisely, if gn(z) = Ly, (2)>1/2}, then:
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1 g"(x)

Figure 1: The regression function 7 and the associated Bayes classifier g*.

Remark. If the label Y is a deterministic function of X, then L* = 0.

Of course, in general, one does not know the regression function 7, nor the
Bayes classifier ¢*. From now on, we focus our attention on the k-nearest
neighbor classifier, sometimes simply called “nearest neighbor classifier” in the
following. Let us define the approximate regression function by:

n k
A 1 1
M (X) = Z El{XiEk(X)}Y; = Z EY(i),

where “X; € k(X)” means “X; is one of the k nearest neighbors of X” and
the notation (X, Y)) (we should write (X((X),Y(; (X)) to be completely
rigorous) means that the pairs (X;, Y;)i1<i<n have been re-indexed so that:

d(X, X)) < d(X, X)) < - < d(X, X))

In case of equality, the ties are broken by comparing auxiliary i.i.d. variables
B1, ..., s, independent of all the other random objects, and uniformly dis-
tributed in (0,1). This rule has the interesting feature of making all the n!
orderings have the same probability to occur.

The associated decision function is

A
9n(X) = L (2)>1/2)-

INRIA



Nearest neighbor classification )

The error probability conditional on D, is defined by:
A
L, =P(g.(X) #Y|D,).

L, is a random variable, and its expectation E[L,]| = P(g,(X) # Y) is a real
number depending on the parameters (k,n). We are interested in the asymp-
totic comportment, which means: n — oo, £k — oo and % — 0. By convention,
in the following, we will simply write “ n — 00” for these asymptotic.

Definition 1 (Universal Consistency). The k-nearest neighbor classifier is:
e universally weakly consistent if: lim,,_,o, E[L,| = L*.
o universally strongly consistent if: lim, oo L, = L* almost surely.

The term “universally” means that the result is independent of the distribution
1 and of the regression function 7. In the following, we are only interested in
weak consistency. The principal result is due to Stone.

Theorem 1 (Stone (1977)). With (F,d) = (R4, ||.||), the k-nearest neigh-
bor classifier is universally weakly consistent.

For the proof, we refer the reader to [7] or [13]|. It is based on geometrical
result, known as Stone’s Lemma. This powerful and elegant argument can
unfortunately not be generalized in infinite dimension.

The notation (F,d) = (R, ||.||) means that the metric d derives from a vector
norm on R?. As we will see in the next section, this point is essential for the
validity of the result. The universal strong consistency in (R, ||.||) has been

proved by Devroye et al. [6].

2 Consistency in general metric spaces

2.1 Separability of the space

To generalize Stone’s result, the first natural assumption is the separability of
the metric space (F,d). The following example shows that this condition is
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required even in finite dimension.

Example: a pathological distance on |0, 1]
Let us define the distance d on [0, 1] as follows:

0 ife=2a
d(z,2')=4¢ 1 if x2’' =0 and = # 2
2 if x2' #0 and = # 2’

Since the triangle inequality is verified, d is a distance on [0,1]. But ([0, 1], d)
is clearly not separable.

The distribution x on [0, 1] is very simple: with probability one half, one picks
the origin 0 ; with probability one half, one picks a point uniformly in [0, 1].
Mathematically speaking, if A ;; denotes Lebesgue’s measure on [0, 1] and &
Dirac’s measure at the origin:

1 1
= =8+ =\
=5 0+2 [0,1]

The way to attribute the label y of a point z in [0, 1] is deterministic: if z = 0
then y = 0;if 0 < 2 <1 then y = 1. Y is deterministically attributed, so
the Bayes risk L* is equal to zero. Nevertheless, it is intuitively clear that
the asymptotic probability of error with the nearest neighbors rule does not

converge to 0:

1
lim B[L,] =7 > L* =0.

n—oo

So the nearest neighbors classifier is not weakly consistent in this context, al-
though we are in finite dimension.

In general metric spaces, the separability assumption is sufficient to have con-
vergence of the nearest neighbor to the point of interest. That’s what Cover
and Hart noticed in 1967 [3]. From now on we will assume that (F,d) is a
separable metric space.

Proposition 2 (Cover and Hart (1967)). If = is in the support of i and
lim, o k/n = 0, then lim, o d(Xi(z),z) = 0 with probability one. If X is

INRIA



Nearest neighbor classification 7

independent of the data and has probability measure ., then
lim d(Xx(X),X)=0

n—oo

with probability one whenever k/n — 0.

We refer to [7] for the proof®.

2.2 The Besicovich condition

As we will see later, the separability of the metric space is not a sufficient
assumption for the consistency of the nearest neighbor classifier. It is necessary
to put an assumption on the regularity of the regression function n with respect
to the measure . More precisely, we will request a differentiation hypothesis
that will be called “Besicovich condition”. In what follows, we will use the
symbol B, s for the closed ball of radius é centered at x.

Hypothesis ((#): Besicovich condition ). For every ¢ > 0

| m=n@ldn><)=o.

) 1
I <7

Another way to say it is the following convergence in probability:

1 / P
— n—n(X)dyp—0
W(Bx) Joy, NS
We will discuss this condition in the final section. Let us give now the main
result of this paper.

Theorem 2 (Consistency of the nearest neighbor classifier). If (F,d)
1s separable and if Besicovich condition H s fulfilled, then the nearest neighbor
classifier is weakly consistent

E[L,] — L*.

IThe proof there is written in R? with its usual norm, but the argument still works in
any separable metric space.
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Proof. Thanks to Proposition 1, it is sufficient to show the convergence in L':
i El(y = 7)(X)] = 0.

Let us introduce another approximation 7, of the regression function:

1 k

() = + > (X (@)

i=1

Then the triangle inequality gives:

E|(n = n)(X)| < E[(n — i) (X)] + E|(7n — 12) (X)].

o B|(7n — ) (X)| 7
This step is very classical. Cauchy-Schwarz inequality implies

E|(n, — i)(X)] < (E[(nn—ﬁn)2(X)])1/2
=\ B (Z%(Y(i)_n(X(i)))> ,

which gives

1/2
El(nn—ﬁn)(X)IS{% >y IE[(Y@—??(X@)))-(Yu)—n(X(j)))]} :

1<i,j<k
We use the conditioning trick
E [(Ye) —n(X@)) - (Yo —n(X)]
= E[E (Y —n(Xw)) - Y — X)Xy, -, Xa, X]]

and remark that, conditionally on Xj,..., X,, X, the quantities (Y{; —
n(X())) are i.i.d. Bernoulli random variables with zero mean. So if i # j

E [(Yo) — 1(Xw)) - (Y — n(X))] = 0.

INRIA
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Thus there remains only

P 1/2
. 1
E|(1n — 7a)(X)] < {ﬁ > El(Ye - W(X(i)))2]} :
i=1
and since |Y{; — 7(X(;))| < 1, we have finally

B (1 — i) (X)] <

[l %‘,_.
o

which proves that lim, . E|(n, — 7, )(X)|

o E[(n—1n)(X)| ?
Let Fy denote the support of p. Then

E|(r - i) (0] = [ El(a = n)(@)| du(o)

Fo

We use the conditioning trick again

E[(n —n)(z)] = E

%Z —n(z))

‘d(l", X(k+1)($))] ] .

To simplify the writings, let us denote d(;y = d)(z) = d(x, X)), for
1 < j < n. Then, using Lemma 2 given in the appendix, we get:

E %Z(H(X(i)) —n(x)) |d(k+1)]
< E %Z |(n( X)) — n(x))] |d(k+1)]

=1

- ([L(Ba;,d(kJrl)))_l/B |(n(z") — n(x))| di(2"),

z,d(k+1)



10

F. Cérou, A. Guyader

where i = (I]‘Uz,d(k_H) + %]]-Sm’d(k-i-l))'u. Now it is clear that for any mea-

surable positive function ¢, we have
1 -
——/ wduﬁ/ wdu—/ pdp <0,
2 J/p B B

m,d(k+1) z,d(k+1) m,d(k+1)

so that

E

(n(X@) —n(x)) |d(k+1)]

| =

2

< 2 (uBaae) [ M=)l dn

Zd(k41)

Thus we have:

E[(n — 7n)(X)| < 2E

(M(Bx,d(k+1))) B /B

-1
Since the random variables (M(BX,d(k+1))> fo ) |(n —n(X))| du are
(k1)

[(n —n(X))] du] :

Xyd(k+1)

all less than 1, the proof will be complete if we show that they converge
in probability to 0. For this, fix € > 0, then for every 6y > 0:

P ((//»(BX,d(k+1))) B /B

< P(dg41)x) > 00)

+ sup P ((u(Bx,a)_l/B [(n —n(X)| du > 6) :

0<6<8o

|(n = n(X))| dp > 6)

Xod(ky1)

Now, the first terms goes to 0 thanks to Cover and Hart’s result and the
second one also thanks to Besicovich assumption .

Remark. In finite dimension, Devroye [5] already mentioned that Besicovich
condition was the cornerstone for nearest neighbor estimates as well as for
kernel estimates.

INRIA
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3 Discussion

3.1 Continuity of the regression function

It is clear that if 7 is continuous on (F,d), then Besicovich condition is auto-
matically fulfilled. Nevertheless, intuitively, continuity is not necessary, since
the principle of the nearest neighbor classifier is the following: to guess the
label Y of a new point X, just average the labels Y; for points X; around X.
The continuous version which ensures the validity of this averaging method
has an integral form: this is exactly Besicovich condition.

To account for this, we will exhibit an example where the continuity condition
on 7 is not fulfilled, but where the k-nearest neighbor classifier is consistent
anyway. Before that, we formulate a stronger but more tractable assumption
than Besicovich condition.

Hypothesis ((#'): u-continuity). For every ¢ > 0, for u almost every x €

f
};in(l)” {z € F:n(z) =n(z)| >eld(z,z) < 6} =0.

This is a sort of continuity of n with respect to the measure p, whence the
name p-continuity (see figure 2). Another way to say it is the following almost
sure convergence:

ol
Tg— ady——0 a.s.
L’J(BX,(S) Bxs) {n—n(X)>e} 550

Proposition 3 (u-continuity = Besicovich condition). If the regression
function n is p-continuous, then Besicovich condition is fulfilled.

Proof. For p almost every x € F, take any ¢ > 0. Let us consider the
following decomposition:

1
11(Bz,s)

1
/ m(z) —n(z)|dp = / 1(2) = 1(2)| Lines)—n(z)<e} it
B:c,ﬁ Ba:,ﬁ

/L(Bm,(i)

1

+7/ n(z) = n(2)| L) —n(z)>e} AU
(Bos) Bwl (2) = (@) Lina)-n(@)>e}
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Figure 2: The p—continuity: another way to see Besicovich condition.

Now we use the fact that for all z and z in F?, |n(z) — n(x)| < 1. This gives:

1
M(Bz,é)

So we have

/B n(z) — n(@)| du < e + p iz € F: [n(z) — n(@)| > eld(z, ) < 6}

— 1
lim 7/ n(z) —n(x)|du < e.
oy ), 110 @)

Since ¢ is arbitrary, that gives

lim ——— / In(z) — ()] du = 0.

6—0 [L(Bz,(y)

Of course, this almost sure convergence implies Besicovich condition .
|

More precisely, one can easily see that the u-continuity is rigorously equivalent
to the almost sure convergence in Besicovich condition:

1
1(Bx )

As we see in the following example, the y—continuity may be easier to check
than Besicovich condition.

/ \n—n(X)\du5—>0 a.s.
Bxs —0

INRIA
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Xt

Figure 3: A trajectory (x;)o<i<1 of a Poisson process.

Now the example: F is the space of all Poisson processes of fixed intensity 1
between initial time 0 and final time 1. Its elements are denoted x = (xt)o<t<1
or z = (zt)o<t<1- The distance on F is derived from the L; norm:

1
d(z,z) = ||z — 2|1 = / |xy — 2| dt
0

It is clear that (F,||.||1) is separable: consider for example the processes that
jump at rational times between time 0 and time 1. This is a countable set and
for every 6 > 0 and every x € F, there exists such a process in the ball By ;.

The label of a process x is deterministic and depends only on the final point of
the process: if z; is even, then y = 0. If z; is odd, then y = 1. Since the label
is deterministic, the Bayes risk L* is null. Moreover, it is not difficult to see
that 7 is nowhere continuous. Indeed, let us fix x € F, ¢ €]0,1] and consider
z € F defined as follows (see figure 4):

() = x(t) if0<t<1-6
T at)+1 if1-s<t<1

So z is at distance 6 of x but has not the same label as x: since ¢ is arbitrary,
this proves that 7 is not continuous at point z. Since x is arbitrary, this proves
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X
4 | d(z,z) =|lz—z|1 =9
3 L
2 2(1) =2
1L B z(1) =1
z
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
1

Figure 4: The curves x and 2z’ have not the same label.

that 7 is nowhere continuous. Nevertheless, we prove now that the nearest
neighbor rule is consistent, since Besicovich condition is fulfilled. For this, we
use the more tractable formulation H'. Let us fix ¢ > 0 and z € F. The aim
is to show that

i ({In(e) — (@) > <} 0 By
650 1(By.5)

~0. (1)

We can estimate this quantity.

Lemma 1 (The ratio of small balls).

Lo idn(z) = n@)| > £} Brg)

=0.
6—0 /_,L(B_,E’(s)

Proof. In a first time, let us suppose that the number of jumps M of the
process z is strictly positive and denote 1, ..., ¢t the times of jumps. For the
denominator, a process z is in B, ; if it jumps at times ¢!, ...,t}, which are
close enough to t,...,ty:

o
' 1,....,.M t—t —.
Vie{l,.. .M} |h-t|<o

INRIA
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Some calculation on the Poisson process gives

. , é 26\

But doing like this, we have not enumerated all processes z € B, 5, so we can
only conclude that

26\ M S
uBa) 2 £0) (57) with ) =1

For the numerator, since 7 takes values 0 and 1, we have

p{n(z) = n(x)| > e} N Byg) = p({n(2) # ()} O Bays) -

Thus, if we consider the processes z with M jumps at times t/,...,t}, such
that
Vie{l,...,M} [t: — t;| <6,

and other jumps at times #),_ ,,... such that
Vi > M [t: — 1] < 6,

we get a set S of Poisson processes which is bigger than the one of interest.
Briefly speaking
({n(z) = n(z)| > e} N Bys) C S

Some calculation on the Poisson process gives this time
u(S) ~ (26)M+,
so that

n({In(z) —n(@)] > e} N Byy) < g(6)(28)* with limg(§) = 1.

The ration of small balls is now

p{In(z) =n(@)| > e} N Byy) _ g(@)20)M
11(By,5) T Ofs) ()M o

If x has no jump, the reasoning is the same.
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Xi Xi
4 | 4 |
3L e 3L e
2 | proooc 2 L oy
1L R 1L E
x x
——————————————— = ‘ | | s L
t tym 1 by ta 1
e ——— -
iy 5 3

Figure 5: Estimation of the numerator and denominator of equation (1).

The result of the Lemma ensures that for every x € F and for every € > 0
(lsin(l),u {z € F:n(z) —n(z)| >eld(z,z) < 6} =0.
%

As we have seen before, this implies Besicovich condition. So the nearest
neighbor rule is consistent, although 7 is nowhere continuous.

3.2 Besicovich assumption in infinite dimension

In this section, we discuss the Besicovich condition. If we restrict ourselves to
finite dimension and suppose that distance d is issued from a vectorial norm,
the essential result is the following one (see for instance [8]|, Chapter 1.7, pp
43-44).

Theorem 3 (Lebesgue-Besicovich differentiation theorem). Let i be a
Radon measure on R? and f € LY _(R?), then

loc

1
limi/ — f(z)Pdp =0
li gy J,, [ f@

for u almost every x.

INRIA
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In our case, p is a probability measure on R¢ and 7 is bounded by 1, so this
result can directly be applied. Devroye [5] already noticed that this is another
way to prove Stone’s theorem.

Corollary 1 (Stone’s theorem). In (R4, ||.||), the k-nearest neighbor clas-
sifier is universally weakly consistent.

Remark. If we wish to estimate the regression function 7, our reasoning even
shows that with the nearest neighbor method

ity B {f,(z) ~ n(a)P] = 0
for i almost every z.

Besicovich condition H appears also in recent papers on connected problems:
Abraham, Biau and Cadre [1] use it for function classification with the kernel
rule. Dabo-Niang and Rhomari [4] use it for nonparametric regression estima-
tion in general metric spaces.

Now the question is: what about Besicovich density condition in general met-
ric spaces? ?

This question has been studied by several authors in geometric measure theory,
see for example [11], [12] and [9]. Unlike the situation in R%, this condition is
no more automatically fulfilled in infinite dimension. In [11], Preiss introduces
a rather technical notion, called the o-finite dimensionality of a metric on a
space. He shows that it is the sine qua non condition to get Besicovich prop-
erty for all measures on a metric space. Without delving into the details of
this notion, let us just mention that it is related to the o-finite dimensionality
of the space. In fact, reconsidering Poisson processes above, we were precisely
in this situation.

Example. Fix M > 0 and denote F,; all the Poisson processes of F that
have exactly M jumps. A process that has M jumps can be summarized in
an M-dimensional vector, the times of jumps. Then it is obvious that the

20f course, we still suppose that the metric space is separable.
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metric space (Fay, ||.][1) is isometric to ([0, 1],]|.|l:). So that we have the
correspondence

+o0o +o0o

(F L) = U FEaes 1R ~ U 10,157,111,

and the o-finite dimensionality is clear.

Let us focus now on the classical situation where (F,d) is a separable Hilbert
space and p a Gaussian measure. Let v denote the centered and normalized
Gaussian measure on R, let (¢, ) be a non-increasing sequence of positive num-
bers such that 3" ¢, < +oo and let £5(c) be the set of all sequences = = ()
such that

—+ o0
lz|* = chxi < +o00.
n=0

Then the measure p = v®Y is a o-additive measure in Hilbert space /5(c).
More precisely, each Gaussian measure can be represented in this way.

Even in this rather comfortable context, one has to put conditions on the
sequence (c,) to get Besicovich property. Precisely, Preiss and Tiger [12] have
shown the following result: if there exists ¢ < 1 such that

Cn
Vn e N 1 < q,

Cn

then Besicovich property is true for every function f € L'(u). Roughly speak-
ing, if we see (c,) as the sequence of variances of y along the dimensions, it
means that these variances have to decay exponentially fast: this is a very
strong condition.

Now let us see an example which shows that if Besicovich condition is not ful-
filled, there is not much to hope about classification with the nearest neighbor

rule. This example is due to Preiss [10].

Example: a problematic case for nearest neighbor classification
In this paper, Preiss constructs a Gaussian measure p in a separable Hilbert

INRIA
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space F and a Borel set M C F with u(M) < 1 such that

lim #ML0 Bas)

=1
6—0 ﬂ(Bz,J)

for p almost every xz € F.

Now suppose that X is distributed with respect to p and its label Y is deter-
ministic

As usual the Bayes risk is equal to 0. Nevertheless, if we try to apply the
nearest neighbor rule to this example, it is intuitively clear that we have some
problems to classify elements « € M. Indeed, one can easily prove that

1 —

It is worth precising that this result is not in contradiction with the one of
Biau et al. [2]. In this paper, they consider a random variable X taking values
in a separable Hilbert space X', with label Y € {0,1}. They establish the
universal weak consistency of the a neighbor-type classifier, but not of the
classical nearest neighbor classifier. More precisely, they reduce the infinite
dimension of X by considering only the first d coefficients of the Fourier series
expansion of each X;, and then perform nearest neighbor classification in R¢.
In fact, their result and the example above suggest that in infinite dimension,
the classical nearest neighbor classification is not the good way to proceed.

A Technical lemma

In this section we use the notations of the proof of Theorem 2. And for all x in
F and r > 0 we denote respectively by B, ,, U,, and S;, the closed ball, the
open ball and the sphere centered at x and of radius r. We recall that in case of
equality, the ties are broken by comparing auxiliary i.i.d. variables [, ..., 0.,
independent of all the other random objects, and uniformly distributed in

(0,1).
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Lemma 2. Let F' be a p-integrable real function on F. For all x in the support
of 1,

Bl S F(Xg)l dan] =C [ Fl)dica),
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N 1 , iy
where i = (]le,d(kH) + 5115“1(“1)) i, and C' is a normalizing d;11)-measurable
constant
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Proof. Let Q(n) be the set of all the n-permutations, () denote the random
permutation given by the ordering of the nearest neighbor, and Q(n, k) all
the subsets of k elements in {1,...,n}. C will denote either a deterministic
constant, or a d(x41) = dgr4+1) measurable random variable, which may change
from line to line, but stays uniform in F'. We have
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The last two equalities come from reordering the terms in the summation, and
the fact that all the orderings have the same probability. Then we decompose
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the event:
k
]l{Q(l),...,Q(k)}:{1,...,k} = H(]]'dj<dQ(k+1) + ]lﬂj<ﬁQ(k+1)]ldj=dQ(k+1))
7j=1

X H (]]‘dh>dQ(k+1) + I]‘ﬁhZﬁQ(k+1)]'dh:dQ(k+l))'
h=k+1
It is quite obvious that the two products are independent conditionally to
dQk+1), S0 we put the expectation of the second one into the C. Thus we
have:
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k[ )i
Bzt
where we used the following facts: the samples X; are i.i.d., the other terms
in the product are conditionally independent of X, and the (; are i.i.d. and
independent of the other random variables.
The value of C is then easily computed by taking F' constant equal to 1. Also

note C' # 0 because x is in the support of .
[

Remark. If the probability u does not put mass on the spheres, the proof is
much simpler and the result of the Lemma is merely

1 ! /
ZF M dg+n] = m/ F(a') du(a’).

Bad g q)
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This can be seen as a particular case of the following general decorrelation
result: if ¢ : R — R is a test function, symmetric in all its entries, then

Elp(Xqw), - -, X))l dern] = E[p(21, - .., Zk)| dig+)]

with the (Z;)1<i<k i.i.d. random variables distributed according to the restric-
tion of p on the ball B

Tyl (fet1)*
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