
HAL Id: inria-00070537
https://hal.inria.fr/inria-00070537

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized normal forms and polynomial system solving
Bernard Mourrain, Philippe Trebuchet

To cite this version:
Bernard Mourrain, Philippe Trebuchet. Generalized normal forms and polynomial system solving.
ISSAC 2005 - International Symposium on Symbolic and Algebraic Computation , Jul 2005, Beijing,
China. pp.253-260, �10.1145/1073884.1073920�. �inria-00070537�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50454098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070537
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
54

71
--

F
R

+
E

N
G

ap por t
de r ech er ch e

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Generalised normal forms and polynomial system
solving

B. Mourrain & Ph. Trébuchet

N° 5471

Janvier 2005

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Generalised normal forms and polynomial system

solving

B. Mourrain & Ph. Trébuchet

Thème SYM — Systèmes symboliques
Projets GALAAD & SALSA

Rapport de recherche n
�

5471 — Janvier 2005 — 30 pages

Abstract: This report describes a new method for computing the normal form of a poly-
nomial modulo a zero-dimensional ideal I . We give a detailed description of the algorithm,
a proof of its correctness, and finally experimentations on classical benchmark polynomial
systems. The method that we propose can be thought as an extension of both the Gröbner
basis method and the Macaulay construction. As such it establishes a natural link between
these two methods. We have weaken the monomial ordering requirement for Gröbner bases
computations, which allows us to construct new type of representations for the associated
quotient algebra. This approach yields more freedom in the linear algebra steps involved,
which allows us to take into account numerical criteria while performing the symbolic steps.
This is a new feature for a symbolic algorithm, which has an important impact on the
practical efficiency, as it is illustrated by the experiments at the end of the paper.

Key-words: polynomial equation, normal form, quotient algebra, zero-dimensional ideal,
rewrite rule, commutativity, solver, Gröbner basis, resultant

Forme normale généralisée et résolution d’équations

polynomiales

Résumé : Ce rapport décrit une nouvelle méthode pour le calcul de forme normale mo-
dulo un idéal zéro-dimensionnel I . Nous donnons une description détaillée de l’algorithme,
une preuve de sa terminaison, et finalement des expérimentations sur des systèmes testes
classiques. Cette méthode peut être vue comme une généralisation du calcul de bases de
Gröbner et de la construction de Macaulay. Comme telle, elle établit un lien entre ces deux
approches. Nous avons affaibli la condition d’ordre monomiale nécessaire pour les bases
de Gröbner, ce qui nous permet de construire de nouveau type de représentations pour
l’algèbre quotient associée à l’idéal I . Cette approche apporte plus de liberté dans les étapes
d’algèbre line’aire nécessaires au calcul de forme normale, ce qui nous permet de prendre en
compte des critères numériques sur les coefficients, tout en travaillant symboliquement sur
les polynômes. Cette caractéristique de notre méthode a un impact important sur l’efficacité
pratique, comme cela est illustré à la fin du rapport, par nos expérimentations.

Mots-clés : équation polynomiale, forme normale, algèbre quotient, idéal de dimension 0,
réécriture, commutativité, résolution, base de Gröbner, résultant

Generalised normal forms and polynomial system solving 3

1 Introduction

Solving polynomial systems is the cornerstone in many problems appearing in domains,
such as effective (real) algebraic geometry [7, 3], where it is a key ingredient of many al-
gorithms, in robotics and the design of conception tools [6], geometric modeling involving
intersection operations, singularity detection [25], signal processing and the design of filters
or identification problems [14], chromatology [24], structural molecular biology . . .

In this paper, we focus on the following problem: we are given an effective field K, and
we consider n-variate polynomials f1, . . . , fs over this field. Our goal is to solve the system
of equations f1 = 0, . . . , fs = 0 over the algebraic closure K of K.

The ring of n-variate polynomials over K will be denoted by R, R = K[x] = K[x1, . . . , xn].
The polynomials f1, . . . , fs generate an ideal of K[x] that we will call I , and in turn I defines
the variety V over K, which is the zero set of all the polynomials of I in K

n
.

Before going further in the description of the solving process, we give some precisions
about what we mean by solving a polynomial system. Indeed, if the variety V(I) contains
curves or surfaces then the meaning of solving is not clear and we will leave aside this case.
In the sequel, we will assume everywhere that our variety V(I) is composed of finitely many
points ζ1, . . . , ζd (over the algebraic closure of K) of respective multiplicities µ1, . . . , µd.

As the study of algebraic variety started a long time ago, there exists many methods
which tackle the problem of solving polynomial systems. They may be classified into two
broad families:

� Numerical methods, that proceed by evaluating numerically the equations, that is
searching for the 0-level of all these functions.

� Algebraic methods that keep the equations as such and exploit the constraints induced
on the unknowns.

In what follows, we will concentrate on this latter family and refer the interested reader to
[28] for a study of the other family.

More precisely, algebraic methods for solving a system of polynomial equations f1 =
0, . . . , fs = 0 are using special properties of polynomial systems. These properties can all be
deduced studying the structure of the quotient A = K[x]/I of the ring of polynomials K[x]
modulo the ideal I = (f1, . . . , fs). The different algebraic methods produce different types
of output:

� An as accurate as needed approximation of the coordinates of the ζi.

� A decomposition of the variety into simpler parts (such as triangular systems).

� A Rational Univariate Representation RUR [26] [12] for the roots .

Though these objects are slightly different, we will accept any of them as a valid answer
to the problem of describing the solutions of a the polynomial system. A fundamental
ingredient we will use to compute one of these objects is the effective description of the
quotient algebra A.

RR n
�

5471

4 B. Mourrain & Ph. Trébuchet

Up to now, the algebraic methods have been considered essentially in the case of exact
arithmetic over K. In practice, this may induce the treatment of large numbers which size
is not related to the complexity of the geometric problems, but to the method used to solve
the system. In order to avoid such problems, a new domain of research has emerged at
the frontier between symbolic and numeric computation [2], [5], [20], [29], analyzing the
numerical quality of the symbolic constraints that are manipulated. A big challenge here
is to devise algorithms, which are efficient and numerically stable. We describe here a new
method suitable to handle these two requirements. Our concern doing this will be double:

� First, to allow new representations that are stable under the algebraic perturbations
leaving the geometric nature of the variety unchanged.

� Next, to allow some speedup in the solving process by computing more general repre-
sentations avoiding as much as possible artificial computational over-costs.

In this paper, we first recall some classical methods that allow to work in the quotient
algebra and show their limitations. Then we show how to combine all those approaches and
melt them into a new algorithm, which will be the main result of this paper.

Afterward, we describe how we implemented this new method and treat effectively some
examples.

2 From the quotient ring to the roots

For the sake of completeness we recall here some well known results, that show how to
recover the information about the roots from the equations. We will limit ourselves to state
the theorems without any proof and we refer the interested reader to the references for
proofs.

We denote, as mentioned above, by R = K[x] = K[x1, . . . , xn] the ring of n-variate
polynomials in the unknowns x1, . . . , xn, with coefficients in K, by I is the ideal generated
by the polynomials f1, . . . , fs, defining the system that we want to solve. The quotient of
K[x] modulo I will be denoted by A. We will suppose hereafter that I is zero dimensional
so that A is a finite dimensional vector space. The roots, with coordinates in the algebraic
closure of K, will be denoted by ζ1, . . . , ζd, with ζi = (ζi,1, . . . , ζi,n) ∈ K

n
.

The dual space of A, that is the set HomK(A, K) of linear forms from A to K will be

denoted by Â.

Theorem 2.1 [2], [20], [9] For any element a ∈ A, consider the operators of multiplication
by a:

Ma : A → A M t
a : Â → Â

b 7→ a b Λ 7→ a · Λ = Λ ◦ Ma.

Denoting by 1ζ the linear form such that for p ∈ K[x], 1ζ(p) = p(ζ), we have the following
properties:

INRIA

Generalised normal forms and polynomial system solving 5

� The eigenvalues of the linear operator Ma (resp. M t
a) are {a(ζ1), . . . , a(ζd)}.

� The common eigenvectors of (M t
a)a∈A are (up to a scalar) 1ζ1

, . . . ,1ζd
.

This result reduces the numerical solving step to linear algebra computations that are nu-
merically well understood.

When dealing with real algebraic geometry we can also use the following properties.

Theorem 2.2 (Hermite’s Quadratic Form) [1], [27] When K = R, let h ∈ R[x1, . . . , xn],
and let Qh be the quadratic form Qh : A → A

p → Tr(hp2)
. Then we have the following two prop-

erties:

� The number of complex root ζi such as h(ζi) 6= 0 is the rank of the quadratic form Qh.

� The number of real root ζi such as h(ζi) > 0 and the number of real root such as
h(ζj) < 0 is the signature of Qh.

Finally for an exact description of the variety we can use the following result:

Theorem 2.3 Let u ∈ K[x], ζ1, . . . , ζk be as usual the point composing the variety and
µ1, . . . , µk their respective multiplicity. We define the polynomials:

� fu = Πi=1...k(T − u(ζi))
µi

� g0 = Σi=1...kµiΠj 6=i(T − u(ζj))

� g1 = Σi=1...kµiζ1.iΠj 6=i(T − u(ζj))

...

gn = Σi=1...kµiζk.iΠj 6=i(T − u(ζj))

When u separates the ζi, then the preceding family defines a Rational Univariate Represen-
tation.

See [13], and [26] for the proofs and for a way to compute these polynomials.

3 Representations of the quotient ring A

In this section, we recall how computations in the quotient ring A are performed. To be
able to compute effectively such a representation of A, we need two things:

� A monomial basis B of A.

� An algorithm to project K[x] onto 〈B〉.

RR n
�

5471

6 B. Mourrain & Ph. Trébuchet

In other words, given a certain K-vector space V with the property that K[x] = V ⊕ I and
a polynomial p, we want to compute the element v of V such that p − v ∈ I .

This implies an isomorphism of K-vector spaces: A = K[x]/I ∼ V and gives to V a
structure of K[x]-module. The corresponding normal form N is the projection of K[x] onto
V along I : im(N) = V , ker(N) = I . A basis B of V will be called a canonical basis of A.

The method we propose generalizes Macaulay’s constructions and Gröbner bases, taking
advantage of the numerical stability of Macaulay’s constructions and of the efficiency of
Gröbner bases. The following paragraphs are devoted to recall the definitions and algorithms
allowing to compute Macaulay’s constructions, and Gröbner bases.

� Macaulay construction relies only on linear algebra operations, and also on restrictive
mathematical hypotheses on the input polynomial system. As a result this method is
very stable under small perturbations, but the too limited range of application of this
method lead to find other techniques to represent A.

� In order to circumvent this, Gröbner bases techniques have been developed. Gröbner
bases computations can be performed on any polynomial system without any hypothe-
ses on it, and find a representation of A. The improvement of generality of the input
system, compared to the preceding method, is obtained at the expense of stability
against small perturbations (even if they do not change in any way the geometric
nature of the variety V(I)).

Both of these methods produce a so-called normal form algorithm, that is a method to
compute a canonical representative in A, as we will see now.

3.1 Resultant based approach

In this subsection we will give a flavor of the ideas behind the resultant based approach with
a special emphasis on Macaulay’s construction of projective resultants. For more details, see
for instance [10], [4]. This construction yields the resultant of n+1 homogeneous polynomials
over Pn, as the gcd of the maximal minors of a matrix. It can be applied to the computation
of multiplication tables, as follows:

Algorithm 3.1 (Macaulay)
Input: f0 ∈ K[x] whom we want the multiplication operator

f1, . . . , fn generic polynomials
Output: The multiplication matrix of f0 in A

� Construct sets of monomials xE0 , . . . ,xEn ,xF such that the map

S : 〈xE0〉 × · · · 〈xEn〉 → 〈xF 〉
(q0, . . . , qn) 7→

∑n

i=0 qi fi

is surjective and |E0| =
∏n

i=1 deg(fi).

INRIA

Generalised normal forms and polynomial system solving 7

� Compute the matrix of this map and decompose it as:

xE0f0 xE1f1 . . . xEnfn

A C

B D

� Check that D is invertible and return the Schur complement

Mf0
= A − CD−1B

See [18] for more detail.
This method applies for generic input polynomials, for which xE0 is a basis of A. Sim-

ilar constructions can also be performed using toric or residual resultants [10], [4]. Such
resultant-based methods for solving square polynomial systems rely on well controlled linear
algebra steps, and thus are stable against a small deformation of the generic input. But the
restriction both in terms of genericity and number of equations of the input system does
not allow to treat so many applications. It is then necessary to have a general procedure to
compute a monomial basis of A for any input, and this is done by the well-known method
described in the next subsection.

3.2 Gröbner bases

In the previous subsection, we have quickly depicted a method to solve a given system
knowing a basis of A. The fact is, that it is extremely unusual to know without any prior
computation a basis of A! The well known method of Gröbner bases is a way to compute
such a basis. It depends on a monomial order γ, which is a total order on the monomials,
compatible with the multiplication and such that 1 is smaller than any other monomial. See
[7] for more details.

As we can see in [11], [15], [17], instead of doing polynomial algebra, we could do linear
algebra, factoring thus many computations. We refer the reader to [11] for an exhaustive
explanation about this topic.

Though they algorithmically solve a lot of problems, Gröbner bases have the very serious
drawback of needing the a-priori introduction of a monomial ordering. The fact that this
introduction is done regardless of the geometry of the problem can, in some circumstances,
lead to artificial unwanted singularities in the representation of A, i.e. structural jumps in
the representation unrelated to geometric changes of the solution set. Let us see it on an
example of two polynomials

f1 = ax2
1 + bx2

2 + n1(x1, x2),
f2 = cx2

1 + dx2
2 + n2(x1, x2),

where a, b, c, d ∈ K, with a d − b c 6= 0 generic coefficients and n1(x1, x2), n2(x1, x2) = 0 are
linear terms.

RR n
�

5471

8 B. Mourrain & Ph. Trébuchet

On this picture we have represented the shape of the Gröbner basis computed without any
perturbation (on the left) and with a small one f1 + ε1x1x2, f2 + ε2x1x2 (on the right).
A structural jump appears in the representation a A. We must also mention that this
structural jump comes together with a huge arithmetic over-cost. It would be unavoidable
if we were at some singularity where the geometry change but as we can see on the picture
and as the theory of resultant shows us, that it is not the case!

The appearing of artificial singularities (due to the algorithm used but not to the geom-
etry of the solutions) can dramatically increase the time and space needed to perform the
computation of the basis of A, hindering thus the solving process by artificial arithmetic
over-costs.

4 Notations

We recall here some of the definitions stated in [21], [22], [23] and add a few more that we
will need in the sequel.

For any subset S of R, we denote by S+ the set S+ = S ∪x1 S ∪ · · · ∪xn S, ∂S = S+\S.
The support supp(p) of a polynomial p ∈ K[x] is the set of the monomials appearing with
non-zero coefficients in p. And for a subset S of another set S ′, we will denote by Sc the
set-theoretical complement of the set S in S ′. Given a set S of elements of K[x], we will
denote by 〈S〉 the K-vector space spanned by the elements of S. Finally, we will denote to
the set of all the monomials in the variables x = (x1, . . . , xn) by M.

Definition 4.1 A set B of monomials is said to be connected to 1 if and only if for every
monomial m in B, there exists a finite sequence of variables (xij

)j∈[1,l] such that

� 1 ∈ B

� Πj=1...l′xij
∈ B, ∀l′ ∈ [1, l] and Πj∈[1,l] xij

= m.

INRIA

Generalised normal forms and polynomial system solving 9

According to this definition, {1, x, x2, x2y} is connected to 1, but {1, x, x2y} is not con-
nected to 1, since x2y is isolated from 1.

Definition 4.2 We say that a set B of monomials is stable by division if for any m ∈ B
and any variable xi such that m = xi m′, we have m′ in B.

Remark that a set B stable by division, is also connected to 1.

Definition 4.3 Let Λ be a monoid with a good total order ≺ on Λ, such that:

∀α, β, γ ∈ Λ, α ≺ β ⇒ γ + α ≺ γ + β

A (Λ,≺)-graduation of K[x] is the decomposition of K[x] as the direct sum:

K[x] =
⊕

λ∈Λ

K[x][λ]

with the following property:

∀f ∈ K[x][α], g ∈ K[x][β],⇒ f.g ∈ K[x][α+β].

We will denote by degree of f or degΛ(f), or deg(f) (when no confusion is possible) or Λ(f),
the following element of Λ:

Λ(f) = degΛ(f) = min{λ ∈ Λ | f ∈
⊕

λ′≺λ

K[x][λ′]}.

We also define
� For any set V ⊂ K[x], Vλ =

⊕
λ′≺λ K[x][λ′] ∩ V .

� For any λ ∈ Λ, λ+ = min{λ′ ∈ Λ; K[x]+λ ⊂ K[x]λ′}.

� For any λ ∈ Λ, λ− = max{λ′ ∈ Λ; K[x]+λ′ ⊂ K[x]λ}.

In order not to be confused between different notions of degree, we introduce the following
definition:

Definition 4.4 Let Λ be a graduation of K[x], and m a monomial, we define the size of m,
denoted by |m|, the integer d such that m = xi1 · · ·xid

.

Obviously, the size of a monomial coincide with its degree when we consider K[x] equipped
with the standard graduation:

deg
N
(xα1

1 · · ·xαn

n) = α1 + · · · + αn.

Then for all d ∈ N, K[x][d] is the set of homogeneous polynomials of degree d in the variables
x1, . . . , xn, d+ = d + 1 and if d > 0, d− = d − 1 otherwise d− = −∞.

Another classical graduation is the one associated with a monomial ordering, where
Λ = Nn and ≺ is a monomial order (see [8][p. 328]) that for all α = (α1, . . . , αn) ∈ Nn, we
have

K[x][α] = K xα1

1 · · ·xαn

n .

RR n
�

5471

10 B. Mourrain & Ph. Trébuchet

Definition 4.5 We say that Λ is a reducing graduation if Λ is a graduation and if moreover,
we have the property: for all monomials m, m′ ∈ M, such that m′ divides strictly m,

Λ(m′) ≺ Λ(m), Λ(m′) 6= Λ(m).

Both graduation induces by the classical degree and a monomial ordering are reducing
graduation.

Hereafter, we will denote by Λ a reducing graduation.

Definition 4.6 A rewriting family F for a monomial set B is a set of polynomials F =
{fi}i∈I such that:

� supp(fi) ⊂ B+,

� fi has exactly one monomial γ(fi) (also called the leading monomial of fi) in ∂B,

� if γ(fi) = γ(fj) then i = j,

Remark that the elements of F can be seen as rewriting rules for the initial monomial using
monomial of B.

Definition 4.7 A reducing family F of degree λ ∈ Λ for a set B is a set of polynomials
such that:

� F is a rewriting family for B,

� ∀m ∈ ∂B of degree at most λ, ∃f ∈ F | γ(f) = m.

Example 4.8 Consider the set B = {1, x0, x1, x0x1}, the set of polynomials F = {x2
0 −

1, x2
1 − x1, x

2
0x1 − x1, x

2
1x0 − x1} is a reducing family of degree 3 for this set.

Notice that a reducing family of degree λ for a set B (connected to 1) allows us to rewrite
the monomials of 〈B+〉λ, modulo F as elements of 〈B〉λ. This leads in fact, to the definition
of the linear projection RF , associated to a reducing family for a set B connected to 1.

Definition 4.9 Given a reducing family of degree λ ∈ Λ for a set B connected to 1, we
define the linear projection RF : 〈B+〉λ → 〈B〉λ such that

∀m ∈ Bλ, RF (m) = m,
∀m ∈ ∂Bλ, RF (m) = m − f ;

where f ∈ F is the unique member of F such as m = γ(f). We extend this construction to
〈B+〉λ by K-linearity.

In the sequel, we will make a heavy use of multiplication operators by one variable that we
define as follows:

INRIA

Generalised normal forms and polynomial system solving 11

Definition 4.10 We define

Mi,λ : 〈B〉λ− → 〈B〉λ

b 7→ RF (xib).

Remark 4.11 As we can see in the definition the subscript λ is more or less redundant as
soon as we know that RF is constructed from a reducing family of degree λ. This is why, up
to a few unavoidable exceptions, we will omit this subscript in the sequel.

Definition 4.12 Let F = {f1, . . . , fs} be a polynomial set, we denote by F〈λ〉 the vector
space:

F〈λ〉 = 〈{xαfi| Λ(xαfi) ≤ λ}〉.

Obviously, we have F〈λ〉 ⊂ (F)λ where (F) is the ideal generated by F .
Next we introduce a definition, which is weakening the notion of monomial ordering for

Gröbner basis:

Definition 4.13 We say that a function, γ : K[x] → M (M is the set of all monomi-
als in the unknowns x1, . . . , xn), is a choice function refining the graduation Λ, if for any
polynomial p, γ(p) is a monomial such that

� γ(p) ∈ supp(p),

� if m ∈ supp(p), m 6= γ(p) then γ(p) does not divide m,

� and Λ(γ(p)) = max{Λ(m), m ∈ supp(p)}.

Example 4.14 In the following, we will consider the so-called Macaulay choice function γ
refining the degree, such that for all p ∈ K[x], γ(p) = xα1

1 · · ·xαn
n satisfies

� degN(γ(p)) = max{degN(m); m ∈ supp(p)} = d,

� ∃i0 st. αi0 = max{degxi
(m), m ∈ supp(p), degN(m) = d; i = 1, . . . , n},

Remark 4.15 The monomial returned by the choice function has the same name as the
leading monomial of an element of a reducing family. This is intended, as we will define a
reducing family on the behalf of choice functions, and in this framework the two will coincide.

Hereafter if S = {p1, . . . , ps} is a polynomial set, then we denote by

γ(S) = {γ(p1) . . . γ(ps)}.

Definition 4.16 Let γ be a choice function refining a graduation Λ. For any polynomials
p1, p2 ∈ K[x], let the C-polynomial relative to γ and (p1, p2) be

C(p1, p2) =
lcm(γ(p1), γ(p2))

γ(p1)
p1 −

lcm(γ(p1), γ(p2))

γ(p2)
p2.

Let the C-degree of (p1, p2) be the degree of (lcm(γ(p1), γ(p2))/γ(p1))p1, and let the leading
monomial of the pair (p1, p2) be lcm(γ(p1), γ(p2)).

RR n
�

5471

12 B. Mourrain & Ph. Trébuchet

Merely, this is the same definition as a S-polynomial [7] when γ is a monomial ordering. We
however need a new name to underline that now γ may not be a monomial ordering (i.e. a
total order compatible with monomial multiplication). As we will see in the next section,
the C-polynomials express commutation conditions for the Mi,λ. Indeed, if up to degree λ
the C-polynomials of a given reducing family of degree at most λ vanish, we will see that
the Mi,λ are pairwise commuting.

5 Generalized normal form criterion

Let F = {f1, . . . , fs} be a polynomial system and let I be the ideal generated by F . Re-
member that F〈λ〉 (the K-vector space spanned by the monomial multiples of the fi, xαfi

of degree ≤ λ ∈ Λ) is included in Iλ. Thus, when Iλ = F〈λ〉 we can define a normal form
modulo I , up to the degree λ as the projection of K[x]λ along F〈λ〉 onto a supplementary
space 〈B〉λ. Hereafter, we consider a set B of monomials, containing 1.

Let F be a rewriting family, and let H be the set of their leading monomials, H =
{m, ∃p ∈ F, γ(p) = m} then, obviously F allows us to define the projection RF of B∪H on
B along 〈F 〉. However we may extend this projection using the following extension process:

Definition 5.1 Let F be a rewriting family, let m be a monomial such that there exists
m′ ∈ ∂B and there exists r integers i1, . . . , ir ∈ [1, n]r, m = xi1 · · ·xir

m′. We define Re
F (m)

by induction on k, as follows.

� if r = 0, Re
F (m′) is defined as Re

F (m′) = RF (m′) = m′ − f where f ∈ F is such that
γ(f) = m′.

� ∀r ≤ k, Re
F (xi1 · · ·xir

m′) = RF (xir
Re

F (xi1 . . . xir−1
m′)), if this latter quantity is de-

fined. Otherwise we say that Re
F (m) is undefined.

Remark that the above process allows us to define Re
F only on monomials, and we extend it

implicitly, by linearity. Remark also that this extension process is not defined in a unique
way. Indeed, two different decompositions of a monomial m may lead to two different
values of Re

F (m). However the following theorem shows that this extension process becomes
canonical as soon as we check some commutativity conditions.

Theorem 5.2 Assume that B is connected to 1. Let F be a rewriting family, and let E
be the set of monomials m such that: for all decomposition of m as a product of variables,
m = xi0 · · ·xik

, then RF (xi0 · · ·RF (xik
)) is defined. Suppose that for all m ∈ E and all

indexes i, j ∈ [1, n] such xixjm ∈ E, we have:

Re
F (xiR

e
F (xjm)) = Re

F (xjR
e
F (xim)).

Then Re
F coincides with the linear projection P of 〈E〉 on 〈B〉 along the vector space

spanned by the polynomials S = {xαf, α ∈ Nn, f ∈ F and xαγ(f) ∈ E}.

INRIA

Generalised normal forms and polynomial system solving 13

Proof. Remark that the way we define it, makes Re
F inherently a linear multivoque appli-

cation. Hence to prove the theorem we have to show first that under the above hypotheses,
Re

F becomes a well defined application, and next that this well defined linear application
coincide with the projection P of 〈E〉 on 〈B〉 along 〈S〉.

Remark also that E is obviously stable by monomial division: if all the possible decom-
positions of m as a product of variables are such that RF (xi0 · · ·RF (xik

)) is defined, then a
fortiori if m′ is a divisor of m, this property is true for m′.

Let us show that the extension process defines a univoque application. Let m = xi0 m′ =
xi1 m′′ with i0 6= i1 and m, m′, m′′ ∈ E, then there exists m′′′ ∈ E (since E is stable by
monomial division) such that m = xi0 xi1m

′′′. As m, m′, m′′, and m′′′ are in E, Re
F (m′),

Re
F (m′′), Re

F (xi0m
′), Re

F (xi1m
′′), and Re

F (m′′′) are defined and we have:

Re
F (xi0 Re

F (m′)) = Re
F (xi0 Re

F (xi1R
e
F (m′′′))),

Re
F (xi1 Re

F (m′′)) = Re
F (xi1 Re

F (xi0R
e
F (m′′′))).

The commutation condition guarantees that the two quantities are equal, so that the defi-
nition of Re

F does not depend on the way to write m as a product of variables.
Next we have to show that Re

F and P coincide on their common set of definition. We do
it by induction on the size of the monomials:

It is true that Re
F (1) = P (1) = 1 (since 1 ∈ B). For any monomial m 6= 1 in E,

the property of connectivity of B and the definition of E gives us: ∃m′ ∈ E and i0 ∈
[1, n] such that m = xi0m

′ and Re
F (m′) is defined, so that we have:

Re
F (m) = Re

F (xi0m
′) =def Re

F (xi0R
e
F (m′)) =induction Re

F (xi0P (m′)) ∈ 〈B〉.

Now by induction, m′ − P (m′) ∈ Sλ− and

m − Re
F (m) = xi0 (m

′ − P (m′)) + (xi0P (m′) − Re
F (xi0P (m′))) ∈ 〈S〉.

Thus Re
F (m) is the projection of m on 〈B〉 along 〈S〉.

2

Suppose now that we are given a reducing family of degree λ instead of a rewriting family.
Then we can further extend the above theorem with the help of the following lemma.

Lemma 5.3 Let F be a reducing family of degree λ for a set B connected to 1, and suppose
that ∀f ∈ F, Λ(γ(f)) = Λ(f). With the notation of theorem 5.2, the set E of monomials
m such that for all decomposition of m as a product of variables, m = xi0 · · ·xik

, then
Re

F (xi0 · · ·R
e
F (xik

)) is defined, contains the set of monomials of degree less or equal to λ.

Proof. Let m ∈ Mλ be a monomial of degree less or equal to λ, then m can be written as
m = xi1 . . . xid

with d = |m|.
Let us prove by induction on k ≤ d, that pk = RF (xik

RF (· · ·RF (xi1)) · · ·) is defined
and that degΛ(pk) ≤ deg(xik

· · ·xi1).

RR n
�

5471

14 B. Mourrain & Ph. Trébuchet

As F is a reducing family of degree λ, for m′ ∈ supp(xik+1
pk)∩ ∂B, we have a rewriting

rule for m′. The hypothesis that ∀f ∈ F, Λ(γ(f)) = Λ(f) implies that m′ rewrites in terms
of monomials of degree bounded by degΛ(xik+1

· · ·xi1). This proves that pk+1 = RF (xik+1
pk)

is defined and that degΛ(pk+1) ≤ degΛ(xik+1
· · ·xi1)

Finally, we deduce that Re
F (xi1 · · ·R

e
F (xid

)) is defined, for any decomposition m =
xi1 · · ·xid

∈ Mλ so that m ∈ E. This ends the proof. 2

Theorem 5.4 Let F be a reducing family of degree λ for a set B connected to 1. If we
have:

� ∀f ∈ F, Λ(γ(f)) = Λ(f).

� Mj,λ ◦ Mi,λ− = Mi,λ ◦ Mj,λ− , for 1 ≤ i, j ≤ n,

then, we can extend RF to a linear projection Re
F from K[x]λ onto 〈B〉λ of kernel F〈λ〉.

Proof. As F is a reducing family of degree λ, by lemma 5.3, we have E ⊃ Mλ.
Let us prove that for all m ∈ Mλ−− and all pair of indexes (i, j), there exists a way to

define Re
F such that:

Re
F (xi Re

F (xjm)) = Re
F (xj Re

F (xim)).

As Mλ−− ⊂ Mλ ⊂ E, Re
F (m) is defined so that supp(Re

F (m)) ⊂ B.
We define Re

F (xim) = RF (xiR
e
F (m)) and Re

F (xjm) = RF (xjR
e
F (m)).

With this definition we have:

Re
F (xiR

e
F (xjm)) = Mi,λ(Mj,λ−(Re

F (m))) = Mj,λ(Mi,λ−(Re
F (m))) = Re

F (xjR
e
F (xim)).

which proves the commutation property. We end the proof by applying theorem 5.2. 2

We directly deduce from the preceding result, the following property:

Corrolary 5.5 With the hypothesis of theorem 5.4, we have K[x]λ = 〈B〉λ ⊕ F〈λ〉.

Let us give here an even more effective way to check that we have a projection from F〈λ〉

(vector space spanned by the monomial multiples of the fi of degree λ) onto 〈B〉λ (element
of degree λ of the vector space spanned by B) starting from a reducing family of degree λ,
without computing explicitly the multiplication operators.

Theorem 5.6 Let λ ∈ Λ. Let F be a reducing family of degree λ, for B. Assume that
∀ f ∈ F, Λ(γ(f)) = Λ(f) and let RF be the induced reduction from 〈B+〉λ onto 〈B〉λ. Then
∀f, f ′ ∈ F〈λ〉 such that C(f, f ′) ∈ 〈B+〉λ,

RF (C(f, f ′)) = 0

iff RF extends uniquely as a projection Re
F from K[x]λ onto 〈B〉λ such that ker(Re

F) = F〈λ〉.

INRIA

Generalised normal forms and polynomial system solving 15

Proof. By theorem 5.4, we have to show that this condition is equivalent to the commutation
of the operators Mi,λ′ , λ′ < λ on the monomials of Bλ−− .

For any m ∈ Bλ−− and any i1 6= i2 such that xi1 m ∈ ∂B, xi2 m ∈ ∂B, there exists
f, f ′ ∈ F〈λ−〉 such that γ(f) = xi1 m, γ(f ′) = xi2 m. Thus, we have RF (xi1 m) = γ(f) − f ,

RF (xi2 m) = γ(f ′) − f ′ and C(f, f ′) = xi2 f − xi1 f ′ ∈ 〈B〉+λ . Consequently,

Mi2,λ(Mi1,λ−(m)) − Mi1,λ(Mi2,λ−(m))

= Mi1,λ(γ(f) − f) − Mi2,λ(γ(f ′) − f)

= RF (xi1γ(f) − xi1f) − RF (xi2γ(f ′) − xi2f
′)

= RF (xi2f
′ − xi1f) = RF (C(f ′, f)).

which is zero by hypothesis. A similar proof applies if xi1 m ∈ B or xi2 m ∈ B.
Conversely, since ker(Re

F) = F〈λ〉 and C(f, f ′) ∈ F〈λ〉 ∩ 〈B〉+λ , we have RF (C(f ′, f)) =
Re

F (C(f ′, f)) = 0, which proves the equivalence and theorem 5.6. 2

Remark 5.7 In the proof, we have shown that if the C-polynomials up to the degree λ reduce
to 0, then the multiplication operators Mi,λ commute.

Finally, this leads to a new proof of theorem 3.1 of [21]:

Theorem 5.8 Let F be a reducing family of all degrees λ ∈ Λ for a set B of monomials,
connected to 1, let RF be the corresponding reduction from 〈B+〉 onto 〈B〉, and let Mi :
〈B〉 → 〈B〉 such that ∀ b ∈ 〈B〉, Mi(b) = RF (xi b). Then,

Mj ◦ Mi = Mi ◦ Mj , for 1 ≤ i, j ≤ n

iff there exist a unique projection R which extends uniquely to a linear projection Re
F from

K[x] onto 〈B〉 such that ker(Re
F) = (F) and (Re

F)|〈B+〉 = RF .

Proof. Under these hypotheses, by theorem 5.4, for any λ ∈ Λ, (RF)|〈B+〉λ
extends uniquely

to a projection Re
Fλ

from K[x]λ onto 〈B〉λ, such that ker(Re
Fλ

) = F〈λ〉. Since for any λ, λ′ ∈ Λ
such that λ < λ′, we have (Bλ′)λ = Bλ, and F〈λ〉 ⊂ (F〈λ′〉)λ. We also have F〈λ〉 = (F〈λ′〉)λ

so that (Re
Fλ′

)|K[x]λ = Re
Fλ

. This defines a unique linear operator Re
F on K[x] such that

Re
|K[x]λ

= Re
Fλ

and ker(Re
F) =

∑
λ∈Λ F〈λ〉 = (F). It proves the direct implication. The

converse implication is immediate. 2

6 The algorithm

The algorithm, that we describe now, consists in computing a suitable set B for a basis of
the quotient ring A = K[x]/I and reducing rules, in order to project onto 〈B〉 along I . It
can be interpreted as the check that the constructed B is a basis of A. The method proceeds
incrementally, until a fixed point is reached.

Here are some notations, used in the description of the algorithm:

RR n
�

5471

16 B. Mourrain & Ph. Trébuchet

� k will be the loop index at which we will consider the families of polynomials.

� Pk will be the set of polynomials, from which a reducing family will be constructed.

� Mk = γ(Pk) will be the set of monomials, used as the leading terms of the family Pk.

� (Pk |Mk) will be the matrix of coefficients of the monomials of Mk in the polynomials
of Pk, written row by row.

� X:=PseudoSolve(A,B) is the multiplication by a pseudo inverse (if it exists) so that
A X = B.

� The function SelectMinDegγ applied to a polynomial set S is a function that imple-
ments to following algorithm:

– Set d = min(Λ(g), g ∈ S)

– Construct the list S′ = {f ∈ S, Λ(f) = d}

– for f ∈ S′ do
� apply γ on f to get a monomial m.
� Perform linear combinations between the elements of S ′ to eliminate m of

the support of the other elements of S ′.
� if those linear combinations produce polynomials of degree less than d return

selectMinDegγ applied to S′

– if no decreasing of the degree of the members of S ′ occurs, return S′ together
with the monomial set γ(S ′) constructed during the for loop.

� By Increment B, we mean adding to B the monomials corresponding to the zero
columns in the matrix (Pk|Mk).

� By monomials at Hamming distance 1 of B, we mean the monomials that we obtain
from the monomials of B by writing them as a product of variables and changing
exactly one index in this writing.

� By neighbors of the monomials added to B, we mean the polynomials whose leading
term is at Hamming distance 1 of the set added to B by Increment .

Notice that solving a system of the form (Pk |Mk)X = Pk is equivalent (when (Pk|Mk) is
invertible) to computing a vector of polynomials, with one “leading monomial” in Mk and
all the other outside.

We also need the following subroutines:

Algorithm 6.1 Remainder. Let p be a polynomial, and F a family of valid rewriting rules
with respect to B. Let r := rem(p, F, B) be a polynomial such that supp(r) ∩ γ(F) = ∅ and
r ∈ 〈p, F 〉.

INRIA

Generalised normal forms and polynomial system solving 17

Algorithm 6.2 Reduction. Reduce(P, F, B) reduces the set of polynomials P by F a
family of valid rewriting rules with respect to B. It works like this:
For all p ∈ P , for all m ∈ supp(p), if m /∈ B do the following:

1) r0 := 1;

2) decompose m into a product of variables m = xi1 . . . xid
;

3) for j from 1 to d = |m| do

a) rj = xij
∗ rj−1,

b) rj = rem(rj , F, B),

end for

4) substitute m by rd in p;

Remark 6.3 It is very important to notice here that the definition of Reduce is not canon-
ical but depends on some particular choice of a writing of the monomials as products of
variables.

Let us describe now the main algorithm:

Algorithm 6.4 Normal form.

Input: F = f1, . . . , fs generating an ideal I of dimension 0, and γ a choice function
refining a reducing graduation Λ.
Initialization:

P0 = SelectMinDegγ(f1, . . . , fs), poolpol = {f1 . . . fs}\P0, B = (γ(fi))
c,

k = 1.
Core Loop: do

1) Contk = {p, polynomials in poolpol s.t. supp(p) ⊂ B}.

2) For p ∈ Contk, remove from B the monomial ideal generated by γ(p).

3) Pk = { the valid rewriting rules in poolpol }\Pk−1.

4) Compute Ck+1 = {C(f, f ′) such that γ(C(f, f ′)) = xi0γ(f) = xi1γ(f ′), f, f ′ ∈ Pk},
poolpol = poolpol ∪ Ck+1.

5) Compute Pk+1 = ∂Pk ∩ B+.

6) Mk+1 = ∂γ(Pk) ∩ B+.

7) Pk+1 := PseudoSolve ((Pk+1|Mk+1), Pk+1).

8) Ck+1 := Reduce(Ck+1,∪i≤k+1Pj , B) and set poolpol = poolpol ∪ Ck+1.

RR n
�

5471

18 B. Mourrain & Ph. Trébuchet

9) r = #Mk+1 − Rank((Pk+1|Mk+1)), if r 6= 0 increment B and add to Pk+1 the neighbor
of the monomials B is incremented with.

10) poolpol = poolpol ∪ Pk+1.

11) For all i ∈ [1, k + 1], Pi = {the reduced polynomials in Pi}.

12) poolpol = Reduce(poolpol,
⋃

i=1..k+1 Pi, B); k = k + 1.

while poolpol 6= ∅;
Output: {Pj , j = 0 . . . k} a reducing family for all k ∈ N

Let us actually see how this algorithm works on an example:

Example 6.5 Let the input system be F = {x2 + yx, y2 + xy, x4 − 1}, and let γ be
a Macaulay-like choice function, i.e. choosing monomial with highest partial degree. The
reducing graduation refined being here just the classical one.

After the initialization k = 0, P0 = {x2 + xy, y2 + xy}, M0 = {x2, y2} and B is just
{1, x, y, xy}. We have omitted from P0 the polynomial x4 − 1 because it is not reduced.
Graphically the situation is:

x

y

Next we perform the + operation and obtain the matrix (P1|M1) =

(
1, 1
1, 1

)
, matrix which

is rank deficient, we have r 6= 0. Consequently we increment B: we add to B the monomial
xy2, and we add the neighbors, namely xy2 + y3 to P1.

INRIA

Generalised normal forms and polynomial system solving 19

x

y

We undertake here the second turn is the Core loop. As x4−1 is still non-reduced, we do not
add it to P1. Next we perform another + operation, on P1. The same situation as previously
occurs (indeed we are just considering the preceding system times y). We increment B by
xy3 and add to P2 the polynomial xy3 + y4.

x

y

We undertake here the third turn is the Core loop. This time x4 − 1 is reduced and is a
member of Cont2, we apply γ to it and exclude from B the monomial ideal xy3. P2 is then
composed of 3 polynomials: x2y2 + xy3, y4 + xy3, xy3 − 1. Their is then two polynomials in

RR n
�

5471

20 B. Mourrain & Ph. Trébuchet

C3: x2y3 −x and xy4 − y. However P3 is empty, since no multiple of the polynomials of P2

by a variable stay in B+. Applying Reduce to poolpol makes x − y appear.
The next steps are only a repetition of what we explained earlier and finally lead to the

basis: y4, x. Our reducing family is thus: {y4−1,x−y}, and with it we can compute normal
forms for any polynomials of K[x].

Definition 6.6 For k ∈ N, we will denote by Bk the set B computed at loop k of the
algorithm 6.4, and by F k = ∪k

i=0Pi.

Definition 6.7 In this section, we will denote by Rk the operator such that, given p ∈ K[x],
Rk(p) returns Reduce(p, F k, Bk).

Definition 6.8 We say that a polynomial f ∈ K[x] is reducible at loop k, if Rk(f) ∈ 〈Bk〉.
The polynomial f is reduced at loop k, if f ∈ 〈Bk〉.

Let us also mention now some useful facts:

Remark 6.9

1. During the algorithm 6.4, at loop k, ∀f ∈ F k, γ(f) ∈ ∂Bk, since the polynomials in
Pi are reduced (step 12).

2. In the algorithm 6.4 (step 9 and definition of the function increment), B is constructed
as

B = ∪i ∪f∈Fi
{(mi)\(γ(f))}, (1)

where mi ∈ M .

3. At step 9, the monomials added to B, are by construction, in Mk+1.

4. For all monomial m 6∈ B, there exists a monomial m′ also in ∂B such that m′|m and
m′ is the leading monomial of a polynomial of F k. This comes from the fact that B
is of the form (1).

We will now prove that the previous algorithm stops and produces a correct result, i.e.
a reducing family for all degrees. To do so, we need the following lemmas and proposition.

Lemma 6.10 If m is a monomial, and r = Rk(m) for some index k ∈ N, then ∀m′ ∈
supp(r), Λ(m′) ≤ Λ(m).

Proof. This comes from the definition of Rk (see algorithm 6.2): given a monomial m, it
computes a list of variables whose product equals m, it adds to a variable r, which initially
equals to 1, linear combination of polynomials belonging to F k, and multiply the resulting
polynomial by one variable of the list, and so on until the list is exhausted. Since Λ is a
graduation, we have with the notation of algorithm 6.2, Λ(rj) ≤ Λ(xi1 · · ·xij

) for all loop j
of the reduction algorithm, so that ∀m′ ∈ supp(rj), Λ(m′) ≤ Λ(m). 2

INRIA

Generalised normal forms and polynomial system solving 21

Lemma 6.11 For all d ∈ N, there exist finitely many Pk containing polynomials whose
leading monomials are of size less than d.

Proof. Remark that if a set Pk contains a polynomial whose leading monomial is of size
0, then the algorithm stops as we know that this ideal I is in fact K[x]: any non constant
monomial is strictly greater than 1 for any choice function, so having 1 as leading monomial
means that the polynomial itself is 1.

Next, remark that Pk contains a polynomial whose leading monomial is of size d, if and
only if we have excluded from B a monomial of size d.

Finally remark that the monomials added to B at loop k, are in Mk+1 ⊂ ∂Mk.
The lemma is true for d = 0. Assume that it is true for d − 1, and let k0 be the last

index such that Pk0
contains a polynomial whose leading monomial is of size d − 1.

Thus, after loop k0 no monomial of size d can be added to B. Hence, since the Pk are
auto-reduced there will be at most as many Pk, k ≥ k0 containing polynomial with leading
monomials of size d, as there are monomials of size d, due to the second remark.

This proves the result by induction. 2

Definition 6.12 Given a size d, we will call ld the lowest integer such that after loop ld no
Pk, k ≥ d contain polynomials whose leading monomials is of size less than d.

Notice here that at step 12, some polynomials f ∈ poolpol may not be reducible (see
definition 6.8), depending on the shape of B and supp(f). However, we have the following
property:

Proposition 6.13 Given f ∈ K[x] there exists k such that f is reducible by applying Rk

and such that ∀m ∈ supp(Rk(f)), k ≥ l|m|.

Proof. We split supp(f) into l sets Λ0,. . . ,Λl such that

Λi = {m ∈ supp(f)\ ∪i−1
j=0 Λj , Λ(m) = min(Λ(m′), m′ ∈ supp(f)\ ∪i−1

j=0 Λj)}.

We will show that there exists a certain loop k at which all the monomials of all the sets Λi

are simultaneously reducible.
We consider here the set S0 = Λ0, and define k0 = l|f |. For all m ∈ Λ0, consider the

computation of Rk0(m) = Reduce(m, F k0 , Bk0) described in definition 6.2. We denote by
r1, . . . , rd the sequence of remainders which are computed at loops (b).

� Either, for all i = 1 . . . d, we have

supp(ri) ⊂ Bk1 ,

where k1 = max(l|rj | j=1..d, k0). We have that rd ∈ Bk1 and that k1 ≥ l|rd|, therefore
implying that m is reducible at loop k1 and that for all k ≥ k1, m is also reducible at
loop k with the property that Rk(m) = rd.

RR n
�

5471

22 B. Mourrain & Ph. Trébuchet

� Or, there exists m ∈ Λ0 and i0 < d such that supp(ri) ⊂ Bmaxj≤i(l|rj |,k0), but not
supp(ri0+1). Let k1 = max(l|rj | j = 1..i0, k0).

Then for m′ ∈ supp(ri0)\B
k1 , we have, by lemma 6.10:

Λ(m′) ≤ Λ(xi1 · · ·xi0) < Λ(xi1 · · ·xid
) = Λ(m),

since Λ is a reducing graduation (see definition 4.5). This implies that m′ /∈ (m).

Now let S1 = S0 ∪{m′ ∈ supp(ri0)\B
k1 , Λ(m′) minimal}. The above construction of

m′ implies that S0 ⊂ S1 and, that S0 6= S1.

We iterate this construction, replacing S0 with S1, S2 with S1, Since K[x] is
Noetherian, the sequence of Si is finite.

Consequently, we have proved that in both cases, there exists an index k′
0 such that all the

monomials of Λ0 are reducible after loop k′
0.

Let red(Λ0) be the set of all these reductions, so that k′
0 satisfies the property k′

0 ≥
lmax(|r|, r∈red(Λ0)).

Consider the next sets Λi. By the same process, there exists an index ki such that all the
monomials of Λi are reducible after loop ki. Let red(Λi) be the set of all these reductions,
so that k1 also satisfies the property ki ≥ lmax(|r|, r∈red(Λi)).

Hence, for k ≥ max(ki) we have that all the monomials of all the sets Λi are simultane-
ously reducible, i.e. f is reducible at loop k with the property that ∀m ∈ supp(Rk(f)), k ≥
l|m|. 2

Corrolary 6.14 Let d ∈ N, there exists an index kd such that:

� For all m of size at most d, supp(Rkd(m)) ⊂ Bkd .

� and for all m of size at most d, all m′ ∈ supp(Rkd(m)) of size d′, k ≥ ld′ .

Proof. This is a trivial application of the above proposition. Let m be a monomial of size
at most d, and let km be the index exhibited above. Then defining kd = max(km, |m| ≤ d),
we obtain the result. 2

Remember now that for any k ∈ N, the definition of Rk(m) relies on some particular
choices for the writing of m as a product of variables. As there is only finitely many
monomials of size less than d and as for a given monomial, there exists only finitely many
ways to write it as a product of variables. Thus, we can define the following quantity:

Definition 6.15 For any d ∈ N, we define k∗
d as the maximum of the index kd for all the

possible definitions of Rk(m).

Lemma 6.16 Let m be a monomial, and fi be one of the generators of I then there exists
a loop index k of the algorithm such that mfi reduces to 0.

INRIA

Generalised normal forms and polynomial system solving 23

Proof. From the above lemma there exists a loop k of the algorithm such that mfi is
reducible at loop k. Let us prove now that when mfi is reducible it reduces to 0. It is true
that fi reduces to 0. Suppose that for all m′ of size d−1 m′fi reduces 0 at a loop k1, and let
xj be a variable. By definition of Rk1

(xjm
′fi) = Rk1

(xjRk1
(m′fi)) = Rk1

(xj0) = 0. Hence
this induction on the size of m shows that if mfi is reducible then it reduces to 0. This ends
the proof. 2

Lemma 6.17 For any d ∈ N, at loop ld, F ld is reducing family with respect to Bld , for the
set of monomials of size ≤ d.

Proof. We need to prove that ∀m ∈ ∂Bld of size ≤ d, there exists one polynomial p ∈ F ld

such that m = γ(p).
By remark 6.9, as m ∈ ∂Bld , there exists p1 ∈ F ld such that m = xi1 · · ·xil

γ(p1) and
∀l′ ≤ l, xi1 · · ·xil′

γ(p1) ∈ ∂Bld . Let k be the smallest integer for which there exists such a
p1 ∈ F k. By lemma 6.16, xi1p1 will be reducible at loop k1 ≥ k, but as xi1p1 is computed
from p1 at step 5, there exists a polynomial p2 ∈ F k such that γ(p2) = xi1γ(p1).

With the same arguments, for j ≤ l, there exist kj ∈ N and a polynomial pj ∈ F kj such
that γ(pj) = xi1 · · ·xij

γ(p). Hence there exists a polynomial p ∈ F kl such that γ(p) = m.
However as γ(p) is of size d, we have by definition of ld, kl ≤ ld and p ∈ F ld .

This proves that F ld is a reducing family with respect to Bld , for the monomials of size
≤ d. 2

Proposition 6.18 Assume that the ideal I generated by the elements f1, . . . , fm is zero-
dimensional. Then the algorithm 6.4 stops and yields a basis B of A = R/I and a normal
form R onto 〈B〉, modulo I.

Proof. Let us first prove that B is connected to 1 at each loop of the algorithm. To
check this, remark that if B is connected to 1, it remains so when we increment it (step 9).
Indeed a monomial added to B is in B+. Moreover if B is connected to 1, and if we remove
from B some monomial ideals in the step 2, B remains so. Finally, as B is connected to 1
at the beginning of the algorithm, it remains so all along the computation, accordingly to
the above statement.

We show now that the algorithm stops. To do this we prove that at some loop k, we
have computed a representation of the quotient algebra for the monomials of size d.

Let d1 be the maximal size of a monomial appearing in Rk∗
d(m) for all m of size at most

d.
Remark that step 8 and lemma 6.12 guaranty that all the C-polynomials whose C-leading

term is of size less than d1 will simultaneously reduce to 0 for all the possible definitions of
Rk at k ≤ k∗

d1
(see definition 6.15).

Hence, for any definition of Rk1 , any monomial m of size less than d − 2, and any
variables xi, xj Rk1(xjR

k1(xim)) = Rk1(xiR
k1(xjm)). Hence, by theorem 5.2, we deduce

the following points:

RR n
�

5471

24 B. Mourrain & Ph. Trébuchet

� we can extend the projection of ∂Bk1 (restricted to monomials of size less than d) on
Bk1 along 〈F k1 〉 to the projection of the vector space spanned by the monomials of
size less than d on Bk1 along 〈F k1〉.

� this extension coincide with Rk1 on their common set of definition.

Now as I is zero dimensional, R/I is a K-vector space of finite dimension d0. Suppose
the algorithm does not stop before the loop ld0+1. Then in Bld0+1 there is at least d0 + 1
monomials of size less than d0 + 1 since Bld0+1 is connected to 1. Hence as dim(R/I) = d0

there is a linear dependence relation between these monomials in R/I . In other words
there is a nonzero polynomial p = Σi=1..sqifi ∈ I whose support is in Bld0+1 and does not
involve monomials of size greater than d0 + 1. Let d be the greatest size of the monomials
appearing in supp(qifi). The above paragraph shows that there exists an index k such that
Rk coincide with the projection from the vector space spanned by the monomials of size
less or equal to d to Bk along 〈F k〉. Hence as all of the qifi reduce to 0 by Rk and as Rk

coincide with the projection on the vector space spanned by the monomials of size less than
d, p will eventually reduce to 0. This means that there will be a polynomial of one of the
Pl, l ≥ ld0+1 whose leading monomial is one of the monomials of p, this contradicts the fact

that supp(p) ⊂ B
ld0+1

d0+1 . Therefore, the algorithm cannot go beyond loop ld0+1.

Remark now that at the loop k0 where the algorithm stops F k0 is a reducing family of all
degree λ ∈ Λ for the set Bk0 satisfying the property that ∀p ∈ F k0 , γ(p) = max{γ(m), m ∈
supp(p)} as γ refines the reducing graduation Λ.

By step 8 (the C-polynomials reduce to 0) remark 5.7, and by theorem 5.4, we can extend
Rk0 to the projection R∗

Fλ
for all λ ∈ Λ and thus to the projection R∗ of K[x] onto B along

I such that R∗
|B+ = RF∗

. 2

We must notice that there is far too many polynomials computed at each loop, more
precisely:

Remark 6.19 If, up to loop k, the C-polynomials reduce to zero, then to compute the
polynomials in Pk from those in Pk−1, we only need to compute one polynomial per monomial
introduced in Mk (for each monomial m in Mk, one polynomial whose leading monomial is
m) since two polynomials of Pk with the same leading term could be combined to form a
C-polynomial.

Thus the algorithm can be modified to take into account this remark: the construction
of Pk+1 will involve only polynomials with distinct leading terms.

We can also notice that only a small fraction of the computed C-polynomials are actually
needed, namely those whose leading monomial is minimal for the division.

We can now examine what happen in the important case where γ is a monomial ordering:

Proposition 6.20 Assume that γ is a monomial order, then at every loop k of modified
algorithm, the matrix (Pk+1|Mk+1) is of full rank.

INRIA

Generalised normal forms and polynomial system solving 25

Proof. Due to the modification (remark 6.19) we are in the case where only one polynomial
of Pk+1 per monomial of Mk+1 is computed.

We order the monomials of Mk+1 with respect to the total order γ, and the polynomials
in Pk+1 according to their leading terms.

Since for all p ∈ Pk+1 and m ∈ supp(p), γ(p) > m, and as the polynomials of Pk+1 have
distinct leading terms, the matrix (Pk+1|Mk+1) is triangular. 2

7 Experimentations

Unless otherwise stated, the computations are performed on an athlon 2400+ with 256Mo
of main memory. We expose here the results obtained with our implementation of the
particular case where the graduation we use for K[x] is the usual one. In the sequel, dlex
will refer to the choice function associated to the Degree lexicographical order, dinvlex to the
degree inverse lexicographical order, random to the choice function that returns randomly
any of the monomials of maximum degree of the polynomial given as its input, mac to the
choice function that returns the monomial of maximal degree with highest partial degree
(Macaulay’s choice function), minsz to the choice function over the rational that minimize
the memory needed in the reduction loop, and mix to the choice function that return either
the result of minsz applied to its input, or the result of dlex applied to its input.

7.1 Generic equations

We examine here the behavior of the method on the Katsura equations1. These equations
are projective complete intersection with no zero at infinity, i.e. we can apply the Macaulay
revisited techniques of [22]. We can compare the timings between the former implementation
[22] and the present program, the comparison being pertinent since the objects computed
are the same. To do so, we use long double for the arithmetic type. As we know a priori
what monomials will be leading monomials for the whole computation we can guarantee
that no test to 0 return erroneous result.

number of variables Athlon 2400+ UltraSparc 10
4 0.0s 3M 0.02 2M
5 0.02s 3M 0.08s 2M
6 0.09s 3M 0.24s 2.3M
7 0.42s 4.5M 0.95s 3.6M

Those timings compare favorably with those given in [22]. Now we compare the timings
when we take other choice functions (the computation is now performed using modular
arithmetic).

1http://www-sop.inria.fr/galaad/data/

RR n
�

5471

26 B. Mourrain & Ph. Trébuchet

n mac random dlex

6 0.14s 0.18s 0.13s

7 0.69s 1.21s 0.76s

10 95.16s 3219.85s 300.15s

11 662.23s ∞ 2162.78s

This table shows how bad it can be choosing the wrong monomial, and how interesting
it is to know which one to choose. Numerically we observe that choosing the mac function
also results in a better conditioning of the computations. More precisely on Katsura(6) we
have.

choice function number of bits time max(||fi||∞)
dlex 128 1.48s 10−28

dinvlex 128 4.35s 10−24

mac 128 1s 10−30

dlex 80 1.35s 10−20

dinvlex 80 3.98s 10−15

mac 80 0.95s 10−19

dlex 64 −
dinvlex 64 −

mac 64 0.9s 10−11

For the 64 bits computation the results computed for the dlex and dinvlex orders are erro-
neous due to roundoff errors.

The time given is the time spent in the computation of the multiplication matrices.
Afterward, we used either LAPACK to perform the eigenvector computations or Maple
when we needed extended precision. Because of the different nature of these tools, we do
not report on the solving part timing.

Finally we show here the amount of memory needed to perform the computations over
Q, using GMP mpq.

mac minsz dlex mix
time 4.50s 10.21s 7.39s 9.83s
size 4.2M 4.1M 4.4M 4.1M

7.2 Parallel robot

Let us consider the famous direct kinematic problem of the parallel robot [16], [19]. We will
consider as a test system, the system given on the web page http://www-sop.inria.fr/galaad/data/.
First we use floating point numbers to check to numerical requirements of the computations
for different orders. For testing a number to be 0, we will use a leveling (here 10−8 is enough)
and we will check afterward that the choices performed are the same as those done using
modular arithmetic. This is equivalent to the use an hybrid arithmetic.

INRIA

Generalised normal forms and polynomial system solving 27

choice function number of bits time max(||fi||∞)
dlex 128 9.13s 0.3 ∗ 10−24

dinvlex 128 11.1s 0.3 ∗ 10−23

mac 128 9.80s 0.1 ∗ 10−24

dlex 250 11.16s 0.42 ∗ 10−63

dinvlex 250 13.8s 0.135 ∗ 10−60

mac 250 11.62s 0.46 ∗ 10−63

Here we see that choosing the right choice function can increase (but not so much in this
case) the numerical accuracy of the roots. We mention here that when using 80 bits of
precision, only Macaulay’s order gives a correct result, but not the other choice functions.

number of bits time max(||fi||∞)
80 9.80s 10−6

128 9.80s 10−24

250 11.62s 10−63

500 19s 10−140

Finally, we performed tests using rational coefficients.

mac minsz dlex mix
time 327s 378.73s 367.65s 508.50
size 20M 20M 30M 25M

In fact, it is not so surprising to see that the choice function γ has an enormous impact
in terms of the computational time and of the memory required. We also mention here
that over constraining the system can result in dramatic decrease of the computation time.
Indeed expressing more constraints on the rotation than necessary gives additional quadratic
equations that simplifies lot the computations here are the results we obtain with such a
redundant parametrization:

arithmetic time memory
250 bits 1.5s 8M
128 bits 1.2s 6M

7.3 Cyclic equations

The two previous sections seems to show that in all the cases it is advantageous to consider
a Macaulay like strategy. We should moderate this assertion as the Cyclic(n)2 family shows.

n dinvlex time dlex time mac time
5 0.12s 0.17s 0.23s
6 1.45s 0.92s 6.27s
7 365.99s 170.3s 1356.11s

Needless to say that the size of the output also vary a lot with those choices functions.

2http://www-sop.inria.fr/galaad/data/

RR n
�

5471

28 B. Mourrain & Ph. Trébuchet

7.4 Chromatography

We have also tested our implementation on centrifugal partition chromatography problems
[24]. We refer to [24] or [30] for a detailed exposition of the equation arising and give our
results:

Arithmetic Time Memory max(|fi(ζj |))
double 0.01s 1M error
128 bit 0.04s 1M 10−12

Q 0.13s 2M 10−12

The conclusion of those experiences is that the numerical accuracy of the results is more
limited by the numerical step following the normal forms computation than by the normal
forms computations themselves.

8 Conclusion and future work

The method described above opens new possibilities for computing normal forms, and con-
sequently, for solving polynomial systems. Its force resides in the fact that the choices in
the normal form algorithm are less constrained than in the previously known methods. But
some work remains:

� the algorithm is guaranteed to stop only when the ideal I is zero dimensional. How
can we modify the stop test in the Core While to detect positive dimensional ideals
and how can we build N in that case?

� The fact that we have to reduce poolpol in the algorithm should be computationally
expensive.

� An efficient implementation of the general method is developed as an evolution of the
one described in [23]. It is available in the synaps library3

References

[1] M.E. Alonso, E. Becker, M.F. Roy, and T. Wörmann. Zeros, multiplicities and idem-
potents for zero dimensional systems. In L. González-Vega and T. Recio, editors, Al-
gorithms in Algebraic Geometry and Applications, volume 143 of Prog. in Math., pages
1–15. Birkhäuser, Basel, 1996.

[2] W. Auzinger and H. J. Stetter. An elimination algorithm for the computation of all zeros
of a system of multivariate polynomial equations. In Proc. Intern. Conf. on Numerical
Math., volume 86 of Int. Series of Numerical Math, pages 12–30. Birkhäuser Verlag,
1988.

3http://www-sop.inria.fr/galaad/synaps/

INRIA

Generalised normal forms and polynomial system solving 29

[3] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real ALgebrac Geometry. Springer,
2003.

[4] L. Busé, M. Elkadi, and B. Mourrain. Using projection operators in computer aided
geometric design. In Topics in Algebraic Geometry and Geometric Modeling,, pages
321–342. Contemporary Mathematics, 2003.

[5] R.M. Corless, P.M. Gianni, and B.M. Trager. A reordered Schur factorization method
for zero-dimensional polynomial systems with multiple roots. In W.W. Küchlin, editor,
Porc. ISSAC, pages 133–140, 1997.

[6] S. Corvez and F. Rouillier. Using computer algebra tools to classify serial manipulators.
In F. Winkler, editor, Automated Deduction in Geometry, volume 2930 of Lecture Notes
in Artificial Intelligence, pages 31–43. Springer, 2003.

[7] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts
in Mathematics. Springer Verlag, New York, 1992.

[8] D. Eisenbud. Commutative Algebra with a view toward Algebraic Geometry, volume
150 of Graduate Texts in Math. Berlin, Springer-Verlag, 1994.

[9] M. Elkadi and B. Mourrain. Introduction à la résolution des systèmes d’équations
algébriques, 2003. Notes de cours, Univ. de Nice (310 p.).

[10] I.Z. Emiris and B. Mourrain. Matrices in Elimination Theory. J. of Symbolic Compu-
tation, 28(1&2):3–44, 1999.

[11] J.-C. Faugère, 1994. Personal Communication.

[12] Marc Giusti, Grégoire Lecerf, and Bruno Salvy. A Gröbner free alternative for polyno-
mial system solving. Journal of Complexity, 17(1):154–211, 2001.

[13] L. Gonzalez-Vega, F. Rouillier, and M.F. Roy. Symbolic Recipes for Polynomial System
Solving. Some Tapas of Computer Algebra. Springer, 1997.

[14] O. Grellier, P. Comon, B. Mourrain, and Ph. Trébuchet. Analytical blind channel
identification. IEEE Trans. on Signal Processing, 50(9):2196–2207, 2002.

[15] D. Lazard. Grœbner basis, Gaussian elimination and resolution of algebraic equations.
Lec. Notes in Comp. Sci., 162, 1983.

[16] D. Lazard. Stewart platforms and gröbner bases. In ARK’92, Proceedings of Advance
in Robot Kinematik, Ferrare, Italia, September 1992.

[17] H. Lombardi. Un nouvel algorithme de calcul de base de gröbner, 1998. Rapport tech.
Université Franche Comté.

RR n
�

5471

30 B. Mourrain & Ph. Trébuchet

[18] F.S. Macaulay. Some formulae in elimination. Proc. London Math. Soc., 1(33):3–27,
1902.

[19] B. Mourrain. The 40 generic positions of a parallel robot. In M. Bronstein, editor,
Proc. Intern. Symp. on Symbolic and Algebraic Computation, ACM press, pages 173–
182, Kiev (Ukraine), July 1993.

[20] B. Mourrain. Computing isolated polynomial roots by matrix methods. J. of Symbolic
Computation, Special Issue on Symbolic-Numeric Algebra for Polynomials, 26(6):715–
738, Dec. 1998.

[21] B. Mourrain. A new criterion for normal form algorithms. In M. Fossorier, H. Imai,
Shu Lin, and A. Poli, editors, Proc. AAECC, volume 1719 of LNCS, pages 430–443.
Springer, Berlin, 1999.

[22] B. Mourrain and Ph. Trébuchet. Solving projective complete intersection faster. In
C. Traverso, editor, Proc. Intern. Symp. on Symbolic and Algebraic Computation, pages
231–238. New-York, ACM Press., 2000.

[23] B. Mourrain and Ph. Trébuchet. Algebraic methods for numerical solving. In Proc.
of the 3rd International Workshop on Symbolic and Numeric Algorithms for Scientific
Computing’01 (Timisoara, Romania), pages 42–57, 2002.

[24] J. M. Nuzillard, J. H. Renault, M. Maciuk, M. Zeches-Hanrot, R. Margraff, and
P .Trébuchet. Benzalkonium chloride as a strong anion exchanger in centrifugal parti-
tion chromatography. In Pitcom, 2002.

[25] M. P. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided Design
and Manufacturing. Springer Verlag, 2002.

[26] F. Rouillier. Algorithmes efficaces pour l’étude des zéros réels des systèmes polynomiaux.
PhD thesis, Université de Rennes, 1996.

[27] M.F. Roy. Basic algorithms in real algebraic geometry: from Sturm theorem to the exis-
tential theory of reals. In Lectures on Real Geometry in memoriam of Mario Raimondo,
volume 23 of Exposition in Mathematics, pages 1–67, 1996.

[28] Bl Sendov, A. Andreev, and N. Kjusrkiev. Handbook of Numerical Analysis, volume
III. Elsvier, 1994. Solution of Equations in Rn (part 2).

[29] Hans J. Stetter. Numerical polynomial algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2004.

[30] Ph. Trébuchet. Vers une résolution stable et rapide des équations algébriques. PhD
thesis, Université Pierre et Marie Curie, 2002.

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)��������� �	��
�

���������� ��� ���

ISSN 0249-6399

	Introduction
	From the quotient ring to the roots
	Representations of the quotient ring A
	Resultant based approach
	Gröbner bases

	Notations
	Generalized normal form criterion
	The algorithm
	Experimentations
	Generic equations
	Parallel robot
	Cyclic equations
	Chromatography

	Conclusion and future work

