-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

An experimental study of Java objects behaviour for
mobile architectures
Arnaud Guiton, Michel Banatre

» To cite this version:

Arnaud Guiton, Michel Banatre. An experimental study of Java objects behaviour for mobile archi-
tectures. [Research Report] RR-5452, INRIA. 2005, pp.24. inria-00070555

HAL Id: inria-00070555
https://hal.inria.fr /inria-00070555
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50454081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070555
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5452--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

An experimental study of Java objects behaviour for
mobile architectures

Arnaud Guiton and Michel Banatre

N° 5452
Janvier 2005

Théme COM

apport
derecherche

% I N R 1A

RENNES

An experimental study of Java objects behaviour for
mobile architectures

Arnaud Guiton * and Michel Banéatre T

Théme COM — Systémes communicants
Projets ACES

Rapport de recherche n® 5452 — Janvier 2005 — 24 pages

Abstract: Java is an interesting programming language in the context of embedded ap-
plications for the flexibility and security it provides. However, its execution requirements
and performances are often an issue. We plan to build a better Java execution environment,
targeting mobile phones. To improve its performances, we believe that a special attention
has to be put on the mapping of Java objects in memory. To understand the issues, an
overview of memory inside a standard Java Virtual Machine is proposed. Then, relevant
characteristics and behaviours of objects from selected embedded applications are presented.
Their similarities with standard desktop applications are also illustrated, along with a first
discussion on how they could be organized on memory.

Key-words: Java objects behaviours, Java memory, objects mapping in memory, mobile
devices

This work was supported by Texas Instruments under contract 198C2730031303202.

*

arnaud.guiton@irisa.fr
T michel.banatreQirisa.fr

Unité de recherche INRIA Rennes

IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)
Téléphone : +33 2 99 84 71 00 — Télécopie : +3329984 7171

Etude expérimentale du comportement des objets Java
pour architectures mobiles

Résumé : Le langage Java est intéressant dans le cadre d’applications embarquées pour la
souplesse et la sécurité qu’il apporte. Cependant ses contraintes d’exécution et ses perfor-
mances sont souvent un frein & son utilisation. Nous proposons de construire un environ-
nement d’exécution Java plus efficace pour téléphones mobiles. Afin d’améliorer ses perfor-
mances, nous pensons qu’une attention toute particuliére doit étre portée & I’organisation des
objets Java en mémoire. Pour bien en comprendre les difficultés, un apercu de la mémoire au
sein d’une machine virtuelle Java est proposé. Ensuite, nous présentons les caractéristiques
et comportements d’objets que nous avons pu relever sur des applications repésentatives.
Leurs similitudes avec des applications pour d’autres architectures sont aussi illustrées. En-
fin, une premiére discussion sur la facon dont ces objets pourraient étre organisés en mémoire
est présentée.

Mots-clés : Comportement des objets Java, mémoire en Java, organisation des objets,
équipements mobiles

An experimental study of Java objects behaviour for mobile architectures 3
Contents

1 Introduction 4

2 Overview of memory in Java 6

2.1 Objects representation and structureo L. 6

2.1.1 Memory managementinaJVMo 0oL 6

2.2 Dynamic memory allocation Lo oo, 8

2.3 Java dynamic memory collection oo 8

2.3.1 Basealgorithm L L 9

2.3.2 Garbage collectors categorization 9

2.4 Towards a memory managementinJava 10

3 Objects characteristics for embedded Java application 10

3.1 Applications studied oL 11

3.2 Methodology 12

3.3 Emulators e 13

3.4 Studyresults L 13

3.4.1 Number of allocated and collected objects 13

342 Objectssize 14

3.4.3 Average Sizes oo e e e e e e 14

344 Extrema 15

3.4.5 Sizes distribution Lo oo 16

3.4.6 Re-estimated averagesize L. 16

3.47 Objects lifespan oL o 17

34.8 Objectsorigin. oL 18

4 Interpretation and discussion 19

4.1 Objectsmodeling 19

4.2 Discussion: a possible organization of objects in memory 20

5 Conclusion 21

RR n° 5452

4 A. Guiton & M. Bandtre

1 Introduction

Embedded devices, like PDA or mobile phones have known a great development in the last
few years. In the same time, their users required better performances and richer applications.
Today, such devices are mainly used to manage calendars or emails, but adding multimedia
data and high speed wireless networks would allow new applications to appear: games, music
and video content playing.

Making them work in an efficient way is still a hot research topic. As embedded devices
have limited resources (processor, memory, energy), a lot of work remains in several areas:
hardware, operating systems and applications. An execution environment for embedded
architecture should:

e make the concurrent execution of several applications efficient and robust;
e minimize the energy consumption of the devices;

e allow the execution of multimedia applications, with real-time constraints;
¢ allow applications to be downloaded dynamically;

e provide an open architecture, as portable as possible.

Meeting such requirements, a Java environment appears to be the best solution. First, it
allows the dynamic load of new applications. Then, Java bytecodes are not architecture spe-
cific: applications can be ported to many platforms without effort. Java also offers a great
stability and security because its memory is automatically managed. If the environment has
a garbage collector, no pointers are used and no direct memory accesses are possible. This
allows a regular user to download and run any Java program, while being almost sure it will
not mess-up the whole memory. Finally, Java appears to be a popular language and an ever
growing number of applications are developed, particularly for embedded devices.
Nevertheless, the main problem with the use of Java is its execution performance. A vir-
tual machine must always be present, introducing more operations and thus leading to a
performance loss and a bigger resources consumption. Thus, even if more and more mobile
devices are "Java Compliant" and can execute a program written in Java, this does not
mean that they can do it efficiently. Indeed, today there are no efficient couples of hardware
and software solutions. A lot of enhancements can still be made, in term of performances,
energy consumption and platform flexibility.

To solve these problems, we are currently studying a new Java execution environment,
targeted to mobile phones. It could be supported by a specific hardware in the future, but
no assumption are made beforehand. This environment should provide good performances
for user applications but also have the lowest energy consumption possible. Our goal is also
to write it in Java, in order to benefit from the many advantages cited above.

In a first step, we only want to support basic tasks to demonstrate the feasibility of the
architecture. To do this, we need threads, some kind of memory management and interrupts

INRIA

An experimental study of Java objects behaviour for mobile architectures 5

support.

As said above, the idea is to write all these concepts in Java. The approach chosen is a
top-down one. Each needed part of the environment is build in Java until a limit is found,
where only native code can be used.

This paper focuses on the memory management we aim to provide for the platform. We

believe that the organization of objects in memory is a critical factor to increase system
performances. This has already been proven for other object languages, such as Smalltalk
80 [Sta82].
The mapping of Java objects on pages (cf. figure 1) is thus a technique that has to be
precisely studied. Of course, to be efficient, policies and mechanisms have to be well suited
for the applications that will run on the environment. A precise knowledge of objects
from typical applications is then required. The goal of this paper is to present relevant
characteristics and behaviours of Java objects, studied more precisely for mobile phones.

Java object Java object Java object

Java object Java object Java object

Java memory

objects mapping on memory

memory bloc | |

physical memory

Figure 1: Mapping of Java objects on physical memory

The remainder of this paper is organized as follows: the second section explains the classic
organization of memory, inside a Java Virtual Machine (JVM). It also gives an overview
of different techniques used to manage Java memory. Section 3 develops the study lead
to collect detailed characteristics of Java objects for mobile phone applications. Section 4
analyzes the results and introduces a brief discussion on how these objects could be organized
in memory. Finally, the last section draws a conclusion.

RR n° 5452

6 A. Guiton & M. Bandtre

2 Overview of memory in Java

This section gives an overview of the Java memory: the general structure of Java objects
and the memory organization of a standard Java Virtual Machine is described.

2.1 Objects representation and structure

An object is basically made of a header and a data area. The header is often between 1 and
3 words long (between 4 and 12 bytes). It is used to store metadata useful for object man-
agement. For example the object size, various garbage collector information, and a pointer
to the method area. The data area is made of as many word as necessary to store the data
themselves.

If objects are always stored in the heap, their representation in memory is not defined
in the Java specification. Every Java virtual machine can thus choose to store them in
particular structures. The only two elements needed to be present are instance variables
and a way to access class information stored in the methods area. Several approaches are
presented in [Ven98] and among them a possible heap organization in two parts :

e a pointer area, containing only references to the instance data,
e an object area, containing the instance variables, stored directly in the heap.

In an other approach the heap is not divided and contains directly pointers to both class
and instance data.

Whatever the objects organization, one of Java particularities is to provide to programs
a memory automatically managed by the virtual machine. The following sections describe
the mechanisms used to allocate and collect memory.

2.1.1 Memory management in a JVM

The Java Virtual Machine (JVM) is the main element of a Java program execution. Basi-
cally, it is an abstract computer that runs compiled Java programs, by executing directly a
stream of bytecodes. It is implemented on top of a real hardware platform and operating
system. The JVM is the element making the Java language portable.

In every existing operating systems, a Java virtual machine is a regular program. It thus
depends on the virtual memory proposed by the underlying operating system. The JVM
requests memory blocs from the OS and use them for to store its data. The particularity
of a JVM as a program is that its data are themselves Java programs. Their vision of
the available memory is not the real system memory, but the one provided by the virtual
machine. This memory is used to store bytecodes, objects instantiated by the program,
parameters, returned values, local variables and intermediate results.

For example, Sun virtual machine [LY99] divides its memory in four areas, as shown in
figure 2:

INRIA

An experimental study of Java objects behaviour for mobile architectures 7

Registers

Methods space
e L (=] oy
data
vars
| [==] curret steck frame
Class
frame
|7 [=] ediionsack
Class
data >

Heap
Registers
FK: |
(=] o
L (=] sk e
ition stack
Object

Dynamic data area

Figure 2: Classical JVM memory organization

o the methods space is shared by all the threads. It stores information on the loaded
objects. For example, it contains the methods and constructors bytecodes, information
on the objects type (name, modifiers, methods description,...) and the constant area.
The virtual machine gets it from the corresponding class files.

e the heap is also shared and contains the objects stored by the JVM, from their alloca-
tion (with the new command) to their destruction by the garbage collector (GC).

e q set of stacks (one per thread). This is a highly used structure, as Java is a stack
machine. It contains the local variables, the current stack frame and the execution
stack.

e a set of registers (four per thread), to manage the thread stack. PC is the Program
Counter, containing the address of the next bytecode to be executed. optop points to
the top of the execution stack, vars indicates the local variables current area. Finally,
frame points to the current memory area of the stack (stack frame).

It is important to note that a regular virtual machine runs only one application. The
VM is created when the application is launched and dies when it ends. There is no notion
of persistence. When an application ends, all the allocated memory blocs are freed and
automatically given back to the system.

RR n° 5452

8 A. Guiton & M. Bandtre

2.2 Dynamic memory allocation

The goal of a memory allocator is to provide every application with the memory it needs to
run. It must thus know which parts of the main memory are free and which ones are used.
Some allocators also try, during this process, to minimize fragmentation. In order to do
this, memory blocks ordering strategies are used. They can for example group free blocks
or divide some of them.

Studies of different allocators can be found in [WINB95] or [JW99]. A classification has
been made, according to the type of algorithm used:

o sequential fit allocators. They use a list that maintains an inventory of the free memory
blocks. Among these allocators, several strategies exist: taking the first free block
having a sufficient size (first fit), taking the most adapted size...

o segregated free list allocators use different lists for each size of blocks. Looking for a
specific size is thus much faster. KaffeOS virtual machine [BHLOO] uses this technique.

e buddy allocators [PN77]. They are a variant of the segregated free list allocators with
the possibility to group several blocks or divide one of them in order to precisely satisfy
the request.

o indexed fit allocators. The idea here is to have a custom indexing for each policy. This
technique is very flexible but performances are not always optimum. Bitmapped fits is
a variant of this algorithm, using an array of bits in order to list the available zones
of the heap. It is used in the virtual machine of JX [GFWKO02] and JEM [BOO02].

Each of these algorithms present different performances and lead to different levels of
fragmentation. According to [JW99], allocators are the main source of memory waste.
Johnstone and Wilson have quantified this fragmentation for each strategy. They have
deduced that, under certain conditions the most basic algorithms (first fit for example) are
the most efficient.

2.3 Java dynamic memory collection

The second component allowing an automatic memory management in Java is the garbage
collector. It is the one responsible for recycling the memory that become useless.
The main idea behind automatic memory collection is simple :

e determining which objects can not be accessed any longer in the program;
e freeing the memory these objects used.

It is generally not easy to determine beforehand when an object will become unused.
This can however be done dynamically at execution time. The garbage collector use a reach
criterion to determine the objects potentially unused. An object without references to it
will not be used any longer: it can thus be freed.

INRIA

An experimental study of Java objects behaviour for mobile architectures 9

Typical collection algorithms work as follows: at the beginning, a particular set of ob-
jects, called roots, is supposed reachable. In a typical system, these objects are the machine
registers, the stack, the instruction pointer, the global variables. Then, every objects refer-
enced from a reachable object is itself reachable, creating a chain of references. Of course,
this is an approximation, as some objects can be accessed from the roots while not being
used any longer. It has however been proved to have a good efficiency.

2.3.1 Base algorithm

Garbage collectors (GC) does not generally act continuously but make collecting cycles.
A cycle begins when the GC decides or is notified that memory must be reclaimed. As
explained in [Wil92], garbage collectors create sets of objects during a cycle:

e black objects, which are the active ones;
e grey objects, which are being analyzed;

e white objects, which are unused and from which the GC will reclaim memory.

2.3.2 Garbage collectors categorization

This section introduces the three major types of garbage collectors, without trying to be
thorough. As an example of implementation approach, the comparison between Sun and
Microsoft garbage collectors can be found in [Mar97]. GC can be categorized according to
how they implement the three sets of objects described above (cf. [Wil92]):

e Reference counting. With this technique, first described in [Col60], each object has
a counter indicating the number of references pointing to it. It is incremented when
a reference to the object is created, and decremented at every object elimination.
When it reaches 0, the object can be freed. This algorithm is simple, but hard to
make efficient. On top of that, when two objects reference each other, cycles can be
introduced. In this case, these objects may never be released.

o Mark and sweep. A garbage collector of this type acts in two phases on the heap. In
the first pass, the objects still in use are distinguished from the garbage and a bit is
added to indicate the object status. Then, the sweep pass reclaims the garbage by
linking them to a list of free objects. A mark and sweep algorithm is used in the K
Virtual Machine (KVM), as explained in [CSKT02].

o Generational garbage collector. This type of GC is the one used in the Sun JVM
[LY99]. According to [LH83], statistically, the objects created recently by the system
are the ones that are the most likely to disappear quickly. A generational garbage
collector partition the objects according to their age and, at each garbage cycle, only
process one generation. The cycles are thus shorter.

RR n° 5452

10 A. Guiton & M. Bandtre

Incremental garbage collection has also to be cited. It consists in interleaving small units
of garbage collection with small units of regular application execution. This technique is
almost mandatory for embedded devices, with real time constraints. Indeed, it is the only
way to insure the GC process takes a fixed (and small) amount of time.

2.4 Towards a memory management in Java

The objective of this section is to introduce how the memory management we aim to provide
for the execution environment differs from standard mechanisms.

Traditionally, Java programs memory is managed at two distinct levels, as described in
[BCGNO3] and represented figure 3:

e the operating system implements virtual memory. It thus handles the conversion
between the virtual and physical address spaces, swap mechanisms and page faults;

e the JVM implements the address space of the Java applications. It satisfies memory
allocations from the pool of free space obtained from the system. It only has to
choose where to place each new object in the logical address space. The memory
deallocation is made automatically through garbage collection and is thus transparent
to applications.

These mechanisms are not optimum for mobile phones nor other embedded devices.

Indeed, there are two levels of indirection: objects are first handled by the JVM, which
organizes them according to its possibilities. Then, the operating system manages the
virtual pages and map them on physical memory.
We believe that a direct mapping of Java objects on physical memory pages (also represented
figure 3) would present many benefits, in term of execution speed and energy consumption.
The portability would also be insured if the design is conducted attentively. Of course, before
building such a management, a precise comprehension of the objects behaviours is required.
The first step towards this memory management design consists in the study of Java objects
behaviours and characteristics, for mobile phones applications. The next section presents
how is was conducted and details the results.

3 Objects characteristics for embedded Java application

Different studies, conducted for Smalltalk 80 [Sta82] have shown that it was possible, under
some conditions, to organize objects in memory in order to optimize programs execution
speed. The same situation is likely to appear for Java.

Papers such as [KHO00] or [LCFGO02| give interesting results on objects behavior but target
regular Java applications, running on desktop computers. In [SaL.C03], Srisa-an, Lo and
Chang describe a special garbage-collected memory module, targeted on embedded devices
with real time constraints. Their work required a study of reference counting and more
generally objects characteristics of embedded applications. These results are interesting and

INRIA

An experimental study of Java objects behaviour for mobile architectures 11

Java object Java object Java object
A

Java memory,

‘ Java object Java object Java object

Java memory,

objects mapping
M on JVM memory

Java diretc objects mapping
execution on memory
environment

operating,
system

pages mapping
on physical memory

]

NN [[Jorsct e[|

physical memory

‘ MT T e

physical memory

Classical Java memory management Direct Java memory management

Figure 3: Java objects management

detailed later. However, they are not relevant enough for us. As the project only targets
mobile phones in a first time, results obtained for desktop or regular embedded devices can
possibly not be applied. To see if they are similar, relevant applications to this area have to
be studied.

A non trivial memory management strategy has to integrate several elements like objects
sizes, lifespan and origin. The following section presents the study of applications developed
specifically for mobile phones. Six applications have been monitored: three developed by
Nokia for their Java compatible phones and three developed by our team.

3.1 Applications studied

This part briefly describes the applications which have been analyzed. The choices made
are not indifferent: if we plan to base memory management strategies on them, the data
gathered have to be the most representative possible of the applications targeted in the
future execution environment.

The applications have been chosen according to two criteria: first, they all have been cre-
ated for the embedded world and are not simple portage of existing programs. Then, every
application was chosen for some of its particularities in term of memory usage.

RR n° 5452

12 A. Guiton & M. Bandtre

Boids (Nokia) The Boids algorithm models the movement of a crowd. The Boids midlet,
coded by Nokia, is written in Java from a pseudocode!.
Basically, each individual moves according to a set of rules. The Nokia midlet displays
the result of this modeling on the phone screen: the user can not interact with the
program. We can thus suppose the application will have a stable memory behaviour
as no external intervention will modify its run.

BlockGame (Nokia) The BlockGame midlet has been used by Nokia to illustrate the
graphical interface API. It consists in a game in which the user has to move a "ship"
and destroy squares appearing on the screen.

Unlike Boids, BlockGame uses intensively interactions from the user. It seems inter-
esting to see how that will influence memory.

MediaSampler (Nokia) This application illustrates the "Mobile Media" API?. The user
can choose to play different audio or video files. The multimedia content can be in png
(images), amr, wav and mid for the audio stream and Jgp for the videos. This midlet
is interesting as it gives us objects characteristics and information for a multimedia
application.

Ubi-Q and transportation facilities These two applications have been developed by our
team and are all based on user interactions and network communications. They are
interesting in this study as they are representative of existing and emerging ambient
computing applications.

Ubi-@ shows an innovative use of the concept of ubiquitous computing. It finds real
world example in fast distributions services such as automatic telling machines, video
renting machines or meal orders. Two versions of this software have been used here :
Ubi-Q (DAB), for cash withdrawal and Ubi-Q (FastFood) for meal orders.

The second one, Transportation facilities, allows disabled people waiting at the bus
station to be warned before the arrival of their buses. It also automatically warns the
bus driver that he must stop. As these applications include networking parts, it can
be interesting to see how this influence memory.

3.2 Methodology

In order to characterize the described applications, some values have to be measured on
their objects. The two most important are their size and lifespan. The origin of the objects
can also be studied as objects coming from the Java APIs, from the application or the JVM
internal structures will not be processed the same way.

In concrete terms, the following data will be studied:

e minimum and maximum objects size

Lhttp:/ /www.vergenet.net/conrad/boids/pseudocode.html
2http://www.jcp.org

INRIA

An experimental study of Java objects behaviour for mobile architectures 13

e average size
e distribution of these sizes
e objects lifespan

e origin of the objects (API, application, JVM internal)

In order to be the more accurate possible, the best would be to execute the applications
directly on a mobile phone. However, collecting precise data effectively is then difficult. The
chosen alternative is thus to use an emulator. Emulators are software running on a regular
desktop computer but which goal is to reproduce the same behavior as the chosen device.
The application running on the emulator can not distinguish between the original device
and the virtual one. The emulated device can be another computer architecture, a PDA or,
in our case, a mobile phone. Two different emulators have been used.

3.3 Emulators

The Nokia Developers Suite for J2ME, or NDS, emulates precisely a large range of Nokia
phones, including their bugs. It supports compiling Java applications and building ready to
ship packages. Several plugins are also available, allowing the emulation of a different phone
type. The one used here is the Series 60 Platform. It provides the Symbian native APIs,
a Java execution platform and the Wireless Messaging, Mobile Media and Bluetooth APIs.
This emulator has mainly been used to record objects lifespan and size.

The development kit for embedded applications developed by Sun is called the Java 2
Micro Edition Wireless Toolkit (WTK). It is also interesting for us and complements fairly
well the NDS in our study. Indeed, it provides the name of all the created objects, which is
useful to study their origin (application, API or JVM internal).

3.4 Study results

A first overview of the results shows their relative homogeneity in term of size or lifespan.
The selected applications being supposed to be representative of mobile phone applications,
we can hope this study will furnish accurate results in this domain.

3.4.1 Number of allocated and collected objects

These data highly depend of how long the application is used. An average behavior has to
be simulated. In consequence, the results presented here correspond to a "regular" use of the
applications. For example a game lasting between 2 and 5 minutes for BlockGame, the play
of an audio and a video file for MediaSampler or one menu order for Ubi-Q (FastFood). The
data have been collected with the Nokia NDS. Then, the memory allocations and collections

RR n° 5452

14 A. Guiton & M. Bandtre

have been taken into account. It is however important to note that all the objects traced
by the emulator are counted. The objects generated by the application, an APT or the JVM
have here not been differentiated. The results are presented in the table 1.

Application name Allocated objects | Collected objects
Boids 38651 37166
BlockGame 62687 61176
MediaSampler 42378 40874
Ubi-Q (FastFood) 46959 44324
Transportation facilities 44045 42396
Ubi-Q (DAB) 46538 44545

Table 1: Number of allocated and collected Java objects

We can see that the numbers presented are all rather similar. Around 40000 objects
are generally created in the application lifespan and most of them (around 95%) are freed.
Non collected objects cannot be clearly identified. However, they are certainly JVM internal
objects or simply objects whose lifespan equals the one of the application. In this case, their
memory is automatically freed during shutdown and they are not explicitly collected by the
garbage collector.

3.4.2 Objects size

Objects size is a primordial piece of information if we plan to elaborate a memory manage-
ment strategy. Two aspects are thus interesting :

e minimum and maximum sizes. They will allow us to deduce the size of the block to
manage;

e average sizes and objects proportion in each size. With this information it is possible
to know the most represented sizes.

3.4.3 Average sizes

The result is given figure 4. For each application, the average size of all its objects is
displayed in bytes. The size shown here correspond to the size of a whole object, with
its header (metadata). This seems preferable, as this is the size that the VM, and our
environment, have to manage.

The first noticeable point is the small value of these averages: between 60 and 110 bytes
approximately. The global average, for the 6 applications is 82 bytes, that is about twenty
words.

This value is of the same size as the data delivered by benchmarks for standard applications
running on desktop computer. Average objects sizes of 20 or 30 bytes are reported in [KHO00],

INRIA

An experimental study of Java objects behaviour for mobile architectures 15

Average objects sizes for different applications

T T
[Average size
—- mean value

Ubi-Q (FastFood)

Ubi-Q (DAB)

100

[nokia] BlockGame

Average objects size (bytes)

[nokia Boids

[nokia] MediaSampler

Transportation facilitics

Application

Figure 4: Objects average size for different applications

[LCFGO02] and [SaLC03], depending on the application type. The value we obtained is bigger
but remains in the same order of magnitude. However a conclusion would be hasty if the
sizes distribution or limits are not taken into account.

3.4.4 Extrema

The allocated bloc size is a pertinent study element in our context. Indeed, it allows an
estimation of what should be realized for segmentation and pagination. As the size of all
allocated block is provided by the emulator, it is possible to generate matrices containing
the sizes and then to find the minimum and maximum values. For the studied applications,
the objects sizes are very variable. They vary from 8 bytes to about sixty kilobytes. The
table 2 details these values for the six applications.

Figure 5 represents all the objects created during the applications lifespan. For each
application we can thus find approximately 40000 points, each representing the size of an
object. On this figure the values are rather similar for all the applications: the biggest ob-
jects being about fifty kilobytes. Transportation facilities is an exception with a maximum
of more than 600 kilobytes. This value is probably coming from a large array, representing
an image. This application is indeed the only one that we have tested which use a splash
screen. An other interesting point to note is that the first 20000 objects present the same

RR n° 5452

16 A. Guiton & M. Bandtre

Name Min (bytes) | Max (bytes)
Boids 8 55060
BlockGame 8 55060
MediaSampler 8 55060
Ubi-Q (FastFood) 8 68144
Transportation facilities 8 600228
Ubi-Q (DAB) 8 55060

Table 2: Maximum and minimum objects sizes

pattern for the six applications: this corresponds to the environment initialization.

The contrast between the maximum values and the average sizes let us think there will
be a non homogeneous objects sizes distribution. Knowing precisely this distribution would
refine the chosen objects model. Indeed, if the distribution is uniform, an allocation and
placing policy efficient for a large range of sizes is needed. On the other hand, as only one
size range seems to be representative, the chosen policy could be optimized not to take into
account the other objects. Of course this need to be confirmed by data on objects size
distribution.

3.4.5 Sizes distribution

The traces collected with the NDS have been processed with a Matlab script to count the
number of objects present in different size intervals. The interval division has been chosen
by successive refining in order to get expressive results. The corresponding representation
is shown figure 6.

These different figures clearly show that, for each application, more than half the objects
have a size inferior to 30 bytes. More than 80% of them are smaller than 64 bytes. Big
objects (size bigger than one kilobyte) represent less than 2% of all the objects. This can
be considered as a tiny part. Thus, even if the biggest objects have size more important
than 64 kilobytes, the large majority of them have a small size. The memory management
policy chosen must be efficient for most objects. Thus, initially, we can only consider small
objects, being less than 100 bytes. The bigger ones will be managed separately afterwards.

3.4.6 Re-estimated average size

A new average size has thus been calculated. The goal is to see how the average size varies
when we consider only the 90% most representative objects. This approximation seems
reasonable as it only remove the biggest objects, that is between 10 and 50 from the 40000.

The new average size is approximately of 30 bytes. It is closer to the ones found in
[SaLC03| and in [LCFGO2| for an application without database.

INRIA

An experimental study of Java objects behaviour for mobile architectures

17

Size (bytes)

Size (bytes)

Size (bytes)

[nokia] Boids

f o * k * *
Y A R
1 152 25 3 35
Objects
Ubi-Q (DAB)

Objects

Size (bytes)

Size (bytes)

Size (bytes)

[nokia] BlockGame

5 % *
a #ﬁ#“i e f& ok i

*

Objects x 10

Ubi-Q (FastFood)

* *
*

] 0.5

*

L+
L A

1

*

*

% %
*
w* W*Ihﬁ -

15 2 25 3 35 4 45

*

Objects Y10t

Transportation facilities

*

15 2 25 3 35 4

Objects ¢

Figure 5: Objects size for the six studied applications

Finally, if we want to model the objects that are likely to be found in embedded appli-
cation for mobile phone, we can consider the following:

e a large majority of them are small, about thirty bytes

e a few ones have an important size, exceeding 60 kilobytes.

3.4.7 Objects lifespan

Lifespan is an important information in order to get an efficient memory management.
Indeed, short-lived objects (one or a small number of garbage collector cycles) cannot be
treated like objects having the same lifespan as the application, or like permanent objects.
This is more particularly true if pagination or swapping has to be taken into account.

For example, grouping on the same page objects that will be collected together allow
the garbage collector to free a whole page directly, without more processing. Of course, this

RR n° 5452

18 A. Guiton & M. Bandtre

5%< 1%5%

[nokia] Bods [nokia] BlockGame

1%
Ubi-Q (FastFood) Ubi-Q (DAB) Transportation faciliies

Figure 6: Objects size distribution

lead to an important reduction of fragmentation and can avoid useless pages loading and
unloading.

The calculated lifespan are given in number of garbage collector cycles. The results are
unambiguous: more that 98% of the objects are collected during the first GC cycle following
their allocation. The other are divided in two categories:

e Objects not liberated during the application lifespan,
e Objects with an average lifespan (between 15 and 30 cycles).

These results are also coherent with the study reported in [LCFGO02] and [LH83] for
standard applications. In these papers, around 90% of the objects live less than one GC
cycle (for application without database). Behaviour and characteristics are one more time
pretty similar for desktop applications and mobile ones.

3.4.8 Objects origin

An object created by the JVM for its internal is not be treated like an object coming from an
application. It is thus important to quantify where the objects are created. To this purpose,
the Sun WTK has been used.

INRIA

An experimental study of Java objects behaviour for mobile architectures 19

Object origin Objects percentage
Java API more than 70%
Arrays (int, char...) about 25%
JVM internal objects | between 5 and 10%
Application less than 1%

Table 3: Objects origin distribution

Four main categories can be drawn: JVM internal objects, application specific objects,
APIs objects and arrays (integers or characters arrays...). The obtained distribution is given
table 3.

An important point is the quantity of objects instantiated from applications classes. This
value is negligible compared to the number of API objects or arrays. This can be useful later,
if an organization of objects in memory is designed according to their origin (cf. section
4.2).

4 Interpretation and discussion

This section gives elements of interpretation of the previous results, in term of objects
modeling and organization.

4.1 Objects modeling

The statistics produced during this study allow us to define an object preliminary model.
At least we can categorize them in several categories.

The first category contains objects with a small size and having a short lifespan: sizes
inferior to 30 bytes and lifespan inferior to one garbage collector cycle. This category contains
most objects as 80% of them have a size smaller than 30 bytes and 98% of them are active
shorter than one cycle.

Then the objects having an important size (higher than 50 kilobytes) and a long lifespan
can be grouped. They can be arrays, used internally by the JVM, for example defining
bitmaps representing the screen of the device.

The remaining objects have an intermediate size, between 50 bytes and 50 kilobytes and
a variable lifespan. Even if this category cover a large size spectrum, it only contains 10%
of the total objects.

In a first time, we can only take into account the first category of objects, considering
the effects of the others as negligible. The next section will try to present one of the many
possible organization possible for these objects.

As mentioned before, the idea is to group smartly objects on pages. One example is
to place on the same page objects that are likely to be collected in the same time. Thus,
the whole page could be freed immediately. A second example is to group objects that will

RR n° 5452

20 A. Guiton & M. Bandtre

probably be swapped all together in order to reduce the come and go and be more efficient.
If this technique is trivial, its realization is not easy.

4.2 Discussion: a possible organization of objects in memory

In the study, we can consider that several type of memory areas are available for pagination.
In a first time, we choose pages of 4 kilobytes, classically found in operating systems and
one or two other types of bigger granularity, called sections.

In his master thesis, containing a study of virtual memory for Smalltalk-80 [Sta82],
James Stamos described several algorithms based on graphs designed to organize objects
in memory. For example, one of the solution he advocates consists in grouping objects
inheriting from the same source object. This solution clearly requires a lot of knowledge
on the objects and calculation. Indeed, each one has to be added to a particular graph at
creation time.

Even if Smalltalk and Java can not be compared directly, Stamos’ remarks on complex
algorithms use can be an important starting point. Indeed, even if complex algorithms can
lead to efficient results, it is often expensive. Using them is thus not always the best solution:
the overhead introduced can be important and thus make the solution non worthwhile. We
have also to keep in mind that an embedded system with real-time constraints has to be
build.

Stamos uses the quotient between pages size (P) and objects size (O) in order to deter-
mine the need for a particular management objects algorithm. To sum-it up :

o If objects have an important size (g < 1), the objects have to be divided and stored
on several pages

e If a few objects can be put on a page (i.e. 1 < g < 10 approximately), using advanced
strategies to organize objects can be interesting.

e If a big number of objects has to be placed on a page (g > 100), then Stamos deduce
of his study that the best solution is the simplest one: an organization without taking
the objects specificities into account.

If we want to use the same approach on our project, we can consider pages of 4 kilo-
bytes and objects of approximately 30 bytes. This lead to a quotient (g > 100). A direct
confrontation with Stamos’ results shows that we fall in the third category: using complex
algorithms to organize our objects would lead to execution efficiency penalties, for every
object arrangement. However, even if complex algorithms are not optimum, a smart organi-
zation of the objects is of course advised. The ’fastest’ solution is to put objects randomly
on a page. This is of course not the most efficient.

Organizing objects by families, even simple ones, would be more judicious. Different simple
types of pages can thus be considered. They are described above.

Persistent pages It could be interesting to put in similar areas objects which have a
lifespan longer than one or several applications or even than the operating system.

INRIA

An experimental study of Java objects behaviour for mobile architectures 21

These are objects which data will be saved on a external storage device (disk). They
have to remain even after a full stop of the system. Having these objects on the same
pages can make things easier: it is then possible to swap a whole page while reducing
fragmentation.

System pages Grouping in similar areas objects used to run the system can also be useful.
These objects are often the first created (some during the system startup) and the last
to be freed.

Application pages If a classical JVM is mono-application, the environment developed
here must be able to execute several applications concurrently. The idea behind the
application pages is to regroup data relative to the same application in the same set.
This has several benefits. First, if shared or persistent objects have been stored in
specifics pages, the system is sure it can free the whole applications pages immediately
when the the program ends. This ease the function of the garbage collector as no object
dependences checking is required. Moreover, as different granularities of section are
available, putting all objects application is the same page or section is possible.

Shared pages The case of shared objects, used by several applications, is important. They
could of course be considered as regular objects and put application or system pages.
But when the application ends the objects would have to be copied elsewhere. Group-
ing them will also ease security management (page accessibility and rights). Creating
a new category of pages could thus be interesting.

This model is of course quite simple and is just an example of what could be done to
reduce overhead and swapping problem for objects memory management.

5 Conclusion

This paper studies the memory of Java applications, more specifically for mobile phone
architectures. An overview of general memory management techniques used in Java is pre-
sented, as well as a study of Java objects behaviours, for embedded architectures.

This study shows that characteristics of Java objects are very similar for desktop or mo-
bile phone applications. This allows the definition of a first model for the objects that will
be managed in the execution environment. They can be represented as small objects (ap-
proximately 30 bytes with their headers), with a very short lifespan (less than a GC cycle).
We have also proposed a first and simple attempt to organize these objects in memory.

Of course, this study constitutes only a preliminary work. The mapping between Java
objects and the physical memory we plan to provide still has to be more deeply examined.
This study of Java objects behaviours is only a first and mandatory step towards a complete
memory management in Java. It is intended to be integrated in the Java execution platform
of a new mobile architecture.

RR n° 5452

22 A. Guiton & M. Bandtre

Acknowledgements

We would like to thank Gilbert Cabillic (Texas Instruments) for reading and commenting
on this paper.

INRIA

An experimental study of Java objects behaviour for mobile architectures 23

References

[BCGNO3]

[BHLOO]

[BO02|

[Col60]

[CSKT02]

[GFWKO02]

[TW99]

[KHOO]

[LCFG02]

[LHS3]
[LY99]

[Mar97]

RR n° 5452

Yolande Becerra, Toni Cortes, Jordi Garcia, and Nacho Navarro. Evaluating the
importance of virtual memory for java. In 2008 IEEE International Symposium
on Performance Analysis of Systems And Software, 2003.

Godmar Back, Wilson Hsieh, and Jay Lepreau. Processes in KaffeOS: Isolation,
resource management, and sharing in java. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementation (OSDI-00), pages 333-346,
Berkeley, CA, 2000. The USENIX Association.

Mark Baker and Hong Ong. A java embedded micro-kernel infrastructure. In
Proceedings of the 2002 joint ACM-ISCOPE conference on Java Grande (JGI-
02), pages 224-224. ACM Press, 2002.

George E. Collins. A method for overlapping and erasure of lists. Commun.
ACM, 3(12):655—657, 1960.

G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and M. Wol-
czko. Tuning garbage collection in an embedded java environment. In HPCA

’02: Proceedings of the Eighth International Symposium on High-Performance
Computer Architecture (HPCA’02), page 92. IEEE Computer Society, 2002.

Michael Golm, Meik Felser, Christian Wawersich, and Jiirgen Kleinoeder. The
JX operating system. In Proceedings of the General Track: 2002 USENIX An-
nual Technical Conference, Monterey, California, USA, 2002.

Mark Johnstone and Paul Wilson. The memory fragmentation problem: Solved
? SPNOTICES: ACM SIGPLAN Notices, 34, 1999.

Jin-Soo Kim and Yarsun Hsu. Memory system behavior of java programs:
methodology and analysis. In Proceedings of the 2000 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems,
pages 264-274. ACM Press, 2000.

Chia-Tien Dan Lo, Morris Chang, Ophir Frieder, and David Grossman. The
object behavior of java object-oriented database management systems. In Pro-
ceedings of the International Conference On Information Technology: Coding
and Computing (ITCC’02). IEEE Computer Society, 2002.

Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the
lifetimes of objects. Communications of the ACM, (26(6)):419-429, 1983.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The
Java Series. Addison-Wesley, second edition, 1999.

Vern Martin. Garbage collection in java, 1997.

24

A. Guiton & M. Bandtre

[PN77]

[SaLCO03]

[Stag2]

[Ven9g|

[Wil92]

[WJINBY5]

James L. Peterson and Theodore A. Norman. Buddy systems. Commun. ACM,
20(6):421-431, 1977.

W. Srisa-an, Chia-Tien Dan Lo, and J. Morris Chang. Active memory proces-
sor: A hardware garbage collector for real-time Java embeded devices. IEEE
Transactions on Mobile Computing, 2(2):89-101, 2003.

James William Stamos. A Large Object-Oriented Virtual Memory: Grouping
Strategies, Measurements, and Performance. PhD thesis, Massachusetts Insti-
tute of Technology, 1982.

Bill Venners. Inside the Java Virtual Machine. The Java Masters Series.
McGraw-Hill, 1998.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of
International Workshop on Memory Management. Springer-Verlag, 1992.

Paul Wilson, Mark Johnstone, Michael Neely, and David Boles. Dynamic storage
allocation: A survey and critical review. In Henry Baker, editor, Proceedings of
International Workshop on Memory Management, volume 986 of Lecture Notes
in Computer Science, Kinross, Scotland, 1995. Springer-Verlag.

INRIA

/<

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

	Introduction
	Overview of memory in Java
	Objects representation and structure
	Memory management in a JVM

	Dynamic memory allocation
	Java dynamic memory collection
	Base algorithm
	Garbage collectors categorization

	Towards a memory management in Java

	Objects characteristics for embedded Java application
	Applications studied
	Methodology
	Emulators
	Study results
	Number of allocated and collected objects
	Objects size
	Average sizes
	Extrema
	Sizes distribution
	Re-estimated average size
	Objects lifespan
	Objects origin

	Interpretation and discussion
	Objects modeling
	Discussion: a possible organization of objects in memory

	Conclusion

