-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Floating-Point LLL Revisited
Phong Q. Nguyen, Damien Stehlé

» To cite this version:

Phong Q. Nguyen, Damien Stehlé. Floating-Point LLL Revisited. [Research Report] RR-5387, INRIA.
2004, pp.28. inria-00070616

HAL Id: inria-00070616
https://hal.inria.fr /inria-00070616
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50454025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070616
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5387--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Floating-Point LLL Revisited

Phong Q. Nguyen, Damien Stehlé

N° 5387
Novembre 2004

THEME 2

apport
derecherche

% INRIA

LORRAINE

Floating-Point LLL Revisited

Phong Q. Nguyen, Damien Stehlé

Théme 2 — Génie logiciel
et calcul symbolique
Projet Spaces

Rapport de recherche n° 5387 — Novembre 2004 — 28 pages

Abstract: Everybody knows the Lenstra-Lenstra-Lovasz lattice basis reduction al-
gorithm (LLL), which has proved invaluable in public-key cryptanalysis and in many
other fields. Given an integer d-dimensional lattice basis which vectors have norms
smaller than B, LLL outputs a so-called LLL-reduced basis in time O(d%log® B),
using arithmetic operations on integers of bit-length O(dlog B). This worst-case
complexity is problematic for lattices arising in cryptanalysis where d or/and log B
are often large. As a result, the original LLL is almost never used in practice. In-
stead, one applies floating-point variants of LLL, where the long-integer arithmetic
required by Gram-Schmidt orthogonalisation (central in LLL) is replaced by floating-
point arithmetic. Unfortunately, this is known to be unstable in the worst-case: the
usual floating-point LLL is not even guaranteed to terminate, and the output basis
may not be LLL-reduced at all. In this article, we introduce the LLL? algorithm, a
new and natural floating-point variant of LLL which provably outputs LLL-reduced
bases in polynomial time O(d’(d+log B) log B). This is the first LLL algorithm which
running time provably grows only quadratically with respect to log B without fast
integer arithmetic, like the famous Gaussian and Euclidean algorithms. The growth
is cubic for all other LLL algorithms known.

Key-words: LLL, Lattice reduction, Complexity, Public-Key Cryptanalysis.

Unité de recherche INRIA Lorraine
LORIA, Technopble de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lés-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 383 27 83 19

LLL flottant revisité

Résumé : Tout le monde connait 1’algorithme de Lenstra, Lenstra et Lovasz (LLL)
pour réduire les bases de réseaux Euclidiens, qui s’est avéré fort utile pour les cryp-
tanalyses de cryptosystémes & clé publique et dans de nombreux autres domaines.
Etant donnée une base a coefficients entiers d’un réseau de dimension d avec des
vecteurs de normes plus petites que B, LLL calcule une base LLL-réduite en temps
polynomial O(d®log® B), en utilisant des opérations arithmétiques sur des entiers
de taille O(dlog B). Cette complexité dans le cas le pire est problématique pour les
réseaux que l’on rencontre en cryptanalyse ou d et/ou log B sont souvent trés grands.
Par conséquent, 1’algorithme LLL original n’est presque jamais utilisé en pratique.
A la place, on se sert de variantes flottantes de LLL, ou 'arithmétique entiére sur de
grands nombres requise par le procédé d’orthogonalisation de Gram-Schmidt (cen-
tral dans LLL) est remplacée par de larithmétique flottante. Malheureusement, ce
procédé est connu comme étant instable numériquement dans le cas le pire: il se peut
que 'algorithme LLL flottant classique ne termine pas, et que méme s’il termine, la
base renvoyée ne soit pas du tout LLL-réduite. Dans cet article, nous introduisons
l'algorithme LLL?, qui est une variante nouvelle et naturelle de LLL flottant qui
renvoie toujours des bases LLL-réduites en temps polynomial O(d®(d+ log B) log B).
Il s’agit de la premiére variante de LLL dont le temps d’éxécution croisse seulement
de facon quadratique en log B sans utiliser de I'arithmétique rapide, comme c’est le
cas pour les célébres algorithmes d’Euclide et de Gauss. La complexité est au moins
cubique pour toutes les autres variantes connues de LLL.

Mots-clés : LLL, réduction des réseaux, complexité, cryptanalyse de cryptosys-
témes & clé publique.

Floating-Point LLL Revisited 3

1 Introduction

Let by, ..., by be linearly independent vectors in R™ with n = O(d). The set of all inte-
ger linear combinations of the b;’s, denoted by L[by,...,by] = {Z’;l:l xib; | z; € Z},
is called a lattice, and [by, ..., by] is said to be a basis of that lattice. A lattice basis is
usually not unique, but all the bases have the same number d of elements, called the
dimension of the lattice. If d > 2, there are infinitely many bases, but some are more
interesting than others: they are called reduced. Roughly speaking, a reduced basis
is a basis made of reasonably short vectors which are almost orthogonal. Finding
good reduced bases has proved invaluable in many fields of computer science and
mathematics (see [10,6]), particularly in cryptology (see [26,22]). This problem is
known as lattice reduction and can intuitively be viewed as a vectorial generalisation
of gcd computations.

The first breakthrough in lattice reduction dates back to 1981 with Lenstra’s
celebrated work on integer programming [17,18], which was, among others, based
on a novel lattice reduction technique (which can be found in the preliminary ver-
sion [17] of [18]). Lenstra’s reduction technique was only polynomial-time for fixed
dimension, which was however sufficient in [17]. This inspired Lovasz to develop a
polynomial-time variant of the algorithm, which reached a final form in the seminal
paper [16] where Lenstra, Lenstra and Lovasz applied it to factor rational poly-
nomials in polynomial time (back then, a famous problem), from which the name
LLL comes. Further refinements of the LLL algorithm were later proposed, notably
by Schnorr [29,30]. LLL and other reduction algorithms have arguably become the
most popular tool in public-key cryptanalysis (see [26]). In the past twenty-five years,
they have been used to break many public-key cryptosystems, including knapsack
cryptosystems [27], RSA in particular settings [7,5,4], DSA and similar signatures
in particular settings [11, 24|, most lattice-based cryptosystems [25, 23], etc.

Given as input an integer d-dimensional lattice basis of vectors with norms smaller
than B, LLL outputs a so-called LLL-reduced basis in time O(d® log® B), using arith-
metic operations on integers of bit-length O(dlog B). This worst-case complexity
turns out to be problematic in practice, especially for lattices arising in cryptanaly-
sis where d or/and log B are often large. For instance, in a typical RSA application
of Coppersmith’s lattice-based theorem [7], we may need to reduce a 64-dimensional
lattice with vectors having RSA-type coefficients (1024-bit), in which case the com-
plexity becomes “d®log® B = 266 ”. As a result, the original LLL algorithm is seldom
used in practice. Instead, one applies floating-point (fp) variants of LLL, where the
long-integer arithmetic required by Gram-Schmidt orthogonalisation (which plays a

RR n° 5387

4 Phong Q. Nguyen, Damien Stehlé

central role in LLL) is replaced by floating-point arithmetic (fpa) on much smaller
numbers. The use of fpa in LLL goes back to the early eighties when LLL was used to
solve low-density knapsacks [14]. Unfortunately, fpa may lead to stability problems,
both in theory and practice, especially when the dimension increases: the running
time of fp variants of LLL such as Schnorr-Euchner’s [32] is not guaranteed to be
polynomial nor even finite, and the output basis may not be LLL-reduced at all. This
phenomenon is well-known to LLL practitioners. For instance, experimental prob-
lems arose during the cryptanalyses [25, 23], which led to considerable improvements
in Shoup’s NTL library [36].

There is however one provable fp-variant of LLL, due to Schnorr [30], which
significantly improves LLL’s worst-case complexity. Schnorr’s variant outputs an ap-
proximate LLL-reduced basis in time O(d*log B(d + log B)?), using O(d + log B)
precision fp numbers. However, this algorithm is mostly of theoretical interest and is
not implemented in any of the main computational libraries [36,20,2,19]. This can
be explained by at least three reasons: it is not clear which fpa-model is used, the al-
gorithm is difficult to describe, and the hidden complexity constants are rather large.
More precisely, the required precision of fp numbers in [30] is higher than 12d+7log B.

OUR REsSULTS. We present the LLL? algorithm, a new and simple fp-variant of
LLL in a standard fpa-model & la IEEE-754, which provably outputs LLL-reduced
bases in polynomial time. LLL? comes in two flavors. The first one matches the
complexity O(d*log B(d + log B)?) of [30], but it is much simpler and has better
constants: namely, the required precision decreases from 12d + 7log B to 1.812d +
log B. The second version of LLL? is even more interesting: its complexity is O(d°(d+
log B) log B) using only a 1.6d-bit precision, that is, independently of log B. This is
the first LLL which running time grows only quadratically with respect to log B
(hence the name LLL?), whereas the growth is cubic for all other provable LLL
algorithms known. Interestingly, LLL can be viewed as a generalisation of the famous
Gaussian and Euclidean algorithms which complexities are quadratic, not cubic like
the original LLL. This arguably makes LLL? the most natural version of LLL.

The new LLL? algorithm is based on several improvements, both in the LLL algo-
rithm itself and more importantly in its analysis. From an algorithmic point of view,
we improve the accuracy of the usual Gram-Schmidt computations by a systematic
use of the Gram matrix, and we adapt Babai’s nearest plane algorithm [1] to fpa in
order to stabilize the so-called size-reduction process extensively used in LLL. We
give tight bounds on the accuracy of Gram-Schmidt computations to prove the cor-
rectness of LLL?. The analysis leads to the discovery of surprisingly bad lattices: for
instance, we found a 55-dimensional lattice with 100-bit vectors which makes NTL’s

INRIA

Floating-Point LLL Revisited)

LLL_FP [36] (an improved version of [32]) loop forever, which contradicts [13] where
it was claimed that double precision was sufficient in [32] to LLL-reduce lattices up
to dimension 250. Finally, to establish a quadratic running time, we generalize a
well-known cascade phenomenon in the complexity analysis of the Gaussian and Eu-
clidean algorithms. This is made possible by a tight bound on the complexity of our
fp-variant of Babai’s algorithm, which may be of independent interest. For instance,
in Micciancio’s variant [21] of the GGH cryptosystem [8], Babai’s algorithm is used
to decrypt, which may be computationally expensive.

RELATED WORK. Much work [34,30,37,12,13,31] has been devoted to improve
the complexity of LLL, but none improves the log® B factor. Rather, they focus on
the exponent of d in the complexity. We expect most of these improvements to be
adaptable to LLL?.

Floating-point stability has long been a mysterious issue in LLL. When it was
realized during experiments that classical Gram-Schmidt orthogonalisation could be
very unstable, it was suggested in the late nineties to use well-known alternative
techniques (see [15,9]) like Givens rotations (implemented in NTL) or Householder
reflections, which are more expensive but seem to be more stable in practice. However,
from a theoretical point of view, the best results known on the worst-case accuracy
of Givens rotations or Householder reflections are not significantly better than the
so-called Modified Gram-Schmidt algorithm. Besides, most numerical analysis results
refer to backward stability and not accuracy: such a mistake is made by Koy and
Schnorr in [13] (and also in an early version of [31]), where a theorem from [15] is
incorrectly applied. At the moment, it is therefore not clear how to exploit known
results on Givens rotations and Householder reflections to improve LLL theoretically.
This is why LLL? only uses a process close to classical Gram-Schmidst.

RoAD MAP. The paper is organized as follows. In Section 2 we provide necessary
background on lattices and LLL. We describe the new LLL? algorithm in Section 3.
Section 4 proves the correctness of LLL?, while Section 5 analyzes its complexity.
Additional information (such as complete proofs of technical lemmata) is provided
in appendix.

2 Background

NOTATIONS. Let ||.|| and (.,.) be the Euclidean norm and inner product of R™. The
notation [z | denotes a closest integer to x. Bold variables are vectors. All the lattices
we consider are integer lattices, as usual. The complexity model we use is the RAM
model, and the computational cost is measured in elementary operations on bits,

RR n° 5387

6 Phong Q. Nguyen, Damien Stehlé

without fast integer arithmetic [35]. Our fpa-model is a smooth extension of the
IEEE-754 standard, as provided for example in NTL [36] and MPFR [28]. With a
£-bit working precision, a fp-number is of the form x = +m,, - 2 where the mantissa
mg € [1/2,1] is ¢-bit long and the exponent e, is an integer. We expect all four
basic fp-operations to be correctly implemented: the returned value o(a op b) for
op € {+,—,/,*} is the closest fp-number to (a op b). In our complexity analysis,
we do not consider the cost of the arithmetic on the exponents: it can be checked
that the exponents are integers of length O(log(d+log B)), so that the cost is indeed
negligible.

We assume the reader is familiar with basic algorithmic geometry of numbers [22].
Gram matrix. Let by,..., by be vectors. We denote by G(by,...,by) their Gram
matrix, i.e. the d x d symmetric matrix ((b;,b;))1<ij<q formed by all the inner
products.

Lattice volume. A lattice L has infinitely many lattice bases when dim(L) > 2.
Any two bases are related to each other by some unimodular matrix (integral matrix
of determinant +1), and therefore the determinant of the Gram matrix of a basis
only depends on the lattice. The square root of this determinant is the volume vol(L)
(or determinant) of the lattice.

Gram-Schmidt orthogonalisation. Let [by,...,by] be linearly independent vec-
tors. The Gram-Schmidt orthogonalisation (GSO) [b7, ..., b}] is an orthogonal family
defined recursively as follows: b is the component of b; orthogonal to the subspace
spanned by by ,...,b;_1. We have b} = b; — >/_ ;b7 where p1; ; = (b, b7) /|| b3]|.
The lattice L spanned by the b;’s satisfies vol(L) = [[%, [|bf]|. The GSO family
depends on the order of the vectors. If the b;’s are integer vectors, the b;’s and the
f;,;'s are in general rational.

QR factorisation. The GSO can be seen as the “R” part of the () - R factorisation
of the matrix representing the basis [by,...,by], where @ is an orthogonal matrix
(ie. Q- Q' = Q'-Q = Id) and R is lower triangular. This decomposition can be
computed e.g. with the Gram-Schmidt algorithm as described above. If R = (7 ;),
for any i we have r;; = ||bf||* and for any i > j we have r; ; = pi7j||b;||2. In what
follows, the GSO family denotes the r; ;’s and p; ;’s. Some information is redundant
in ideal arithmetic, but in the context of our fp calculations, it is useful to have them
all to minimize the number of arithmetic operations and thus the precision loss.
Size-reduction. A basis [by,...,by] is size-reduced with factor n > 1/2 if its GSO
family satisfies |p; ;| < n for all j < ¢ < d. An individual vector b; is size-reduced
if |pi ;| < mfor all j < i. Size reduction usually refers to n = 1/2 and is typically
achieved by successively size-reducing individual vectors by increasing index 1.

INRIA

Floating-Point LLL Revisited 7

LLL-reduction. A basis [by,...,by] is LLL-reduced with factor (d,7n) for 1/4 < § <
1 and 1/2 <7 < V4 if the basis is size-reduced with factor 5 and if its GSO satisfies
the (d—1) Lovész conditions (5—Mg’i_1)||br_1||2 < ||b¢||?, which means that the GSO
vectors never drop too much. Such bases have several useful properties (see [16,6,
22]), the following one in particular: the first basis vector is relatively short, namely:

[b1]| < B4 D/ 4v0l(L)Y4 where 8 =1/(5 —n?).

LLL-reduction usually refers to the factor (3/4,1/2) because this was the choice
considered in the original paper [16]. But the closer § and 7 are respectively to
1 and 1/2, the more reduced the basis is. The classical LLL algorithm obtains in
polynomial time a basis reduced with factor (9, 1/2) where 0 can be arbitrarily close
to 1. The new LLL? algorithm will achieve a factor of (0.998,0.501).

The LLL algorithm. The basic LLL algorithm [16] is described in Figure 1. It
computes a LLL-reduced basis in an iterative fashion: there is an index k such that
at any stage of the algorithm, the truncated basis [by,...,bs_1] is LLL-reduced. At
each loop iteration, x is either incremented or decremented: the loop stops when
eventually reaches the value d + 1, in which case the entire basis [by,...,by] is al-
ready LLL-reduced. LLL uses two kinds of operations: swaps of consecutive vectors

Input: A basis [by,...,bq] and 6 €]1/4, 1].
Output: A LLL-reduced basis with factor (§,1/2).
1. Compute the GSO, i.e. all the y; ;’s and ||b}||*’s.
2. k:=2. While x < d do

3. Size-reduce b, using Babai’s algorithm (Fig. 2), which updates the GSO.
4 If (6 — p o 1)|Ibi_1]|* < |Ib%]1?, then ki=k + 1.

5. Else swap b.—1 and b, update the GSO and set x:=max(x — 1,2).

6. Output [by,...,ba].

Fig. 1. The basic LLL Algorithm.

and Babai’s nearest plane algorithm [1] (see Figure 2), which does at most d trans-
lations of the form b,:=b, — mb;, where m is some integer and ¢ < k. Swaps are
used to achieve Lovasz conditions, while Babai’s algorithm is used to size-reduce vec-
tors. When a swap occurs, there is no need size-reducing the newly swapped vector,
because it is already size-reduced: this fact will be implicitly used in LLL2.

If LLL terminates, it is clear that the output basis is LLL-reduced. What is less
clear a priori is why LLL has polynomial-time complexity. A standard argument
shows that each swap decreases the quantity A = H?Zl |7 ||2(@=+1) by at least a

7
multiplicative factor §, whereas A > 1 because the b;’s are integer vectors. This allows

RR n° 5387

8 Phong Q. Nguyen, Damien Stehlé

Input: A basis [b1,...,bs], its GSO and an index .
QOutput: The basis where b,. is size-reduced, and the updated GSO.
1. For i = Kk — 1 downto 1 do

2. br:=b. — s, | bi.
3. For j =1toido
4. P, i =Hr,j = [fhus,i | i,

Fig. 2. Babai’s nearest plane algorithm to size-reduce b, so that |u.,:| < 1/2 for all ¢ < k.

to show that the number of swaps (and therefore the number of loop iterations) is
O(d?log B) where B is an upper bound on the norms of the input basis vectors. It re-
mains to estimate the cost of each loop iteration. This cost turns out to be dominated
by O(d?) arithmetic operations on the GSO coefficients y; ; and ||b?||*> which are ra-
tional numbers with numerator and denominator of bit-length O(dlog B). Thus, the
total complexity of the LLL algorithm described in Fig.1 without fast integer arith-
metic is O((d%log B) - d* - (dlog B)?)) = O(d® log® B).

LLL with floating-point arithmetic. The cost of the basic LLL is dominated
by arithmetic operations on the GSO coefficients which are rationals with huge nu-
merators and denominators. It is therefore tempting to replace the exact represen-
tation of the GSO coefficients by floating-point approximations. But doing so in a
straightforward manner leads to instability. The algorithm is no longer guaranteed
to be polynomial-time: it may not even terminate, because the quantity A used to
upper bound the complexity of LLL no longer necessarily decreases at each swap.
And if ever the algorithm terminates, the output basis may not be LLL-reduced
at all, due to potential inaccuracy in the GSO coefficients. Prior to this work, the
only provable fp-LLL was the one of Schnorr [30], which simulates the behavior
of LLL using fp-approximations of the coefficients of the inverse matrix of the p; ;
matrix: it computes a LLL-reduced basis with factor (0.95,0.55). The number of
loop iterations and the number of arithmetic operations (in each loop) remain the
same as LLL: only the cost of each arithmetic operation is decreased. Instead of
handling integers of bit-length O(dlog B), [30] uses fp-numbers with O(d + log B)-
bit long mantissee(with large hidden constants, as mentioned in the introduction),
which decreases the worst-case complexity of LLL to O(d*log B(d + log B)?), which
is still cubic in log B. Because this algorithm is mostly of theoretical interest, the
main computer packages [36, 20, 2] only implement heuristic fp-variants of LLL a la
Schnorr-Euchner [32] which suffer from potential stability problems.

INRIA

Floating-Point LLL Revisited 9

3 The LLL? Algorithm

We now describe the LLL? algorithm, which is a natural fp-variant of LLL. The basic
strategy is to keep good fp-approximations of the GSO coefficients and to make sure
that sufficient accuracy is preserved during the execution of the algorithm. There is no
need keeping an approximation for all the GSO coefficients: because LLL is iterative,
it suffices to have approximations up to the threshold k. Accuracy is very important
for size-reduction and for checking Lovéasz’s conditions. If one is not careful, swaps
and translations may decrease the accuracy to the point of losing stability.

3.1 Gram-Schmidt Computations

It is important for LLL? to have accurate formulas for the computation of GSO
coefficients. In [32], the following recursive formulas were used:

(i, bj) = 341 - o |07 .
i = S and [[B|* = [|b]* - Zuk] 6311
J

In this formula, the inner products (by,b;) and |bg||> were computed in fpa, which
leads to a potential inaccuracy of 27¢(|by||||b;||, which has the following drawback:
to ensure the basis returned by the LLLZalgorithm is size-reduced, absolute error
bounds on the py ;’s are needed; therefore, if the error is larger than 27¢|by||[|b;],
the precision ¢ must be £2(log B). The analyses of [30], and [31] for the Householder
orthogonalisation do not work around this point. We use slightly different formulas
by introducing for any k£ > j the quantity 74 ; = g ; - Hb"‘H2 (bk, b7):

7j—1
Tk,]
Tk = (b, b; E M Tki and pg; =
TJJ'
=1 >

Accuracy is improved because the inner products are extracted from the exact Gram
matrix and because each term of the sum now only requires one multiplication instead
of two: the fewer arithmetic operations, the less the precision loss. For £ = j, the
first formula is 7k = |bll2 = S2F! s - 7.5, which suggests to define sk = bkl —

g 1 M- T for all 1 < j < Kk, so that Hb}’;|]2 = 7Lk = Skk- The quantities
si; will be useful to accurately check Lovész’s conditions. Indeed, Lovész condition
(0 = pi 1) 1651 [1* < [|bi]|* can be rewritten as 6[[by_[|* < [|bE]|* + 4 1 [[b5_1 1%,
that is,

0i—1,5—1 < Sk —1-

RR n° 5387

10 Phong Q. Nguyen, Damien Stehlé

If ever that condition is not satisfied, LLL would swap b._1 and b, and the new
Lovéasz condition to be checked would be:

5rn—2,n—2 < Sk,k—2-

Thus, storing the values s, ;’s enables us to check consecutive Lovasz conditions
(when consecutive swaps occur) without any additional cost since they appear in
the calculation of 74 ;. The computation of ry j, g ; and sg ; is summarized in the
so-called Cholesky Factorisation Algorithm (CFA) of Figure 3. Of course, because

Input: The Gram matrix of (bi,...,ba).

Output: All the 7; ;’s and p; ;’s, along with the sq4,;’s.
1. For it =1to d do

2. Forj=1toido

3. rg::(bi,bﬁ-
4. For k=1to j—1do
k k—1 k—1
5 rz(,j)::h(,j ' Tg(',k " ik
. . j—1 =1
6 Ifi>j, Mi»j::Tz(,]j)/Tﬁ-,]]- .

7. Output ri,j::r;jj*l) for i > j.
8. Output p;,; for i > j.

9. Output sd,j::rl(i{(j_l) for any j.

Fig. 3. The Cholesky Factorisation Algorithm (CFA)

one uses fpa, the exact values are unknown to the algorithm: instead, one computes
fp-approximations 7; ;, fi; ; and 5j;. Steps 5 and 6 are performed in the following
way':

=0 (fz-(,kj—l) —o (f](.f“k—l) gm)) and fi; =0 <f§7;—1)/f§?;f1)> '

We will not use CFA directly in LLL?. Instead, we will use parts of the CFA
during the execution of the algorithm: because the orthogonalisation is performed
vector by vector, there is no need recomputing everything from scratch if the r; ;’s and
t;,;'s are already known for 7 and j below some threshold. Notice also that the r; ;’s
can be updated “in place”, except for 74 4 because the different 7"1(1],1)1 = 54,; need being
returned to check Lovasz conditions. The whole CFA will prove useful to estimate in

Section 4 how many precision bits are required to guarantee the correctness of LLL2.

3.2 An Iterative Floating-Point Version of Babai’s Algorithm

The core of the LLL? algorithm is an iterative fp-version of Babai’s nearest plane
algorithm, which is described in Figure 4. Instead of size-reducing b, at once like

INRIA

Floating-Point LLL Revisited

and G(bl, ey b,{_l7 b;, b,ﬁ.l, ey bd) where b; =b, — Zi<m z;b;
for some integers x;’s and: |(bl,, b})| < 0.501 - ||b}||* for any i < k.
1. Repeat
2. Compute the 7. ;’s, fix,;’s and 5, ;’s with Steps 2—6 of the CFA with “i = x”.
3 For i = k — 1 downto 1 do
4. If |fik,s| > 0.5005, then X;:=|fix], else X;:=0,
5 FOI'] =1to7— 1, ﬁ,{’jizo(ﬂ,{’j — O(XZ . ﬂm))
6. Update (b1,...,ba) and G(b1,...,ba), according to “b.:=b. — 3" X;b".
7. Until all X;’s are zero.

11
Input: A working precision ¢, an integer x, a basis (b1,...,bq), G(b1,...,bq), and
fp numbers 7; ; and [, ;’s for j <i < K.
Output: fp numbers 7, ;’s for j < k, fix,;'s and 5., for j <k, (b1,...,bu—1,b,brt1,...,ba) ,

Fig. 4. The Iterative Babai Nearest Plane Algorithm

the original Babai algorithm of Figure 2, our fp-version of Babai applies an iterative
process using parts of the CFA algorithm of Figure 3. At Step 6, it suffices to update

the scalar products (b;, by) for i < d according to the relations:

BRI = 11Bsl1* + D 23 llbj|* =2 wj(bj,bs) +2 > mizj(bi,by)

J#s J#k i
(bi,b,) = (bi,be) — > _xj(b;,bj) for i+ k.
i#n

3.3 Main Results

A description of LLL? is given in Figure 5. By selecting particular values of ¢, we

Input: A basis [bi,...,bs] and a working precision ¢ for fpa.
Output: A LLL-reduced basis with factor (0.998,0.501).

1. Compute the Gram matrix G = G(by, ..., ba).
2. 71,1:=0({b1,b1)), k:=2. While k < d, do

Variables: An integer matrix G, two d X d fp-matrices (7;,;) and (fs,;), a fp-vector 3.

3. Size-reduce b, using the algorithm of Figure 4. It updates the approximate GSO.
4 k":=k. While (k > 2 and 0.9997x—1,x—1 > Sx/ k—1), d0 K:=K — L.

5. Fori=1t0o kK — 1, fin,i:=flw’ is Tr,i:=Tr i Tr,n =58x’ 1-

6. Update G according to the insertion of b, right before b,.

7. Ki=kK + 1.

8. Output [b1,...,ba].

Fig. 5. The LLL? algorithm.

obtain different LLL? algorithms. Notice that the cost of the first step is bounded

RR n° 5387

12 Phong Q. Nguyen, Damien Stehlé

by O(d®log? B) and is thus negligible as regard to the LLL-reduction itself. Steps 4
7 require some explaination: if Lovasz’s condition is satisfied, nothing happens in
Steps 5 and 6, and & is incremented like in the basic LLL algorithm. Otherwise, the
aim of Step 4 is to find the right index of insertion of b,, therefore batching successive
failures of Lovész’s condition in the basic LLL algorithm. The main results of this
paper can be summarized as follows. The first result achieves the same result as [30],
using a simpler method and better constants:

Theorem 1. Given as input a d-dimensional lattice basis [b,...,by] in Z? such
that ||b;|| < B for any i, the algorithm LLL? of Figure 5 with working precision
¢ = 1.812d+log B+ o(d) outputs a LLL-reduced basis of factor (0.998,0.501) in time
O(d*1og B(d + log B)?).

The second result provides a quadratic LLL algorithm:

Theorem 2. Given as input a d-dimensional lattice basis [b1,...,by] in Z¢ such
that ||b;|| < B for any i, the algorithm LLL? of Figure 5 with working precision { =
1.6d+o(d) outputs a LLL-reduced basis of factor (0.998,0.501) in time O(d® log B(d+
log B)).

The rest of the paper is devoted to proving those theorems.

4 Correctness of the LLL? Algorithm

To guarantee the correctness of LLL?, we need to estimate the accuracy of fp-
approximations at various stages of the algorithm.

4.1 Accuracy of Gram-Schmidt Computations

In general, the classical Gram-Schmidt algorithm is known to have very poor numer-
ical stability [3,9, 15, 38]. However, it should be stressed that in the context of LLL,
bases are reduced in an iterative fashion, which implies that we can study the accu-
racy of Gram-Schmidt computations under the hypothesis that the first d — 1 vectors
of the input basis are LLL-reduced. In this particular case, because a LLL-reduced
basis is nearly orthogonal, the following result shows that a working precision of
(log3 + €)d ~ 1.585 - d bits is sufficient for the CFA. Although the result holds for
any € > 0, for the sake of simplicity, we prove it for log 3.03 instead of log 3 + e.

Theorem 3. Let p = 3.03. Suppose that the basis (by,...,by_1) is LLL-reduced
with factor (0.998,0.501). In the case of floating-point arithmetic with a working

INRIA

Floating-Point LLL Revisited 13

precision ¢ satisfying d?p?t192=¢ < 0.001, the CFA algorithm from Figure 3 computes
in time O(d3(?) fp-numbers satisfying the following equations. For any j < i < d:

|’Fi,j — ’f’i,j| < dpj—HOQ_é . ||b>;||2 and |ﬂi7j — ,u@j| < 1.503d,0j+102_é.
Moreover, if M = maz;|pq |, we have for any j < d:
Faj —rayl < dp? TOM27E 05|12 and |fig; — pay] < 1.503dp7 T OM27E

Finally, if M < 0.501 then for any j < d:|5q; — 84, < dpd+102_é-||b;||2+d21_£|sd,j|.

The second set of inequalities is useful for the analysis of Babai’s nearest plane
algorithm, while the last set provides guarantees when testing Lovasz’s conditions
on the approximate 7; ;’s. We now give a sketch of the proof of Theorem 3: a complete
proof can be found in appendix. Most of the accuracy loss comes from Step 5, which

amplifies the error. We define err; = maxi<d%, which is the error on 7;;
J
relatively to Hb;‘f|]2, and we try to analyze its potential growth with j. Obviously

err1 < 27 %max;q KITI;;IIJIIQH < 27!, because of the size-reduction property of the LLL-

reduction. We choose now j € [|2,d—1|]. The result for i = d can be derived from the
proof for i < d — 1, intuitively by replacing “by” by “-- 4704”7 in it. Because of Step 6,
we have for any 7 < d and any k < j:

> +e€)er

—+4e€|err

2 k>

where we neglected low-order terms and used the fact that |r; x| < (3 +¢€) ||bg|?,
which comes from size-reduction property. This implies that:

1

erry + |ri gl Fer e

ik — Hi k] <‘
Th,k

)

0(Fjk - i) — Tikbvigel <Pk — rikl - |dig] + 17kl - [Rigk — pix]

5
< <Z + 6> erry, - ||b}’;||2,

where we also neglected low-order terms and used size-reduction twice. As a conse-

quence,
Hb"‘H2) 4 i—k
67’7“]_< >§ 14‘6 E §+6 errg,

k<] k<j

by using Lovész’ conditions. This last inequality finally gives err; < (3+€)7 -erry <
(34 €)727¢, since we have (%—I—e) (2+e+1)=3+e 0

RR n° 5387

14 Phong Q. Nguyen, Damien Stehlé

The bound in Theorem 3 is in some sense tight: it is possible to observe in
practice that a fp-LLL using either the classical Gram-Schmidt algorithm or the
Cholesky factorisation algorithm requires a precision of £2(d) bits. Indeed, the proof
which we just sketched suggests to consider the already reduced lattice given by the
rows of the d X d random matrix L defined by:

L;; = (1/4/3)%"1
Lij=(—1)"7*'L;; - random[0.49,0.5] if j >i
Lij= 0 if j <.

To obtain an integral lattice, one can multiply L by a large scaling factor and round
its entries. Notice that this matrix is indeed LLL-reduced. With double precision
calculations, i.e. with 53-bit mantisse, the error on the p; ;’s becomes significant
(higher than 0.5) in dimension 40. This type of lattices show the tightness of our
log 3 - d bound. By adding a suitable random vector to such a basis, we were able to
make the fp-LLL routine of NTL' loop forever in dimension 55. This invalidates the
claim of [32, 33, 12] which states that double precision suffices for lattices of dimension
up to ~ 250 using classical Gram-Schmidt.

4.2 Accuracy of Babai’s Nearest Plane Algorithm

To estimate the accuracy of the iterative fp-version of Babai’s algorithm given in
Figure 4 and used in LLL2, we first study a simpler fp-version described in Figure 6.
Theorem 3 can be used to show stability properties of the Babai algorithm from

Input: A working precision ¢, G(by,...,bq) and
fp numbers 7; ;’s and [i; ;’s for j <i < d.

Output: z1,...,24-1 € Z and G(b1,...,bs—1,b)),
where b}, = by — Y icaibi.

1. Compute the fiq ;’s for j < d with Steps 2-6 of

the CFA with “i = d”, call them the fi{")’s.

2. For i = d — 1 downto 1 do

3. If|a{ V| > 0.5005, then z;:=|af "7, else xi:=0.

4. Forj=1toi—1do

5. ﬁz(il,;::"(ﬂf;;l) —o(xi - fii,j))-

6. Compute the Gram matrix of (b1,...,bs_1,b}).

Fig. 6. Babai’s Nearest Plane Algorithm
Figure 6 in the case of floating-point arithmetic:

! FP_LLL with Lovész factor 0.99

INRIA

Floating-Point LLL Revisited 15

Theorem 4. Suppose the basis (by,...,bys_1) is LLL-reduced with factor (0.998,0.501),
and that the given 7; ;’s and [1; ;s are those that would have been returned by the CFA
with working precision {. Let M = maz;|pq ;| and M’ = 1.001M + 0.5005. If £ sat-
isfies d?p?t152=¢ < 0.001, the algorithm of Figure 6 finds integers 1, ... ,xq_1 such
that for any i < d:

. b, b*
|z;| < 1.503 0N gnd w < 0.5005 4 d?pdt a2~
)

Moreover it performs O(d%(d + log B)) bit operations, as long as £ = O(d + log B).

The proof is given in appendix. Notice that by using the relation log M = O(d+log B)
(coming from the fact that the d—1 first vectors are LLL-reduced), this result implies
that taking ¢ = O(d+log B) is sufficient to make the |14 ,|’s smaller than 0.501. The
drawback of this approach is that one should have previously computed the r; ;’s and
wi ;s with precision O(d+log B). This seems like an overkill because O(d+log M) bits
suffice and M is usually far smaller than B. In the case of the Euclidean algorithm,
the analogy is that the quotients would be computed by using all the bits of the
remainders, instead of the most significant ones.

The iterative Babai algorithm from Figure 4 is a way to work around the difficulty
that M cannot be bound tightly in advance. Using only a O(d)-bit precision, it finds
the z;’s progressively by performing successive Babai steps, each one making log M
decrease by (2(d), until we reach M < 0.501. This strategy is somewhat similar to
the Babai routine of the floating-point LLL algorithm of NTL, in which one applies
repeatedly Babai’s algorithm until nothing happens.

The iterative Babai will use a working precision ¢ = (log3.03 + C)d + o(d)
for an arbitrary C' > 0. The CFA with working precision d gives the input 7; ;’s
and fi; ;’s, which by Theorem 3 have their ~ Cd leading bits correct. Therefore,
the r; ;’s and p; ;s may not be known sufficiently well to perform Babai’s algorithm
in one single step, but Theorem 4 gives that their approximations suffice to make

|<|l|)g;lﬁi;>‘ decrease by ~ C'd bits. By making O (1 + IO%M) such calls to

Babai’s algorithm, the size-reduction for x can be achieved. In practice, the optimal
choice for C depends on the considered lattice: the higher C, the fewer loop itera-
tions, but the higher arithmetic cost. If the coefficients z;’s are guessed small, it is
tempting to choose a small C.

M = max;,

Theorem 5. Let ¢ > 12. Suppose the basis (by,...,b,_1) is LLL-reduced with factor
(0.998,0.501), and that the given 7;;’s and [i;;’s are those that would have been
returned by the CFA with working precision (. Let M = mazj<x | ;|- If ¢ satisfies

RR n° 5387

16 Phong Q. Nguyen, Damien Stehlé

d?pdt152¢=t < 0.001, the algorithm of Figure 4 provides a correct output in O(d?(d+
log B)(d+1log M)) bit operations, as long as £ = O(d). Moreover, the returned 7, ;’s,
fir,j's and 5. ;’s are those that would have been returned by the CFA with working
precision .

Proof. We start by the correctness properties of the algorithm. At the last iteration
of the main loop, the computed X’s are all zero, which implies that nothing happens
during Steps 3-6. This gives the correctness of the returned 7y ;’s, fix ;s and 35, ;’s.
It also gives that for any j < k, |fix ;| < 0.5005, from which we derive |[(b,b})| <
0.501 - ||b}||?, by using Theorem 4 and the hypothesis on /.

We now consider the effect of one iteration of the main loop on M. Let M; be
the “new M” after the loop iteration. Theorem 4 and the hypothesis on ¢ give the
inequality:

M; < 0.5005 + d?p®15(1.001M + 0.5005)2~¢ < 0.5007 + 21~ M.

log
c—1

As a consequence, there can be at most O (1 +) loop iterations.

Suppose that we choose ¢ = ©(d). Theorem 4 also gives that the cost of one
loop iteration is bounded by O(d?(d + log B)), because during the execution of the
algorithm, the entries of the Gram matrix remain integers of length bounded by O(d+
log B). The fact that we have additional vectors in the Gram matrix is taken into
account in the complexity bound. Finally, the overall cost of the algorithm is bounded

by O (@(d+10g B) (1+5M)) = O(d2(d + log B)(d + log M)). 0

4.3 Application to LLL?

In the fp-version of Babai’s algorithm, a precision ¢ > log M + 1.6d is required to
ensure size-reduction, namely to make the |u, ;|’s smaller than 0.501. Since M cannot
be known in advance, it is natural to replace it by an upper bound which guaran-
tees that the working precision will suffice. For this purpose, we use the following
inequalities:

b, b* dB
M:max]'<,.€‘< H; ;>| < — vd — < Vdl.349B,
167]] min; < || b7 |

because (by,...,bs—1) is LLL-reduced and the basis is integral. As a result, ¢ =
1.812d + log B + o(d) is sufficient. In this situation, the iterative Babai algorithm
performs only two loop iterations: the first one size-reduces b, whereas the sec-
ond one recomputes the 7, ;’s, s ;’s and s, ;’s more accurately. This shows that

INRIA

Floating-Point LLL Revisited 17

size-reduction with 0.501 is achieved for the LLL? of Theorem 1. For the LLL? of
Theorem 2, this follows directly from Theorem 5.

It remains to show that Lovasz conditions are approximately satisfied. Recall
that b, is swapped with b; for i < x if and only if for any j € [|i,x — 1], we
have 5, ; < 0.9997; ;, in which case 1.001- 5, ; < 7} ; because 1/0.999 > 1.001, which
means that with our approximate knowledge of the Gram-Schmidt orthogonalisation,
we think that b, is much shorter than b; in the space projected orthogonally to
(b1,...,bj_1). Because of Theorem 3, we obtain that:

1.001(1 — d2" e < (1 + dp™™ 27y 5,

therefore, as soon as d?p?+102=¢ < 10719 such a swap implies (1+2710)s,, ; < Hb;‘|]2
Similarly, if b,; is not swapped with b;, then 1.001-5, ; > 7; ;, implying by Theorem 3
that (1+27%)s,; > ||b}|*>. To sum up, after a loop iteration of the LLL? algorithm,
(by,...,b;,b.) is LLL-reduced with parameters 0.501 and 0.998, and & is set to i+ 1.

We thus have shown that the basis output by the LLL? algorithms of Theorems 1
and 2 is LLL-reduced with factor (0.998,0.501).

5 Complexity Analysis of the LLL? Algorithm

5.1 Basic Properties and Proof of Theorem 1

Before proving the main two results, we need a set of simple properties satisfied by
the LLL? algorithm, which we prove in appendix.

Theorem 6. Let [bgo), . ,bl(io)] a basis of of a lattice L given as input to the LLL?.
For any loop iteration t, [bgt), .. .,bl(it)] denotes the current basis at the beginning of

the t-th loop iteration. We have:

— For any i < k(t)—1, bz(.t) 18 size-reduced, and [bgt), cel b,(fll] 1s LLL-reduced with
factor (0.998,0.501).

— For any i <d, ma:cjgiHbg-t)*H < mazl:jgiHbg-O)*H.

— For any i <d, Hbz(.lt)H2 <d- mazjgiHbgO)Hz.

— Any vector appearing during the size-reduction of by is of length smaller than
90(d) gO(1)

In Section 4.3, we showed that the accuracy in the check of Lovasz conditions
was good. For any Lovasz’s test, either x increases or decreases by one and when

RR n° 5387

18 Phong Q. Nguyen, Damien Stehlé

it decreases, the quantity H;i:l |b5]|2(@=9) decreases by a factor of 1 + 27 by Sec-

tion 4.3. It is a standard LLL argument that this quantity is actually an integer (it is
a product of squared volumes of integer lattices), and is initially bounded by BO@),
Since in the overall execution of the algorithm the difference between the numbers
of decreases and increases of r is exactly d, there must be at most O(d?log B) loop
iterations.

Theorem 5 now immediately gives the complexity O(d*log B(d + log B)?) an-
nounced in Theorem 1. The rest of this section is devoted to showing how to achieve
the complexity O(d®log B(d + log B)) of Theorem 2. This is done by generalizing a
cascade phenomenon which appears in the analysis of the Euclidean and the Gaussian
algorithm.

5.2 A Naive Analysis of the Euclidean Algorithm

As mentioned in the introduction, the LLL algorithm can be viewed as a high-
dimensional generalisation of the Euclidean algorithm to compute gcds. But one
annoying fact argues against this analogy: the Euclidean algorithm has a quadratic
complexity bound, whereas the LLL algorithm is cubic for any fixed dimension.
We claim that the standard analysis of the LLL algorithm corresponds to a naive
analysis of the Euclidean algorithm which gives a cubic complexity. The Euclidean
algorithm works as follows: given as input two initial remainders rg > 1 > 0, it
builds the sequences of quotients ¢; and remainders r; defined by ¢; = |r;—1/r;] and
rir1 = Ti—1—q;Ti, until r-11 = 0. The r;’s are strictly decreasing integers and r is the
ged of rg and r1. It is well-known that the remainders decrease at least geometrically,
which implies that 7 = O(log o). A naive analysis of the Euclidean algorithm states
that the algorithm performs O(logry) arithmetic operations on integers of lengths
bounded by O(log), and that the overall cost is bounded by O(log®). Of course,
the correct analysis notices that the cost of computing ¢; and r;;1 is bounded by
O(logri—1 - logq;) = O(logrg - (1 +logri—1 — logr;)). Summed over all the steps,
all but two terms “logr;” vanish in the computation, giving the classical quadratic
O(log? ry) complexity bound.

We show in the following subsection how to obtain such an analysis in the case
of the LLL? algorithm. The difficulty essentially relies in the generalisation of the
cancellation of all but a very few terms in the sum of the costs of consecutive loop
iterations.

INRIA

Floating-Point LLL Revisited 19

5.3 A Cascade in the LLL? Complexity Analysis

In this subsection we give the proof of the main theorem of the paper, that is Theo-
rem 2.

We already know that the number of loop iterations is 7 = O(d? log B). The t-th
loop iteration costs O(d?(d+log B)(d+log M (t))) where M (t) = max; .t |fn(r),; (t)]-
By analogy with the Euclidean algorithm, we make terms cancel with each other in
the sum over the loop iterations of the “M (¢)’s”. For this purpose, we define the index
a(t) as the smallest swapping index since the last moment ~ was at least x(t).

Lemma 1. Let t be a loop iteration. Let ¢(t) = maz(t’ < t | w(t') > k(t)) if it
erists and 1 otherwise, and «o(t) = min(k(t') | t' € [|¢(t),t]|]) — 1. Then we have
log M (t) < d +log [b%), || — log b, ||

07

Proof. Between loop iterations ¢(t) and ¢, by,...,b,)—1 Temain unchanged and

because of the size-reductions, each vector created during these iterations is size-

reduced as regard to by, ..., by —1- This includes b;()t). As a consequence, by using

the fact that (bgt), ce bg()t)_l) is LLL-reduced,

M(t) < 0.501 +max;_(r).(e(-1) |ttuy.al < 0.501 + 13426 11 /[6L), ||

O

We are to subdivide the sum of the “M(t)’s” into O(d?) subsums according to the
value a(t) and (t) at the loop iteration t:

d—1 d
S (d+log M() < dPlogB+Y. S S (og byl —log[b]):
t<r a=1k=a+1¢t s.t. a(t)=a,x(t)=k

For each of these subsums, we keep k& — a positive terms and k — a negative terms,
and make the others vanish in a “(k — a)-shifted cascade”. The crucial point to do
this is the following:

Lemma 2. Let 1 <a <k <dandt; <...<ty_, be loop iterations of the LLL?
algorithm such that for any j < k — a, k(t;) = k and o(t;) = a. Then Hb((ltl)H >
d21.3424)p")|,

To prove this result, we will need the following fact:

RR n° 5387

20 Phong Q. Nguyen, Damien Stehlé

Lemma 3. Let T be a loop iteration and j an integer such that x(T) > j > k(T +1).
We have:

T+ T+1)

T T
maz;<;||b; I < mazi<;_1|[B"|| and maz;<; |6 V| < V- mazi<;1 |07

Proof of Lemma 3:1f i < j differs from x(T+1)—1, b(T+1) is one the bET) S for 2' <j-—
(T41)

1. From size-reduction, it suffices to show that ||b (T+1 Il < max;<; 1||b “||. Be-

cause Lovész’s test failed at loop iteration 7" for x(7'+1) —1, we have ||b(T;fJ1rl P <
T)x

Hb((T+1) 1”2- O

Proof of Lemma 2: By definition of «, for any j € [|2,k — a|], there exits a first loop
iteration Tj € [|tj_1,t;|[such that x(T}) > j > k(T; + 1). Because of Theorem 6 and
Lemma 3, we have:

th—a Ti_q+1 Tk—a
1B+ |1? < d - max;<g |b{ V|12 < a2 - maxicp[|BY)12

By minimality of 7}, the vectors bi,...,br_1 do not change in loop iterations
tg—q—1 t0 Tk_q. Since Kk(tgx_qo—1) = k, these vectors are LLL-reduced, which gives
that:

1By)||? < d?1.34%max;<j,_ ||| 2.
Theorem 6 and the first claim of Lemma 3 give that:

th_aq_1)%
b(- k 1) ”2

Ty 0 1
max;<j_1]|b; p{Thoert)*H2

Te o
S maXigk—lH) (Tk—a 1)*”2

< max;<;—2|b;
< max;cp_o||bl D2

< max;< |62

The fact that (bgtl), . 7b((fl)) is LLL-reduced gives the result. 0
It is now possible to finish the complexity analysis. Lemma 2 gives that:

[N

Z lo k(1)

g
=\,

ZZ(— a)log(VdB) + d- |{t | k(t) = k.a(t) = a}]),

which is O(d? log B), because all the Hbgt) ||’s are smaller than v/dB and 7 = O(d? log B).

INRIA

Floating-Point LLL Revisited 21

References

1. L. Babai. On Lovész lattice reduction and the nearest lattice point problem. Combinatorica,
6:1-13, 1986.

2. C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier. PARI/GP computer package
version 2. Université de Bordeaux I.

3. A. Bjorck. Numerical Methods for Least Squares Problems. SIAM, 1996.

4. D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS, 46(2):203—
213, 1999.

5. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than n%2°2. In Proc. of
Eurocrypt ’99, volume 1592 of Lecture Notes in Computer Science, pages 1-11. Springer-Verlag,
1999.

6. H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1995. Second
edition.

7. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabili-
ties. J. of Cryptology, 10(4):233-260, 1997.

8. 0. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice reduction
problems. In Proc. of Crypto ’97, volume 1294 of Lecture Notes in Computer Science, pages
112-131. Springer-Verlag, 1997.

9. G. Golub and C. van Loan. Matriz Computations. Johns Hopkins Univ. Press, 1996.

10. M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimiza-
tion. Springer-Verlag, 1993.

11. N. A. Howgrave-Graham and N. P. Smart. Lattice attacks on digital signature schemes. Design,
Codes and Cryptography, 23:283-290, 2001.

12. H. Koy and C. P. Schnorr. Segment LLL-reduction of lattice bases. In Proc. of CALC 01,
volume 2146 of Lecture Notes in Computer Science, pages 67-80. Springer-Verlag, 2001.

13. H. Koy and C. P. Schnorr. Segment LLL-reduction with floating point orthogonalization. In
Proc. of CALC 01, volume 2146 of Lecture Notes in Computer Science, pages 81-96. Springer-
Verlag, 2001.

14. J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. Journal of the
Association for Computing Machinery, January 1985.

15. C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. STAM, 1995.

16. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz. Factoring polynomials with rational coeffi-
cients. Math. Ann., 261:513-534, 1982.

17. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Technical report,
Mathematisch Instituut, Universiteit van Amsterdam, April 1981. Report 81-03.

18. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Math. Oper. Res.,
8(4):538-548, 1983.

19. Lidia. A library for computational number theory.
http://www-jb.cs.uni-sb.de/LiDIA/1linkhtml/lidia/lidia.html.

20. Magma. The Magma computational algebra system for algebra, number theory and geometry.
http://www.maths.usyd.edu.au:8000/u/magma/.

21. D. Micciancio. Improving lattice-based cryptosystems using the Hermite normal form. In Proc.
of CALC 01, volume 2146 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

22. D. Micciancio and S. Goldwasser. Complezity of lattice problems: A cryptographic perspective.

Kluwer Academic Publishers, Boston, 2002.

RR n° 5387

22

Phong Q. Nguyen, Damien Stehlé

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

A

P. Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto
’97. In Proc. of the 19th Cryptology Conference (Crypto ’99), volume 1666 of Lecture Notes in
Computer Science, pages 288-304. IACR, Springer-Verlag, 1999.

P. Q. Nguyen and I. E. Shparlinski. The insecurity of the Digital Signature Algorithm with
partially known nonces. Journal of Cryptology, 15(3):151-176, 2002.

P. Q. Nguyen and J. Stern. Cryptanalysis of the Ajtai-Dwork Cryptosystem. In Proc. of the
18th Cryptology Conference (Crypto ’98), volume 1462 of Lecture Notes in Computer Science,
pages 223-242. TACR, Springer-Verlag, 1998.

P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology. In Cryptography and
Lattices — Proc. CALC 01, volume 2146 of Lecture Notes in Computer Science, pages 146—180.
Springer-Verlag, 2001.

A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In Cryptology and Computational
Number Theory, volume 42 of Proc. of Symposia in Applied Mathematics, pages 75-88. A.M.S.,
1990.

The Spaces Project. Mpfr, a LGPL-library for multiple-precision floating-point computations
with exact rounding. http://www.mpfr.org/.

C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Th. Computer
Science, 53:201-224, 1987.

C. P. Schnorr. A more efficient algorithm for lattice basis reduction. J. of algorithms, 9(1):47-62,
1988.

C. P. Schnorr. Fast LLL-type lattice reduction. Unpublished draft available at
http://www.mi.informatik.uni-frankfurt.de/research/papers.html, October 2004.

C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and
solving subset sum problems. In Proc. of FCT ’91, volume 591 of Lecture Notes in Computer
Science, pages 68—85. Springer-Verlag, 1991.

C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and
solving subset sum problems. Math. Programming, 66:181-199, 1994.

A. Schonhage. Factorization of univariate integer polynomials by diophantine aproximation and
an improved basis reduction algorithm. In Proc. of ICALP ’8}, Lecture Notes in Computer
Science, pages 436—447. Springer-Verlag, 1984.

A. Schénhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281-292,
1971.

V. Shoup. Number Theory C++ Library (NTL). See http://www.shoup.net/ntl/.

A. Storjohann. Faster algorithms for integer lattice basis reduction. Technical report, ETH
Zurich, 1996.

J. H. Wilkinson. The algebraic eigenvalue problem. Oxford University Press, New-York, 1988.

Proof of Theorem 3

Correctness in the case of perfect arithmetic: Suppose first that we use a
perfect arithmetic. We claim that for any k < j < 4, rlgﬁ.) = (b;, bg.k)>, where bg.k) is

the component of b; that is orthogonal to by,..., by, i.e. bg.k) =b; — Zlgk b7 It
is easy to see that:

rz'(,kj) = (b, b§k)> = (b;, b§'“‘”> — kb, by) = Tz(,kj_l) - 7“1({2_1) i ks

INRIA

Floating-Point LLL Revisited 23

because of the definitions of ju;, and p; .

Proof for i < d: Suppose now that we use a floating-point arithmetic with a preci-
sion / satisfying d?p9t102=¢ < 0.001. The main point is to bound the error made in

the calculations of the ri(?’s computed in Step 5. Recall that Step 5 is performed in
the following way:

k). ~(k—1) (k=1) -
Tig - 0(0. 0<Jk’ “”‘3))
Let j < d. We show the following error bound by induction on j <d — 1:
For any i € [lj,d 1], |7, =7 <dp/™ 027 o3P (+)

This is easy for j = 1 since the (b;, b1)’s are known exactly and since [(b;, b1)| <
0.501||b1||2. Suppose now that j € [|2,d — 1|] and that the result holds for any
k < j — 1. By using the induction hypothesis, we have the following inequalities:

(k 1) (k=1) _(k=1)
sk —] <2 o7 |+|Tzk ik | |(k1 1
Hike — Hi k]| = (k D 7(,6) |- -1~ _(k-1)
Tk Tk Tk .k Tk k
A=) (ke (k) (k—1)
) —0| ik Tk k.k —0 k+10 k.k k+105—¢
e T i) e R D 2
iy y Tk Tk k

< 1.503 - dpkt102=¢,

(k—1)
because T(k 7 <1+ dpFt1027¢ < 1.001 and 27¢ < 3719, As a consequence:
k k

_(k k—
() = 5

—p1=(k— _ _ k—1
< 2D il + 7D e — k] il - 7D =Y
274(0.501+dp* 102762 |b% ||+ (0.501 +dp*+1027¢). 1.503- dp**+102=¢| b |2

+0.501 - dph+102-4||b7 12,

(k1)

because of the induction hypothesis and the fact that ‘” AR ‘, || < 0.501,
< 1.256 - dpk+102=C . |jpr||4

by using the fact that d?pF+102—¢ < 0.001.

(k 1) (k—1)
Tig T Tij

=) _ Tz(l;)‘ < 2—é|7:(k—1)| + 2—4‘ (](kk; 1) ﬂi,k)

Z7J
1 k—1
+‘ (]k) Mzk)—rj(»,k)Mi,k

RR n° 5387

24 Phong Q. Nguyen, Damien Stehlé

<2740 [- E7D) 4 (0.502)227¢ by 2

41.256 - dpk+10(2 14 2 QZ)Hb*HQ

<2t = r§,’§_l)\(1+2-f)+1.258-dp’f“02‘4- 16311 -

Notice now that for any k,

Jj—1 J
k * * * j—k' j— *
|7’i(,j)| < b6+ > luiwllBs i) < D311 D 1.3477F <3.1.3477F ||p7)%,
k'=k+1 k' =k+1

because the basis (b, ...,b;) is LLL-reduced. By using the fact that (1 + 27¢)4
1+ d2'~¢, we have for any k' < j:
) rgf;ﬁ\ <21+ d2) Y 1) —] 43 41309 K (L 4 a2t) b3 2
+1.259 - d270 - [|by |2 X< p pFTI0134K K
< 2N [P =i |4 8- L3R o 2 4 250, gk et
<2))] 40,909 - dpi T2 - |jbs .

165117
131

From this it is easy to show by induction on %’ that:

k' j — - *
e —TEJ)‘ < 0.999 - dp/ 01 + K227 |1b7)2,

which directly implies (*) for 7, because 0.999 - (1 + d2'=¢) < 1.

Proof for ¢ = d: Essentially, we “add M’s” in the previous proof where they have
to be added. We prove by induction on j < d — 1 that:

g =V < dptOM2

The case j = 1 is obvious, so we suppose that j > 2 and that we know the result
holds for any k < j. By proceeding as in the proof for ¢ < d, we obtain the following
inequalities:

FED) D)),

Tak Tar ~ —Tak ~1) 1 1
|,“dk: — Hd, k:| (k D (k) + |7ﬂd7k | ’ (k n _(k 1
Tk k Tk k Tk k Tk
Ak=1) (k1)
<o M2t ‘Zk’“ 5 — G| + L501(1 + dpt 1027) dpt 02
Tk k Tk

< 1.503dp* 10027,

INRIA

Floating-Point LLL Revisited 25

which implies that:
(k—=1) _ (k—1)

‘0 (Tj,k 'Md,k) —Tik Hdk
< 24\77]({2_1)| |fiax] + ’f]('fﬂk_l)| Niax — pakl + [Hak! - !f](-fﬂk_l) - T](-ffk_l)\
< (M + 1.503dp* 10 M276)27 - ||b7]|2 4 0.502 - 1.503 - dp*Ft100127¢ - |7 |2

_|_dpk+10M2—€ . ||bZ||2a

by definition of M, because of (x) and because of the induction hypothesis.
< 1.258 - dpFt1002=¢ - |16t ||?

because we supposed that d2p?102—¢ < 0.001.

_(k k (k1 _ _(k k—1
|rl(i’]?—rl(i’;| <2 €|T¢(i,j)\+2 e‘o (r](k 2 ,udk)‘—i-‘rdj —TC(M)
_(k=1) _ k
+‘ (](»kl)',udk)— J(k)Md,k‘
< 2~y |+((k-1) _ (’“fl)(+0.501M2—f||b,=;||2

+1.258dpk+10M(2 £+ 2729)||b7 |2
_ k—1 _(k—1) — *
<270+ [l = Y] (4 270 + 1250008 002 a2
Notice now that for any k,

k * * * j— *
S < b B+ S Ll (ba,)| < M b |2 < 3+ 1349750 - b7 2,
k'<j k' <j

since (b1,...,bs—1) is LLL-reduced. For the same reason, by summing over k we
ob%aln that
‘T((L]) - rd] ‘ <2t \de — Td)| + 3d1.3349F 20|32

+1.259dM 27 ||b%, ||? Zm« fit107 34K~k
<20y) — rd]|+3d1 3K 207 |1b% |+

1,259 2% dpt M2t ”11)’“3')2 As a consequence, for any k' < j < d:

1.34
— i (< 2N)) 4+ 0.999 - dp 0N b 2.

k<k'

7.]

From this it is easy to show by induction on &’ that:
‘rd] — (< 0.999 - dpTO(1 + K2 M2 |12,

which directly implies the induction claim for j, because 0.999 - (1 + d2'~%) < 1.

RR n° 5387

26 Phong Q. Nguyen, Damien Stehlé

Case where b, is size-reduced as regard to (by,...,b;_1). Similarly, we have
that:

75 =@ <2 W+ 75D =GP 27 1259 - dp 102)
By using the fact that |rl(1jl)j| < ||bg||?, we obtain:

70— e <2131 = ol a2 bl + 1.259427 b3 2 Y pF 101340

)

k< ks
< 20Nl — v 4 d2 7 ball” + 0.94 - dp 027" |5 .
k<j

From this it is easy to show by induction on j that:

70—] < 0.94- dpt1O(1 4+ j21 027 b2 4+ (1 + 72172 bl

This gives that ‘f((i()i rl(i]l)i < 0.95dpdt102-¢. ||bj||2 +d2'*-||bg||?. The result follows
from the fact that b, is size-reduced and that (by,...,bs_1) is LLL-reduced.

The complexity bound of the theorem is obvious. O

B Proof of Theorem 4

Let ,ul(;)j = dj — ZZ;% xp ;. We show by decremental induction on ¢ € [|1,d|] that
for any j < ¢:

Y] < 15030100 —0.5005 and |4l —u)| < (d+1-0)dpt M2 (%)

Equation (x) implies the bound on the |z;|’s because |z;| < |u(i+1) \+max(0.5005 | Z+l |)

(b3:07)

Equation (x) implies the bound on the W ’s because for any i < d:

|<b:1,b;k>‘ _ (z—i—l (z+1 (z+1 (i+1) z+1 _(i+1)
Tz — LS PN < 1Al = S+ ey Y = ST

< d?p™ A M'278 + max(0.5005, 1.503% 9 M2t
< 0.5005 + d2pdtP M2~

INRIA

Floating-Point LLL Revisited 27

Theorem 3 gives the base case of the induction. For j < d we have:

‘ Al - Mgg.\ < 1.503dp/ 102t < dpttiart.

Moreover, |ﬁgfl])-\ < M + dp*t1M27f < 1.001M, because of the hypothesis on .

We now prove that (x) holds for i under the hypothesis that it holds for any i’ > i.
Because m(| < 15034907 — 0.5005, we have that |z;| < 1.5034-+100/". By
using Theorem 3, we obtain:

lo(xi - i) — wipta | < 27 il | e + il j — i s]
< 0.502 - 1.50347 1100727 41,5034 +10 01" . 1.503dp T1027¢
< 1.504 - d1.50347 10 o702~

which gives that:
(i ; 1) 1)
85— n$ <27 ST 4 2 ol -)| + B TY — STV + lo(as - i) — wigul

<1. 503d ’+9M’ £ 1.504 - d1. 503d 10 i +10 gt (278 4 2720)

+0.501 - 1.503% 100772 4 |l D — Y]
7]

< ‘M(H_l N(H_l)‘ +1.506 - d1. 503d z+10p]+10M12 L

< (d)dpd+14M/2 —L 4 dpd+14M/2 é
by using the fact that j <4 — 1 and 1.506 - 1.50311 < p°. This gives the second part

of Equation (x) for i. For the first part, we use the fact that |z| < 1.50397*+9(1 +
—Y)M' for any k > i, so that we obtain for any j < i:

d—1

B < 18S) — 6D+ lragl + 5 lenll)
k=i

< M +0.501M'(1+27* 215036"”9 (d+1—1i)dp?T4M'27¢

1 .
< M +1.001 - 8 283 (1.503%74F10 _ 150319 M’ + 0.001M'

< 1.5034 100" — 0.5.
We finally analyze the cost of the different arithmetic operations. Theorem 3 gives

that the cost of Step 1 is bounded by O(d?¢?). Compared to the cost of Step 5, the cost
of Step 3 is negligible. There are O(d?) arithmetic operations during Steps 2-5, each

RR n° 5387

28 Phong Q. Nguyen, Damien Stehlé

one having its cost dominated by the multiplication o(z; - fi; ;). Because z; = Lﬁgjl)],

x; is an integer that can be represented on O(¥) bits. As a consequence, the cost of
Steps 2-5 is O(d?(?). At Step 6, we have O(d?) arithmetic operations on integers.
By using Equation (x) and the relation: |(b;, ba)| < B([|b5]* + >4 uiiHbﬂP), it
is easy to see that all the involved scalar products remain below dB21.503% 1M’ <
(B24)°()_ The most expensive arithmetic operations are of the kind “z;(bg, b;)”, and
since the z;’s are of size O(f), the cost of Step 6 can be bounded by O(d?¢(d+log B)).
This dominates the overall cost of the algorithm. O

C Proof of Theorem 6

Claim 1) has been proved in Section 4. Claim 4) follows from Theorem 5. We now
consider Claim 2). During a swap, we have that:

— b4 || < [|br' || because of Lovész’s condition and the analysis of Section 4,
— [|bErew|| < |[brd|| because bi"“¥ is an orthogonal projection of b%°¢,
— |[BEmew || > ||br'|| because b is an orthogonal projection of bX"4Y,

|b:ew|| > [|bEo'|| because ||b%_,|| - ||b%]| is constant.

®)

Claim 2) directly follows from these facts and an induction on ¢. It implies that if bit
appears during the execution of the algorithm and is size-reduced, we have:

1671 < d - max;<i[|b\" |2 < d - max;<; |6 |? < d - max;<; b\ |2

This proves Claim 3) for i < k(t). If i > k(t), we consider the last loop iteration
#' < t where the vector b\

.’ was created. If ¢’ does not exist, then this vector is an

initial vector, and the result is obvious. Otherwise, we have bgt) = bff(lji)l)_l which is
size-reduced at the (¢’ + 1)-th loop iteration. This finishes the proof of the theorem.
d

INRIA

/<

Unité de recherche INRIA Lorraine
LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-lsmier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

