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Abstract: In the design of efficient simulation algorithms, one is often beset with a poor choice of proposal
distributions. Although the performances of a given kernel can clarify how adequate it is for the problem at
hand, a permanent on-line modification of kernels causes concerns about the validity of the resulting algorithm.
While the issue is quite complex and most often intractable for MCMC algorithms, the equivalent version for
importance sampling algorithms can be validated quite precisely. We derive sufficient convergence conditions
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Convergence de schémas de simulation adaptatifs

Résumé: Dans de nombreux problémes pratiques, on est amené & calculer une loi de probabilité conditionnelle
ou marginale & partir d’une loi jointe. Ce calcul est bien souvent impossible & effectuer explicitement. On peut
alors construire un schéma de simulation basé sur ’utilisation de lois instrumentales. Dans ce cas, un mauvais
choix lié & 'usage de ces lois peut se réveler désastreux. Dans cet article, nous étudions le comportement
théorique d’une classe de schémas d’échantillonnage préférentiel adaptatifs appelés D-kernels Population Monte
Carlo. Nous montrons que leur version de Rao-Blackwell s’adapte parfaitement & la loi cible en convergeant
vers un optimum au sens de la divergence de Kullback.

Mots-clés :  Théoréme Central Limite, échantillonnage préférentiel, divergence de Kullback, Loi des Grands
Nombres, algorithmes MCMC, schémas Population Monte Carlo.
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1 Introduction

In the simulation settings found in optimization and (Bayesian) integration, it is well-documented (Robert
and Casella, 2004) that the choice of the instrumental distributions is paramount for the efficiency of the
resulting algorithms. Indeed, whether we are considering implementing a Metropolis—Hasting algorithm with
proposal density ¢(x|y) or an importance sampling algorithm with importance function g(z), we are relying on a
distribution that is customarily difficult to calibrate, outside a limited range of well-known cases. For instance,
a standard result is that the optimal importance density for approximating an integral

jz/f(a:)w(a:)da:

is g*(z) o« |f(z)| m(z) (Robert and Casella, 2004, Theorem 3.12), but this formal result is not very informative
about the practical choice of g, while a poor choice of g may result in an infinite variance estimator. Similarly,
it has been established by Mengersen and Tweedie (1996) that the choice of the transition kernel g(z|y) in the
Metropolis—Hastings algorithm is crucial for the resulting convergence speed of the Markov chain.

While the goals of simulating experiments are multifaceted and therefore the efficiency of an algorithm can
be evaluated under many different perspectives, a measure of agreement between the target and the proposal
distribution can serve as a proxy in many cases: In the nomenclature designed in Andrieu and Robert (2001),
examples of such measures are moments, acceptance rates and autocorrelations. An even more robust measure
is the Kullback divergence, which is ubiquitous in statistical approximation theory (Csizar and Tusnady, 1984)
and which will be used in this paper.

Given the complexity of the original optimization or integration problem (which does require Monte Carlo
approximations), it is rarely the case that the optimization of the proposal distribution against an efficiency
measure can be achieved in closed form. Even the computation of the efficiency measure for a given proposal is
impossible in the majority of cases. For this reason, a number of adaptive schemes have appeared in the recent
literature (Robert and Casella, 2004, Section 7.6.3), in order to design better proposals against a given measure
of efficiency without resorting to a standard optimization algorithm. For instance, in the MCMC community,
sequential changes in the variance of Markov kernels have been proposed in Haario et al. (1999, 2001), while
adaptive changes taking advantage of regeneration properties of the kernels have been constructed by Gilks
et al. (1998) and Sahu and Zhigljavsky (1998, 2003). In a more general perspective, Andrieu and Robert
(2001) develop a two-level stochastic optimization scheme to update parameters of a proposal towards a given
integrated efficiency criterion like the acceptance rate (or its difference with a value known to be optimal, see
Roberts et al., 1997). As reflected by this general technical report of Andrieu and Robert (2001), the complexity
of devising valid adaptive MCMC schemes is however a genuine drawback in their extension, given that the
constraints on the inhomogeneous Markov chain that results from this adaptive construction either are difficult
to satisfy or result in a fixed proposal after a certain number of iterations.

As stressed in Cappé et al. (2004) (see also Robert and Casella, 2004, Chap. 14), the importance sampling
perspective is much more amenable to adaptivity than MCMC, due to its unbiased nature: using sampling
importance resampling (Rubin, 1987, 1988), any given sample from an importance distribution g can be trans-
formed in a sample of points marginally distributed from the target distribution 7 and Cappé et al. (2004)
showed that this property is also preserved by repeated and adaptive sampling. The asymptotics of adaptive
importance sampling are therefore much more manageable than those of adaptive MCMC algorithms, at least
at a primary level, if only because the algorithm can be stopped at any time since it does not require a burn-in
time. (We will present in this paper more advanced convergence results.) Borrowing from the sequential sam-
pling literature (Doucet et al., 2001), Cappé et al. (2004) constructed an iterative adaptive scheme christened
population Monte Carlo (Iba, 2000) that aims at replicating the adaptivity of MCMC kernels by a learning
mechanism on a population of points, themselves marginally distributed from the target distribution.

In this paper, we establish a CLT for a general PMC scheme and derive an iterative adaptive method that
converges to the optimal proposal, the optimality being defined here in terms of Kullback—Leibler divergence.
From a probabilistic point of view, the techniques used in this paper are related to techniques and results found
in Chopin (2004), Kiinsch (2004) and Cappé et al. (2005). In particular, the triangular array technique that is
central to the CLT proofs below can be found in Cappé et al. (2005) or Douc and Moulines (2005).

The paper is organized as follows: We first present the algorithmic and mathematical details in Section 2.
We evaluate the convergence properties of the basic version of PMC in Section 3, exhibiting its limitations, and
show in Section 5 that its Rao-Blackwellized version overcomes these limitations and achieve optimality for the
Kullback-Leibler criterion developed in Section 4. Section 6 illustrates the practical convergence of the method
on a few benchmark examples.

RR n° 5485



4 Douc & Guillin €& Marin € Robert

2 Population Monte Carlo

The form of Population Monte Carlo (PMC) introduced in Cappé et al. (2004) intrinsically is a form of iterated
sampling importance resampling (SIR), following the device of Rubin (1987, 1988). The idea of using a repeated
form of SIR is that previous samples are informative about the connections between the proposal (importance)
and the target distributions. We stress from the start that there are very few connections with MCMC algorithms
in this scheme since (a) PMC is not Markovian, being possibly based on the whole sequence of simulation, and
(b) PMC can be stopped at any time, being validated by the basic importance sampling identity (Robert and
Casella, 2004, equation (3.9)) rather than by a probabilistic convergence result like the ergodic theorem. These
features motivate the use of the method in setups where off-the-shelf MCMC algorithms cannot be of help. We
first recall some basic Monte Carlo techniques to define notations and goals.

2.1 The Monte Carlo framework

On a measurable space (2,.4), we consider a probability distribution = on (£2,.4). We assume that = is
dominated by a reference measure p, m < p, and also denote w(dz) = w(x)u(dz) its density. We also suppose
that 7 is known up to a normalizing constant,

(z) = 7i(z)
(

[ #@ntds)

where 7 is known, but the calculation of / (z)p(dz) < oo is intractable.

For one or several m-measurable functions f, we are interested in computing an approximation of

/f dz)
n= [ tema /()(M)’

assuming that the calculation of / f(x)7(x)p(dr) is also intractable.

In this setting, a standard stochastic approximation method is the Monte Carlo method, based on an iid
sample z1,...,zN simulated from 7, that approximates 7 (f) by

AMC’ IZfSEz

which almost surely converges to 7(f) (as N goes to infinity) by the Law of Large Numbers (LLN). The Central
Limit Theorem (CLT) implies in addition that, if 7(f?) = [ f2(z ) < o0,

. &
VN (N = (5} > N (0,Vx())
where V. (f) = m([f — n(f)]?)- Obviously, this approach requires a direct iid simulation from 7 (or %) which
often is impossible. An alternative (see, e.g., Robert and Casella, 2004, Chap. 3) is to use importance sampling,

that is, to pick a probability distribution v <« p on (2,.A) called the proposal or importance distribution, with
density also denoted by v, and to estimate 7 (f) by

7? 12]‘.1:,( ):c,)

If 7 is also dominated by v, 7 K v, frﬁv(f) almost surely converges to 7(f). Moreover, if v (f2 (7r/y)2) < 0,
the CLT also applies, that is,

VR {#5(0) — (D} SN (0.V, (£7)) -

INRIA



Convergence of adaptive sampling schemes D

As the normalizing constant of the target distribution 7 is unknown, it is not possible to use directly the IS

estimator frﬁ\,( f) and we need to replace it with the self-normalized version of the IS estimator,

N -1 N
ASNIS () (z (/) <w,~>) S (o) (n/0) (),
=1

i=1
which also converges almost surely to w(f). If v ((1 + f?) (7r/1/)2> < 00, the CLT applies:

VN (&SNS (1) = n ()} BN (0¥, {IF =] }) -

v

Obviously, the quality of the IS and of the SNIS approximations strongly depends on the choice of the proposal
distribution v, which is delicate for complex distributions like those that occur in high dimensional problems.

2.2 Sampling Importance Resampling

The Sampling Importance Resampling (SIR) method (Rubin, 1987, 1988) is an extension of the IS method that
achieves simulation from 7 by resampling rather than by simple reweighting. More precisely, the SIR algorithm

is held in two stages: The first stage is similar to IS and consists in generating an iid sample 21, ..., 2y from
v. The second stage builds a sample from 7, Z1,...,Z, based on the instrumental sample z1,...,zx by
resampling. While there are many resampling methods (Robert and Casella, 2004, Section 14.3.5), the most
standard (if least efficient) approach is multinomial resampling in 1, ..., zy with probabilities proportional to
the importance weights [Z(z1),..., X (zn)]:
=y, 1<i< M,
where the random variables (Ji,..., i) are iid conditionally on z1,...,zyx and distributed as
-1
alpn 7r
P[Jl:7,|$1,,m1v]: 21;(3,‘]) ;(.’E,)
=

The SIR estimator of 7(f) is then
M
N (f) =M~ f(@)
i=1

which also converges to 7(f) since each Z; is (marginally) approximatively distributed from «. By construction,

the variance of ﬁ,‘if\’fM( f) is larger than the variance of the SNIS estimator. Indeed, the expectation of ﬁfﬁ? ()
conditional on the sample z1,...,2yN is equal to 7?;,9’]1\\’,1 3(f). Note that an asymptotic analysis of frf”f\lﬁ,M( f) is

quite delicate because of the dependencies in the SIR sample (which, again, is not an iid sample from 7).

2.3 The Population Monte Carlo algorithm

In their alternative generalization of Importance Sampling, Cappé et al. (2004) introduce an iterative feature
in the production of importance samples, for the purpose of adapting the importance distribution v to the
target distribution 7. Iterations are indeed necessary to learn about 7 from the (poor or good) performances
of earlier proposals, performances that are for instance evaluated through the distribution of the importance
weights. At iteration ¢ of the PMC algorithm, N realizations are thus simulated from a proposal distribution
that is derived from the N x (¢t — 1) previous realizations. Cappé et al. (2004) show that the dependence on
earlier proposals and realizations does not jeopardize the fundamental importance sampling identity. Local and
adaptive importance sampling schemes can thus be chosen in a much wider generality than thought previously.
By introducing a temporal dimension to the selection of the importance function, an adaptive perspective can
be achieved at little cost, for a potentially large gain in efficiency.
If we introduce the o-algebras related to the current and past simulations,

Fnie = o {(zij, Jijh<i<no<j<e} (8>0),
T =Fne \ o {((@ier1)1<i<n } (£ > 0),
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where both the z; ;’s and the J; ;’s are defined precisely below, and if we set the renormalized importance
weights as

_ Wit

Wit =

b N ’
21 Wit

the generic PMC algorithm reads as follows:

Generic PMC algorithm:
At time 0,

a) Generate (z;,0)1<i<n iid according to v, and compute the importance weights w; o = {7/v} (zi0);
b) Conditionally on o {(Z'i,O)lSiSN}: draw

(Jio)1<icn & M(1, (@i0)1<i<n)

and set T;0 =27, ,,0 (1 <i < N).
At timet (t=1,...,7T)

a) Conditionally on Fy +_1, draw independently z; ; according to
v;+(Fn,t—1) and compute the importance weights
wit = {7 /Vit(Fni-1)} (Tie);
b) Conditionally on %, ,, draw
iid ~
(Ji)1<i<n ~ M(1, (@5 4)1<i<N)

and set Tit = TJ; 4t (]. <1< N)

After T iterations of the previous algorithm, a PMC estimator of 7 (f) is given by

RENC(f) = (i e WT)) > v (COYCRE

j=1 i=1

although it is more efficient for all estimation purposes to average the PMC approximations over all iterations,
possibly with different weights. Note that we adopt the representation v; ¢(Fn,:—1) for the importance function
to signify that the construction of the proposal distribution for the i-th term of the ¢-th sample is completely
open, as illustrated in Cappé et al. (2004). Obviously, all adaptive schemes do not lead to an automatic
improvement of the proposal and we now consider two particular schemes where improvement does not occur
and does occur, respectively.

3 The D-kernel PMC algorithm

In this section, we introduce a particular PMC scheme for which v;;(Fn 1) is a mixture of D different
transition kernels @ (1 < k < D) that are chosen prior to the simulation experiment, but whose weights are
proportional to their survival rates in the previous resampling step. This scheme was first proposed in Cappé
et al. (2004), with the purpose that, over iterations, the algorithm would automatically adapt the mixture to
the target distribution by converging to the “right” weights, in a spirit similar to the mixture adaption found in
Andrieu and Robert (2001). We will however see in this Section that this is not the case, and, more dramatically,
that this scheme is intrinsically non-adaptive.

3.1 The algorithm

We consider a family (Qq)i<q<p of D transition kernels on on Q x A and we assume that both = and
(Qa(z,-))1<i<D, zeo are dominated by the reference measure p introduced earlier. As above, we also set
the corresponding density function and transition kernel to be 7 and g4(-,-) respectively, that is

VA€ A, m(A)= /A (@ p(ds), Qal,A) = /A galz, ) u(da')

INRIA



Convergence of adaptive sampling schemes 7

This situation is rather common in MCMC settings where several vintage transition kernels are often available
and difficult to compare. For instance, the cycle and mixture MCMC schemes already discussed by Tierney
(1994) are of this nature. We detail in this Section and the following ones how PMC can overcome the difficulty
encountered by MCMC algorithms in picking an efficient mixture of standard kernels }°, a4Qq(z,-).

The associated PMC algorithm then builds proposals as follows:

D-kernel PMC algorithm:

At time 0, use the same step as in the generic PMC algorithm to produce the sample (Z;0, Ji0)1<i<n and set
alli’N =1/Dforall1<d<D.

At timet (t=1,...,T),

a) Conditionally on ¢ {(aZ’Nhgng}. generate

(Kit)r<icy = M(L, (0™ )1<a<p)
b) Conditionally on o {(Z;:—1, Ki+)1<i<n}, generate independent
(wi¢)1<i<n ~ Qk;, (Tit—1,7)
and set w;; = m(xi4)/qrc; , (Tit—1,Tit);
c) Conditionally on o {(Z; -1, K; ¢, Tit)1<i<n }, generate

(Jit)i<icn = M(L, (@i4)1<i<n)

andset (1<i<N,1<d<D)

N

- t4+1,N _ _

Tit =Tz, t, Qf —E Wit La(Kit)
i=1

Recall that w;; denotes the renormalized version of w; . In words, Step a) picks the kernel index in the
mixture for each point in the sample, Step b) generates the corresponding point and Step c) updates the weights
of the D kernels according to their respective survival performances in the past round. (Since survival is directed
by the importance weights, reweighting is thus related to the respective magnitudes of the importance weights
for the different kernels.) Note also that Step c) is only used to avoid the dissemination of small importance
weights along iterations and the subsequent degeneracy phenomenon that plagues iterated IS schemes like
particle filters. Integral approximations should however use the byproduct of Step b).

3.2 Convergence properties

In order to assess the average effect of these iterations, we now consider the convergence of the algorithm when
the number N of points in each sample is large. Indeed, as already pointed out in Cappé et al. (2004), it does
not make much sense to consider the asymptotics of the PMC scheme when T grows large, given that this
algorithm is intended to be run with a small number T of iterations.

In order to prove convergence of the D kernel PMC algorithm, we first assume that the generalized impor-
tance weight is almost surely finite, that is,

(A1) Vde{1,...,D}, n @ m{qa(z,z') =0} = 0.

Note that assumption (A1) implies that 7 ® 7 {m(z')/qs(z,2') < 00} = 1. We denote by 7, the uniform
distribution on {1,..., D}, that is, v,(k) = 1/D for all k € {1,...,D}. We can then deduce a LLN on the pairs
(2i,¢, Ki,t) produced by the above algorithm:

Proposition 3.1. Under (A1), for any function h in L} and for all t > 1,

TR Yu
N N
Z@i,th(wi,h K; ) ~—=5 7 @ vu(h).
i=1
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Proof. We proceed by induction wrt ¢. Using Theorem A.1, the case t = 1 is straightforward since this is a
direct consequence of the convergence of the importance sampling algorithm. Now, let ¢ > 1 and assume that
the LLN holds for t—1. For h € L} to prove that Zfil Wi th(x;,4, K ¢) converges in probability to m ® v, (h),

TR Yu?
we just need to check that
al w(z
N7t —”hx-th 2% @ vulh
Zl%m @i Ki) (),
al w(z
N- 12—” p

(IK” xzt 17xlt)

where the second convergence is obviously a special case of the first one (with h = 1). For the first convergence,
applying Theorem A.1 with

Un,:= Nﬁl%h(wi,t; Kiy),

arc; o (Bie—1,%ie)

Gn=o0 {(fz’,t—l)lgiSN, (Oéfi’Nhgng} ,

we only need to check condition (iii). For all C' > 0, we have

:

-1 Z E l #t)h(:ci,t, Ki,t)]l{ m(2i,¢)

0K, (Zig—1, i) W, G100

h(zi,t,Ki,t)>C’}

D
IZFC i1, d)al” (1)
-1
where Fo(z,k) = [ m(du)h(u, k)L {26k >0)” By induction, we have
N
= Z@z‘,t—l]ld(Ki,t—ﬂ—)Pl/D
i=1
! ZFC Tig1,k m(Fe (-, k)

Using these limits in (1) yields

‘1ZE

Since 7 ® 7y, (F¢) converges to 0 as C' goes to infinity, this proves that for all n > 0,

—1 zt ity 1At N—00
Z]E ( I w (@ )R 40 Ky 1) N }‘ gN) —p 0.

dK; )t x’ t—1,Ti, t) {QK,i s Fit—1,74¢) >Nn

-'L'zt :L'z t:Kz' t)

N—00
@y, )h(mg,,K54) C'} QN] —P 7T®’YU(FC)

qrci (Fit—1,Tit) {ﬁ>

Condition (iii) is satisfied and Theorem A.1 applies. The proof follows. O

Note that this convergence result is more than what we need for Monte Carlo purposes since the K;;’s are
auxiliary parameters that are not relevant for the original problem. However, it is eventually a negative result
in that, while it implies that

N
Z Wit f(Ti,e)
i=1

is a convergent estimator of 7(f), it also shows that, for ¢t > 1,

N . 1
Z Wi t1a(Ki ) ~—p D

INRIA



Convergence of adaptive sampling schemes 9

Therefore, at each iteration, the weights of all kernels converge to 1/D when the number of points in the
sample grows to infinity. This translates in the lack of learning properties for the D-kernel PMC algorithm: its
properties at iteration 1 and at iteration 10 are the same. In other words, this algorithm is not adaptive and
only requires one iteration with a large value of N. We can note that, when this scheme was used in Cappé
et al. (2004), the fast stabilization of the approximation was noticeable. (It is also possible to establish a CLT
for this algorithm, but given its unappealing features, we leave the details for the interested reader.)

In order to get a truly adaptive PMC scheme, based on the above D-kernel algorithm, we have first to set an
effective criterion of adaptivity and approximation of the target distribution by the proposal distribution. We
then derive a modification of the original D-kernel algorithm that achieves efficiency in this sense. As argued
in many papers using a wide range of arguments, a natural choice of approximation metric is the Kullback
divergence: we can aim at deriving the D-kernel mixture that minimizes the Kullback divergence between this
mixture and the target measure 7

m(z)m(z') )
// log ( Ed ouga(e )) (r @ 7)(dz,dz') . (2)

The following Section is devoted to the problem of finding an iterative choice of mixing coefficients that converges
to this minimum. The optimal PMC scheme then follows in Section 5.

4 The Kullback divergence

4.1 The criterion

Using the same notations as above, in conjunction with the choice of the weights a4 in the D kernel mixture,
we introduce the simplex of R”,

D
Y:{a:(al, ..,ap); Vde {1,...,D}, g >0 and Zadzl}

and 7 = 7 ® . We then assume that the family of the D kernels satisfies the condition
(A2) Vie {1,...,D}, Ez [|logq:(X, X")] = [[ |log ¢i(z,a") |7 (dz, dz") < oo,

which is automatically satisfied when all ¢;’s dominate m (in the accept-reject sense that m/g; is bounded). We
then derive from the Kullback divergence a function on ., that is, for a € .7,

D D
+(a) = //ﬁ(d:c,dx')log (Z adqd(x,x')> =Ex [IOgZQde(X,XI)] )
d=1

d=1

Note that, due to the strict concavity of the log function, &; is a strictly concave function on a connected
compact set and thus has no local maximum besides the global maximum, denoted

maz _ E- .
& arg max Ex(a)

Note also that, since
m(X)m(X")
7(X) { L1 aaga(X, X) |

/ (dz) log 7(x) — Ex(a) = By | log

a™*% ig the optimal choice for a mixture of transition kernels such that the joint law of (Xo, X1) when Xg ~ 7
is the nearest to the product distribution 7 = 7 ® 7. We then have the following obvious inequality:

Lemma 4.1. Under (A1-A2), for all a € 7, Ex(a) < [ n(dz)log n(z).

RR n° 5485
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4.2 A maximization algorithm

We now propose an iterative procedure, akin to the EM algorithm, that updates the weights so that the function
Ex(a) increases at each step. We first define F' as the function on . such that

Fla) = Eﬁ— adqd(XJXl) ])
@) < lZleajqj(X,X’) 1<d<D

and construct the sequence on &

ol = (1/D,...,1/D) -
attl = F(at) for t>1

Note that, under assumption (A1), for all ¢ > 0,

E- (qd(X, X’)/ZJ-D:1 az-qj(X,X’)> > 0 and thus, for all ¢ > 0 and all d € {1,...,D}, af, > 0. If we define the

extremal set Zp as

{a € vde{l,...,D}, aa=0 or E: (Ef’:(idc(tjzj)(()’(),)(’)) = 1} , (4)

we then have the following fixed point result:

Proposition 4.1. Under (A1) and (A2),

i) &z o F — &z is continuous,

ii) Foralla € &, &z o F(a) > &x(a),

iii) ZIp = {a € S F(a) = a} ={a € ;& o F(a) = Ex(a)} and Ip is finite.

Proof. & is clearly continuous. Moreover, by Lebesgue dominated convergence theorem, the function a —
E- (adqd(X , X" / 2?21 a;q; (X, X ’)) is also continuous, which implies that F' is continuous. This completes
the proof of i). Now, by the concavity of the log function,

Er(F(a)) — Ex(a)

D ! !
_& (1 aga(X, X') E( aa(X, X") )D
o <Og l; Y g (X, X) Y g (X, X7)
D
cuga(X,X) E( 9a(X, X") )]
257 a0 T, e (.10

= qa(X, X') qa(X, X")
- ;adEﬁ (ZJD:l a;q; (X, X') o8 s il 0g;(X, X7) ®)

Applying the inequality ulogu > u — 1 to (5) yields ii). Moreover, equality in ulogu > u — 1 holds if, and only
if u = 1. Therefore, equality in (5) is equivalent to

vV

Ez

X, X"
Vag#0, E: 9a(X, ) -1
‘ <zf_1 a;q;(X, X')

Thus, Zp = {a € #;&z o F(a) = Ex(a)}. The second equality ZTp = {a € .%; F(a) = a} is straightforward.
We now prove par recursion on D that Zp is finite. Recalling the definition of Zp, the recursion is quite
straightforward. We just need to prove that the set

{a €Ip;ag#0 Vde {1,...,D}}
is empty or finite. If this set is non-empty, any element « in this set satisfies

Qd(XaXl) ) -1
D , -
Ej:l a;q; (X, X')

Vd e {1,...,D} IE,T<
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which implies

D
. ; ‘ (Eﬂ (Zfil ajqj(XaX')> 1)

_E (2521 o q(X, X') _ 1) SR, <1og Sy a?awqd(x,X')> .
il @g; (X, X') a Yo (X, X)) T

By unicity of the global maximum of £z, we conclude that & = a™*® and hence iii). O

Proposition 4.1 implies that our recursive procedure satisfies £z (aft!) > &£z (at). Therefore, the Kullback
Leibler divergence criterion (2) decreases at each step. This property is closely linked with the EM algorithm
(Robert and Casella, 2004, Section 5.3). More precisely, consider the mixture model

V ~M(Q1,(a1,...,ap)) and W = (X,X")|V ~ n(dz)Qv (z,dx")

with parameter a. We denote by E, the corresponding expectation, by p,(v,w) the joint density of (V, W) wrt
p® p and by ps(w) the density of W wrt p. Then it is easy to check that &z (a) = [ log(pa(w))@ (dw) which
is an average version of the criterion to be maximized in the EM algorithm when only W is observed. In that
case, a natural idea adapted from the EM algorithm would be to update a according to the iterative scheme

o' = argmas / By [1og pa(V, w)| w] 7 (dw).

By direct algebra, this definition of a!*?! is equivalent to the update formula a™! = F(a!) that we used above.
Our algorithm then appears as an averaged EM, but preserves the deterministic increase of the criterion enjoyed
by EM.

The following proposition ensures that any a different from «

Proposition 4.2. Under (A1) and (A2), for every a € #\ {a™**}, there exists a neighborhood V,, of a such
that, if a'o € V,, then (a®)i>4, leaves V, within a finite time.

maT ig repulsive.

Proof. Let a € &\ {a™?*}. Then, using the inequality v — 1 > logu,
D qd(X Xl) ZD_ amazqd(X XI)
Za&””]}‘lﬁ 5 ’ —1>E; (log =451 ’ >0
d=1 2 =1 44(X, X) > =1 4 4(X, X)
which implies that there exists d € {1,..., D} such that
X, X'
Zj:l a;q; (X, X')

Let (Wn)n>0 be a non increasing sequence of neighborhoods of a in .. We have by the monotone convergence
theorem,

qa(X, X") )

. . X, X"
1< E; = E; | lim inf 9a(X, )
(Z?:l a;jq; (X, X") <

oo feWa 3200 | Big; (X, X7)

'
= hm ]E7—|— lnf qu(X, X )
noreo BEWn 301 Bigi (X, X7)

X, X'
lim inf Ez < qu( , X7) )
o0 FEWn 2j=1 Bigi (X, X7)
Thus, there exist Wy, = V,, a neighborhood of o and 7 > 1 such that for all § € V,,
X, X'
Ex ( qu( ) p ) >
Zj:l Big; (X, X")

Now use that for all ¢ > 0 and d € {1,...,D}, 1 > % > 0 and combine (6) with the update formulas for o,
(given by (3)). This shows that (a*);>o leaves V,, within a finite time. O

VA

(6)
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We thus conclude that the maximization algorithm is convergent:
Proposition 4.3. Under (A1) and (A2),

lim of = a™*®.

t—o0
Proof. First, note that Zp is a finite set which contains a™*®. Write Zp = {fo, f1,- .-, 81} with o = a™**.
If we introduce a sequence (W;)o<i<r of disjoint neighborhoods of the f;’s so that for all 0 < ¢ < I, F(W;) is
disjoint from U;;W; (this is possible since F'(f;) = (; and F is continuous) and, for all i € {1,..., I}, W; C Vj,
where the (V3,)’s are defined in the proof of Proposition 4.2.

The sequence (Ex(at))i>o0 is upper-bounded and non decreasing and therefore it converges. This implies
that limy_, o £z o F(a!) — Ex(at) = 0. By continuity of £z o F' — £z, there exists T' > 0 such that for all t > T,
a; € U;W;. Since F(W;) is disjoint from U;»;W;, this implies that there exists ¢ € {0,...,I} such that for
all t > T, o € W;. By Proposition 4.2, i cannot be in {1,...,I}. Thus, for all t > T, o’ € W, which is a
neighborhood of 8y = a™%*. The proof is completed. O

5 The Rao-Blackwellized D-kernel PMC

The update formula (3) has been shown to improve the Kullback Leibler divergence criterion at every iteration.
We now discuss how to implement this mechanism within a PMC algorithm that resembles the previous D-kernel
algorithm. The only difference with the algorithm of Section 3.1 is that we make use of the kernel structure in the
computation of the importance weight: in MCMC terminology, this is called “Rao-Blackwellization” (Robert and
Casella, 2004, Section 4.2) and it is known to provide variance reduction in data augmentation settings (Robert
and Casella, 2004, Section 9.2). In the current context, the improvement brought by Rao-Blackwellization is
dramatic, in that the modified algorithm does converge to the proposal mixture that is closest to the target
distribution in the sense of the Kullback Leibler divergence. More precisely, a Monte Carlo version of the update
formula (3) can be implemented in the iterative definition of the mixture weights, in the same way as MCEM
approximates EM (Robert and Casella, 2004, Section 5.3.3).

5.1 The algorithm

In importance sampling as well as in MCMC settings, the conditioning improvement brought by Rao-Blackwel-
lization may be significant (Celeux et al., 2003). In the context of the D-kernel PMC scheme, the Rao-
Blackwellization argument is that it is not necessary to use the mixture component in the computation of
the importance weight but rather the whole mixture. The importance weight is therefore

D
N - .
W(xi,t)/z @y qa(&i1,mie) rather than 7 (ziy)/qK. ., (Fip1,%i)
d=1
as in the algorithm of Section 3.1. As already noted by Hesterberg (1998), the use of the whole mixture in the
importance weight provides a robust tool for preventing infinite variance importance sampling estimators. In
our setup, this choice of weight will guarantee that the following algorithm converges to the optimal mixture.

Rao-Blackwellized D-kernel PMC algorithm:

At time 0, use the same step as in the generic PMC algorithm to produce the sample (Z; 0, J;0)1<i<n and set
a‘li’N =1/Dforall1<d<D.

At timet (t=1,...,7),

a) Conditionally on ¢ {(afi’N)lstD}, generate

iid
(Ki)i<i<n ~ M(1, (aij)lgdSD)

b) Conditionally on o {(Z;:-1, Ki+)1<i<n}, generate independent

(@i)i<i<n ~ QK (Tije—1,°)

D
and set Wit = W(mi,t)/z ag’qu(i"i’t_l, mi,t);

d=1

INRIA
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c) Conditionally on o {(Z; -1, Ki¢, Tit)1<i<n }, generate

(Jie)1<i<N R om, (@Wi,¢)1<i<N)

andset (1<i<N,1<d<D)

__— t+1 N _
Tit =Tt E @i La(Kir)

Note that, once more, the adaptive mechanism is based on the importance weights. The update of the ag4’s
in Step c) is the Monte Carlo version of (3) and we now show that this algorithm is converging.

5.2 The LLN for the Rao-Blackwellized D-kernel PMC algorithm

Not very surprisingly, the population of points obtained at each iteration of the Rao-Blackwellized algorithm
above approximates the target distribution in the sense of the weak Law of Large Numbers (LLN). Note that
the convergence holds under the very weak assumption (A1) and for any test function h that is absolutely
integrable wrt the target distribution 7. The function kA may thus be unbounded.

Theorem 5.1. Under (A1), for any function h in L. and for all t > 0,

Z @i h(mi1) 5% w(h) (7)
TS BUCHESHI ®

Proof. We proceed by induction wrt ¢ on the two limiting results (8) and (7). The case ¢ = 0 is the basic
importance sampling convergence result. Now, let ¢ > 1 and assume that (8) and (7) both hold for ¢ — 1.
We will just show (7) since (8) is a straightforward consequence of (7) and Theorem A.1 due to multinomial

sampling, by noting that
(Nzh xzt (mzt 1<1<N> szth mzt

=1

To prove (7), we will check that

N

1 o0

N Zwi,th(xi,t) Nj}p 7T(h)
i=1

N
! wis Y2F 1
~ it p 1.

N i=1
The later limit is also a direct consequence of the former with h = 1. We apply Theorem A.1 with Gy =
o ((5:,-,,5_1)15,-51\1, (afi’N)lgdSD) and Un,; = N~'w;h(z;;). Conditionally on Gy, the (z;:)1<i<n’s are inde-
pendent and

D
zidlGn ~ D 0" Qa(#ie1,)

) iE< x;z t)h(xz t)

i=1 NZd 1ad qd(xzt lamzt)

Noting that

ZE(wzth mzt

gN> = n(h),
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to apply Theorem A.1, we only need to check condition (iii). Now, write

wi th(x
Z]E( it ( ”t)]]:{w”h(z”)>0} QN>

N
N
1
- N 2/7r { (2)h(z) )>c}
1,

t,N =
Thoieq aaEi

D 1 N
FAE S
u) <

Ta4(&;,4—1.2)

(eyh(e) n(h) and thus, by the induction assumption

D=1lq4(u,z)

Note Fo(u) = fﬂ(dx)h(x)ll{

The proof is completed since

5.3 Convergence of the weights

The next proposition ensures that, at each iteration of the algorithm, the population of points is modified
according to a mixture of kernels whose weights approximate the ones obtained by the iterative procedure
described in Section 4 for minimizing the Kullback divergence criterion.

Proposition 5.1. Under (A1), for all t>1,
vi<d<D, oV Y3F o (9)

where the afy’s are defined in (3).

Combining Proposition 5.1 with Proposition 4.3, we obtain that, under assumptions (A1) and (A2), the
Rao—Blackwellized version of the PMC algorithm automatically adapts the weights of the proposed mixture of
kernels and converges to the optimal combination of mixtures wrt to the Kullback divergence criterion defined
in Section 4.

Proof. The case t = 1 is obvious. Now, assume (9) holds for some ¢ > 1. As in the proof of Proposition 3.1, we
now prove that

N
1 wzt) N—oo ottt
— ) wila(Kiy) Lo(K;i) —p aft,
Ni:zl sz: 1al Ql($zt 1,Tit)

1 N
N Z Wit N—_>>?1§>> 1.
Only the first convergence needs be considered since the latter can be easily deduced from the former.

We apply Theorem A.1 with QN =0 ((-’Z'z',tfl)lgiSN; (aZ’N)1<d<D) and UN i = N Wi t]Id( ) Condltlonally
on Gn, (K¢, ¢i¢)1<i<n are independent and for all (d, 4) in {1,...,D} x A,

P(Ki:=d,z;; € A|Gn) = Oég’NQd(i"i,tq,A)
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To apply Theorem A.1, we just need to check condition (iii). We have

N
wi, i La( Ky t)
E <Z =N Lwida(Ki)>c}| GN

i=1
D N
< iZ/W Oéd Qd(ivzt 1, %) I
— ()
o NI Zz 10‘1 ‘Il(xzt 1,2) {D—lqj(i“ 1m)>c}
D | N N D
N 300
— w(d. —F—>C
> [ 37 (5 > ©)
_]:1 N i=1 D 1‘1](21 t—1> m) } j=1 D= qJ z, )

by the LLN stated in Theorem 5.1. The rhs converges to 0 as C' grows to infinity since by assumption (A1),
7{g;j(z,2") = 0} = 0. Thus, Theorem A.1 applies and

N N
1 1 N—=oco
N i_zl(ui,t]ld(Ki,t) —E ( N Z_Zl wi,t]Id(Ki,t) gN> —p 0.
To complete the proof, it remains to show that
el L XN:w L(Kio)|g 1 XN:/w(d:c) oy qa(@i -1, ) Nogo i41 (10)
N R2N VAN N7 N | == - >
N =t N i=1 Ellll af’NQI(mi,t—l,x d

Using again the LLN stated in Theorem 5.1,

N

1 a4qa(Zig—1,7 Nesoo abgqe(X, X'

3 [ i) petZis1.2) —%Eﬁ( X X)) _ g (1)
=1

Yic1 % q(Fig-1,2) Y2, ela(X, X)

Thus, to prove (10), we use (11) and check that the difference between both terms converges to 0 in probability.
To see this, first note that forallt > 1, foralldin {1,...,D}, af > 0 and thus, by the induction assumption, for

alldin {1,...,D}, ag” o —aa Nowo ) Using that |4 — —| <|4| |22+ |45%] |4], we have by straightforward
algebra,

GZ’NQd(SEi,t—hﬂ?) B abqa(Zig—1,)

D N - D =
hr Otf’ a(Tig—1,%) D afql(xi,t—hﬂ?)

LN t,N
i qa(Fit—1,7) o —aof
= sup -
D _t,N_ ./~ ot
21:1 o i (Ti4—1,2) \le{1,...,D} I
t,N t £ ~
L |ed —aa|  2qqi(@ii,7)
Z D 1 /-
Qq Yo a(&i-1,2)
t,N t
a —«
<2 sup litl
le{1,...,.D} Qg
t,N _ Nes
The proof follows from ad—aiﬂ =5 0. O
d

5.4 The CLT for the Rao-Blackwellized D-kernel PMC algorithm

We now state and prove a CLT for the weighed and the unweighted samples when the size of the population
grows to infinity. As noted in the SIR algoritm (see Section 2.2), the asymptotic variance associated with the
unweighted sample is larger than the variance of the weighted sample.

Theorem 5.2. Under (A1),

i) For all h satisfying 7@ (hz(a:’) m(z) ) < oo for some d € {1,...,D}, we have

qa(z,z")
N
VN Y @i {h(i) — m(h)} -5 N (0,02), (12)
=1

with o? = 7 ((h(w’) - w(h))2¢).

i1 ahga(e,a’)
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ii) If moreover w(h?) < oo, then
N

\/% Z(h(fi,t) —7(h)) =5 N(0,07 + Vr(h)) (13)

Note that amongst the conditions under which this theorem applies, the integrability condition

7 h?(a' M) < o0 14
(s ()
is required for some d in {1,..., D} and not for all d. Thus, situations where some transition kernels g4(-,-) do

not satisfy (14) can still be covered by this theorem provided that (14) holds for at least one particular kernel.
An equivalent expression of the asymptotic variance o7 is

_ D
ol =V, ((h - w(h))g) where v(dz,dz') = w(dz) (Z afiQd(x,dw')> .
d=1

Written as above, o7 turns to have the same expression as the asymptotic variance that appears in the CLT
associated to the self-normalized IS algorithm (SNIS) (see Section 2.1 for a description of the algorithm and the
associated CLT) where the proposal distribution is v and the target distribution 7. Still, the SNIS algorithm
can not be implemented here since by the above definition of v, the proposal distribution depends on both 7
and the weights (af) which are unknown.

Proof. Without loss of generality, we may assume that 7(h) = 0.
Let dy € {1,...,D} such that 7 (hz(w') () ) < 00. In the proof of Theorem 5.1, it has been shown that

4 (z,27)

% Zf\il Wit N—_ﬁf 1 and thus, we only need to prove that

N
1
Vi ;wi,th@i,» £5 N(0,02) (15)

We will apply Theorem A.2 with

1 1 7!'(.’L'i t)h(af,' t)
Uni = —=wiith(2it) = —= ’ : ;
RV ' VN P aiNqa(Fig—1,i4)

Gn=o0 {(ii,t—1)1§i§N, (Oéfi’N)15d§D)} .

Conditionally on Gy, the (z;;)1<i<n are independent and

D
zidlGn ~ D 0" Qa(Fie-1,)-

d=1

Conditions (i) and (ii) of Theorem A.2 are straightforwardly satisfied. To check condition (iii), first note that
E(Un,| Gn) = w(h) = 0. Moreover,

m(z)

N 1 N
Ay =) E(UR,|6n) = ¥ Zl / w(dz)h?(z) S

i=1 d qd(fi'z',tfl,m)

By the LLN for (Z;:) stated in Theorem 5.1, we have

N
1 71'(33') N—oo
By = — E /W(dm)hz(x) — 3% o}
N i=1 EdDzl a4qa(Zi—1,7)
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To prove that condition (iii) holds, it is thus sufficient to show that |By — An]| 2% 0. Since ozt e af >0,

it is sufficient to consider the bound

]I{afi’év>2—1afio}|BN - AN'

t t,N N 2
aly — oy 1 h?(z)m(x)
< Tag>ataz ) U2 (T)NZ RS

1<d<D i Yode1 0 d(Tip—1,)

at — ab h?(z)m(x) Nesoo
< su d / —p 0
- 15d£D< aj NZ "5 Lo qao (Fi-1,7) g

Thus, condition (iii) is satisfied. Now, consider condition (iv). Using the same argument as in condition (iii),
we consider

LN -
ey aa(@i i 1,2i0)

1 2 12
]I{afi})N>2—1aéo}i:ZlE Nw"’th (xi’t)]l{ (2 R 0) >C} on

2

i=1 dg 2dg (Fi,t—1,%)

1 ()
< = w(dz)h?(x = I
N Z/ (dz)h( )2*1afioqd0($i,t71;$) {2—1@"%>0}

()
2t (0, 0) {pene), sol

2
1
3

h? (@)

!

which converges to 0 as C' grows to infinity. Thus, Theorem A.2 applies and the proof of (12) is completed. The

proof of (13) is derived as a direct application of Theorem A.2 as in the SIR result by setting Un; = ﬁh(izi,t)

and Gy = o ((Ti,t)1<i<n, (Wit)1<i<n)- O

6 Illustrations

In this section, we briefly show how the iterations of the PMC algorithm quickly implement adaptivity towards
the most efficient mixture of kernels though three examples of moderate difficulty. (The R programs are available
on the authors’ websites.)

Example 1. As a first toy example, consider the case of the target m being the density of a normal mixture
1
S 5 A (is0?) (16)
i=1

and of a independent normal mixture proposal with the same means and variances as in (16) but started with
different weights ag’N. Note that this is a very special case of D kernel PMC scheme in that the Markov kernels
of Section 5.1 are then independent proposals. In this case, the optimal choice of weights is obviously o = 1/3.
In our experiment, we used p; = —2, puo =0, pu3 = 2 and o1 = 1/3, 02 = 2/3, 03 = 1. The starting values ag’N
are indicated on the left of Figure 1, which clearly shows the convergence to the optimal values 1/3 and 2/3 for
the two first cumulated weights in less than 10 iterations. (Generating more simulated points at each iteration
do stabilize the convergence graph but the primary aim of this example is to exhibit the fast convergence to the
true optimal values of the weights.)

Example 2. As a second toy example, consider the case of a A47(0,1) target and of the following mixture of D
kernels
ai’N%(%i,t,l, 1)+ QQNJV(:E, ¢ 1,02) + 043N¢/V(3:Z ‘1, 03) (17)

where 0 = 4 and 03 = 1/4. (The first proposal in the mixture is thus a Student % distribution centered at the
current value Z;;—1.) Figure 2 details the convergence of the weights to the optimal values for several starting
values. (Note that the optimal values can be approximated numerically by a discretization of the simplex in
R3. For the discretization step adopted in Figure 2, the optimum corresponds to af = 0.41 and a3 = 0.51.)
While the sequences of weights (o] LN at2N) do not always converge exactly to the same value, this is due to the

considerable flatness of the Kullback Leibler divergence in this region.
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Figure 1: Convergence of the cumulated weights ai’N and ai’N + ag’N for the three component normal mixture
to the optimal values 1/3 and 2/3 (represented by dotted lines). At each iteration, N = 10,000 points were
simulated from the D-kernel proposal.

Figure 2: Numerical approximation of the Kullback—Leibler divergence for the three component mixture proposal
(17) in the simplex of R®. (The discretization step is 1/75 in both a; and s directions.) Superposition of the
path of four calls to the D-kernel PMC algorithm when started from different values ("™, a3 ). The number

T of iterations is between 150 and 500 depending on the starting values, while the sample size is 50, 000.
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0 1 Total
0 60 364 | 424
1 36 240 | 276

Total | 96 604 | 700

Table 1: Two-by-two contingency table.

Example 3. Our third example is a contingency table inspired from Agresti (2002), given in Table 1. We
model this dataset by a Poisson regression,

Tij ~ P (eXp (ai + B])) (7/5.7 = 07 1) 3

with ag = 0 for identifiability reasons. We use a flat prior on the parameter § = (a1, 8o, 51) and run the PMC
D-kernel algorithm with a mixture of 10 normal random walk proposals, e/V(éi,t_l, 0aI(0)) (d = 1,...,10),
where I(0)) is the Fisher information matrix evaluated at the MLE, § = (—0.43,4.06, 5.9) and where the scales
04 vary from 1.35e — 19 to 1.54e + 07 (the g4’s are equidistributed on a logarithmic scale). The result of 5
(successive) iterations of the Rao-Blackwell D-kernel algorithm is as follows: unsurprisingly, the largest variance
kernels are hardly ever sampled but fulfill their main role of variance stabilizers in the importance sampling
weights while the mixture concentrates on the medium variances, with a quick convergence of the mixture
weights to the limiting weights. This convergence is illustrated in Figure 4 for the cumulated weights of the
5th, 6th, 7th and 8th components of the mixture, which converge to 0, 0.003, 0.259 and 0.738, respectively. The
adequation of the simulated sample with the target distribution is shown in Figure 3, since the points of the
sample do coincide with the (unique) modal region of the posterior distribution. The last row of Figure 3 (see
also the log-posterior histograms in Figure 5) shows in addition that there is no degeneracy in the produced
samples: most points in the last sample have very similar posterior values. For instance, 20% of the sample
corresponds to 95% of the weights, while 1% of the sample corresponds to 31% of the weights. A closer look
at convergence is provided by Figure 5 where the histograms of the resampled samples are represented, along
with the distribution of the loglikelihood and the empirical cdf of the importance weights: they do not signal
any degeneracy phenomenon but on the opposite a clear stabilization around the values of interest.
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Convergence of adaptive sampling schemes

A Convergence theorem for triangular arrays of random variables

In this section, we recall some convergence results for triangular arrays of random variables (see Cappé et al.,
2005 or Douc and Moulines, 2005 for more details, including the proofs). We will use these results to study
the asymptotic behavior of the PMC algorithm. In the following, let {Un;}n>1,1<i<n be a triangular array
of random variables defined on the same measurable space (2, .A4), let {Gn}n>1 be a sequence of o-algebras
included in A4, the symbol Xy —p a means X converges in probability to a as IV goes to infinity.

The definitions and theorems we need in the above proofs are given below.

Definition A.1. We say that {Un,;}n>1,1<i<n is independent given {Gn}n>1 if, VN > 1, the random variables
Uni,...,Un N are independent given Gy .

Definition A.2. A sequence of random variables {Zn}n>1 is said to be bounded in probability if

lim sup P[|Zn] > C] =0.
C—)ooNZl

Theorem A.1l. If

(i) {Un,i}n>1,1<i<n is independent given {GN}nN>1;

N
(ii) the sequence {Z E[|UN,z'||gN]} is bounded in probability ;
N>1

=1
N
(iii) ¥n >0, Y E|Un [Ty j5nlGn] —2 0 ;
i=1

N
then Z (Un,i — E[Un,|GN]) —p 0.

i=1

Theorem A.2. If

(i) {Un,i}n>1,1<i<n is independent given {GN}nN>1;

(is) VN > 1,Vie {1,...,N}, E[|UN,i||gN]<OO ;

N
(iii) 30® > 0 such that Y (E[UM(;N] - (]E[UN,i|gN])2) —po?

i=1
N
(iv) Vn >0, Y EUX Ty j>nlGn] —8 0 ;
i=1
then,
al u?0?
VueR, E|exp iuz (Un,i — E[Un;:|GN]) | |GN | —p exp (— 2 ) .
i=1
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