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Analyse de robustesse de controleurs basés sur la
passivité pour des systémes lagrangiens de
complémentarité

Résumé : Dans ce papier nous faisons une étude de robustesse pour un contréleur de
poursuite de trajectoires pour des systémes Lagrangiens soumis & des contraintes unilatérales
sans frottements. L’analyse de stabilité tient compte des aspects hybrides et non réguliers
du systéme bouclé. Ce travail fournit des détails sur la robustesse de tels controleurs vis-
a-vis des incertitudes sur les paramétres du modéle dynamique, vis-a4-vis d’une mauvaise
connaissance de la position de la contrainte, et enfin vis-a-vis du bruit de mesure.

Mots-clés : Contrainte Unilatérale, Mécanique Non-Réguliére, Systéme Hybride, Stabilité
de Lyapunov
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1 Introduction

The focus of this paper is the tracking control of a class of nonsmooth fully actuated La-
grangian systems subject to frictionless unilateral constraints on the position. Such systems
may a priori evolve in three different phases of motion:

i) A free motion phase,
ii) A permanently constrained phase with a non-zero contact force,
iii) A transition phase whose goal is to stabilize the system on some constraint surface.

The controller used in this paper was fully detailed in [1]. The present paper gives
numerical results on the robustness of two passivity based controllers.

1.1 Dynamics

Let X € IR™ denote the vector of generalized coordinates. The systems we study in this
paper are complementarity Lagrangian systems. The dynamics is:

M(X)X +C(X, X)X + G(X) =u+ VF(X)\x
F(X)>0, F(X)TAx =0, Ax >0 (1)

Collision rule

where M(X) is the positive definite inertia matrix, F'(X) € IR™ represents the distance
to the constraints, Ax € IR™ are the Lagrangian multipliers associated to the constraints,
u € IR™ is the vector of generalized torque inputs, C'(X, X) is the matrix of Coriolis and
centripetal forces, G(X) contains conservative forces. V denotes the Euclidean gradient.

The impact times will be denoted generically as t; in the following. The admissible
domain @ is a closed domain in the configuration space where the system can evolve, i.e.
® = {X|F(X) > 0}. The boundary of ® is denoted as d®. A collision rule is needed to
integrate the system in (1) and to render the set ® invariant. In this work, it is chosen as
in [6]:

X(tF) = —enX(t5) + (1 + ) argmin [z — XA MX ()2 - X)) ()
2€Te (X (t))

where X (t) is the post impact velocity, X (¢;) is the pre-impact velocity, Tp(X (t)) the
tangent cone to the set ® at X (¢) and e, is the restitution coefficient, e,, € [0, 1].

1.2 Cyeclic task

In this paper we restrict ourselves to a specific task, or trajectory: a succession of free and
constrained phases During the transition between a free and a constrained phase,

cye”
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4 Bourgeot & Brogliato

Xi,nc (t)

0P

Figure 1: Unconstrained trajectory Figure 2: Planar 2dof robotic arm

the dynamic system passes into a transition phase I
representation as :

In the time domain one gets a

cyce®

RY=QoUILUQUQ UL U...UQa,,,—1UQy,, U, U... (3)

where (Yo, . denotes the time intervals associated to free-motion phases and Qo 11
those for constrained-motion phases. The order of the phases is important but the initial
phase may be Qg or I or ;. Transition between constrained-motion and free motion does
not spawn to a specific phase because there is no discontinuity of the state vector.

As explained in [1] the control strategy and stability analysis have to cope with the fact
that the time of the first impact, and the time of detachment are unknown. Then four
different trajectories are used in the analysis: On the first hand, the signal X(-) in the
control input (Fig. 3(a)). This trajectory imposes impacts when the tracking error is not
zero (imposing impacts improves the robustness if the constraint position knowledge is bad).
The trajectory X(-) tends to the tangential approach (noted X*"“(-) on Fig. 3(b)) when
kcye — 00. On the other hand, the signal X,(-) enters the Lyapunov function (Fig. 3(c));
this trajectory differs from X () because between B and C' the point (g}, ¢}) is not reach-
able, then X,(+) is set on the surface 9P after the first impact of each cycle. The trajectory
X4(-) tends to X¢(-) (see Fig. 3(d)) which is the impactless trajectory of the system when
tracking is perfect.

This is the major discrepancy compared to unconstrained motion control in which all four
trajectories are the same, usually denoted as X,4(-).

We see here the hybrid aspect of the convergence analysis. On one hand, we need to
guarantee the continuous convergence (X () — Xg4(+)), and on the other hand the discrete
convergence (X,4(-) — X¢(-)) over the cycles k.y.. From the user point of view, the tracking
error is X (-) — X%¢() (see sec. 4 for illustration on a particular example).

INRIA



Robustness analysis of Passivity-based Controllers 5

The cycles Qo U Ix,,. U Qo 41 duration is not arbitrary set since it depends on
phases I, duration, which in turn may depend on control and physical parameters (see
an illustration in sec. 4).

cye cyc

Signal entering the control law Signal entering Lyapunov function

Figure 3: The closed-loop desired trajectories

2 Stability framework

The stability criterion used in this paper is an extension of the Lyapunov second method
adapted to closed loop mechanical system with unilateral constraints and has been proposed
in [1] [2] and [3]. Let z(-) denote the state of the closed-loop system in (1) with some feedback
controller u(X, X, t).

Definition 1 (Q2-weakly stable system) The closed-loop system is Q2-weakly stable if for
each ¢ > 0, there exists 6(¢) > 0 such that || z(0) ||< 0(e) = =(t) ||< € for all t > 0,
t€Q=Uy,.>0%,,.. Asymptotic weak stability holds if in addition x(t) — 0 ast — +o0,
t € Q). Practical weak stability holds if there is a ball centered at x = 0, with radius R > 0,
and such that x(t) € B(0,R) for allt > T; T < +o0, t € 2, R < 400. [ |

Let us define Py, the closed-loop impact Poincaré map that corresponds to the section
Y7 = {z|F(X) = 0, XTVF;(X) < 0,i € T}, which is a hypersurface of codimension o =

RR n°® 5385



6 Bourgeot & Brogliato

card(Z). Let us introduce the positive definite function V'(-) that will serve in the subsequent
analysis. Let Vs, denote the restriction of V' to ¥7.

Definition 2 (Strongly stable system) The system is said strongly stable if: (i) it is
Q-weakly stable, (%) on phases I ., Ps, is Lyapunov stable with Lyapunov function Vx_,
and (#3) the sequence {tx}ren has a finite accumulation point to, < +oo. [ |

In [1], two claims are presented which are useful to prove the stability of Lagrangian
systems with respect to the definitions 1 and 2.

3 Tracking controller framework

In this section we briefly develop the tracking controller strategy used in this paper. A more
elaborate description is available in [1] with a complete stability analysis. In this paper we
focus on the simulations and robustness aspects.

3.1 Controller Structure

To make the controller design easier the dynamical equations (1) are considered in the
generalized coordinates introduced in [5]. After transformation in the new coordinates ¢ =
[q1,02)7, 1 = [q1 ... ¢7"]", ¢ = Q(X) € R", the dynamical system is as follows :

Mi1(q)dy + Mi2(q)g2 + C1(q,¢)g + 91(q) = T1(q)U + A
M>1(q)d1 + Maa(q)da + Calq, 4)q + 92(q) = To(q)U
¢ >0, ¢iAi=0, \;>0,1<i<m

(4)
Collision rule

The vector ¢; denotes the constraint coordinate and ¢» denotes the free coordinate. The
controller developed in this paper uses three different low-level control laws for each phase
Qokyes D2k, +1 and Iy

cyc? cyc®

Unc = Unc(Qa q;vda qg,q, q;)

U =Unclq,q5,4,45,d,4;)  before the first impact
T(q)U = . . (5)
U =Unl(q,q5,4,0,4,0)  after the first impact

U. :Unc—Pd—FKf(Pq—Pd)

where — Py + K¢ (P, — Py) is the force/position feedback which is added during the Qa1
phases. A supervisor switches between these three control laws. The overall structure of
the control strategy is shown on Fig. 4. The transition control law corresponds to the
non-constraint one with ¢(t) frozen (¢} = ¢§ = 0), and the constraint law correspond to
the sum of non-constraint control and a control in force. The asymptotic stability of this
scheme makes the system land on the constraint surfaces tangentially after enough cycles

INRIA



Robustness analysis of Passivity-based Controllers 7

of constraints/free motions (one cycle = Qg . U Ix,,. U Qok,,.+1). Asymptotically the
transitions between free motion phases and permanently constraint phases are done without
any collision.

I Desired trajectories Supervisor

I
|
| generator |
I
I

|

| 2keye U Theye

I Free motion frajectory;

| Pq
|

‘ - . Non linear Lagrangian |
| Transition trajectory Syst

| controller ystem

|

|

| Constraint frajectory

| (¢:4)

Figure 4: Structure of the controller

As observed in the introduction, a control strategy which consists of attaining the surface
0P tangentially and without incorporating impacts in the stability analysis, cannot work
in practice due to its lack of robustness. In view of this, the control law for the transition
phase is defined in order :

e To make the system hit the constraint surface (and then dissipate energy during im-
pacts) if the tracking error is not zero.

e To make the system approach the constraint surface tangentially (without rebound) if
the tracking is perfect.

These two situations are conflicting. On the other hand the coupling between ¢; and ¢
in (4), makes the asymptotic stability quite difficult to obtain if velocities are subject to
discontinuities: any velocity jump at t; implies oy (t;) > 0 when V' = 0. Hence if the
transition phase is constructed with impacts, one has to find a manner to get V(tkcyc) =0
in order to force the system to remain on the desired trajectory X4(-) (here g4(-)). This is
not obvious in general and defining ¢3(-) as done below is a way to get the result.

3.2 Design of the desired trajectory

During the transition phase the control signal ¢}(¢) is defined as follows (see Fig. 5 for ¢7,(-),
where A, A’, B', B and C correspond to Fig. 3). Let us define:

cyc

- Téc is chosen by the designer as the start of the transition phase,

RR n°® 5385



8 Bourgeot & Brogliato

t = e g¥ (T
il
\3

a1(?)

\J

i \ too
N
T
-~ - I S |
A A B' B C ’ A Al B

Figure 5: Trajectory g}, (¢)

- t’gcyc is the time corresponding to q;d(t’gcyC):O,

- tg corresponds to the first impact,

- too corresponds to the finite accumulation point of the sequence {tx}i>0,
- tl;”” is the end of the transition phase,
- 77" is such that q{d(rfcyc) = —aV(TéC”’C) and (jfd(lecy“) =0.

keye 4keye
- Q2kcyc+1 = [tf ! ’td ! ]

On [T(]f “* to), we impose that ¢jj(t) is twice differentiable, and ¢} ,(t) decreases towards
—aV(T:“"‘”) on [chy” , le“f“]. In order to cope with the coupling between ¢; and g2 (M;2 # 0),
the signal ¢5,(t) € C2(IR™) is frozen during the transition phase, i.e.: ¢35,(t) = ¢, ¢5,(t) = 0
on [, 1.

On (to,t¢], we define g4 and ¢} as: ¢4 = (0,¢3,)" , ¢} = (—aV(Tg”/c),q;d)T.

On [t];fy“, t’;”y“] we set g = [0, g24()]T. The purpose of ¢} is to create a “virtual” potential
force which stabilizes the system on 0® even if the position of the constraint is uncertain.
Consequently the fixed point (g4, ¢4) of the complementarity system is used in the expression
of the Lyapunov function (§ = ¢ — ¢4), whereas the unreachable fixed point ¢} is used in
the control law. In summary, after the first impact at tg, ¢14(-) is set to zero while in case
Tf“’“ > to, qi4(-) is set to —CEV(T(;CCW) (in other words U; switches as indicated in (5)) .
Since ¢14(ty) # 0 and g14(ty ) # 0 in general, the trajectory g14(-) behaves like in a sort of
plastic collision (e, = 0). With respect to Fig. 3, one has Téccy‘: at A, to at B’ tg at A’

tscy“ at C, and B at tff“ (the term —Py; — Ky P; defines the signal X(-) between B and C

on Fig. 3). If V(chy“) = 0 then A” corresponds to the time Tf“"“.

INRIA



Robustness analysis of Passivity-based Controllers 9

The piece of curve AA’ on Fig. 3 is normal to O®. The closed-loop desired trajectory
X"e(-) is defined as ¢"“(t) = ¢;(t) on Qap,,., ¢"°(t) = ¢j(t) with & = 0 on I, , and
qy(t) =0 on Qoy .41, 5 °(t) = ¢34(t) on RT. It is impactless.

The choice for ¢3(.) is done to get oy (ty) <0 on I

cyc

3.3 Two control laws for the nonlinear controller block (on Fig. 4)
3.3.1 Hybrid Paden-Panja scheme.

The control law used in this first scheme is based on the controller presented in [7], originally
designed for free-motion position and velocity global asymptotic tracking. Let us propose:

Une = M(q)dq + Cla,4)dg + 9(q) — n(a — a3) — 72(¢ — da) (6)
where 7; > 0, 72 > 0. The Lyapunov function associated to this control law is:
1.7

58 M@+ 5md"d, with G0) = () ~ aa() ™)

V(t.q.q) =
3.3.2 Hybrid Slotine-Li scheme.

For the second scheme, the nonlinear controller block (on Fig. 4) is based on the scheme
presented in [8]. Let us propose the following:

where s = G+ 724, 5 = G+ 724, dr = da — 724, and § = q — ¢} 72 > 0 and 1 > 0 are two
scalar gains. Let us consider the following positive functions:
V1 (t, S)
VQ(tv S) =

s(t)TM(q)s(t)
s(t)"M(q)s(t) +92ma(t)"4(t)

Control parameters: The control parameters which can be tuned by the end user are
feedback gains 71, 72 and Ky, the gain o and the time 7'5 ¢, which define ¢j.

(9)

1
2
1
2

3.4 Closed-loop stability analysis

Assumption 1 The controller U, in (5) assures that a sequence {t;}r>0 of impact times
exists, with imy_ | ot = too < +00.

Proposition 1 Let assumption (1) hold. The system defined by (1) in closed-loop with the
controller (5)-(6) and gq(-), q;(-) defined as in section 3.2, is:

(i) - Asymptotically strongly stable if ¢5(.) is designed such that at the first impact time of
each phase Iy, we have

[M11(q(t0))d(ty ) + da(ty )" M21(q(to))] qralty) <O0.

RR n° 5385



10 Bourgeot & Brogliato

(i) - Asymptotically strongly stable if M12 =0 and e,, = 0.

(iii) - Asymptotically weakly stable if M2 =0 and 0 < e, < 1. [ |

The proof of proposition 1 can be found in [1]. Briefly, the proof shows that the Lya-
punov function V(¢) in equation (7) decreases on the phase € . And that one has

keye keye Keye Keye
Vi@ (ty),t;7) < Vi(z(rg™), 70")-

Proposition 2 Let assumption 1 hold, e, € (0,1) and ¢j, be defined as in section 3.2.
Consider the system defined by (4) in closed-loop with the controller in (5) and (8).

(i) - If the controller T(q)U in (8) assures that || q(qf“”) < € € >0 for all keyc over
the cycles, then the system initialized on Qo with Va(7)) < 1 is therefore pratically
O-weakly stable with closed-loop state x(.) = s(.).

(ii) - If the controller T(q)U in (8) assures that || G2 (tp+1) ||<|| G2(tx) ||, for allty on [to,ts),
then the system initialized on Qo with Vo(73) < 1 is therefore pratically Q-weakly stable
with closed-loop state x(.) = [s(.),q(.)]. [

The proof of proposition 2 can be found in [1]. This proof uses the fact that the control
law (8) is exponentially decreasing (V(t) < —vVi(t) outside phase Iy, ).

4 Simulation

Paden-Panja
Xie(t)
® 013 7
y
009
Ginitial
A _ oL
Mg > *
\ | B 005 7 Xz,nlt(t)
\ /
\ /
\ / 001
/
N Xi,nc(t) ,
> ~ - _ - -0.03 T T T T T T T
- _ - = 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82
z
Figure 6: Half circle reference Figure 7: n°3 : Trajectories in the plane Ozxy

In this section we show some simulations of the previous control scheme on a planar
two-degree of freedom robotic arm (as seen on Fig. 2). The numerical scheme is based on
an event driven simulation scheme. The numerical values used for the dynamical model are
l1=10=05m,I; =1, = lkg.m2 and m; = mq = lkg for respectively the length, the inertia

INRIA
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N f\

*
5 a34(t) 0 @54(t)

04 7 04 7

Paden-Panja a =0 Paden-Panja o« = 100

03 7 03 7

02 02

,/& 1pa®)

1 at®) "lafa(t)

0 4e3 8e3 123 lﬁeiimGZU(eﬁms)Mﬂ 28e3 32e3 36e3 40e3 0 4e3 8e3 12e3 lﬂeiimCZUE;ns) 24e3 28e3 32e3 36e3 40e3
Figure 8: ¢}(¢t) and ¢(¢) for tangential ap- Figure 9: ¢(¢) and ¢(t) for o = 100
proach

and the mass of the two links of the arm. The restitution coefficient is set to e,, = 0.7. The
minimization needed for the computation of the impact law is performed using the FSQP
algorithm [4]. In the following examples, the system tracks a circle (see Fig. 6). If nothing
else is written on the figures, the gains used for simulations are a = 100, 73 = 2, 72 = 5
and Pe = 3s for Paden-Panja scheme (Pe is the desired period of one cycle), and « = 100,
v1 = 10, 72 = 0.5 and Pe = 4s for Slotine Li scheme.

On Figs. 8 and 9, we compare our control scheme (o« = 100) and the tangential approach
(o = 0). Fig. 8 shows that the tangential approach implies longer stabilisation phases even
in the perfect case. This demonstrates the influence of o on the duration of phases I, ., and
consequently on the cycle duration. The Fig. 9 demonstrates the asymptotic convergence
of this laws. The desired trajectory g¢j, goes less and less deeper under the constraint as

the cycles go on: the term —04V(7'é€ v¢) decrease as kcy. increase. The evolution of the
Lyapunov function V' (¢) is displayed on Fig. 10. It can be seen that the system converges
asymptotically: the first jump of each cycle of the Lyapunov function decreases over the
cycles. The hybrid Slotine-Li scheme provided similar results, so they are not presented
here. On the zoom of Fig. 10, we see that the Lyapunov function does not fulfil the
requirement of the proposition 1: V(t3) > V(73). This is logical since Mz # 0. But
the system is still stable because the duration of the phase (22, .+1 is long enough to have
V(t37) < V(t27). On Fig. 7 the orbit of the trajectories can be seen. These orbits converge
to a limit cycle. This limit cycle is slightly deformed compared to the desired half circle.
This deformation is due to the transition phase I, . (when the ¢}, trajectories are frozen)
and due to the take off phase (when ¢, and ¢;, signals need to be resynchronized since
the take-off time is not known precisely). Finally from the point of view of the end-user,
the real tracking error is X" — X (X tends to X" asymptotically over cycles). The end
user can reduce this error by decreasing the speed used to performed a cycle (as seen on

RR n°® 5385



12 Bourgeot & Brogliato

Paden-Panja
0.05

0.04

0.03

0.02

0.01

Figure 10: Evolution of the Lyapunov function

Fig. 18 where the cycle period is set to 16s against 3s for the previous test). Each control
law (Upe,U.,U;) considered separately possesses good robustness properties (because U,
and U, are passivity-based, and U; creates a bouncing-ball dynamics). The problem is: Is

this robustness conserved when switching between these 3 controllers as described in sec. 3
?

5 Dynamical parameters uncertainties

This section deals with the robustness of this control scheme with respect to uncertainties in
the parameters of the control laws (6) and (8). The dynamical model used in the dynamic
integration part of the simulator is the same as in the previous section. The model used
in the computation of the input torque T'(¢)U uses mass 30% heavier (m; = ms = 1.3kg).
Figs. 11-12 show results for the hybrid Paden-Panja scheme, and Figs. 13-14 show the
hybrid Slotine-Li one. These two tests point out that uncertainty in the dynamic model
caused tracking error to increase when the reference trajectories vary quickly (as seen on
zooms of the Figs. 11-13).

Small variations of the tracking error imply small variations of the Lyapunov function
(Figs. 12 and 14), then the system is no more asymptotically stable. Even if the function
V(t) become very small, there are always small impacts. Then some small discontinuities
can be seen, at each first impact, on Figs. 12 and 14 (o (o) is positive).

In conclusion, we can say that this control scheme is robust with respect to the uncer-
tainty on the dynamic model, but errors on the model imply that asymptotic convergence is
lost. Secondly, the hybrid Slotine Li scheme is more robust that the hybrid Paden-Panja: on
these simulations, the Lyapunov’s function peaks are about 3e~* for Slotine Li law against
5¢=3 for Paden Panja scheme.

INRIA
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Figure 11: Robustness - gq(t) and ¢(t) Figure 12: Robustness - function V (¥)
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Y T et Slotine-Li
07 7 17e-4
06 7 N o7 15e-4 7|
34(t)

05 7 o 13e-4 7
04 11e-4
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3e-4 7

q14(t) Slotine-Li 0
-02 T T T T T T T T T T T T T T T T T T

0 4e3 8e3 123 16e3 20e3 24e3 28e3 32e3 36e3 40e3 0 4e3 8e3 12e3 16e3 20e3 24e3 28e3 32e3 36e3 40e3
time (ms) time (ms)

Figure 13: Robustness - ¢4(¢) and ¢(?) Figure 14: Robustness - function V' (¢)

6 Constraint position uncertainty

In this section, we study the robustness of the controller with respect to the uncertainty on
the constraint position. The location of the constraint surface is not known accurately. Two
situations may be considered.

1- The estimated position (denoted by §i.) of the constraint is lower than the real position
(denoted by qic), i-e. ¢1c = q1c + ¢ with ¢ < 0 ( ¢ denotes the error of estimation).

2- The estimated position of the constraint is above the real position. i.e. ¢ > 0.

Case 1 ¢ < 0: In this case the desired trajectories decrease toward qld(rlk ey =
—on(Tg”y“) — |¢| instead of qld(rlk“”“) = —on(Tg”y“). The error ¢ can be incorporated

RR n°® 5385
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o

Figure 15: Under estimated constraint Figure 16: Error on V(t)

in the term *OZV(T(I; °¥¢) and the stability of the transition phase is not changed. During the
constraint phase the controller is:

Uc:Unc_(Pd—"_leHd O]T)+Kf(Pq_Pd) (10)

The error term ~;|c| is added to the desired force P; and contributes to keep the contact
with the surface during the constrained phase.

The system remains stable but it loses its asymptotic stability: If the tracking is perfect
V(TéC **) =0 and ¢}, = —|c|, so that the system does not approach the surface tangentially
and rebounds occur. An example is depicted on Figs. 15-16.

Case 2 ¢ > 0: If the tracking is perfect V(TéC ¢v¢) = 0, the desired trajectory decreases
toward ¢q14 = c and the system never reaches the constraint. There is no convergence (see Fig.
17 after two cycles). This problem can be solved by monitoring the time of stabilization. If
there is no stabilization after an estimated time ., the estimated position of the constraint
is refreshed as ¢7°¥ = ¢’ — e. After a finite number of iterations, one gets §;. < 0. The
system is in the previous situation ¢ < 0 and the stability is preserved. Figs. 19-20 shows
an example of self-adjustment of the estimated position of the constraint. At the beginning
of the simulation ;. was set to 2cm. The increment of correction € is set to 1.5cm. Then,
at the end of the simulation, one has ¢;. = 2 — 2 x 1.5 = —lcm. The error of estimation
become negative ¢ = —1lcm.

When tracking is not perfect and aV(TéC ) > ¢ (like during the first two cycles of
simulations on Figs. 17 and 19), the transition phase is able to stabilize the system on the
surface 0®. But during the constraint phase, the controller is:

Uc:Unc_(Pd_’yl[co])+Kf(Pq_Pd) (11)

P; must be chosen large enough compared to ;¢ to be sure that the system keeps the
contact with the surface during the whole constraint phase.
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Figure 20: Error on V (t)

In conclusion we can say that this control scheme is robust with respect to uncertainty on
the constraint position if the estimated position is lower than the real (case 1 with ¢ < 0). In
the second case, the controller scheme is robust only if we add to the supervisor a high-level
decision law which monitor if contact occur or not. Then decide if this non-attendance of
contact is due to constraint position error or due to anything else.

7 Robustness with respect to the measurement noise

This section deals with the robustness of this control scheme with respect to measurement
noise on position and velocity. Figs. 21-22 show the Lyapunov function of the two control
schemes, respectively the Paden-Panja scheme with white noise of 5% added on ¢ and ¢,
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Figure 23: Robustness - function V (¢) Figure 24: Robustness - trajectories

and the Slotine-Li law with noise level of 40%. These noise levels are the maximum for each
law before instability.

Fig. 23 shows the evolution of the Lyapunov function of a simulation of the Paden-Panja
scheme at the limit of the stability, with a noise level of 10%. The jumps UV(TéC °¥°) increase
over the cycles. This example is not robust because it doesn’t fulfil all requirements of
proposition 1 (see remark on Fig. 10 sec. 4).

From these simulations, we conclude that the hybrid Slotine-Li scheme is more robust
than the hybrid Paden-Panja one. But on Fig. 24, we see than even if the closed loop system
does not diverge when the noise level is set to 40%, then the tracking control is very bad with
such noise. Exponential stability improves robustness of the hybrid Slotine-Li controller.

Another important point to deal with is the magnitude of the force control. If the force
controller gains (ky) and reference (Py) are too small, then the noise on the measurement of
the position can induce unwanted detachment during the permanently constraint phase.
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8 Conclusions

The aim of this paper is to study the robustness of nonsmooth passivity based controllers
with respect to errors on the dynamical model parameters, to the constraint position knowl-
edge and to the measurement noise. We study the extension of two laws to the case of
nonsmooth dynamic: the Paden Panja PD+ controller the Slotine Li control law. These
two laws are robust with respect to dynamical model errors. They are very robust if the
constraint position is under-estimated. In the case of constraint estimated above the real
position, we present a solution to resolve this difficulty. Finally the hybrid Slotine-Li con-
troller is very robust with respect to measurement noise whereas the hybrid Paden-Panja
scheme is much less robust.

Globally the hybrid Slotine-Li scheme is more robust than the hybrid Paden Panja
scheme: as explained above, this is due to the fact that stability conditions are easier
to fulfil for Slotine-Li (proposition 2) than for Paden-Panja scheme (proposition 1). These
results are validated on numerical simulations.
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