-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Securing the OLSR routing protocol with or without
compromised nodes in the network
Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo, Cédric Adjih

» To cite this version:

Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo, Cédric Adjih. Securing the OLSR
routing protocol with or without compromised nodes in the network. [Research Report] RR-5494,
INRIA. 2005, pp.55. inria-00070513

HAL Id: inria-00070513
https://hal.inria.fr /inria-00070513
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50454119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070513
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5494--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Securing the OL SR routing protocol with or without
compromised nodes in the network

Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

N° 5494
Février 2005

Théme COM

apport

derecherche

Zd INRIA

ROCQUENCOURT

Securing the OLSR routing protocol with or without
compromised nodes in the network H

Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele
Raffo

Théme COM — Systémes communicants
Projet HIPERCOM

Rapport de recherche n® 5494 — Février 2005 —BH pages

Abstract: The primary issue with respect to securing Mobile Ad hoc NETworks (MANETS)
is that of ensuring network integrity even when the network is subject to attacks to break its
connectivity. In this research report, we study how to secure the OLSR routing protocol [8].
We first analyse the attacks that can be launched against the network integrity. We then
present mechanisms for ensuring that only “trusted” nodes are admitted into the network
and, subsequently, are the only nodes used to forward traffic. We also present mechanisms
for detecting and dealing with scenarios where “trusted” nodes have become compromised.

Key-words: Ad hoc network, attacks, routing protocol, connectivity, signature, time-
stamps, replay.

* This work has been supported by a DGA (Délégation Générale pour ’Armement) contract with the
CELAR (Centre d’ELectronique de ’ARmement)

Unité de recherche INRIA Rocquencourt

Sécuriser le protocole de routage OLSR avec ou sans
noeuds compromis dans le réseau

Résumé : Le premier probléme pour sécuriser les réseaux mobiles ad hoc (MANETS)
est celui du maintien de l’intégrité du réseau en présence d’attaques contre la connectivité
du réseau. Dans ce rapport de recherche nous étudions comment sécuriser le protocole de
routage OLSR [§]. D’abord nous analysons les attaques qui peuvent étre lancées contre
I’intégrité du réseau. Nous présentons ensuite des mécanismes pour assurer que seulement
les noeuds “siirs” sont admis dans le réseau et, en conséquence, ce sont les seuls noeuds utilisés
pour relayer le traffic. Nous présentons aussi des mécanismes pour détecter et répondre aux
cas ot des noeud “stirs” deviennent compromis.

Mots-clés : Réseau ad hoc, attaques, protocole de routage, connectivité, signature,
estampille temporelle, re-jeu.

Securing the OLSR routing protocol with or without compromised nodes in the network 3

1 Introduction

A Mobile Ad-hoc NETwork (MANET) is a collection of nodes which are able to connect
on a wireless medium forming an arbitrary and dynamic network. Implicitly herein is the
ability for the network topology to change over time as links in the network appear and
disappear. In order to enable communication between any two nodes in such a MANET, a
routing protocol is employed.

Currently, two complimentary classes of routing protocols exist in the MANET world.
Reactive protocols acquire routes on demand through flooding a “route request” and re-
ceiving a “route reply” (typically signaling the path taken by the route request to arrive
at the destination node). IL.e. the required parts of the topology graph are constructed in
a node only when needed for data traffic communication. Reactive MANET routing pro-
tocols include AODV [22] and DSR [15]. The other class of MANET routing protocols is
proactive, i.e. the routing protocol ensures that all nodes at all times have sufficient topo-
logical information to construct routes to all destinations in the network. This is achieved
through periodic message exchange. Proactive MANET routing protocols include OLSR [g]
and TBRPF [21].

1.1 Security Issues

A significant issue in the ad-hoc domain is that of the integrity of the network itself. AODV,
DSR, OLSR and TBRPF allow, according to their specifications, any node to participate in
the network - the assumption being that all nodes are behaving well and welcome. If this
assumption fails - then the network may be subject to malicious nodes, and the integrity of
the network fails.

An orthogonal security issue is that of maintaining confidentiality and integrity of the
data being exchanged between communications endpoints in the network (e.g. between a
mail server and a mail client). The task of ensuring end-to-end security of data commu-
nications in MANETSs is equivalent to that of securing end-to-end security in traditional
wired networks. Many studies have been carried out to solve this problem. One widespread
solution is to create a virtual private network (VPN) in a tunnel between the two com-
municating nodes. IPSec is a general security architecture which allows such VPNs to be
built between two communicating nodes. Despite its generality, IPSec is not designed to
solve the first issue related to the integrity of the network itself. However IPSec defines
a huge number of protocols and mechanisms. The reuse or adaptation of this material to
secure the integrity of the network is presented briefly in an annex of this research report.
The security issue of maintaining confidentiality and integrity of the data being exchanged
between communications is not considered in this research report.

The primary issue with respect to securing MANET routing protocols is thus that of
ensuring network integrity, even in the presence of malicious nodes. Security extensions to
the reactive protocols AODV and DSR exist, in the form of SAODV [10] and Ariadne [12].
Assuming that a mechanism for key distribution is in place, these extensions employ digital

RR n° 5494

4 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

signatures on the route request and route reply messages. The basic principle being that
each node verifies the signature of a message and - if valid - processes the message.

In this research report, we will investigate the issues of security in the OLSR protocol. We
will present mechanisms for ensuring that only “trusted” nodes are admitted into the network
(and, subsequently, are the only nodes used for forwarding traffic), as well as mechanisms for
detecting and dealing with the situation where a trusted node has become compromised. The
solution we present will rely on time-stamps in order to counter potential “replay attacks”.

1.2 Outline

The remainder of this paper is organized as follows: section [presents OLSR in sufficient
detail to devise security mechanisms which will be integrated with the protocol. Section
deals with vulnerabilities of OLSR. Section H] will summarize the requirements and describes
basic mechanisms for securing OLSR. Section Bl addresses the issue of securing OLSR when
nodes have been compromised (i.e. they are behaving contrary to the protocol specification
although they are thought to behave accordingly). Section Bl studies how the knowledge of
node locations can be used to counter a specific attack called relay attack.

There are four annexes in this research report. The first describes time-stamp generation.
The second one describes a general security architecture for OLSR with a centralized PKI
(Public Key Infrastructure). The third is a brief overview of signing algorithms. The fourth
overviews the reuse and/or adaptation of the IPSec framework within the mechanisms we
have defined to secure OLSR.

2 The Optimized Link State Routing Protocol

The Optimized Link State Routing protocol (OLSR) [6], [§] is a proactive link state routing
protocol, designed specifically for mobile ad-hoc networks. OLSR employs an optimized
flooding mechanism to diffuse link-state information, and diffuses only a partial link-state
to all nodes in the network.

In this section, we describe the elements of OLSR required to investigate security issues.
A complete description of OLSR can be found in [§].

2.1 OLSR Control Traffic

Control traffic in OLSR is exchanged through two different types of messages: “HELLO”
and “T'C” messages. HELLO messages are exchanged periodically among neighbor nodes in
order to detect links to neighbors, to detect the identity of neighbors and to signal MPR
selection. TC messages are periodically flooded to the entire network in order to diffuse
link-state information to all nodes.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 5

2.1.1 HELLO messages

HELLO messages are emitted periodically by a node, encoding its own address as well
as three lists: a list of neighbors from which control traffic has been heard (but where
bi-directionality is not yet confirmed), a list of neighbor nodes with which bidirectional
communication has been established, and a list of neighbor nodes which have been selected
to act as an MPR for the originator of the HELLO message. HELLO messages are exchanged
only between neighbor nodes.

Upon receiving a HELLO message, a node examines the lists of addresses. If its own
address is included in the addresses encoded in the HELLO message, it is confirmed that
bi-directional communication is possible between the originator and the recipient of the
HELLO message.

In addition to information about neighbor nodes, the periodic exchange of HELLO mes-
sages allows each node to maintain information describing the links between neighbor nodes
and nodes which are two hops away. This information is recorded in a nodes 2-hop neigh-
bor set and is explicitly utilized for MPR, optimization - the core optimization of OLSR,
described in section

2.1.2 TC messages

Like HELLO messages, TC messages are emitted periodically. The purpose of a TC message
is to diffuse link-state information to the entire network. Thus, a TC message contains a
set of bi-directional links between a node and a subset of its neighbors. For a discussion
on selecting which neighbors should be included in the TC messages in order to provide
sufficient topology information, refer to [8] and [7]. TC messages are diffused to the entire
network, employing the MPR optimization described in section

2.1.3 Multipoint Relay Selection and Signaling

The core optimization in OLSR is that of Multipoint Relays (MPRs). The concept is as
follows: each node must select MPRs from among its neighbor nodes such that a message
emitted by a node and repeated by the MPR nodes will be received by all nodes two hops
away. MPR selection is performed based on the 2-hop neighbor set received through the
exchange of HELLO messages, and is signaled through the same mechanism: a link-status of
“MPR?” specifies that the link between the originator of the HELLO message and the listed
address is symmetric - and that the node with the included address is selected as an MPR
by the originator.

Thus, each node maintains an MPR selector set, describing the set of nodes which have
selected it as an MPR. Upon receiving an OLSR control message, a node consults its MPR
selector set to determine whether the message is to be retransmitted: if the last-hop of the
control message is an MPR selector, then the message is to be retransmitted, otherwise it
is not retransmitted. Figure [l shows a node with neighbors and 2-hop neighbors. In order
to achieve a network-wide broadcast, it suffices that a broadcast transmission be repeated

RR n° 5494

6 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

by a subset of the neighbors. This subset is made up from the MPR-set of the node. For
further information, including an efficient heuristic for computing the MPR set of a node,
refer to [23].

(a (b

Figure 1: Two hop neighbors and “multipoint relays” (the solid circles) of a node. (a)
illustrates the situation where all neighbors retransmit a broadcast, (b) illustrates where
only the MPRs of a node retransmit the broadcast.

2.2 OLSR Message Format and Packets

OLSR control messages are communicated using a “transport protocol” defined by a general
packet format containing individual control messages, as well as rules governing the process-
ing of such packets and messages. In this section, we outline this transport protocol. The
purpose is to outline how security extensions can be easily included, and to understand the
mechanisms under which the security extensions must be designed.

The OLSR packet format is given in figure &

While messages may potentially be intended to be broadcasted to the entire network
(e.g. a TC message), packets are transmitted only between neighbor nodes. The unit of
information subject to being forwarded is “messages”. The common packet format allows
individual messages to be piggybacked and transmitted together in one emission (MTU-
size allowing). I.e. TC and HELLO messages may be emitted together, however they
are processed and forwarded differently in each node (HELLO messages are not forwarded
whereas TC messages are).

It is important to notice, that an individual OLSR control message can be identified
by its Originator Address and Message Sequence Number - both from the message header.
Hence, disregarding issues of wraparound of the Message Sequence Number, it is possible to
uniquely refer to a specific control message in the network. This will become of importance
when discussing message signatures.

Further details on OLSR packet and message formats can be found in [§].

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 7

0 1 2 3
0123456789012345678954901
B
| Packet Length | Packet Sequence Number |
B e
| Message Type | Vtime | Message Size |
B
| Originator Address |
B T T T s T S
| Time To Live | Hop Count | Message Sequence Number |
B T s e T T
| |
: MESSAGE :
| |
L s T e T i
| Message Type | Vtime | Message Size |
L s T T e =
| Originator Address |
B T e T e e
| Time To Live | Hop Count | Message Sequence Number |
L T T e T s T M
| |
: MESSAGE :
| |
B T T et S

(etc)

Figure 2: Generic OLSR packet format. Each packet encapsulates several control messages
into one transmission.

3 Vulnerabilities

In this section, we discuss various security vulnerabilities in proactive routing protocols for
ad-hoc networks. Although we specifically enumerate vulnerabilities in OLSR, it should be
stressed that this section does not emphasize “flaws” in the OLSR, protocol. Rather, the
vulnerabilities are instances of what all proactive routing protocols are subject to.

When an ad-hoc network is operating under a proactive routing protocol, each node
has two different (but related) responsibilities. Firstly, each node must correctly generate
routing protocol control traffic, conforming to the protocol specification. Secondly, each
node is responsible for forwarding routing protocol control traffic on behalf of other nodes
in the network. Thus incorrect behavior of a node can result from either a node generating
incorrect control messages or from incorrect relaying of control traffic from other nodes.

Correctly generating and forwarding control traffic can be considered as a criterion for
having a correctly functioning routing. I.e. that the routing protocol is able to consistently
provide a correct view of the network topology in each network node. This assumption
implies that all the nodes in the network correctly implement the routing protocol - and
specifically that each node correctly processes and emits control traffic. Notice, that this in
and by itself is not sufficient to ensure that data packets are being correctly routed in the
network. Indeed, independently of whether the routing protocol is proactive or reactive, a
misbehaving node may generate, process and relay control traffic correctly while not actually
performing data traffic forwarding.

In the remainder of this section, we investigate how these incorrect behaviors may appear
in OLSR. We note, that although we employ OLSR. for the purposes of our investigations,
much of the following is equally applicable to other proactive routing protocols.

RR n° 5494

8 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

3.1 Jamming

One vulnerability, common to all routing protocols operating a wireless ad-hoc network, is
that of “jamming” - i.e. that a node generates massive amounts of interfering radio trans-
missions, which will prevent legitimate traffic (e.g. control traffic for the routing protocol
as well as data traffic) on part of a network. This vulnerability cannot be dealt with at the
routing protocol level (if at all), leaving the network unable to maintain connectivity. The
result of jamming is somewhat similar to that of network overload: a sufficiently significant
amount of routing protocol control traffic is lost, preventing routes from being constructed
in the network. In this study, we will not consider a networks resistance against jamming
or traffic overload.

3.2 Incorrect Message Generation

OLSR basically employs two different kinds of control traffic: HELLO messages and TC
messages. In this section, we describe how a non-conforming node may affect network
connectivity through the incorrect generation of HELLO and TC messages.

In general, we observe that with respect to control traffic generation, a node may mis-
behave in two different ways: either by generating control traffic “pretending” to be another
node (i.e. Identity Spoofing) or by advertising incorrect information (links) in the control
messages (i.e. Link Spoofing).

3.2.1 Incorrect HELLO Message Generation

In terms of HELLO messages, Identity Spoofing implies that a node sends HELLO messages,
pretending to have the identity of another node. E.g. node X sends HELLO messages, with
the originator address set to that of node A, as illustrated in figure Bl This may result in
the network containing conflicting routes to node A. Specifically, node X will choose MPRs
from among its neighbors, signaling this selection pretending to have the identity of node
A. The MPRs will, subsequently, advertise that they can provide “last hop” to node A in
their TC messages. Conflicting routes to node A, with possible loops, may result from this.

Similarly, Link Spoofing implies that a node sends HELLO messages, signaling an incor-
rect set of neighbors. This may take either of two forms: if the set is incomplete, i.e. a
node “ignores” some neighbors, the network may be without connectivity to these “ignored”
neighbors.

Alternatively, an intruder advertising a neighbor-relationship to non-present nodes may
cause inaccurate MPR selection with the result that some nodes may not be reachable in
the network. In figure @ X pretends to be a neighbor of node B. Thus D can choose as its
MPR set nodes X and E (smallest MPR set with this two-hop neighborhood). TC messages
from F will not be delivered to B. Should X operate correctly, D would have to choose as
its MPR set nodes X,C and E. TC flooding will work correctly.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 9

Figure 3: Identity Spoofing of HELLO messages: node X assumes the identity of node A to
send HELLO messages. Nodes B and C' may, subsequently, announce reachability to node
A through their TC messages.

Figure 4: Wrong information about a node neighborhood may cause inaccurate MPR selec-
tion and incomplete flooding

3.2.2 Incorrect TC Message Generation

As for HELLO messages, Identity Spoofing with respect to TC messages implies that a
node sends TC messages, pretending to have the identity of another node. Effectively, this
implies link spoofing since a node assuming the identity of another node effectively advertises
incorrect links to the network.

Similarly, Link Spoofing implies that a node sends TC messages, advertising an incorrect
set of links. This may take either of two forms: if the set is incomplete, i.e. a node “ignores”
links to some nodes in its MPR selector set, the network may be without connectivity to
these “ignored” neighbors - as well as to neighbors which are reachable only through the
“ignored” neighbors. A node may also include non-existing links (i.e. links to non-neighbor
nodes) in a TC message. This is illustrated in figure Bl

Link spoofing in TC messages may result in routing loops and conflicting routes in the
network.

RR n° 5494

10 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

Figure 5: Node X generates incorrect TC messages, e.g. advertising a link between node X
and node A.

3.2.3 Incorrect traffic Generation using correct messages previously sent: re-
play or relay attack

An intruder node can reuse already generated messages in the network. We first consider
generated messages within an average timescale (more than a few seconds); we have incorrect
messages generated by replaying old and most probably obsolete control messages.

Another possible attack is when a control traffic from one region of the network is
recorded and, within a small timescale (less than a few seconds), replayed in a different
region. This may, for example, happen when two nodes collaborate on an attack, one
recording traffic in its proximity and tunneling it to the other node, which replays the traf-
fic. We have incorrect message generation by relay. This attack is often called wormhole
attack, see[I3].

In a protocol where links are discovered by testing reception, this will result in extraneous
link creation (basically, a link between the two “attacking” nodes), see figure Bl This may
also break the MPR flooding because of the rule which mandates that a TC message already
received from a node which is not an MPR must not be relayed. In figure [node B will not
relay the TC message from node F since intruder X has artificially relayed this TC message
to B.

3.3 Incorrect Traffic Relaying

Nodes in a MANET relay two types of traffic: routing protocol control traffic and data
traffic. A node may misbehave by failing to forward either type of traffic correctly.

3.3.1 Incorrect Control Traffic Relaying

If TC messages (or routing protocol control messages in general) are not properly relayed,
connectivity loss may result. In networks where no redundancy exists (e.g. in a “strip” net-
work), connectivity loss will certainly occur, while other topologies may provide redundant

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 11

Figure 6: Intruders X and Y are creating an artificial connectivity between nodes A and B

Yoo, .
L)

Figure 7: Intruders X and Y are creating an artificial connectivity between nodes F and B,
which breaks the MPR flooding in B

connectivity. Similarly if a node does not forward data packets (e.g. if intra-node forwarding
is impaired), loss of connectivity may result.

3.3.2 Incorrect Data Traffic Relaying

Even a node correctly generating, processing and forwarding control traffic as required, may
act in a malicious way by not forwarding data traffic. The node thereby breaks connectivity
in the network (data traffic cannot get through) however this connectivity loss is not detected
by the routing protocol (control traffic is correctly relayed).

While this may indeed be due to an attack, this type of situation is also encountered
simply due to misconfigured nodes: routing capabilities (through IP forwarding) are typically
disabled by default in most operating systems, and must be enabled manually. Failing to do
so, effectively, triggers the situation where data traffic is not forwarded /routed while control-
traffic (which is forwarded by the action of the routing daemon) is transmitted correctly.

RR n° 5494

12 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

Below is a summary of the identified attacks against the OLSR routing protocol. We
have five sorts of attacks :

e incorrect message generation (called in the following IMG attack),

e incorrect message generation with replay (called in the following replay attack),
e incorrect message generation with relay (called in the following relay attack),

e bad data traffic relaying (called BDTR attack),

e bad control traffic relaying (called BCTR attack).

4 Basic mechanisms to secure OLSR

An attack on the ability to provide connectivity in the network must result from the incor-
rect behavior of, at least, one node in the network. In this context, incorrect means that
the node does not process and emit control traffic in accordance with the routing protocol
specifications, or that the node does not perform the implied data packet forwarding cor-
rectly. We note that in most cases such non-conforming behavior of a node will be due to
malice - i.e. specially targeted to interfere with the network connectivity. We call such a
node responsible for this incorrect behavior an intruder.

In the next section we will need the cryptographic tools which can be used to prevent
the intruder from being part of the ad hoc network.

4.1 Cryptographic Requirements

The security architecture proposed is mostly cryptography agnostic. I.e. few constraints
are enforced on the cryptographic system employed to secure OLSR as described in this
paper. In fact, any cryptographic system, satisfying the following two requirements, may be
employed:

e a signature for a message can be generated in a node using a function:
sign(nodeid, key, message)

e a signature for a message can be verified in a node using a function:
verif (originatorid, key, message, signature)

Public-key as well as symmetric shared-secret key systems can be employed. The prop-
erties of various cryptographic systems are beyond the scope of this paper.

We will call a cryptographic capable node, a node which has received valid keys and
which can sign and verify messages. In an ad hoc network where the nodes meet the
above cryptographic requirements, a node is said to cryptographic capable. A cryptographic
capable node is said to be compromised if it does not process and emit control traffic in

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 13

0 1 2 3
0123456789012345678954901
B B
| sign. Method | Reserved | MSN Referrer
B B
| |
: Time-stamp :
| |
B e e S U e 3
| |
: Signature :
| |

S S e S S
Figure 8: OLSR signature message format.

accordance with the routing protocol specifications, or if it does not perform the implied
data packet forwarding correctly. Note that a compromised node is, however, a cryptographic
capable node.

4.2 OLSR Signatures

To prevent malicious nodes from injecting incorrect information into the network, a signature
is generated by the originator of each OLSR control message and transmitted with the control
message. In addition, a time-stamp is associated with each signature, in order to estimate
a message freshness. Time-stamps are discussed in section [0

Thus, upon receiving the control message, a node can determine if message originates
from a cryptographic capable node, and if message integrity is preserved.

Signatures and time-stamps are genuinely separate entities from OLSR control traffic:
while OLSR control traffic serves to acquire and distribute topological information, signa-
tures serve to validate information origins and integrity. Thus, we introduce signatures as
a separate type of OLSR control messages, encapsulated and transmitted as described in
section

Signatures are used by a receiving node to authenticate the corresponding OLSR control
message: every control message without a matching corresponding signature is rejected.
Depending on the properties of the signature method, different levels of authentication and
resilience to attacks can be provided. For instance, the highest level of authentication may
be provided by using individual asymmetric keys, as the messages advertised as generated
from every non-compromised node are uniquely accepted when they indeed originate from
this node. Weaker (but less complex and less computationally intensive) systems can be
imagined, e.g. employing a shared secret-key system among cryptographic capable nodes.

In more detail, for each TC or HELLO message generated, a corresponding signature
message is generated and transmitted. The format of a SIGNATURE MESSAGE is speci-
fied in figure B

To compute a signature corresponding to a TC or HELLO message, the following ap-
proach is used. Notice, that this has some similarities with checksum computation:

e the node creates the OLSR control message (HELLO or TC),

RR n° 5494

14 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

e the “current time-stamp” is obtained and updated. Time-stamps are used for replay
protection, and are discussed in detail in section [T

e the signature is computed on the sequence of bytes made up from (i) the TC or HELLO
message and (ii) the time-stamp. Notice, that for the computation of the signature,
the TTL and Hop-Count fields of the TC or HELLO message are considered as set to
0 (zero) since these fields are modified while the message is in transit and, thus, would
otherwise interfere with verification of the message by the receiving node. Thus, the
signature is:

signature = sign(nodeid,key,
< OLSR control message,
time-stamp >)

Upon receiving a matching message and signature pair, the receiving node verifies the
signature thus (again, considering the TTL and Hop-Count of the message to be set to zero):

verif(originator address, key,
< OLSR control message, time-stamp >,
signature)}

If the verification returns true, then the node proceeds to perform time-stamp verification,
as described in section [0

The signature and the time-stamp are contained in an OLSR control message, as il-
lustrated in figure B and are transmitted as the data-portion of the general packet format
described in section 22 with the "Message Type" set to SIGNATURE MESSAGE, the
TTL and Vtime fields set to the values of the TTL and Vtime fields of the message to which
the signature is associated.

In order to identify correspondence between a TC or HELLO message, the SIGNA-
TURE_MESSAGE contains in the MSN Referrer field the value of the Message Sequence
Number of the control message to which this signature is associated. However, as pointed
out in section XA the correspondence achieved by the Message Sequence Number is only
unique if possible wraparounds of the 16 bit field are disregarded. This is however not a
problem since a further node can use the signature verification to check the correspondence
between the control message and the signature message:

e Upon receiving a HELLO or TC message, the node holds the message (for an imple-
mentation dependent duration), waiting for the corresponding signature message.

e Upon receiving a signature message, every message held in the previous step, with the
same MSN and originator address as the MSN Referrer and originator address in the
signature message, is checked for a signature match. If a signature match is found,
the time-stamp is further verified, as described in next section. If both signature and
time-stamp are validated, the message is accepted and processed following the rules
of the OLSR protocol. If not, both the signature message and the control message(s)
are held.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 15

The Sign. Method fields specifies which method, from a predefined set, is being used
to generate the summary of the control message, as well as the actual signature. This
includes information about the keys to use, the hashing function used for the signature, and
time-stamp methods.

TC messages are forwarded with the associated signature message formed by the origi-
nator node of the TC.

To increase security, it can be stipulated that a control message and its corresponding
signature message must be in the same packet.

4.2.1 MPR flooding with signatures

Signatures do not protect the TTL and the hop count fields. There is a special reason
for that, the computation of TTL and hop count is inherently distributed (i.e. done by
successive nodes of the path), so it is not feasible to protect them, unless recording the list
of the successive values on the path and signing them.

Since these fields are not protected, they may be attacked: one attack is, for instance,
to change the TTL field to 1 before retransmitting the packet, to (possibly) limit its further
diffusion to one hop. Note that, as the “hop count” is not used by the OLSR protocol itself
(as implemented in RFC 3626), attacking it will have no impact on OLSR.

Attacks on the TTL can be viewed as an instance of general attacks described elsewhere,
but several specific solutions can be implemented to prevent such attacks. A few of them
are described below:

e Ignore the TTL field entirely. Drawback: a message might travel forever if the network
is very large.

e Record the TTL in the duplicate table: if a message has been retransmitted but with
a TTL which is noticeably lower than the TTL with which it is received again, it will
be transmitted again. Drawback: more transmission and a maximum transmission

radius which is lower than initial TTL (around ppzitialrre),
AT discrepancy

e Ignore the TTL, but use the time-stamp to judge if a message is “too old” and should
be discarded. Ignoring implementation issues, this is the most logical approach.

4.3 Time-stamps generation

There are numerous ways to generate time-stamps within an ad hoc network. In this section
we briefly describe above a very simple way where an authority node distributes a global
time. Other more sophisticated approaches are discussed at the end of this research report
in a special annex.

The simple time-stamp generation described here uses a centralized approach. Each node
periodically receives the current time of an authority node. It then attempts to synchronize
its local clock with that time. This time is used toghether with signatures (see next section).

RR n° 5494

16 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

Since the time from the authority node increases monotonically, a standard algorithm can
be used for time synchronization:

¢ each node keeps the last “time” advertised by the authority node;

e when a new “time” is advertised by the signing authority, it is accepted if and only if
the new time is strictly greater than the previous ones received. If it is accepted, the
clock of the receiving node is updated;

e periodically, each node issues a challenge-response query to the authority node.

This last point, the challenge-response query, is intended to prevent replay attacks with
old certificates and old time-stamps in a set of nodes disconnected from the authority node.
The challenge-response is classical [28]:

e node A wants to initiate the challenge-response protocol with the authority node;

e node A generates a nonce, N4, a sequence of randomly generated bytes, and sends it
in a time query to the authority node. This nonce is signed by node A.

e the signing authority replies with a message containing its current time, and N4, this
time signed by the authority node;

e node A receives the answer, checks for the presence of N4, and validity of the signature
of the authority node. If the signature check and the value of N4 are as expected,
node A can now use the net time base.

If a replay attack was underway, all old replayed messages can now be ignored by A.
If node A, after several attempts, receives no answer from the authority node after, it
may be suspected that it is disconnected from the signing authority.

The crux is that the attacker which is employing the replay attack is unable to provide
a signed message with the “correct” time, correct N4 and a correct signature.

If the authority node is either not sending periodic time-stamps or not responding to
challenge response of nodes, a backup authority node can be used. This node can take its
turn for instance after the master authority node has not answered its challenge request.

4.4 Mixing signature and time-stamps

Base signatures, which authenticate a message can be complemented with a time-stamp,
which holds the time of the node, with sufficient precision. Logically, the time-stamp is
appended to the message, then the message and the time are signed, and the time-stamp
is distributed along with the signature. Signatures complemented with time-stamps are
denoted full signatures.

The full signature check now comprises two steps:

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 17

e the node receiving a message with time-tamp T' checks first that |T'—Tjpcqi| < 0, where
¢ is the maximum time discrepancy accepted, and Tj,cq; is the time of the local clock.

o if the time-stamp check is passed, the node checks the base signature.

Control packets that do not satisfy the two previous conditions are dropped.

4.5 Security overhead

We can mathematically evaluate the overhead increase caused by the sending of signature
messages. The size of a HELLO message advertising n nodes varies from 32(n + 2) to
32(2n +1) bits, depending on whether the nodes have the same link/neighbor status or not.
The size of a TC message advertising n neighbors is 32(n + 1) bits.

We assume the use of HMAC-MD5 [16), 26] or DSA [20)] for the authentication mechanism,
which results in a 128-bit signature for HMAC-MD5 and 320-bit signature for DSA. We also
assume the use of a 32-bit time-stamp, which is enough to define the time value for a period of
more than 49 days with a granularity of 1 ms. In figure[@we compare the overhead generated
by hello messages with and without signatures (HMAC-MD5 or DSA) with respect to the
number of neighbors for a node. Note that we have assumed an average size of 32(1.5n + 2)
for the hello messages. In figure [0, we compare the overhead generated by TC messages
with and without signatures (HMAC-MD5 or DSA) with respect to the number of neighbors
for a node .

The flowrate of control messages for a node is as follows. With the standard OLSR
protocol we have 550 bit/sec, OLSR with HMAC-MD?5 signatures results in 752 bit/sec and
OLSR with DSA signatures results in 886 bit/sec. These include the computation of IP,
UDP and OLSR packet headers (considering IPv4 addresses). For the size of a HELLO, we
used the average value. Here we assume that each HELLO/TC is sent alone in a packet
for the standard OLSR, and that each HELLO/TC is sent coupled with its SIGNATURE
in each packet for the secured OLSR. These figures show that signing control messages
introduces a significant extra overhead in ratio. This is not a problem as far as the OLSR
overhead remains limited owing to its genuine optimizations.

4.6 What security can be expected from the previous schemes?

Let us assume that we are in an ad hoc network using the above cryptographic tools and
that there is no compromised node.

We can be sure that no incorrect traffic generation can be successfully launched. In fact
an intruder can not be a cryptographic capable node in the network. Such a node can not
be admitted neither as a neighbor nor, fortiori causa, as an MPR of a node. Consequently
this node will not be able to interfere with the correct generation of routing tables. For this
first kind of attack the use of time-stamps is not mandatory.

For the same reason as above no incorrect message generation with replay attacks can be
successful if both the signing and time-stamps schemes are used. The time-stamps scheme

RR n° 5494

18 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

2048

OLSR HELLO message size

1792

1536

1280

1024

Size in bytes

‘ ‘ ‘ ‘ "HELLO()
HELLO_with_SIGNATURE_MD5(x) ———-
HELLO_with_SIGNATURE_DSA(X) +

Figure 9: Overhead of Hello

2048

L L
6 8 10 12 14 16 18

Advertised neighbors or links

messages with and without the signature message

OLSR TC message size

20

1792

1536

1280

1024

Size in bytes

TC(x) ——
TC_with_SIGNATURE_MD5(x) --—----
TC_with_SIGNATURE_DSA(x) ~ +

Figure 10: Overhead of TC messages with and without the signature message

1 1
6 8 10 12 14 16 18
Advertised neighbors or links

20

will allow cryptographic capable nodes to get rid of control messages sent by intruders

replaying old messages.

We are also sure that no intruder can be part of the network. Thus the attacks of bad
data traffic relaying or of bad control traffic relaying is not possible since by assumption
only an intruder can launch such attacks.

However intruder nodes, although not being cryptographic capable, can relay control
packets as described in subsection Such relay attacks are very difficult to challenge,

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 19

attack IMG | Replay | Relay | BDTR | BCTR
No comp nodes no no yes no no
Comp nodes yes yes yes yes yes

Table 2: Possible successful attacks with and without compromised nodes

but they are also very difficult to set up. In the appendix we devote a section to studying
how the knowledge of node locations can be used to counter such relay attacks.

If we now assume that there is compromised node in the network all the five types
of attacks : incorrect traffic generation, incorrect traffic generation with replay, incorrect
traffic generation with relay, data traffic relaying, control traffic relaying can be successfully
launched. That is the aim of the following section which deals with mechanisms to cope
with compromised nodes in an ad hoc network.

Verifying that a node is cryptographic capable implies that one is possession of the keys.
How keys can be distributed in ad hoc networks is studied in annex

5 Coping with compromised nodes

Thus far, we have been exclusively concerned with keeping intruders out of the network, i.e.
stopping control traffic from intruder nodes from being diffused among other nodes. The
prime hypothesis has been that a node which is not an intruder is known to behave correctly.
Specifically, we have assumed that control traffic is generated, processed and forwarded in
accordance with the protocol specification, and that data traffic is forwarded correctly. This
is illustrated as the topmost situation in figure [[I1

In this section, we change that hypothesis in that we will investigate how a network can
be protected against two different problems: a node which has been compromised, or/and
imaginary links were created with the relay attack B2Z3 (these are compromised links). If we
are in an architecture as described in annex .23 the first case means that we have a node
whose key and identity is known by the signing authority, but which for some reason has
stopped behaving correctly (e.g. sending or forwarding control traffic incorrectly, forwarding
data traffic incorrectly etc). This is illustrated as the middle situation in figure [l

Handling the situation where a compromised node and/or some compromised links are
present in the network implies two separate issues, namely detecting that a node or link
is misbehaving, followed by a corrective action, allowing the non-compromised part of the
network to continue operating correctly.

The proposed corrective action for a compromised node is illustrated in the bottommost
situation of figure[[1l The compromised node is marked as “excluded” and is thus excluded
from the network. Similarly, the corrective action for compromised links is to exclude them.

In this section, we will first discuss how to detect a compromised node or a compromised
link in the network. Then, we will address issues regarding the proposed corrective actions.

RR n° 5494

20 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

“Secure" network of

cryptographic—capable es@y O

® Non-cryptographic capable node

O Cryptographic capable node
. Compromised node

e
cryptographic—capable nodes orby

Oon: corné)rorni ed
node present.

'Secure’ prhatwork

cryptographic capagre nodes onl:

ecx"chPJgﬂPS% Thee
network.

Figure 11: Top: the network is excluding all non-“cryptographic capable” nodes, assuming
that “cryptographic capable” nodes are well behaved. Middle: a “cryptographic capable
node” has become compromised and thus misbehaves. Bottom: upon detection of the com-
promised node, a corrective action renders the compromised node no longer recognized as
“cryptographic capable” and the mechanisms described in section B4 exclude the compro-
mised node from the network.

5.1 Detecting Link Spoofing in HELLO- and TC-messages

In section B, we described basic mechanisms which aim to keep intruders outside the network
when there are no compromised nodes in the network. However with compromised nodes
present, intruders may be in possession of given keys of the networks and thus they can
issue valid signatures for non-existing links. To prevent this situation, a more fine-grained
signature mechanism is required. This mechanism has been already presented in [24].

While HELLO and TC messages, in terms of the routing protocol functioning, have
both a different structure, scope and purpose, they are identical in terms of preventing link
spoofing: both advertise links between the originator of the message and a set of neighbors
to the originator. Hence, the same general considerations apply for both message types. In
the following discussion, we will therefore use the term “OLSR control message” meaning
either a HELLO or a TC message.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 21

In general, OLSR control messages have the semantics of the originator advertising “I
have a link with these other neighbor nodes”. The signature on the message, introduced in
section Bl serves to verify that the originator is indeed the one claiming such a link to exist.
The task in hand is to ensure that it can be validated that the neighbor also believes that
such a link exists.

Considering OLSR, we observe that:

¢ MPRs are selected from among the nodes with which there exists

a symmetric link;
e TC messages contain symmetric links only;

e MPR selection is accepted from nodes with which there exists a symmetric link.

Hence, only nodes with which a symmetric link exists can affect the network formation
and functioning. Furthermore, if an asymmetric link exists between two nodes, i.e. node 4
can hear node B, then the link is, indeed, at best asymmetric — and thus only node A can
make any statements regarding the link.

We therefore propose a simple mechanism which, in collaboration with OLSR neighbor
sensing, will allow not only Bi-directionality-checks, but also the ability to advertise “verifi-
able symmetric links”. By a “verifiable symmetric link” we mean a link, which the nodes in
both ends have signed as being valid for a given amount of time. Our approach is illustrated

in figure A
A:sym={} asym={}
® > o

Esym={} asym={(A,t1)s; }

t
Asym={(B.t) 5} ,asym:{}

ty

Figure 12: Bidirectionality check with signatures.

At network initialization, tg, node A sends a HELLO message. This is received by
node B. Node B, in its next HELLO message, indicates that it has heard node A (status:
asymmetric). It furthermore attaches its time-stamp, signs the pair (A,¢1) and transmits
(A,t1)s,. Upon receiving this information, node A now has node B’s signature as proof
that at time ¢; there existed a link from node A to node B.

When node A at some point wishes to advertise this link in an OLSR. control message in a
way such that it can be verified by other nodes in the network, it will advertise ((A,%1)s5)s.,-
This indicates to the recipient that at the time ¢;, nodes A and B both claim to be able

RR n° 5494

22 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

to receive messages from each other. The double signature provides authentication by both
sides.

Hence, upon receiving an OLSR control message containing such signed links, the re-
cipient can, based on the signatures and the time-stamps, ensure that the originator of the
message is transmitting valid and correct, and decide to process or discard the message ac-
cordingly. If a node is found to send “incorrect” information — e.g. to spoof links to another
node — an inconsistency is reported to the security authority, triggering a corrective action
to degrade the offending node to “excluded” and remove it from the network.

With at most one compromised node, the net result is that no non-existing link can be
injected in the network. Note that this excludes compromised links created by relay attack
(section B2Z), which exist to the extent that they are created by genuinely relaying packets
back and forth. In general, the mechanism presented here, of advertising verifiable links,
ensures that the only nonexisting links that could be injected into the network would be
between two compromised nodes.

5.2 Detecting Incorrect Data Traffic Relaying

The previous section details how to prevent and detect attacks on information at the routing
protocol level. In this section, the focus is on detecting and alleviating incorrect forwarding
of data packets. Because incorrect routing information is detected, and prevented by the
provisions specified in the previous section, the central hypothesis for this section is that
the routing information is correct (the only exception being for compromised links created
by relay attack B23).

Two cases are represented in figure

In case 1, there is a relay attack. An imaginary link is created by node C, which is
invisible for nodes A and B. Node C may drop packets, change their order, replay them, or
inject miscellaneous packets. This is a compromised link.

In case 2, there is a compromised node C. This node might perform the same actions as
the attacker node C' in case 1. The situation is, however, different because on the one hand,
the node is directly visible, but on the other hand, detecting misbehavior requires gathering
information from nodes which are two-hops apart.

In case 2, it doesn’t matter if one or both of the links are actually also compromised
links. Any misbehavior of the link can be translated to an equivalent to a misbehavior of
the compromised node.

5.2.1 Detection through Network Flow Conservation

BDTR and BCTR attacks can be countered in different ways. One example is to use
overhearing of transmissions to detect incorrect forwarding behavior, using the watch-
dog/pathrater approach of [I8]. Other approaches use detection through acknowledgments
or probe packets.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 23

Case 1: Compromised link (relay attack):
A and B think they have a symmetrical
link but C (attacker) is actually relaying

Case 2: there is in fact a compromised
node, C, in the network

(D—@—()

Figure 13: Forwarding attacks

Another line of approach is based on network flow conservation [A] and [2]. It is not
sufficient to provide resilience to attacks, as the closer analysis of [T4] shows, but it provides
some minimal detection.

The law of “Conservation of Flow” states that: an input must either be absorbed or sent
on as an output [T4]. This is the basis for a set of algorithms which essentially count packets
received and sent by one node to each of its neighbors. Then exchanging, or collecting these
counts makes it possible to check whether the node is exhibiting proper routing behavior.
Essentially, the total number of packets which come into a node to be relayed should be
equal to the total number of relayed packets coming out from the same node.

5.2.2 Applying Network Flow Conservation

In our situation, we are concerned only with the two cases illustrated in figure [[3
In case 1, the law of conservation of flow translates into:

e Number of packets sent by A to B = number of packets received by B from A. This
is flow conservation applied to a link.

Case 2 is more complicated. Let’s assume the send/receive packet counts are consistent
considering each pair involving C' and its neighbors (i.e. ensuring that case 1 checks are
passed successfully). Now, nodes A and B should compute statistics on the transit packets
of C. A transit packet of node C is a packet that is neither destined for C nor originating
from C (as in [2]).

RR n° 5494

24 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

Assuming the following data is recorded:
e For each node N;, the number of transit packets sent to C
e For each node N;, the number of transit packets sent from C

The law of conservation (on a node) roughly translates as : the sum of the number of
transit packets sent to C by all other nodes NV;, is equal to the sum of the number of transit
packets sent by C' to all other nodes N;. It ensures that node C has emitted as many transit
packets as it has received.

5.2.3 Precise Network Flow Conservation Check

To be more specific, and again following [2], the law of conservation should be written more
precisely, using more counters, to account for the non-transit traffic. Each pair of neighbors
(X,Y) records the following information about the packets which went/should have gone
from X to Y:

e The number of packets which are transit packets for both X and for Y (i.e. neither
source nor destination are X nor Y): Tx_y.

e The number of packets with source X which are transit packets for Y: Sx_,y
e The number of packets with destination ¥ which are transit packets for X: Dx_,y.

e The number of packets which were misrouted by X to Y: Mx_,y. Misrouted packets
are packets forwarded by X to Y although Y is no closer to the destination than X.

e Additionally, the total number of all packets without regard for the source or destina-
tion: Ax_yv

Each quantity can be seen either from node X’s perspective or from node Y’s perspec-
tive: we denote T'x_,y for instance, the following way: Tx_,y[X] for X’s perspective, and
Tx_y|Y] for Y’s perspective. Similarly, for instance, Mx_,y[X] would be the number of
packets misrouted by X to Y from the perspective of node X, and incidentally should thus
normally be 0.

The complete flow conservation equation for a node A is obtained writing the expression

of output - input, which is no longer 0 here and is actually equal to
produced packets - consumed packets

Thus we have:

packets sent by A to neighbors

- packets sent to A by neighbors

= packets sent by A originating from A

- packets sent to A destined for A

- packets sent to A that A judged misrouted

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 25

This translated into the following equation for a node A, and the set of its neighbors N;:

(Z Ao [Ni]) - (Z AN;—a[Ni))
ZSHN ZDNQAN] ZMNAA[N])

5.2.4 General case: weaknesses of network flow conservation

Flow conservation protects from some attacks, namely traffic relaying attacks which simply
drop packets. Still, [T4] shows a number of attacks that are not detectable using this tech-
nique. The central weakness is that assuming the proper number of packets was forwarded
by a node, does not prove that the proper packets were sent.

Detecting such attacks requires data authentication and, additionally, identifying which
packets were received and sent by a node or link. An expensive possible solution would be,
for example, to keep a list of signatures of packets received and sent, instead of a count.

5.2.5 Specific case: strengths of network flow conservation

In the more specific case where none of the nodes is compromised, network flow conservation
still makes it possible to perform simple detection of the remaining possible attack, the relay
attack (i.e. “compromised links”).

The relay attack would create links that do not exist or where data or control traffic is
not transmitted consistently. This is easily detected by the simpler “equation” of network
flow conservation:

number of packets sent by A to a neighbor B = number of packets sent
by B to a neighbor A.

Such information can be exchanged with the equivalent of HELLO messages comple-
mented with packet or message counters. In order to address the problem of the proper
number of packets being relayed by a link, but not the proper packets, there are several
solutions. It is possible, for instance, to use approaches such as Bloom filters, to represent a
(hashed) set of signatures of sent/received packets ; or to perform authentication on packets
(and not only OLSR messages) with replay protection.

5.3 Detecting Incorrect Control Traffic Relaying

In MPR flooding, the responsibility of diffusing the messages to the entire network is dis-
tributed. As a consequence, misbehavior is harder to detect and, if detected, to attribute to
one single node.

On the scale of individual transmissions, the compromised links dropping packets during
MPR flooding are detected with the same techniques as described for data traffic, using

RR n° 5494

26 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

counts at the link level. To accommodate broadcast/flooding traffic, each node must ad-
ditionally report how many broadcast/flood messages it has sent and received from each
neighbor. The number of broadcast messages received by a node from a given neighbor,
should be equal to the number of of broadcast messages this neighbor has sent to the net-
work.

On the scale of the entire network, compromised nodes dropping packets during MPR
flooding, or performing incorrect MPR selection, are harder to detect. A remedy to this
problem is the MPR_COVERAGE option of OLSR, allowing each node to cover its two
hop neighborhood by at least two MPRs: at most one of them will be compromised, and
the non-compromised node will ensure two-hop coverage. This is at the expense of MPR
flooding efficiency and under the assumption of a single compromised node present in the
network.

Another subtle attack on flooding exists with respect to compromised links. This attack
would attach itself to the “first transmit rule” of MPR ﬂoodindf

By manufacturing an inconsistent reception order of packets of the network, a set of
cooperating compromised links might block MPR flooding, by having nodes stopping re-
transmission due to that rule. A quite expensive solution would be to remove the first
transmit rule.

A final misbehavior in message forwarding exists, although they are preventable: attacks
on the mutable fields of MPR messages (the “time-to-live” field). A compromised node
forwarding a message could modify the TTL field to an artificially low value, causing the
message to be dropped prior to reaching the entire network. A possible solution is to simply
ignore this field. The time-stamp, present in the signature of each message ensures that a
message can be checked for freshness and, if too old, be dropped/rejected.

5.4 Corrective Action

In this part we describe an optional architecture, which can use the previous different de-
tections of node misbehavior, to carry out corrective action. It is based upon a centralized
Security Authority. The Security Authority is assigned the task of collecting information,
detecting misbehaviors, arbitrating them and issuing actions to remedy that misbehavior.

The information collected, and the mechanisms for detecting misbehaviors are specified
in their relative parts in sections b1l and A general procedure to report information, in
the possible presence of one compromised node, is nevertheless specified in the next section.

Once the security authority has collected the information from the nodes, and detects
(or acknowledges) an inconsistency, which it interprets as a misbehavior, it may take several
decisions: a limited action, suppressing links, when two nodes’ information are in disagree-
ment, a definitive action, when a node is identified as misbehaving. A section is devoted to
the presentation of each action.

IThe “first transmit rule” states, that if a message has been received by a node for which it was not
selected as MPR, it will never be retransmitted by the node even if later received from an MPR selector —
see [8] for further details

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 27

Information | Reporting Possible associated at-
mechanism tack
Traffic coun- | Periodic Incorrect traffic for-
ters for flow | transmission | warding
conservation | (acknowl-
edged)
Incorrect Alarm with | Forgery attempt or use

signature of
one message
or packet

pure flooding

of revocated key

Incorrect
signature of
a verifiable

Alarm with
pure flooding

Link spoofing

link

Table 3: Information reported by nodes to the Security Authority

5.4.1 Reporting Information to the Security Authority

When a node reports information to the security authority which will be used as a basis for
detecting misbehavior, the central problem is that a compromised node might also prevent
that information from reaching the security authority in the first place. The classical solution
to such a problem is to use pure flooding to report a problem. This will ensure that the
information will get through if there exists an uncompromised path from the reporting node
to the security authority.

However if the reported information is frequent, and does not immediately lead to the
conclusion of the existence of a misbehavior, pure flooding might be too expensive. In this
case, an acknowledgment mechanism can be used. Initially, the node reports information to
the security authority using normal transmission (unicast transmission in data packets) ; the
security authority acknowledges the information packets it has received from each node, by
listing their signatures. If the node detects that its information has not been acknowledged,
it falls back to pure flooding. This scheme is particularly suited to periodic transmission
of information from nodes, as the central authority can piggyback the acknowledgments on
the certificates/base time periodic diffusions.

Turning now to the details of the nature of the information itself, which is reported by
the nodes to the security authority, table BEZT] summarizes the different types of information
used:

5.4.2 Arbitration of Flow Conservation Violation

Section highlighted the principles underlying arbitration of flow conservation, and de-
tailed which counters were gathered by the security authority.

RR n° 5494

28 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

The counters are updated on time intervals whose start and end are set by the security
authority. This is greatly eased by the fact that the signing authority is also the source for
time synchronization. Once gathered, the security authority can perform the check in three
steps.

Step 1 Checking for misrouted packets: For each pair of nodes X,Y once the number of
packets from Y misrouted to X (according to X) is greater than a certain threshold,
the link is considered to be compromised.

Step 2 Checking for case 1 (conservation for links): For each pair of nodes X,Y which trans-
mitted traffic to each other, same counter values are known, both from the perspective
of X and from the perspective of Y. If they differ by too wide a margin, the link is
considered to be compromised - action is initiated to remove it (see section BZA). In
reality either it is “compromised” or one of the nodes is.

Step 3 Checking for case 2 (conservation for nodes): For each node in the network, which had
no link removed in the previous steps, the flow conservation equation of section
is checked. The two sides of the equation should be equal ; again, if the discrepancy
is greater than a certain constant, the node is strongly suspected to be compromised.

Note that in the checking, in step 2, since at most one node is compromised, at least
one side of the link is not compromised and sending correct results. As a consequence, even
if the other side of the link is compromised, it cannot send (too) incorrect counter reports,
for it would be detected. This ensures that step 2, uses information that is not too far from
reality, and thus prevents false accusations.

5.4.3 Arbitration of Alarms

The security authority receives a number of alarms, which leads to different degrees of doubt
about a given node or link. The processing of the previous section highlights discrepancies
which are some other sources of alarms. The sources of alarms are summarized in table 23

In some cases, the dynamic nature of the network should be considered - for instance
mobility can contribute to packet drops, and results are not definite. In some cases, a
misbehavior is established but the source of the misbehavior is not known with certainty.
Thus in many cases, the security authority must perform arbitration.

Several solutions related to similar problems have been developed in recent articles. In
the CONFIDANT [3] protocol, when a node becomes aware of an offending node it may issue
an alarm to inform a centralized entity. Alternatively, in the Watchdog-Pathrater scheme
[19], each node privately keeps a rating for each of the other network nodes in the network.
Nodes’ ratings are calculated during route discovery. In both cases, once the offending nodes
are detected, one tries to find path that possibly avoids offending nodes.

Part of the problem lies in the difficulty of evaluating node A’s statements about node B,
how can one be sure that node A is not lying? A related critical problem when exchanging
“trust” evaluation between nodes is how to distinguish false alarms from correct ones as a

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 29

Alarm

Consequence

Incorrect
signature of
one message
or packet

high doubts about node(s) but
requires further arbitration to
identify guilty node

Incorrect
signature of
a verifiable
link

high doubts about node, and re-
porting packet is enough to es-
tablish attack

Reported doubts about nodes, requires ar-
misrouted bitration

packets

Inconsistent | high doubts about link, some
link flow | doubt about nodes

conservation

Inconsistent | high doubts about the link

node flow

conservation

Table 4: Alarms and associated severity

compromised node can also issue an alarm. In the CONFIDANT protocol, the problem is
lessened by timeout and subsequent recovery of nodes that have behaved well for a specified
period of time.

To implement, this effect, the security authority maintains a trust rating for each of the
other network nodes and links, based on alarms it has received. Each time a valid alarm
is received the trust rating is decreased. Under some established algorithm the security
node can take decisions for corrective action: removing links or removing nodes (either
temporarily or permanently). These two actions are detailed in the following two sections.

5.4.4 Limited action: removing links
The security authority does so by periodically transmitting a blacklist of links to the entire
network. All nodes should ignore such links, in the processing of OLSR.

5.4.5 Definitive action: removing nodes

When the security authority pursues the definitive action of excluding a node from the
network, this is done by revocating the key of the node:

e for some duration, the security authority explicitly advertises, along the periodic cer-
tificates diffusion, the key which has been revocated.

RR n° 5494

30 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

o later, once the lifetime of the revocated key has expired, the security authority no
longer advertises it.

This mechanism is similar in spirit to the LOST_LINK advertisement mechanism in OLSR
which advertises the disappearance of a link.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 31

6 Using node locations to counter relay attacks

If we assume that each node in the ad hoc network knows its location, this information
can be sent together with the control messages. Knowing this information when a control
message is received can be used to discard suspicious control packets e.g. control messages
coming from a too distant a node. This section is based on this idea and uses techniques
already published in [25].

The node position can be obtained by a positioning system device (e.g. GPS) embedded
in the node hardware. A positioning system usually also provides time synchronization; see
[I7]. Other solutions where the nodes are not all equipped with a positioning system [27] or
even where no positioning system is used at all [4] can be envisioned. However, due to the
possible presence of malicious nodes, solutions which rely on feedback or signals from other
nodes (e.g. the emission power) cannot be considered as safe.

If the nodes can use directional antennae instead of omni [9] a greater control concerning
the likeliness of received control messages can be implemented. This will be shown in the
following.

6.1 Specifications

We suggest therefore some modifications to the basic mechanisms described inEl A SIGLOC
(which stands for SIGnature and LOCalization) control message substitutes the SIGNA-
TURE_MESSAGE; the former includes a new field “node location”, which contains the
current geographical position of the sending node as obtained from a positioning system e.g.
GPS. This field is 32 bits long (which is enough to define the position over an area of more
than 4200 square km with a granularity of 1 m), and is included in the signature computa-
tion. The message format is given in figure [[d This mechanism requires the deployment of
a Public Key Infrastructure and a time-stamp synchronization algorithm between all nodes.
These topics are discussed further in this paper; please refer to Annex I and II for more
details.

A node informs the other nodes about its current position in a SIGLOC message (which,
we recall, is sent with every generated HELLO and TC). The receiving node first couples the
SIGLOC with its companion HELLO/TC and verifies the correctness of the time-stamp and
signature, as specified by the protocol in [I]; then it extracts the position information and
stores the tuple (node address, position, time-stamp) in a position table. For each node,
the most recent position is memorized in the position table. The position of the originator
node and the originator of a TC message may not be within reach. Thus a subtle relay
attack can be launched against OLSR because OLSR mandates that a TC message is not
relayed when it has already been received from a non MPR selector node. Thus the MPR
flooding can be artificially broken by this attack. A way to repel this relay attack would be
to also sign the OLSR packet, hop by hop.

The advantage of knowing the geographical position of nodes is that a receiver node can
speculate whether a link is likely or not. This link may be a direct link with a neighbor or
a link advertised in a TC message.

RR n° 5494

32 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

0 1 2 3
0123456789012345678954901
B B
| sign. Method | Reserved | MSN Referrer
B B
| node location |
B B
| timestamp |
B e e S U e 3
| |
: Signature :
| |

L B B e e

Figure 14: SIGLOC message format.

6.1.1 Checking the originator of Hello messages

Let pg be the current position of the receiver A, and t4 the current time according to its
clock when A receives a control message from node B. Node A learns from the SIGLOC
message the position of node B at time tp. Let us call At the discrepancy in the network
nodes clocks’ synchronization, Ad the maximum absolute error in position information, v
the maximum velocity of any node in the network, and r the maximum transmission range.
Taking into account errors and nodes motion ||p4 —pg|| must satisfy the following inequality:

lpa —pBl| <7+ ({ta—ts+At)- 20+ 2Ad =71+ 2i (6.1)

When equation BElis not valid, it means that the receiver node must be too far from the
sender node to be able to hear its transmission. Therefore such a Hello message is highly
suspicious and might well be tunneled in a relay attack. The receiver should drop such a
Hello message.

Figure 15: Test of likelihood when a hello message is received

When directional antennae are used, the receiver node can know which direction the
signal is coming from. Based on p4 — pp and using simple geometry, this allows the receiver
node to estimate the correctness of the position pp declared by the sender node. If one

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 33

denotes by AB the vector linking node A and node B when the hello message is received,
we should have:

lps —pa — AB|| < (ta —tp + At) - 20 + 2Ad = 2i. (6.2)

This information can be useful if the transmission range r is not known precisely. In
such a case it is possible to use a lower bound 7, on the transmission range and derive
from equation B2 the sector in which the sender should be. Should the directional antennae
indicate another direction for the reception, such a transmission should be considered as a
fake. The receiver should drop such a Hello message.

2i

Bp
4 p

Figure 16: Test of likelihood when a hello message is received using a directional antenna

The previous inequalities can be refined if we have a better estimation of a node’s velocity.
If we assume that a node’s velocity is linked to the validity time given in the OLSR packet,
we can refine equation Bl or equation using a better estimation of the velocity of the
nodes A and B.

6.1.2 Checking links advertised in Hello and TC messages

Equation Bl also makes it possible to detect and reject the incorrect control messages
described in section Let us now assume that node C' is receiving a control message sent
by node A advertising o link between node A and node B, see figure [In equation B
pa is the location of the originator node, node A. The position of node A is found in the
SIGLOC message to be pa at time t4. pp must be the location of node B at time tg. The
location of node B can be found in node C’s location table. Such a location should be found
for a given time tp which minimizes |t4 — tp|. An interpolation for the position of B can
be used if the location of node B is not known for a time close to t 4.

If equation BJlis not satisfied then the link A — B must not be registered in the neighbor
or topology table and the control message advertising this link should be dropped.

RR n° 5494

34 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo
¢
C
Figure 17: Test of likelihood for links advertised in Hello or TC messages
6.2 Detailed procedure to sign messages

When node A generates a HELLO or a TC, it must also generate a SIGLOC and performs
the following steps:

1.

2
3.
4

6.3

create the SIGLOC message

. insert the node’s position

insert the time-stamp corresponding to the actual time

. compute the signature on the HELLO/TC message and write it in the SIGLOC mes-

sage

send the HELLO/TC and the SIGLOC

Detailed procedure when receiving a control message

When a node receives a control message (Hello or TC) originating from A, the following
actions should be carried out:

1.

correctly pair off the HELLO/TC with its SIGLOC companion, by matching the Mes-
sage Sequence Number with the MSN Referrer

. check the freshness of the time-stamp
. check the validity of the Signature with the convenient key

. check the validity of a hello message with respect to its originator node according to

[ET1 and the validity of links advertised by a hello message or a TC message according
to

. store the tuple { address of A, node location, time-stamp) in the position table

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 35

6.4 Protection offered

A simple signature with time-stamps is sufficient to avoid the consequences of attacks of
incorrect traffic generation and of incorrect traffic relaying under the assumption that in-
truder nodes can not sign control packets. Using nodes’ location in the signature will make
it possible to counter relay attacks.

6.4.1 Repelling relay attacks

Let us analyze the consequences that may be drawn from equation Bl If we use figures
such as v = 60km/h, t4 —tp + At < 100ms and Ad = 1m we find that the originator node
must be within a radius of r + 5.333m. When r is not too small (e.g r > 50m , the control
packet received is necessarily sent by a node nearly within the coverage of the recipient. That
means that relay attacks using such a control packet will be on the one hand difficult to
launch because the real control packet is likely to be heard by the recipient and, on the other
hand, not very efficient since the node whose control message is relayed, will probably be, at
most, two hops away. When 7 is small (e.g 20m < r < 50m) the use of information given
by a unidirectional antenna can be useful since the sector in which the signal is expected
remains of a reasonable size.

It can noticed that a relay attack where a TC message is tunneled from one point of
the network to another can not be repelled since the signature holds the position of the
originator node and the originator of a TC message may not be within reach. Thus a subtle
relay attack can launched against OLSR because OLSR mandates that a TC message is not
relayed when it has already been received from a non MPR selector node. Thus the MPR
flooding can be artificially broken by this attack. One way to repel this relay attack would
be to also sign the OLSR packet, hop by hop.

6.4.2 Repelling incorrect traffic generation

The equation B also makes it possible to reject control messages advertising impossible
links because the two endpoints are too far from each other. Thus the SIGLOC signature
can repel attacks of link spoofing. However under the assumption that only usual nodes
can conveniently sign control packets, attacks of incorrect traffic generation should have no
effect of the integrity of the network. The SIGLOC signature should nonetheless be useful
under the assumption of compromised nodes. With such an assumption, control messages
advertising impossible links can be discovered.

7 Conclusion

We have identified for OLSR five attacks on the network’s integrity: the incorrect control
message generation attack, the replay attack, the relay attack, the bad data traffic relaying
and the bad control traffic relaying attacks All these attacks may have important conse-
quences on network connectivity.

RR n° 5494

36 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

Under the assumption that there is compromised node in the network, the signature and
time-stamps mechanisms described in section Hl counter all the identified attacks except the
relay attack. The nodes’knowledge of their own position can be used to mitigate this latter
attack.

If we assume that there are compromised nodes in the network, securing OLSR is much
more complex. However the general idea is still to detect compromised nodes or links and
to remove such nodes or links. Perfect securisation under such an assumption seems out of
reach. However using only verifiable symmetric links and checking flows conservation can
solve numerous configurations of attacks.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 37

References

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

Cedric Adjih, Thomas Clausen, Philippe Jacquet, Anis Laouiti, Paul Miihlethaler, and
Daniele Raffo. Securing the OLSR protocol. In Proceedings of Med-Hoc-Net, Mahdia,
Tunisia, June 25-27 2003.

K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson. Detecting
disruptive routers: A distributed network monitoring approach. pages 115-124, 1997.

S. Buchegger and J. Le Boudec. Performance analysis of the confidant protocol: Coop-
eration of nodes — fairness in dynamic ad-hoc networks, 2002.

Srdan Capkun, Maher Hamdi, and Jean-Pierre Hubaux. GPS-free positioning in mobile
ad hoc networks. In HICSS, 2001.

Steven Cheung and Karl Levitt. Protecting routing infrastructures from denial of service
using cooperative intrusion detection. In New Security Paradigms Workshop, 1997.

Thomas Clausen, Gitte Hansen, Lars Christensen, and Gerd Behrmann. The opti-
mized link state routing protocol - evaluation through experiments and simulation.
In Proceeding of Wireless Personal Multimedia Communications. MindPass Center for
Distributed Systems, Aalborg University, Fourth International Symposium on Wireless
Personal Multimedia Communications, September 2001.

Thomas Clausen, Philippe Jacquet, and Laurent Viennot. Investigating the impact of
parital topology in proactive manet routing protocols. In Proceeding of Wireless Per-
sonal Multimedia Communications. MindPass Center for Distributed Systems, Aalborg
University and Project Hipercom, INRTA Rocquencourt, Fifth International Sympo-
sium on Wireless Personal Multimedia Communications, November 2002.

Thomas Clausen (ed) and Philippe Jacquet. RFC 3626: Optimized link-state routing
protocol. Internet Engineering Task Force, Request For Comments (experimental),
October 2003.

Rob Flickenger. Building Wireless Community Networks. O’Reilly & Associates Inc.,
2003.

Manel Guerrero Zapata and N. Asokan. Securing Ad hoc Routing Protocols. In Pro-
ceedings of the 2002 ACM Workshop on Wireless Security (WiSe 2002), pages 1-10,
September 2002.

http://www.cryptopp.com.

Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A secure on-demand
routing protocol for ad hoc networks. In Proceedings of the Eighth Annual International
Conference on Mobile Computing and Networking. Rice University, MobiCom 2002,
September 2002.

RR n° 5494

38 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

[13] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet leashes: A defense against
wormhole attacks in wireless ad hoc networks. In Proceedings of the Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM 2003), San Francisco, CA, USA, April 2003.

[14] John R. Hughes, Tuomas Aura, and Matt Bishop. Using conservation of flow as a
security mechanism in network protocols. In IEEE Symposium on Security and Privacy,
pages 131-132, 2000.

[15] J. G. Jetcheva, D. Johnson, D. Maltz, and Y.C. Hu. Dynamic source routing (DSR).
Internet Draft, draft-ietf-manet-dsr-08.txt, February 24 2003, Work in progress.

[16] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authen-
tication, February 1997. RFC 2104, Informational.

[17] Trimble Navigation Limited. Data sheet and specifications for thunderbolt GPS disci-
plined clock, 2000. http://www.trimble. com.

[18] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile
ad hoc networks. In In Proceedings of the Sizth annual ACM/IEEE International
Conference on Mobile Computing and Networking pages 255-265, 2000.

[19] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing misbehavior
in mobile ad hoc networks. In Mobile Computing and Networking, pages 255-265, 2000.

[20] NIST. Dss digital signature standard. Processing Standards Publication 186-2, January
2000.

[21] R. Ogier, M. Lewis, and F. Templin. Topology dissemination based on reverse-path
forwarding (TBRPF). Internet Draft, draft-ietf-manet-dsr-07.txt, March 3 2003, Work
in progress.

[22] C. E. Perkins, E. M. Royer, and S. R. Das. RFC 3561: Ad hoc on-demand distance
vector (AODV) routing. Internet Engineering Task Force, Request For Comments (ex-
perimental), July 2003, Work in progress.

[23] A. Qayyum. Analysis and evaluation of channel access schemes and routing protocols
in wireless lans. PhD thesis, University of Paris-Sud, Orsay, France, 2000.

[24] Daniele Raffo, Cédric Adjih, Thomas Clausen, and Paul Mihlethaler. An advanced
signature system for OLSR. In Proceedings of the 2004 ACM Workshop on Security
of Ad Hoc and Sensor Networks (SASN ’04), pages 10-16, Washington, DC, USA,
October 25 2004. ACM Press.

[25] Daniele Raffo, Cédric Adjih, Thomas Clausen, and Paul Miihlethaler. OLSR with
GPS information. In Proceedings of the 2004 Internet Conference (IC 2004), Tsukuba,
Japan, October 28-29 2004.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 39

[26] R. Rivest. The MD5 message-digest algorithm, April 1992. RFC 1321.

[27] Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava. Dynamic fine-grained
localization in ad-hoc networks of sensors. In Proceedings of the 7th annual international
conference on Mobile computing and networking, pages 166-179. ACM Press, 2001.

[28] Bruce Schneier. Applied cryptograpy, protocols, algorithms and source code in c. John
Wiley and Sons, 1994.

RR n° 5494

40 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

8 Annex I: Time-stamp generation

8.1 Time-stamps with precise clocks

When a precise clock is available (such as the clock obtained by means of GPS information,
or by atomic clocks), a simple choice for the time-stamp is to use real clock time.

Then, as described in section 4], a node receiving a message with time-stamp T checks
that |T — Tiocai| < 8, where § is the maximum time discrepancy accepted, and Tjoeq; is the
time of the local clock.

8.2 Time-stamps with imprecise clock or with counters

Another way to generate a time-stamp is to use imprecise clock information or counters. By

imprecise clock information, we mean time information with a clock which may drift, and

hence which would require (periodic) synchronization to be kept in sync with real time.
Several options are possible, for instance:

e Manual setting of clock information. While having the disadvantage of not being
automatic obviously, as the drift may be much lower than the tolerance margin for
time discrepancy for messages, this may be a practical option, possibly combined with
alarms.

e Using a distributed counter. A time-stamp “counter” is kept: it is incremented each
time a packet is sent. Because all nodes must agree on the counter, some kind of
synchronization must be provided. For instance taking the “maximal” observed value
of the time-stamp counter. This is only possible under the assumption that no node
is compromised.

Because imprecise clocks or counters are use information that is updated in a distributed
way, there is a general need to synchronize that information. However, this is a chicken
and egg problem at network initialization (or when there is a network merge), as synchro-
nization or election between all (or the majority) of nodes in the network would require
authentication, which itself would require time-stamps (to prevent replay attack).

The root of the problem is that, in this context, the node would require a proof of
freshness before trusting any information it receives: this is normally done by sending some
data in the network (like the nonces), and checking afterwise traces of that data in further
received information. In a distributed system, this is complex, and can achieved by the
system given in the next section.

8.3 Distributed methods for time-stamp exchange

In this section, a distributed method for time-stamp exchange is given.
We assume that an asymmetric key system is used. However, no other specific hypotheses
are assumed and as a consequence:

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 41

¢ Any number of nodes might be compromised (from the point of view of the time-stamp
algorithm).

e Replays attacks might be launched.
The basic algorithm relies on three principles:

e Each node has its own time-stamp. The intent of this is to limit the impact of com-
promised nodes.

e The time-stamps are exchanged with a variation of the basic challenge-response pro-
tocol (handshake).

e Once exchanged, the time-stamps are periodically broadcast to the network.

There are possible variations in the mechanism used, and more details are given in the
following sections.

8.4 Time-stamp

The time-stamps themselves of each node may be counters or (drifting) clocks.

There are actually two kinds of time-stamps: time-stamps are monotonically increasing
and do not wrap around ; and others. The first kind are more difficult to implement,
especially with respect to initialization, but offer more optimization potential other the
second ones. In the following, we denote the first ones, as “strictly increasing time-stamps”
and the others as “time-stamps with wrap-around”.

The implication of each node having a different time-stamp, is that each node holds a
list of time-stamps of all the other nodes.

8.5 Distributed time-stamp protocol
8.5.1 Time-stamp exchange: handshake

The time-stamp exchange between two nodes has really two stages in itself: in the first one,
the nodes do not have proper information about each other’s time-stamps and hence should
exchange it. It is called an handshake. In the second stage, they have, and they are able
to send updated time-stamp information (equivalent of “clock drift correction” in wall clock
terms) using the time-stamp information they already have.

The handshake is described in this section and the second stage is described in the next
section.

The handshake consists of a two-way exchange of time-stamp between two nodes A and
B, which is formally

1. A—» B:{T4}s,

2Note: the messages may need to also include identifiers of A and B in exchanged messages inside the
signed part, to prevent some attacks

RR n° 5494

42 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

2. B — A: {TB,(A,Ta)}sy; and then the handshake is completed from A’s point of
view.

where T4 is the time-stamp of A and {...}s, is a message signed by the public key of A.
To complete this handshake from B’s point of view, A will send the message:

1. A= B :{T4,(B,TB)}s,

Under the assumption that any node can be compromised, two nodes A and B need to
communicate directly with each other (with pure flooding if they are several hops away), to
perform this handshake.

8.5.2 Time-stamp exchange: update

If we now assume that nodes have performed this handshake, then they can adjust their
time-stamps with periodic broadcast of all the tables of all the time-stamps they know:

1. Time-stamp update message: A — all : {T4,(B,TB) sy, (C,Tc)se,---}5a

That way, a node, for instance C, receiving this message, will:

e first, see that the message is a valid message from A from the time-stamp of A according
to the new T4 which should be close to the value T4 that C has.

e second, see whether or not its time-stamp value T¢ in the message is sufficiently fresh
to be accepted.

e third, after successfully carrying out all these checks, it will accept T4 as the new
time-stamp for A.

8.5.3 Time-stamp exchange: optimization of exchange and update

The problem with that protocol is that all the nodes should perform a handshake with all
the other nodes, and in practice, if a node hears about a node of which it doesn’t have a
time-stamp, it should initiate an handshake.

This is not efficient, especially at network initialization. Hence the following optimization
is proposed: 1) time-stamp handshakes are not performed by default, 2) the time-stamp
update message from any other node is used to update all information about unknown
time-stamps.

In more detail, this is how it works: remember that the time-stamp update message of
A includes the time-stamp T4 of node A, (possibly) the time-stamp of the receiver node
say, Tp and a list of time-stamps of other nodes, say Tg, Tr, etc Previously only T4
and Tp were used. This is because A might be compromised, and might have transmitted
incorrect old values for Ty, Tr, etc ... Now, they are accepted with a “tentative” status, and
retain that status, as long as no direct information is received (i.e. a time-stamp update

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 43

message from originator E for setting the value of Tg, or a direct time-stamp handshake) -
when proper information is received, the time-stamps are marked “authenticated”.

An important point is that when no attack or network problems are present, then the
time-stamp update messages received, both ways, will naturally perform the steps of the
time-stamp handshake messages.

A mechanism is still needed to detect inconsistencies: a simple way is to use the normal
time-stamp verification. When a message (for instance from E) is received by node A, the
procedure is for A to check that the time-stamp of the message is consistent with the value
that A has for the time-stamp of E. In our case, an inconsistency might be due to the fact
that the known value of T, is a “tentative” value obtained from a compromised node. When
there is such an inconsistency, and the time-stamp was “tentative”, the solution is now to
mark the time-stamp as “potentially attacked”, to no longer use it, and to perform a direct
time-stamp exchange handshake. The potentially attacked time-stamp is no longer used
until the handshake is completed. If the handshake (with proper timeouts and retries) never
succeeds, it might well be that it was a replay of a node that is no longer in the network,
and the behavior is correct.

Note that, in any case, using this optimization, replays are accepted until the handshake
is performed. It might well be acceptable, to accept temporary replays of OLSR protocol
messages when there is a compromised node in the network. Note also, in any case, that such
attacks are easily detected, after a time-stamp handshake, by all nodes which receive the
incorrect time-stamp update messages ; and that the compromised node is easily identified:
it is the originator of these messages.

This optimized algorithm results in a normal proactive exchange of time-stamps, com-
plemented by a fall-back exchange which is reactive.

8.5.4 Time-stamp exchange: optimization for strictly increasing time-stamps

In the specific case where time-stamps are “strictly increasing”, another optimization is
possible. The greatest received (signed, as always) value of a time-stamp is always the
“most correct”.

Hence it is no longer necessary to send full “time-stamp update messages” and an alter-
native protocol is to have each node broadcast only its time-stamp A — all : {T4} instead.

Because there are now no proofs of freshness in these messages, it is still necessary to
perform a handshake once, to ensure that each node, from which shortened time-stamp
update messages are received, is actually in the network. Otherwise it might be a replay.

The optimization of the previous section for time-stamp handshake is no longer correct,
as some crucial information has been removed. One solution is, for instance, to first, when a
time-stamp is tentative, to always update it to the greatest value ; second, to still send full
“time-stamp update messages” at a slower pace. Other solutions include ideas like performing
handshakes by default only with direct one-hop neighbors, to transfer the responsibility of
checking that a node is actually in the network, to its one-hop neighbors.

RR n° 5494

44 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

8.6 Distribution of keys inside the distributed time-stamp protocol

It is interesting to use the distributed time-stamp protocol for another purpose: the distri-
bution of keys.

Then the same protocol may be used, by sending keys along with time-stamps, enriching
the previous messages with that information. As such key exchange is typically subject
to man-in-the-middle attacks, two approaches could be used: either use an unoptimized
node-to-node key exchange, or use a certification system.

In the first case, any algorithm from the literature for key exchange is used, resulting,
in a network with N nodes, into NxN handshakes. Note that the advantage, is, of course,
that symmetric keys can be used in this case. In the second case, we can assume that
a certification authority, whose public key is known by all the nodes in the network, is
signing all the public keys of the nodes of the network (along with the typical certificate
validity duration). Then rather than just sending their public keys, the node will send their
certificates instead - this allows other the nodes to verify that the node has been authorized
in the network by the certification authority, and also prevents man-in-the-middle attacks.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 45

9 Annex II: Centralized security architecture for OLSR
with a PKI

This section describes a centralized security architecture, designed to reject all the intruders
from the network. Based on the mechanisms described in section Hl we describe here how
to implement a PKI (public Key Infrastructure) which will work hand in hand with OLSR,
and the basic security mechanisms defined in section H

9.1 Problem statement

The central hypothesis in this section is that there is a set of cryptographic capable nodes in
the networks, and that none of these nodes are compromised. The goal of the architecture
is to allow this set of cryptographic capable nodes to form a network amongst themselves
and build routes to each other in a secure way.

The key issue is how a node will know and can be sure that another node will be a
cryptographic capable node. To do that one must distribute keys which will allow a node
(say, node A) to verify that another node (say, node B) is indeed a cryptographic capable
node. It can be said that node B is a trusted node for node A.

In the next section, we present the basis of this security architecture. Following, we
detail how these elements are linked and integrated with the OLSR protocol.

9.2 Fundamentals of the architecture

In this section, we describe the general design of the proposed security architecture, as well
as detailing the individual components that make up the architecture.

9.2.1 Major design choices
We propose an architecture, using the following tools:

e Asymmetric keys. In order to maintain the ability to admit or reject individual nodes
at any time, individual asymmetric keys are used. This is detailed in section

o Centralized key distribution. We assume a unique central node, a “signing authority”,
which knows and distributes the public keys of all the trusted nodes. It, alone, performs
admittance control. While this assumption may seem contrary to the notion of “ad-hoc
networks”, we also observe that a number of applications seem to fall into the category
of a centralized authority having the ultimate responsibility for admitting access to
network resources: on a battlefield, for example, it is typically not desirable to have
“just anybody” able to join the network, but devices which should be able to join are
assigned centrally following the command structure in place.

o Centralized time synchronization. The nodes also maintain time synchronization by
communicating with the central signing authority as in section B3l

RR n° 5494

46 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

o Proactive key and time distribution. Following the philosophy of proactive construction
of routes in OLSR, keys and time information are also distributed proactively. This
information originates from the “signing authority”.

In the following sections, we detail the components required to implement the design
choices.

9.2.2 Subdivision into three classes of nodes

As a direct consequence of the centralized distribution of keys, not all nodes are aware of
all the public keys of all the other nodes in the network. Thus, the architecture basically
operates with three classes of nodes, as seen from an individual nodes point of view:

Untrusted Nodes
One node, A, considers another node, X, as an “untrusted node” if the public key of X
is not known by node A or if the public key of node X is known, but not validated by
a signing authority in the network, i.e. signature messages, received from an untrusted
node, cannot be verified. Notice, that at network initialization, all nodes except the
signing authority and the node itself will be “untrusted”, from an individual nodes
point of view

Trusted Nodes
One node, A, considers another node, X, as a “trusted node” if the public key of X is
known by node A and the public key of node X is validated by a signing authority in
the network, i.e. signature messages, received from trusted nodes, can be verified.

Signing Authority
The “signing authority” is a node, which has the special property that its public key
is a priori known by all the nodes in the network. The signing authority has special
responsibilities for the network, namely to distribute certificates and also to distribute
base time one which each node synchronizes itself.

Our architecture is based on the assumption that trusted nodes entirely disregard traf-
fic and information from untrusted nodes which aren’t able to authenticate their control
messages successfully. Then from the OLSR protocol’s point of view, it is as if these nodes
did not exist. As a result, no attack on the integrity of the information exchanges between
the trusted nodes is possible, nor are attacks on the diffusion mechanism (MPR flooding)
possible.

We will show later how in practice not all the traffic from untrusted nodes is ignored.
In order to perform a successful network initialization, a limited set of information from
untrusted nodes must be considered.

9.2.3 The Signing Authority: PKI

Our architecture is built upon a public key system, in which the signing authority diffuses
the public keys for trusted nodes. The strength of public-key systems lies in the fact that

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 47

public keys can be exposed to anyone - the difficult part being for a node to validate that a
public-key, claiming to belong to a specific node, does in fact belong to that node. In our
proposed architecture, this is ensured by the fact that the public key of the signing authority
is known by all (trusted) nodes of the network. When issuing a message with public keys of
the nodes in the network, the signing authority itself attaches its signature, i.e. the signing
authority issues certificates for the trusted nodes.

In this context, the signing authority is performing the following tasks:

e it allows new nodes to register their public keys in a secure fashion (typically through
manual authentication), whereby a new node becomes a “trusted node”,

e it periodically distributes certificates, containing;:

— a list of public keys for all “trusted nodes”,

— a signature, verifying that the message, containing the public keys of the “trusted
nodes” was, indeed, issued by the signing authority and was not modified while
in transit.

e it periodically distributes the “base time”, which is used by other nodes to synchronize
themselves. It is signed with its private key.

e it answers the challenge-response protocol for “base time” acquisition. The answer is
signed with its private key.

Each node wishing to participate in the network is required to register its public key
with a signing authority. This is admittance. The signing authority periodically issues
certificates. These certificates are broadcast to the entire network. Nodes, receiving the
certificates, will store these for a specified amount of time, after which they expire. Hence,
periodic refreshing of certificates is required.

9.2.4 Signing OLSR Messages and time synchronization

The mechanisms to sign OLSR messages and to synchronize network nodes described in
EZFE3FA should be used with a system of public/private keys.

9.3 Preventing untrusted nodes in OLSR

Combined with the basic OLSR routing protocol, the components previously described can
be applied to achieve the objective of admitting only trusted nodes into the ad-hoc network.
We will describe the details of this in the following.

>From a network connectivity perspective, the primary task is to ensure that malicious
link-state information (i.e. link-state information which, if introduced, would corrupt the
image of the network topology) is not introduced into the network. In OLSR, this comes

RR n° 5494

48 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

down protecting the integrity of TC messages. TC messages are generated by nodes which
are selected as MPRs, and are relayed by nodes which are selected as MPRs.
Thus, a node should ensure that it:

e selects only trusted nodes as MPRs,
e accepts to be selected as an MPR only by trusted nodes,
e forwards only broadcast/flooded messages from trusted neighbors,

e accepts only TC messages originating from trusted nodes.

If node A selects a node B as an MPR, node A4 effectively puts responsibility for adver-
tising the link from node B to node A on node B. Only if node B is trusted can node A
be certain that this responsibility is fulfilled. This corresponds to an instance of “incorrect
traffic relaying” as described in section

If node A is selected as an MPR for node B, node A assumes responsibility for advertising
the link between node A and B. Only if node B is trusted can node A be sure of its identity
and thus be sure that it is not introducing malicious link-state information into the network.
This corresponds to an instance of “incorrect traffic generation” as described in section Bl In
the same situation, node A accepts responsibility for forwarding broadcast/flooded traffic
from node B and into the network. Unless node B is a trusted node, node A cannot be sure
that node B will not generate and introduce excessive amounts of broadcast traffic which,
when flooded to the network, may consume excessive resources and potentially prevent
legitimate traffic from being transmitted.

If a node A accepts a TC message originating from a node B, node A assumes that the
contents of that message are correct — and hence includes the information in its link-state
database. Unless node B is trusted, node A cannot be sure that the information contained
is correct. This, too, corresponds to an instance of “incorrect traffic generation” as described
in section

Thus, both the “Neighbor Sensing” and the general OLSR Message processing must be
augmented to ensure network integrity. We will detail the required augmentations in the
following.

9.3.1 Securing OLSR Message Processing

The simplest possible mechanism to keep untrusted nodes out of a network would be a
simple rule stating: “a message, sent from an untrusted node, is silently discarded and
neither processed nor forwarded”. While simple, this condition is too restrictive, as will be
illustrated below.

Let us imagine that all nodes required that all traffic they receive should be signed by a
key they know (i.e. originates from a trusted node), with the proper time (i.e. the message is
recent), before accepting them for processing and forwarding. This would lead to a signature
deadlock problem on network initialization.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 49

Upon network initialization, no nodes know any public keys, other than that of the
signing authority (and, of course, their own). Thus, disregarding control traffic from the
signing authority, all nodes will by default ignore control traffic from each other. Control
traffic from the signing authority will be accepted by its neighbors since they know the
public key of the signing authority in advance. The only node which may be selected as an
MPR is, then, the signing authority itself. No other nodes will be selected as MPR, and
no broadcast messages will be forwarded. In particular, all nodes 2 hops away from the
signing authority will disregard control messages from nodes 1 hop away from the signing
authority: the 2-hop nodes do not know the keys of the 1-hop nodes. The consequence
is that links between 1-hop and 2-hop nodes will never be verified as “symmetric” and the
signing authority will never select MPR’s among its neighbors.

When the signing authority starts broadcasting certificates, these are received by the
signing authority’s neighbors — but are never forwarded since no MPR selection has taken
place. Hence, the certificates never reach nodes beyond 1 hop from the signing authority,
and no network formation takes place.

This is illustrated in figure [[§ where node B rejects HELLOs from node A, thus stays
asymmetrical for node A ; hence the signing authority has no MPR and its flooding stops
to A. B never receives the keys of A (and other nodes).

Authority

Figure 18: Signature deadlock example

Thus, to enable network initialization, the simple rule of “a message, sent from an un-
trusted node, is silently discarded and neither processed nor forwarded” is not applicable,
and detailed considerations must be made.

9.3.2 Securing Neighbor Sensing

As we saw in the previous section, neighbor sensing must take into account the possibility of
having a symmetric link with an untrusted neighbor in order to allow for certificate messages
from the signing authority to propagate to all the nodes in the network. Returning to
figure [[8, we observe that the signing authority should select node A as an MPR in order
for the certificates to reach node B. Considering the conditions listed at the beginning of
this section, this is OK: node B is a trusted node by node A and vice versa. To allow for
such an MPR selection, node A and node B must somehow establish that the link between
them is symmetric, without node B selecting node A as an MPR etc ...

RR n° 5494

50 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

This is achieved by complying with the following considerations on HELLO message
processing:

e A node must accept unsigned HELLOs from untrusted neighbors (i.e. neighbors, whose
public key is not yet known to a node). Such HELLO messages are accepted under
the restriction that:

— asymmetric and symmetric links are considered as asymmetric and symmetric,
respectively,

— MPR links are considered as symmetric only (i.e. do not affect the MPR selector
set),

— lost links are ignored

e A node must maintain a “trusted neighborhood” containing information about links
to the trusted nodes in its neighborhood

A node must maintain an “untrusted neighborhood”, containing information about
links to the untrusted nodes in its neighborhood.

A node must, from among the trusted neighborhood, perform MPR selection as spec-
ified.

¢ A node must, periodically, transmit HELLO messages, including the trusted neighbors
(with status: asym, sym and MPR as appropriate) and untrusted neighbors (with
status: asym, sym only)

A node’s 2-hop neighborhood will contain both “trusted” and “untrusted” nodes. MPRs
are selected from among the trusted nodes such that - as many as possible - nodes in the
2-hop neighborhood are covered. This ensures that all untrusted neighbors of trusted nodes
will be reached by MPR flooding, as they are covered by at least one MPR.

With these rules, no signature deadlock is possible. Upon network initialization, the
events are as follows: the signing authority will transmit its certificates and time, which is
received by its 1-hop neighbors. Following a HELLO message exchange, the 1-hop neighbors
will accept the untrusted 2-hop neighbors as symmetric (but not select MPR’s among them).
The signing authority will then select MPRs from among the 1-hop neighborhood such that
the next broadcast certificate will reach the 2-hop neighbors etc. The certificates will thus,
upon network initialization, propagate from the signing authorities and towards the edges
of the network. This is illustrated in figure [[3

Notice that any information coming from “untrusted” nodes is only used to handle “un-
trusted” nodes: MPR selection etc is performed only among “trusted” nodes, as is MPR
selector information only diffused about “trusted” nodes.

Also notice that no explicit mechanisms for revoking keys is presented. Since the diffused
certificates have an associated expire time, they are naturally removed when they are not
refreshed by the signing authority.

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 51

Initial situation: links are symmetrical but B,C,E,F
are untrusted:

@ B ©

® ® —©

SA (signing authority) trusts A and D anyway
(special case), and chooses A as an MPR. Next
certificate flooding reaches A,B, D and E:

N e
® ® —©®
A and B now trust each other: A chooses B as an

MPR.Next certificate flooding reaches C and F too.
End:

®» ® ©
Do e e
. Signing Authority (SA)

Q Trusted node Q Untrusted node

Figure 19: Adjusted processing example

10 Annex III: Signing algorithm

The aim of this annex is to specify the requirements that a signing algorithm must satisfy to
be usable within the security architecture that we have designed to secure OLSR. We also
review performances of well-known existing signing algorithms.

10.1 Requirements for a signing algorithm for OLSR control pack-
ets
We have mainly three requirements.
The first requirement is related to the computation requirement. OLSR is designed to

work on network nodes with an average or even a small computation power. Thus the signing
algorithm (signature and verification) must be able to be run with sufficient speed on such

RR n° 5494

52 Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

nodes. These nodes will probably have neither a lot of memory nor a dedicated processor
Or Preprocessor.

The second requirement, concerns the resistance of the signing algorithm. Of course if one
can sign an arbitrary packets without knowing the signing key (equivalent to key retrieval),
the signing algorithm is not efficient and can not be used. In such a case an intruder node
will be able to forge any arbitrary control packets. If one can alter accordingly a message
and its signature so that the altered message is still considered as a valid packet the signing
algorithm can not be used. As a matter of fact an intruder will be able to forward altered
control messages while the relayed control messages will still be considered as valid. The
signing algorithm must resist such attacks.

The third requirement concerns the signature length. Of course a short signature is
desirable, however a convenient tradeoff must be found between the signature length and
the resistance of the signing algorithm.

10.2 Signature length of a few well-known signing algorithms
We consider the following signing algorithms:

¢ HMAC-MD 5,

e RSA,

o DSA,

¢ ECNR over GF(p),

e ECNR over GF(2").

We give in the table below the signature length of the previous algorithms.

Algorithm key: asym,sym | Signature length (bits)
HMAC-MD 5 sym 128
RSA asym 1024
DSA asym 320
ECNR over GF(p) asym 336
ECNR over GF(2") asym 310

10.3 Performance of a few well-known signing algorithms

We report here on an excerpt from the benchmarks table of the Crypto-++ 5.2.1 Library [T1]
a free C++ class library of cryptographic schemes maintained by Wei Dai. Benchmarks for

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 53

the Pentium 4 2.1 Ghz processor were made on algorithms compiled with Microsoft Visual
C++ .NET 2003 and run under Windows XP SP1. Benchmarks for the AMD Opteron
1.6 Ghz processor were made on algorithms compiled with GCC 3.2.2 and run under Linux
2.4.21. Times are in msec/operation, and signature length is in bits.

Operation P4 Time | AMD Time | Signature
HMAC-MD5 operation over HELLO 0.27 0.38 128
HMAC-MD5 operation over TC 0.18 0.26

RSA 1024 Signature 4.75 2.07 1024
RSA 1024 Verification 0.18 0.07

DSA 1024 Signature 2.18 0.80 320
DSA 1024 Signature t 1.13 0.48

DSA 1024 Verification 2.49 0.91

DSA 1024 Verification 1.79 0.78

ECNR over GF(p) 168 Signature 3.34 1.49 336
ECNR over GF(p) 168 Signature { 1.90 1.04

ECNR over GF(p) 168 Verification 6.31 4.03

ECNR over GF(p) 168 Verification f 3.09 1.70

ECNR over GF(2") 155 Signature 6.05 3.62 310
ECNR over GF(2™) 155 Signature f 2.35 1.14

ECNR over GF(2™) 155 Verification 7.64 4.45

ECNR over GF(2™) 155 Verification f 4.06 2.02

Schemes marked with the symbol { use precomputation; values are looked up in a table
of 16 precomputed powers of each fixed base to speed up exponentiation. RSA uses 17 as
the public exponent. Its implementation is based on the IEEE P1363 standard. DSA uses
a 160-bit long value for q. Compared to the other algorithms in the list, the Crypto++
implementation of EC over GF(2") is less optimized. The implementation of ECNR follows
the TEEE P1363 standard. HMAC-MD5 computations are made on an average HELLO
and TC advertising 9 neighbors. HMAC-MDS5 is significantly faster than signing algorithms
using asymmetric keys.

RR n° 5494

54

Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Muhlethaler, Daniele Raffo

11 Annex IV: Using IPSEC framework

In this research report the focus was on the issues of securing OLSR using the most direct
methods. However, as IPSEC is an IETF standard for security, it is worth assessing the use
of the IPSec framework within the security mechanisms we have designed to secure OLSR.

IPSEC and the related security working-group of IETF provide security by three com-

plementary means:

e authentication (and optional encryption) of data packets.

e maintenance of “security associations”, that is, of different keys of different connections.
e automated key exchange, and more generally PKI architecture and protocols.

The fundamental problems of IPSEC with respect to securing OLSR are the following:

e The automated key exchanges (which provide the automated time-stamp exchange,

for replay protection), assume that the parties can reach each other. This is not the
case in general with the OLSR protocol, because messages must first be authenticated,
itbefore being accepted, and hence, a node which arrives in the network accepts no
packets, and has no routes. Two remedies are possible, the first is to use pure flooding
for the messages, the second is to change OLSR as we have shown in appendix

e IPSEC protection, protects the packet itself, while the granularity of the protection

that we proposed is the message. This has profound implications with respect to ac-
countability if there is a compromised node. This is because many nodes repeat the
messages that are diffused by MPR, flooding (TC messages). If a message is found to
be incorrect, any of the nodes which repeated it might be a compromised node: when
the authentication is per packet, the only information deduced is that the compro-
mised node is part of the (previously) trusted network. When the authentication is
per message, the information deduced is that the origin of the faulty information is
identified: it is the originator of the message.

A remedy may be to forbid changing the packets: hence each message would go in
a different packet ; this would have a certain cost on wireless networks, where MAC
overhead per-packet is large in some cases — and as this might not be sufficient, other
requirements, such as the use of tunnel mode, may be required, along with technical
necessities such as use of the TTL field of the IP packets instead of the OLSR message.

The current implementations support essentially symmetric keys. However this may
change, as recent IETF drafts are available which propose asymmetric signatures, such
as: The Use of RSA Signatures within ESP and AH, work in progress, Brian Weis,
draft-ietf-msec-ipsec-signatures-02.txt.

7

Managing a “group key” or a set of “group keys” in the context of a MANET, is a
broader problem than just the issues studied at the IETF in the multicast or group

INRIA

Securing the OLSR routing protocol with or without compromised nodes in the network 55

key management protocols (such as RFC 2093, Group Key Management (GKMP)
Specification, or RFC 3830, MIKEY: Multimedia Internet KEYing, or Group man-
agement key exchanges), because in this case, all the nodes are senders and all the
nodes are receivers (of the OLSR protocol messages), and also network splits or merges
should be managed.

In general, a few IPSEC security schemes may be used, but using significant modifications
(such as pure flooding for message transmission), at the cost of performance (for instance, if
each node creates a session key to each other node, using pure flooding, the cost is N where
N is the number of nodes in the network), and security granularity. This would probably also
result in using IPSEC protocols at the limits of their domain of applicability. And finally one
should note that the complexity of IPSEC protocols is already greater than the complexity
of the OLSR protocol itself, if the metric of “number of pages of the specifications” is used
(for instance, IKE2 or GSAKMP have longer specifications).

RR n° 5494

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopble de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

	Introduction
	Security Issues
	Outline

	The Optimized Link State Routing Protocol
	OLSR Control Traffic
	HELLO messages
	TC messages
	Multipoint Relay Selection and Signaling

	OLSR Message Format and Packets

	Vulnerabilities
	Jamming
	Incorrect Message Generation
	Incorrect HELLO Message Generation
	Incorrect TC Message Generation
	Incorrect traffic Generation using correct messages previously sent: replay or relay attack

	Incorrect Traffic Relaying
	Incorrect Control Traffic Relaying
	Incorrect Data Traffic Relaying

	Basic mechanisms to secure OLSR
	Cryptographic Requirements
	OLSR Signatures
	MPR flooding with signatures

	Time-stamps generation
	Mixing signature and time-stamps
	Security overhead
	What security can be expected from the previous schemes?

	Coping with compromised nodes
	Detecting Link Spoofing in HELLO- and TC-messages
	Detecting Incorrect Data Traffic Relaying
	Detection through Network Flow Conservation
	Applying Network Flow Conservation
	Precise Network Flow Conservation Check
	General case: weaknesses of network flow conservation
	Specific case: strengths of network flow conservation

	Detecting Incorrect Control Traffic Relaying
	Corrective Action
	Reporting Information to the Security Authority
	Arbitration of Flow Conservation Violation
	Arbitration of Alarms
	Limited action: removing links
	Definitive action: removing nodes

	Using node locations to counter relay attacks
	Specifications
	Checking the originator of Hello messages
	Checking links advertised in Hello and TC messages

	Detailed procedure to sign messages
	Detailed procedure when receiving a control message
	Protection offered
	Repelling relay attacks
	Repelling incorrect traffic generation

	Conclusion
	Annex I: Time-stamp generation
	Time-stamps with precise clocks
	Time-stamps with imprecise clock or with counters
	Distributed methods for time-stamp exchange
	Time-stamp
	Distributed time-stamp protocol
	Time-stamp exchange: handshake
	Time-stamp exchange: update
	Time-stamp exchange: optimization of exchange and update
	Time-stamp exchange: optimization for strictly increasing time-stamps

	Distribution of keys inside the distributed time-stamp protocol

	Annex II: Centralized security architecture for OLSR with a PKI
	Problem statement
	Fundamentals of the architecture
	Major design choices
	Subdivision into three classes of nodes
	The Signing Authority: PKI
	Signing OLSR Messages and time synchronization

	Preventing untrusted nodes in OLSR
	Securing OLSR Message Processing
	Securing Neighbor Sensing

	Annex III: Signing algorithm
	Requirements for a signing algorithm for OLSR control packets
	Signature length of a few well-known signing algorithms
	Performance of a few well-known signing algorithms

	Annex IV: Using IPSEC framework

