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Abstract: Achieving efficiency in mesh processing often demands that overly verbose 3D datasets
be reduced to more concise, yet faithful representations. Despite numerous applications ranging
from geometry compression to reverse engineering, concisely capturing the geometry of a surface
remains a tedious task. In this paper, we present both theoretical and practical contributions that
result in a novel and versatile framework for geometric approximation of surfaces. We depart from
the usual strategy by casting shape approximation as a variational geometric partitioning problem.
Using the concept of geometric proxies, we drive the distortion error down through repeated clus-
tering of faces into best-fitting regions. Our approach is entirely discrete and error-driven, and does
not require parameterization or local estimations of differential quantities. We also introduce a new
metric based on normal deviation, and demonstrate its superior behavior at capturing anisotropy.
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Approximation de formes par une approche variationnelle

Résumé : Une nouvelle méthode d’approximation de maillages est présentée. Notre méthode
procède par minimisation d’une erreur d’approximation entre le maillage original et un ensemble
de plans. La minimisation est obtenue en appliquant un algorithme de clustering sur les triangles du
maillage original, alternant partitionnement et meilleure approximation locale. Une métrique basée
sur la déviation des normales est introduite pour des applications de rendu.

Mots-clés : surfaces, approximation, métriques d’erreur, algorithme de Lloyd, remaillage aniso-
trope



Variational Shape Approximation 3

1 Introduction

Finding a concise, yet geometrically-faithful digital representation of a surface is at the core of
several research themes in graphics. Given the excessive verbosity of many 3D datasets (and in par-
ticular, of scanned meshes), reducing the number of mesh elements (triangles, quads, or polygons)
of a surface mesh while maintaining its geometric fidelity is crucial for subsequent geometry pro-
cessing. Ideally, each element should be made as efficient as possible by stretching it locally in order
to fit a large area of the shape we wish to approximate while minimizing geometric error. This quest
for geometric efficiency naturally raises the following question: given a 3D surface, a target number
of face elements, and an error metric, what is the best geometric approximation of the object that
one can find with this face budget? Or similarly, given a distortion tolerance, what is the smallest
polygonal mesh approximant with a distortion lesser than the tolerance? Despite the fundamental
aspects of this problem, its NP-hard nature has led most researchers to shy away from the search for
“optimal” meshes. In this paper, we present a novel approach where shape approximation is tack-
led as a discrete, variational partitioning problem, for which provably-good heuristics are readily
available.

1.1 Related Work

Many techniques have been specifically designed to exploit an object’s local planarity, symmetry
and features in order to optimize its geometric representation. While most simplification approaches
try to provide an ε-approximation with respect to various metrics, rare are the methods that target a
minimum distortion error for a given budget of linear mesh elements.

Partitioning A powerful solution to mesh simplification is to greedily cluster geometric elements,
creating in effect a partition of the original object. Mesh decimation provides an elegant approach
to such a partitioning, through greedy and repeated collapsing of mesh elements [Hop96, KLS96,
GH98, LT98]. However, and although some of the metrics used for clustering can be proven asymp-
totically optimal (i.e., for infinitesimal triangles) for the L2 metric [HG99], the greedy nature of
decimation leads to suboptimal meshes. A similar statement is true for another (almost dual) family
of approaches [MYV93, KT96, IIY+99, She01, SSGH01, GWH01, GS01, LPRM02] which gather
faces in a set of characteristic regions to provide a succinct, higher-level description of the geometry.
Even when this process is iterated to improve the results [STK02, KT03], no attempt is made at
minimizing a well-posed geometric error.

Global optimization Contrasting sharply with the previous greedy techniques, Hoppe et al. [HDD+93]
proposed to cast mesh simplification as an optimization problem. With an energy functional mea-
suring deviation from the input mesh, they showed that optimizing the number of vertices, as well
as their positions and their connectivity, captures the curvature variations and features of the origi-
nal geometry. Although their functional is mostly a point-to-surface Euclidean distance, they report
excellent results for mesh simplification. This method was extended later on to also use an im-
age metric, in order to optimize the mesh not only through its geometry, but using its texture and
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4 Cohen-Steiner et al.

Figure 1: Variational Shape Approximation: Through repeated error-driven partitioning (left), we find a set of geometric
proxies (represented as ellipses, center) providing a concise geometric description of an input surface (62K triangles) by
efficiently capturing the anisotropy of the initial model; notice the presence of disks on near-spherical regions, and stretched
ellipses on near-parabolic regions. These proxies are then used to construct an approximating polygonal mesh (right). No
user interaction, parameterization, or differential estimates have been used; total processing time: 3s.

normals [LT00]. Despite a spring force restricting the anisotropy of the results, such optimization
techniques often result in irregular meshes for which geometric efficiency (i.e., how many faces are
needed to capture geometry) is particularly good. While other methods use some form of local mesh
optimization (see, for instance, [BVL02, OBP03]), this subject remains marginally studied to date,
most certainly because the mere size of the search space hampers efficiency.

Anisotropy Remeshing techniques [Tur92, LSS+98, KVLS99, GVSS00] are often much less con-
cerned by approximation efficiency than by the quality of the mesh elements. For instance, the new
vertices are very often left on the original manifold, resulting in rather poor visual results for ex-
treme simplification. However, when a succinct and accurate geometric representation is needed, a
strategic placement and aspect ratio of the mesh elements is crucial, and leads to a strikingly sig-
nificant pay-off in terms of the ratio of mesh size to geometric precision [Sim94, BF98]. This is a
consequence of the natural anisotropic nature of most surfaces: as brought to light in recent graph-
ics work [IFP96, GIHL00, RK00, HZ00], the main traits of an originally oversampled mesh can be
extracted from a close inspection of the curvature tensor field. Aligning either strokes (as done by
caricaturists) or mesh edges (as done in anisotropic remeshers [BK01, ACSD+03]) along these cur-
vature lines results in a particularly effective way to describe the geometry of a surface by respecting
local symmetries and key features that govern lighting effects. Although such a strategy increases
the mesh efficiency by matching the conditions of optimality for the L2 metric in the limit (see
Section 2.1), there is no theoretical guarantee of its efficiency of approximation at coarse scales; ad-
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Variational Shape Approximation 5

ditionally, local approximations of differential curvatures, known to be arguable on discrete meshes,
render these methods more prone to suboptimal results. In this paper, we argue that a direct, discrete
approximation technique should exhibit such an adaptation to anisotropy asymptotically (as it is a
good sanity check), not be artificially guided by it at coarse scales.

Although good practical approaches for shape approximation have been proposed in the past,
only marginal work has been devoted to global minimization of approximation error with respect
to a chosen metric. This is most regrettable given the slew of applications that could benefit from
an efficient shape approximation algorithm—animation, automatic normal map or geometry image
layout (see [SWG+03]), optimized coarse meshing for multiresolution analysis, remeshing, and
progressive compression to name a few. Contrary to most techniques proposed so far that were
either based on greedy approaches or guided by results valid only asymptotically, we develop a
theoretical and practical framework to help with the difficult problem of finding a provably good
trade-off between conciseness and geometric distortion.

1.2 Contributions

We propose a new strategy for the design of succinct and efficient shape approximations. Our ap-
proach is entirely error-driven, and uses a novel discrete, variational method that does not resort to
any estimation of differential quantities or parameterization. To achieve our goal, we introduce novel
geometric concepts: we define geometric proxies as a best-fit geometric surrogate to effectively cir-
cumvent topological issues (Section 2.2); we then define proper shape error metrics to measure how
well a proxy fits a piece of geometry (Section 2.3.2); finally, we cast the approximation problem as
a variational partitioning problem (Section 3.1). The resulting algorithm (Section 3), an extension
of fast clustering techniques, generates efficient geometric approximations of arbitrary triangulated
geometry. We also introduce a polygonal remeshing algorithm based on our contributions (Sec-
tion 4), and demonstrate the interest of our discrete, variational approach through multiple results in
Section 5.

2 Shape Approximation

In this section, we start with a brief background on approximation theory applied to surfaces, and
motivate our new approach to shape approximation through variational partitioning.

2.1 Approximation Theory

Approximation theory deals with the problem of replacing complicated mathematical objects with
simpler ones while keeping the primal information content. As we are about to see, a lot of work
has been done on best approximations of smooth functions—yet, less is known when it comes to
approximating geometry.

Functional Setting Given a class of functions and a metric (usually Lp or L∞), approximation
theory has provided strong results on the best approximations with n elements, be they piecewise-
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6 Cohen-Steiner et al.

Figure 2: Lion-vase (400K-face model): Our shape approximation algorithm distributes mesh elements according to local
surface complexity. (Right) Flat shaded comparison between original model and its 5K-polygonal L2,1-approximation (5
min, no user interaction); notice the good preservation of shape and highlights.

constant elements or higher order ones. Such results have given rise, for example, to optimal image
encoders that give the Kolmogorov entropy bounds of the problem at hand [CDDD01]. However,
most of these results cannot be easily extended to surfaces: the functional setting relies on a param-
eterization when comparing two functions. In the general case of two arbitrary surfaces, with no
mapping known from one to the other, the functional metrics cannot be used directly.

Height Field Approximation and Notion of Efficiency For the special case of height fields where
an obvious parameterization can be readily used, a few results are known about the optimality of
piecewise-linear approximation at the asymptotic limit when the areas of the approximating elements
(typically, triangles) vanish. It has been proven that with respect to the L2 metric, the triangulation
that minimizes the error of piecewise linear interpolation for a given large number of triangles must
have an optimal triangle’s orientation aligned with the eigenvectors of the Hessian of the function,
and an optimal size in each principal direction given by the reciprocal square root of the absolute
value of the corresponding eigenvalue [Nad86]1. Such an alignment and stretching of the triangles
optimizes the efficiency of the mesh, i.e., minimizes the error per surface area. Results mostly

1Note that there is a subtle twist on hyperbolic regions, where there is not a unique optimal shape and direction, but a
whole family of them; we will come back to this impediment in Section 2.3.1
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Variational Shape Approximation 7

identical are also proven for an arbitrary Lp metric [Sim94]. A few results are also known for optimal
approximation of the gradient error [DS91], or for bilinear approximation [D’A00], but again, they
are only asymptotically valid. These different results are fairly narrow in scope: first, they are
restricted to height fields; second, the triangulations are assumed to be interpolating the height field
at vertices, which does not seem like the optimal way to closely approximate geometry at a coarse
level; and third, the asymptotical case does not help in designing a concrete surface approximation
for a small number of triangles. Recent progress on concrete bounds for the interpolation error and
the gradient interpolation error for a non-infinitesimal triangle [She02] offers much better insights,
but still does not provide, to date, a better approach for practical mesh generation. In fact, it is
known that finding the piecewise-linear triangulation with a given number of vertices that optimally
approximates a height field with respect to the L∞ metric is a NP-hard problem [AS98].

Arbitrary Geometry Aside from the asymptotic results mentioned above, theoretical knowledge
on optimally efficient piecewise linear approximation of arbitrary surfaces is mostly unchartered
territory despite the considerable amount of practical work on digital geometry. This lack of foun-
dations and the intrinsic complexity of this problem explains the overwhelming usage of greedy
algorithms, that can reduce the number of triangles but at the expense of an uncontrollable approxi-
mation error, or conversely, can guarantee a given approximation error criterion but at the expense of
an uncontrollable number of triangles (with the noticeable exception of a few computational geome-
try papers proposing algorithms for convex and bivariate surfaces [AS98], or about optimally-sparse
ε-sampling for accurate surface reconstruction [AB99, BO03]).

The notion of distance between two surfaces is, however, routinely used. Probably the most
used metric in graphics, the Lp distance between a surface X and an approximating surface Y is the
extension of the traditional Lp metric for the functional setting, and is often defined as:

Lp(X, Y ) =





1

|X|

∫∫

x∈X

‖d(x, Y )‖p
dx





1

p

with: d(x, Y ) = inf
y∈Y

‖x − y‖

where ‖.‖ is the Euclidean distance, while |.| is the surface area. The extension of the L∞ metric,
called the Hausdorff distance, is naturally expressed as: H(X,Y ) = maxx∈X d(x, Y ), but can be
quite delicate to compute [ASCE02]. Notice that these definitions are sided: a true distance measure
should add the symmetrized version. However, in the context of surface approximation, the sym-
metric counterpart increases the complexity significantly as it contains an integral over the unknown
surface. It is thus discarded in practice, as in [HDD+93] for instance.

2.2 Variational Partitioning and Proxies

Given the theoretical difficulty in finding a piecewise-linear approximation of geometry with opti-
mal efficiency, we propose to reformulate the problem of surface approximation by introducing the
notions of shape proxies and variational partitions.

RR n° 5371



8 Cohen-Steiner et al.

Removing Topology from the Search A best geometric approximation has no obvious reason to
preserve the topology of the input surface. Imagine a square-like 2-manifold flat almost everywhere,
except for a high and thin fin in the middle: a best approximation with two piecewise-linear elements
is most likely a non-manifold surface made out of a quad (for the flat part) and a triangle (for the fin).
Similarly, a nearly flat surface with multiple tiny holes is very well approximated with a single quad:
the initial object and its best 1-element approximant do not have the same genus. The topology of the
approximant should therefore be automatically induced from the best placements of a given budget
of elements, possibly producing a non-simplicial, polygonal mesh. Thus, disregarding topological
considerations of the resulting mesh seems not only reasonable, but highly desirable. Moreover,
the search space gets considerably simplified, avoiding the delicate simultaneous (or alternating)
optimization of vertices’ positions and connectivity at the same time [HDD+93]. However, we
now face the issue of defining an approximation quality not knowing the topology of the resulting
approximant.

Approximation Through Partitioning Agarwal and Suri [AS98] mentioned that the problem of
functional approximation can be cast as a geometric partitioning one. This idea of clustering points
or faces of a 3D objects into a partition to help approximate the geometry has already been used many
times in graphics [KT96, HUHJ01, PGK02], and particularly for mechanical parts [IIY+99, She01],
where clear-cut features make the partitioning easier. After all, an approximating face is nothing
but a surrogate, linear approximant for a set of original clustered faces that share, on average, sim-
ilar geometric characteristics. Therefore, clustering faces into a partition with k regions appears to
be a natural way to efficiently resample geometry (see Figure 3). However, clustering is tradition-
ally achieved in a greedy fashion. Although we base our geometric approximation on partitioning
through clustering too, we will see in the next section that we iteratively seek a partition that min-
imizes a given error metric (hence the name “variational partitioning”). We start by defining our
terminology.

Figure 3: Bunny: (left and center) L2,1-optimized geometric partitioning; (right) Anisotropic polygonal mesh deduced from
the partition. Notice the stretching of the elements on the ears.

INRIA



Variational Shape Approximation 9

Partition and Proxies Each region Ri of a partition R can be summarily represented to first order
as an “average” point Xi and an “average” normal Ni (the word average is here used in a broad
sense; it will be made clear in Section 2.3 when we define a metric with respect to which these
averages will represent the best local linear fit). We will denote such a local representative pair
Pi =(Xi,Ni) a shape proxy of the associated region. Thus, for any given partition of a surface in k
regions, we associate a set P of shape proxies {Pi}i=1..k that approximate the whole geometry.

At this point, it is worthwhile to point out that a k-partition, in effect, defines a dual meta-mesh
of the original: the proxies define k dual meta-faces (obtained through clustering of original faces),
and the connectivity of the k regions of the partition induces the topology of this dual mesh: as we
claimed earlier, focusing on partitioning drastically simplifies our task since the final connectivity
of the approximant is handled implicitly. Note that the topology of the approximant and the orig-
inal one do not have to match: the approximant will automatically filter geometrically-irrelevant
topological details, such as the tiny handles often present on scanned meshes [WHDS04]. Now, for
this approximant to be relevant, we need to evaluate the quality of the partition—in order to find a
partition with near-optimal quality.

2.3 Metrics on Proxies

Defining an appropriate error metric is a key ingredient in approximation. As mentioned earlier,
the L2 or Hausdorff metrics are often used when comparing two triangulated surfaces. In our case,
we want to measure the geometric relevance of a proxy set for a given surface: new definitions of
error metrics are thus presented next. It will allow us to “score" a partition in terms of how well it
approximates a surface.

2.3.1 L2L2L2 Metric for Proxies

We can easily extend the notion of L2 distance to our framework. Given a region, Ri, and its
associated proxy, Pi =(Xi,Ni), we denote Πi(.) the orthogonal projection of the argument on the
“proxy” plane going through Xi and normal to Ni; the L2 metric is then:

L2(Ri, Pi) =

∫∫

x∈Ri

‖x − Πi(x)‖2dx. (1)

This formula (from which we have removed the usual square root and area normalization, irrel-
evant for optimization purposes) measures the integral of the squared error between the region Ri

and its linear proxy Pi. Notice that we integrate the real L2 distance over the surface, not just the
distance evaluated at the vertices such as in [GWH01]; in doing so, we make the optimization robust
to irregular sampling rate of the input geometry (see Figure 4). As we will explain in Section 3.4,
finding the L2-optimal proxy for a given region is fairly simple, since it only requires computing a
barycenter and a covariance matrix.

As proven for elliptic areas in the asymptotic limit [Nad86], an L2-optimal approximation of
a surface will tend to create elements efficiently taking advantage of local anisotropy by being

RR n° 5371



10 Cohen-Steiner et al.

Figure 4: L2-optimized partition for a highly non-uniform input mesh (notice the disk-shaped region with refined triangles).
The sampling irregularity severely distorts the partitioning if point-based covariance matrices are used (left), while our
triangle-based covariance matrices (right) provide the expected polygonal approximation, capturing the true geometry.

stretched in the minimum curvature direction with an aspect ratio of
√

|κmax/κmin|. This stretch-
ing along the minimum curvature direction makes very good use of the local shape of the object.
However, in the hyperbolic case, there is no unique optimal shape and alignment. Since we are
targeting a variational approach, this non-unique optimality is worrisome: a minimization algorithm
can randomly jump around in the null space of the functional, resulting in undesired oscillations. To
circumvent this issue, we look for a novel metric next.

2.3.2 Introducing L2,1L2,1L2,1 as a Shape Metric

The L2 metric tries to match geometry through approximation of the geometric position of the object
in space. However, the normal field is fundamental in the way the visual system interprets the
object’s shape: normals govern lighting effects such as diffusion, specularity, as well as curvature
lines and silhouettes; a smooth normal field defines a smooth shape, and normal discontinuities
indicate features. Moreover, there is evidence that our visual perception is actually more sensitive
to changes in normals rather than in changes in positions: this remarkable property has been used
in compression for instance, where quantization noise can be better hidden in the low-frequency
errors [SCOT03]. As already noted in [GWH01],a metric based on the error in normal approximation
may therefore be more appropriate than L2.

In addition to these considerations on visual perception, there is also strong evidence that cor-
rectly approximating the normal field is an altogether better approach. In the functional setting,
Shewchuk [She02] advocates that one should focus on getting good bounds on the gradient inter-
polation error, as these are much more difficult to control: the functional interpolation errors can
always be improved through refinement, whereas such a refinement may not improve the gradient
interpolation quality. In fact, approximating a function well does not mean that its gradient will
also get approximated [Fu93]: there are known examples (Schwarz’s Chinese lantern for instance)
of triangulated surfaces converging to a smooth surface for the Hausdorff metric, but with a surface

INRIA



Variational Shape Approximation 11

area diverging, and a non-converging normal field. However, as hinted by the Poincaré-Wirtinger-
Sobolev inequality, controlling the upper bound of the norm of the gradient interpolation error allows
to also bound the norm of the interpolation error.

Given the cogent body of evidence in favor of a normal-based measure of distortion, we introduce
a new shape metric that we denote L2,1, as it is based on a L2 measure of the normal field:

L2,1(Ri, Pi) =

∫∫

x∈Ri

‖n(x) − ni‖
2dx. (2)

We show in Appendix A that this metric is numerically superior to L2 in several ways:
� The anisotropy of the surface is better captured, since the asymptotic aspect ratio of an optimal el-

ement is in |κmax/κmin|, therefore largely superior to the asymptotic L2 behavior. This advantage is
already confirmed at coarse scale, as shown in Figure 6. Moreover, we prove that there is a unique
optimal shape and alignment in the limit for any (non-isotropic) surface type, be it parabolic, ellip-
tic, or hyperbolic. The difference in results with the L2 metric is very noticeable (see Figures 5 and
16): although the two metrics have their own advantages, L2,1 consistently gives equal or better
visual results according to our tests. Further results exhibiting the good behavior of this new metric
can be found in Section 5.

� Finding the best normal proxy is as simple as averaging the normals over the associated region
(see Section 3.4). We do not have to compute a covariance matrix, and thus, we save a signifi-
cant amount of computations compared to L2 (or even compared to the normal-based metric used
in [GWH01]).

Finally, note that our asymptotical results are in agreement with the optimal case (super-convergence)
of the gradient approximation mentioned in [She02, DS91].

Figure 5: Homer: This character illustrates the effect that an error metric can have on approximation. While L2 (left) and
L2,1 (right) behave similarly on near-spherical regions such as the top of the head, the belly and mouth regions are very
different in each case.
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12 Cohen-Steiner et al.

2.4 Optimal Shape Proxies

We now have everything we need to define what we mean by an optimal partitioning of an arbitrary
surface:

Given an error metric E (either L2 or L2,1), a desired
number k of proxies, and an input surface S, we call opti-
mal shape proxies a set P of proxies Pi associated to the
regions Ri of a partition R of S that minimizes the total
distortion:

E(R, P ) =
∑

i=1..k

E(Ri, Pi).

In other words, the set of proxies is optimal with respect to an error metric if it minimizes the total
approximation error over the possible sets of proxies of same cardinality. Of course, in practice
we cannot hope to find the global minimum in a reasonable time. However, we set up our shape
approximation as a discrete, variational partitioning of the initial faces such that we can now apply
simple and powerful discrete clustering algorithms that achieve very good and on some simple cases
near-optimal results.

Figure 6: Four-fingered hand (left): Polygonal shape approximation using L2 (center) and L2,1 (right), both for 200 proxies.
Notice the greater anisotropy in the L2,1 case.

3 Optimizing Shape Proxies

Given an error metric E, a number k of proxies, and an input geometry S of arbitrary size and
topology, we wish to efficiently find a partitioning R of S in k disjoint, connected regions and its
respective set P of optimal proxies that minimizes (or nearly minimizes) E(R, P ). Because in
practice the input geometry is triangulated, we can consider this mesh as a discrete collection of
faces: the problem is then cast into optimal discrete clustering, for which simple algorithms have
been proven extremely efficient.

3.1 Background on Lloyd’s Clustering Algorithm

Clustering a set of discrete points involves dividing them into non-overlapping regions (or clusters),
where points belonging to a region are closer by some measure of proximity to one another than
to points in other clusters. Every region can be characterized by a single, “average” center, and

INRIA



Variational Shape Approximation 13

the set of all k regions is called a k-partition. The Lloyd algorithm is a deterministic, fixed point
iteration that provides such a partitioning [Llo82]. Conceptually, the idea is simple: after defining
k random centers, all the data points are partitioned into k regions by assigning each point to its
nearest center. Then, the algorithm updates the centers to be the barycenters (centroids) of their
associated regions before starting a new partition with these new centers. This process is repeated
until a stopping criterion is met. It can be proven that such an algorithm (sometimes referred to as k-
means clustering) aims at minimizing a cost function E based on how tightly each region is packed
and how well separated the different clusters are: the functional E defined by a set of N points
{Xj} and k centers {ci} is: E =

∑

i∈1..k

∑

Xj∈Ri
‖Xj − ci‖

2. For such a functional, Lloyd’s
algorithm always converges in a finite number of steps, since each step reduces the energy E: the
partitioning stage minimizes E for a fixed set of centers ci, while the fitting stage minimizes E for
a fixed partition. Notice that the optimal fixed point is strongly linked to the notion of centroidal
Voronoi diagram [DFG99] in the continuous case, for which centers are exactly the centroids of their
associated Voronoi cell.

Because of its simplicity and ease of implementation, Lloyd’s algorithm is widely used even
for higher-order functionals as it manages to find a very good (though not guaranteed to be global)
minima. Moreover, Lloyd’s technique also suffers from fewer oscillations than other physically-
based particle-spreading techniques, explaining why this algorithm and its variants are used in many
different contexts, including graphics [Hau01, OBA+03, KT03, SAG03, SWG+03]. Therefore, if
we are able to adapt Lloyd’s algorithm and use it as a minimizing tool to drive the distortion error
down instead of optimizing compactness, we should be able to quickly produce a low-distortion
partitioning and a set of geometric proxies that closely approximate any input geometry.

3.2 Our Algorithm At a Glance

Lloyd’s method hinges on the two phases of partitioning and fitting, repeated alternately to drive the
total energy down. Paralleling this process, we present a simple and efficient extension of Lloyd’s
algorithm to variational, geometry-driven partitioning that includes the following steps:
� Geometry Partitioning In order to create a partition of an arbitrary non-flat triangulation, we

use an error-minimizing region growing algorithm that will segment the object in non-overlapping
connected regions.

� Proxy Fitting Once a partition is found, we compute for each region an optimal local representa-
tive, the proxy (see Section 2.2). These geometric proxies, that minimize the distortion error for a
given partition, are an extension of the centroids in the original Lloyd’s algorithm.

Nomenclature We now describe the algorithm, and will refer to the input surface as S, its current
partition as R, its k regions as Ri, and their current respective proxy as Pi = (Xi,Ni). The dis-
tortion error will be referred to as E, and can represent either the L2- or L2,1-based error defined in
Section 2.3.

RR n° 5371



14 Cohen-Steiner et al.

Figure 7: Half-sphere on plane: (left) random initialization of a 6-partitioning; (center) after one iteration of our optimiza-
tion, the regions self-organize; (right) after 5 iterations, the regions settle.

3.3 Geometry Partitioning

Knowing a current set of proxies P , we wish to update the partition R while trying to minimize the
distortion error E(R, P ) in the process. We perform this k-proxy clustering as follows.

Initial Seeding For each region of the previous partition, we first find the triangle Ti of S that
is the most similar to its associated proxy. This is easily achieved by visiting each current partition
region Ri, and by going once through all its triangles to find the one with the smallest distortion error
E(Ti, Pi) (computed using Equations 3 or 4 in Appendix B). In order to bootstrap the algorithm, the
very first geometry partitioning picks k triangles at random on the object, and each of these triangles
are assigned a proxy defined as the triangle’s barycenter and its normal. Once these k triangles are
found, we assign them to their respective proxies, while we remove the proxy assignment of all the
other triangles in order to start a new partition from scratch.

Distortion-minimizing Flooding Once these seed triangles are found, we wish to “grow” a region
out from them, in order to find a new, better partition. Just like in Lloyd’s algorithm, we wish to
cluster together only faces that are “close” (i.e., with a low error distortion) to the proxy. Therefore,
for each seed triangle Ti, we insert its three adjacent triangles Tj in a global priority queue, with a
priority equal to their respective distortion error E(Tj , Pi), and we add an additional tag indicating
the label i of the proxy they are being tested against (a triangle can therefore appear up to three times
in the queue, with different tags and priorities). The region-growing process is then performed by
repeatedly popping triangles with least distortion until the priority queue is empty. For each triangle
popped out from the queue, we check its proxy assignment: if it has already been assigned to a
proxy, we do nothing and go to the next triangle in the queue; otherwise, we assign it to region
of the proxy indicated by the tag, and push the (up to two) unlabeled incident triangles into the
queue along with the same tag. When the priority queue has been emptied, each triangle has been
assigned to a proxy: therefore we have a new partition. Notice that our growing process ensures
connected and non-overlapping regions as required, and that this flooding procedure is extremely
rapid (Nlog(N) complexity). Note also that this partitioning method is quite different from previous
clustering techniques: we use an integrated distortion error instead of a term based on local geometric
criteria such as in [KT03].
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3.4 Proxy Fitting

Once we have found a new partition R over the surface S, we now wish to update the respective
proxies Pi =(Xi,Ni) in order for them to be the best representatives of their associated newly-
updated region Ri (iterative partitioning is exemplified by Figure 7). Note that, for the given partition
R, this procedure will find the set of proxies that minimizes the total distortion error E(R, P ). This
minimization is easily done using the equations given in Appendix B. For the L2 metric, Xi is simply
the barycenter of the region Ri while Ni is the direction (the sign does not matter) indicated by the
eigenvector associated with the smallest eigenvalue of the covariance matrix of the region—i.e., the
proxy is the least-square fitting plane traditionally found with Principal Component Analysis. For
the L2,1 metric, the best fit procedure is even simpler. The proxy normal is the area-weighted average
of the triangles’ normals of the region; the point Xi, although irrelevant to the L2,1 minimization, is
chosen to be the barycenter of the region for display and remeshing purposes.

3.5 Improvements and Details

Several enhancements over the basic algorithm we just described are easily implemented, dramati-
cally improving the efficiency and the controllability of our basic technique.

Choosing the Number of Proxies In order to make the variational partitioning more flexible, we
have added a number of possible interactions that the user can utilize if necessary. We let the user
not only pick the desired number of proxies at any time, but we also allow interactive, incremental
insertion and deletion of proxies. The insertion is done by finding the current region with maximum
total distortion, and within it, we pick the triangle with worst distortion error as the initial seed for
the next flooding (this is, in spirit, a farthest-point sampling heuristic); this will add a new region
and proxy in the most needed part of the object (see example Figure 8). Similarly, we allow the
incremental deletion of a region. We select the region to be deleted as follows: for each pair (or even
a random set of pairs, if efficiency is an issue) of adjacent regions, we simulate a merging of the
two regions and compute the resulting distortion with the new best fitting proxy; the pair of regions
achieving the smallest distortion when merged are then replaced with a single one, deleting a proxy
in effect. With these options, it becomes very easy to obtain a good partition in a matter of a few
seconds.

Region Teleportation It is no surprise that, in the course of finding a lower distortion, the algo-
rithm can find itself stuck in a local minimum. Typically, this can happen on a very flat region: if a
region happens to be encircled by other regions with similar proxies, it may be locally stuck in this
minimum configuration as this position prevents it to roam on the surface and find more efficient
positions. Yet it is clearly suboptimal to leave this region as is. We have therefore implemented a
region teleportation procedure to give a region the chance to tunnel out of a local minima, similar in
spirit to [BH96, LT00]. At regular intervals during the clustering process, we simply force a region
deletion as described above, immediately followed by a region insertion: the effect of this simple
two-step operation is to remove a region stuck in a local minimum, and “teleport” it where it is most
needed. In practice, it is better to first test if the teleportation is worth it: we use a heuristic that
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tests whether the error added by a (simulated) deletion is smaller than half of the error of the worst
region. If this test fails, no teleportation is necessary. These local operations drastically improve the
final quality of our partition. This good behavior is most likely due to the similarity of our strategy
with a variant of the Lloyd’s algorithm [KMN+02], known for having tight bounds on the optimality
of the results.

Farthest-point Initialization A good initial seeding of the regions goes a long way in getting
a good final minimum fast. Although we have found in all our tests that the naïve initialization
with randomly chosen seeds as described above is just fine in practice, we have tailored a specific
initialization for non-organic shapes: meshes of mechanical parts for instance can be dealt with in a
particularly efficient fashion through a simple alternative initialization. We simply add one region at
a time, perform a partitioning, then proceed by adding a new region at the triangle of maximum error
with respect to the region it belongs to (again, this is reminiscent of the usual farthest point strategy);
no fitting between two floodings is necessary, as the proxy values are directly picked from the seed
triangles’ barycenters and normals. This initialization works very well on non-smooth objects, but
does not have a significant pay-off on other objects, particularly if a lot of noise is present.

Convergence Although we cannot guarantee global convergence of our variational approach, a
very good behavior is observed in practice: the proxies start settling down after a few iterations,
or oscillate around extremely similar distortion errors. Note that there is no need to wait for the
regions to settle: in a matter of two to twenty iterations, results are already visually pleasing (see the
error as a function of the number of iterations in Figure 10). Convergence is, however, guaranteed
for convex objects for the L2,1 norm, since it amounts to the well-known k-means (area-weighted)
clustering of the discrete normals on the image of the Gauss map. Furthermore, convergence would
also be guaranteed for arbitrary surfaces if one was to relax the connectedness of the regions in

Figure 8: Fandisk: When the user interactively adds a proxy, a seed triangle is placed in the worst-approximated region (left),
and the next iteration allows a new region to quickly grow (right).
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Figure 9: Partitioning without (left) and with (right) user-designed area-weighting: the left-hand side of the sphere has been
painted to force a much coarser discretization.

the partition; however, having proxies that correspond to disconnected patches of surface is less
geometrically relevant.

Figure 10: Max Planck: For the two optimized approximations (130 and 300 proxies resp.), we show the associated curves
of the L2,1-distortion error as a function of the number of Lloyd’s iterations; as expected, a few iterations suffice to reach a
much reduced distortion error.

Tailoring Refinements Another valuable interactive tool is to allow the user to paint regions
that require more (resp., less) details despite their lesser (resp., larger) geometric importance, as
in [KG03, PS03]. For instance, when approximating a face with very few proxies, the eyes may not
be very apparent since they are not a significant geometric feature: by artificially scaling up or down
the area of the faces painted, the error metric will weight these regions differently with no change to
the algorithm. The effect of such a forced refinement can be seen on Figure 9.

Smoothing the Normal Field If extreme simplification is desired, it may also be relevant to ar-
tificially smooth the vector field for the L2,1 metric, i.e., the normal associated to each face: this
helps embellish the final result at a low cost—but is by no means necessary. In order not to intro-
duce a bias in the shape, we use a local non-iterative anisotropic smoothing, easily implemented as
it reuses a part of the partitioning procedure. For each face, we initialize a proxy with the triangle’s
barycenter and normal, then launch a flooding algorithm similar in spirit to the one explained in
Section 3.3; but we perform the flooding only for this seed, with additional thresholds on both the
maximum deviation angle with the seed’s normal (typically, ten degrees) and the maximum number
of triangles to collect. A local connected region of most similar geometry is therefore found and
spread anisotropically around the initial seed. We then artificially change the normal of the seed tri-
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angle to the area-weighted average normal, which is a smoothed version of the initial normal. This is
very similar in spirit to WENO techniques [OF02], but for geometry: such an anisotropic averaging
preserves normal discontinuities perfectly.

4 Application to Meshing

Now that we found a nearly-optimal partitioning, its proxies capture the essence of the input geom-
etry. They form a perfect draft for remeshing: if proxies are thought of as local faces (local tangent
planes), we already have the blueprint of a mesh. Additionally, the adjacency graph of the partition
defines the connectivity of a mesh as well. Therefore, if a mesh output is needed, a set of vertices
and edges can easily be added to obtain a mesh that closely approximates the original object, in the
spirit of [KT96].

Anchor Vertices Since the proxies can be seen as approximate faces of the final mesh, we must put
vertices at the intersection of the proxies. Thus, we create an anchor vertex at every original vertex
where three or more regions meet. In order to account for every region, we then check whether
each region boundary has at least three anchor vertices attached to it; if not, we simply add anchor
vertices accordingly as it will guarantee the presence of at least one polygon per region. The spatial
position of these anchor vertices is determined as follows: for each neighboring proxy of an anchor,
we compute the projection of the associated vertex from which the anchor was created onto the
proxy (i.e., its ideal position for this proxy); we then simply average these projections.

Edge Extraction Since every anchor vertex has a pointer to its originating vertex on the input sur-
face, it is easy to now add edges between the anchor vertices by simply visiting each region boundary.
These so-constructed edges may approximate the region’s boundary rather coarsely, inducing geo-
metric inaccuracies later on during the triangulation of the approximant mesh faces. Thus, we use
a simple recursive chord-length subdividing algorithm. If a and b are two anchor vertices linked
by an edge separating proxy Pi and Pj , we visit all the original vertices of the associated boundary
arc, find the largest distance d from these vertices to the edge (a, b), and add an anchor vertex there.
However, if the angle between proxy Pi and Pj is rather small, even a coarse approximation of the
boundary will do: it does not add geometric information on the shape. On the contrary, when there
is a large angle in between the two proxies, a more accurate discretization is desirable. We thus
proceed as follows: if the criterion d · sin(Ni,Nj)/‖(a, b)‖ is larger than a given threshold, we
recursively add anchor vertices and edges to better approximate the boundary until the criterion is
met.

Triangulation With the anchor vertices and edges defined, we already have a polygonal mesh.
However, when the number of proxies is fairly small, the polygons have no guarantee of being
almost flat or convex. Thus, we need to triangulate this initial graph in order to be able to truly
call it a mesh. This is done through a “discrete” Constrained Delaunay triangulation (CDT) to
make the process robust to any sort of extreme approximation: indeed, we will create Delaunay-like
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Figure 11: Discrete Constrained Delaunay Triangulation: Flooding the mesh from the anchor vertices (solid dots) creates
triangles (light grey, left and center) whose three corners have different colors. Each of these triangles generates a meta-
triangle during meshing. A final edge-removal pass provides a L2,1-polygonal model (right, bottom).

triangles within each region, while constraining the existing anchor-based edges to be part of the
final triangulation. To achieve this pseudo-CDT, we resort once again to a flooding algorithm, very
similar to the multi-source Djisktra’s shortest path algorithm with an edge weight equal to its length,
and for which the sources are the anchor vertices: it will, in spirit, construct discrete Voronoi cells
from which the triangulation is easily extracted. In a first step, we only flood the boundary of a
region so that every vertex on it is colored depending on the closest anchor vertex: this will enforce
the constrained triangulation by forcing the boundary to be in it. We then start a flooding of the
interior of the region, coloring the vertices also according to their closest anchor vertex.

The extraction of the final triangles is now straightforward. We look at every triangle of the input
mesh whose three vertices have distinct colors: each of them corresponds to a triangle in the final
triangulation, emanating from the anchor vertices indicated by the three colors. A final pass can be
done on these newly-added edges: swapping some of them may locally improve the compactness of
the triangles in the rare occasions when the discrete approximation of the Delaunay triangulation is
imperfect. A simple test followed by a swap if it shows relevant is therefore done on each internal
edges. A summary of this process is depicted in Figure 11.

Polygons Due to the very nature of our partitioning, the newly-triangulated mesh may have useless
edges: since every region should result in nearly flat geometry, there are sometimes no reason to have
edges within these polygonal faces, except to avoid concave polygons, detrimental to the graphics
pipeline. We therefore perform a final pass over the triangulation to remove the edges that do not
contribute to the shape. First, we try to make as many nicely-shaped quads as possible: we look at
edges that can be safely removed (i.e., that produce no normal flips); we sort them by a score linked
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Figure 12: Generation of a polygonal model: triangle mesh obtained via CDT (top-right); creation of well-shaped quads
(bottom-right), then polygons (bottom-left) by iterative edge removal.

to the well-shapedness of every candidate quad [Peb02]; finally, we go down the list and remove the
edges creating the best quads first, until the list is empty. Second, we perform a second pass in order
to create larger polygons if possible; for each remaining edge, we first test if removing it would not
induce a concavity in the mesh, and if it would not change the normal by more than a given threshold
(typically, 20 degrees); for the eligible edges, we compute a score based on the area of the potential
polygon; we finally go over the edges in order of decreasing score, to create the largest polygons
first. A close-up on the remeshed Fandisk model in Figure 12 exhibits the type of polygonalization
we finally obtain.

The meshing of the proxies is fast, and never took more than one second on all the meshes shown
in this paper. Other meshing techniques could be used, using local parameterization of the regions
for instance, but our discrete parameterization-free approach has proved satisfactory.
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5 Results and Discussion

We have tested our variational partitioning technique extensively, on geometry varying from organic
shapes to mechanical parts, and from toy examples to large, noisy scanned meshes (see Figures 2
and 13). Although the L2 metric provides good approximations in general, the L2,1 results are in
agreement with what we would have intuitively expected from a good segmentation of geometry,
and often capture more details. In both cases, our variational approach allows the symmetries to
be quickly found, the anisotropy to be automatically detected and exploited, and the regions to line
up with the features. Finally, we insist on the fact that, while the “canons of beauty” for graphics
meshes usually involve nicely-shaped triangles with a smooth sampling gradation, our concise, op-
timized meshes sharply depart from the norm; but they gain in efficiency by respecting features and
symmetries (see Figure 17).

The application of this new type of approach are numerous. Such an automatic segmenta-
tion/polygonalization of redundant datasets can be, for instance, directly used for reverse engineer-
ing [VMC97, BK01] and scanned meshes. The proxy optimization also seem to offer interesting
alternatives to existing methods, such as the greedy selection of representative planes for billboard
clouds [DDSD03]. Moreover, using anisotropic ellipses (computed from the eigenvalues of the re-
gions’ covariant matrices) could further optimize surface splatting. The WENO-type face clustering
has been surprisingly effective at smoothing geometry, and could be explored further. Lastly, various

Figure 13: L2,1-Approximation: our versatile framework optimizes the efficiency of geometric representations. (Left) Ar-
madillo (300 proxies, initially 346K triangles), (Right) Feline (50 proxies, initially 100K triangles).
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optimizations are likely to further improve the efficiency of the minimization procedure, such as lazy
evaluations for instance.

Figure 14: (Left) Dinosaur model; (Center) L2,1-approximation; (Right) Results for QEM [GH98] with same number of
edges. Note that our approach reproduces the “highlights” (see neck), with a symmetric Hausdorff error 18% better (as
measured by [ASCE02]).

Limitations Being based on iterative optimization, our technique cannot compete with greedy
methods such as [GH98] in terms of computational time: improving mesh efficiency can be three to
twenty times slower when compared with simplex removal. Although it remains fairly interactive
(between 3s for Figure 1, to 10 minutes for Figure 17), it should be reserved for offline computa-
tions: greedy approaches perform really well given the processing time (see Figures 14 and 15). In
fact, our tests show that Qslim [GH98] often outperforms our L2 results if an L2-optimized mesh
with a given number of triangle is sought, as our actual meshing procedure is not error-driven and
is intrinsically designed for polygonal outputs. Similarly, we are only handling piecewise-linear
2-manifolds, although an extension to point clouds with local approximation of connectivity is fea-
sible. At the algorithmic level, our meshing technique can still be improved. For instance, we could
allow the final mesh to be non-manifold, resulting in even more concise meshes for extreme sim-
plifications. Indeed, in the case of a fin-like feature, we currently create a pyramid-type fin during
the discretization even if there is only one region for the whole fin. Lastly, the Voronoi-like cells
obtained on spherical regions (see top of Homer’s head on Figure 5) indicate that we could locally
extract a dual mesh, leading to nicely-shaped triangles in round regions and still elongated elements
in anisotropic regions.

6 Conclusions

By breaking away from the traditional approximation paradigm that consists in directly optimizing
a piecewise-linear approximant of an original surface, we have proposed a simple and efficient vari-
ational shape approximation approach. Through mutual and repeated error-driven optimizations of
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Figure 15: Comparison of the Hausdorff error for QEM [GH98] and for our L2,1 technique, for equal number of vertices (a
comparison using equal number of edges leads to an extremely similar curve).

a partition and a set of local proxies, our method provides concise geometric representations either
in the form of local best-fit geometric representatives or in the form of a polygonal mesh. We have
also presented a novel shape metric, allowing the capture of more subtle details than the traditional
L2 metric.

The versatility of our framework paves the way to a multitude of future work. We plan to try a
Sobolev metric (H1) next, since it would simply consist of the sum of the L2 and L2,1 energies and
would only require a low-order polynomial root solver to compute the best fit. Other metrics, incor-
porating color and texture information, can also be easily tried. Variational motion approximation,
i.e., a 4D (3D + time) approximation using a space-time metric, could also be used to simplify large
scientific simulation sequences, making the best of both spatial and temporal components. Geome-
try compression and higher-order proxies are two other obvious avenues to explore. Finally, we wish
to study the notion of shape complexity (see [KR99]) and how it relates to the choice of a metric, as
it could help making a few steps towards a sampling theory for shapes.

Acknowledgments We wish to thank Peter Schröder, Zoë Wood, and Eitan Grinspun for early feedback, and Laura

Lee-Chin for help on the video. The Lion-vase model (Figure 2) is courtesy of SensAble Technologies, Inc.; the Dinosaur

model is courtesy of Michael Garland, and the David model is courtesy of Marc Levoy and the Stanford graphics group.

RR n° 5371



24 Cohen-Steiner et al.

Figure 16: Mechanical parts: 50 proxies on the Fandisk using L2 (left) vs L2,1 (center). Notice that the two metrics are
adopting two different approximation strategies. Approximating the high-genus casting model with 172 L2,1-proxies (right).

A Asymptotic Behavior of the L2,1L2,1L2,1 Metric

���

���

�

�

��

�

�

�

θ

(A.1) (A.2) (A.3)
In this section, we prove that asymptotically, an element is most efficient if: (i) the eigenvectors of its inertia matrix are

along the principal curvature directions, and (ii) the eigenvalues’ ratio is equal to the principal curvatures’ ratio. Although this
property holds for arbitrary elements, we only consider rectangular elements for the sake of simplicity. Consider an arbitrary
surface S. Let R be a small rectangle of dimension 2a × 2b = |R|, and such like R is tangent in its center to the surface
S at a point p. The normal np at p is therefore also normal to R. The only parameters that are not determined are a, b, and
the angle θ between the minimum curvature direction and the side of R (see Figures A.1 and A.2). Then we have [Gra98]:

n(x, y) ' np + H
(x

y

)
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H is the (symmetrical) Hessian matrix. Since p is the barycenter of R, the average normal N is np. Therefore, the
L2,1-based error E is:

E =

∫∫

R

‖n(x, y) − np‖
2dx dy =
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Notice that Q = HtH = H2 is by definition always symmetric positive, even if H is not positive (like in hyperbolic
regions). We now define the efficiency f = E/|R| as the ratio of error covered by area unit [Sim94]. Obviously, we wish f
to be minimum. In our case, we can rewrite:

f =
1

3
(Q11 a2 + Q22 b2)

Now if we try to optimize, using a Lagrange multiplier λ, the efficiency as a function of a and b under the constraint that the
area ab is constant, we get the following linear system:

2

3

(Q11 a

Q22 b

)

= λ
(b

a

)

We then find that the optimal dimensions of R is: a = µ√
|Q11|

, b = µ√
|Q22|

, µ being a constant.

For this optimal rectangle, we have: f =
2|R|
12

√
Q11Q22. However, notice that det Q = Q11Q22 − Q2

12
≥ 0 for

any θ. The efficiency f is therefore best when Q12 = 0: Q is then diagonal, which means that H is also diagonal and thus,
θ = 0. As a consequence, the optimal quadrangle is aligned with the principal curvature (since θ = 0 - see Figure A.3); and

has a side ratio of a/b =
√

Q11

Q22
= |H11

H22
|, i.e., of ratio |κ2/κ1| (since H is diagonal in the optimal configuration). This

result is particularly strong as it is valid in all regions, be them elliptic or hyperbolic.

B Formulas for Error Metrics

In this last section, we provide the reader with the equations needed to compute the distortion errors and the best-fitting (error
minimizing) proxies.

Formulas for L2L2L2 Let Ti = (v1, v2, v3) be a triangle of area |Ti|, and let Pi be a proxy (Xi,Ni)—here considered as
a plane passing through Xi, of normal Ni. Let d1, d2, and d3 the orthogonal distances of the vertices v1, v2, and v3 to the
plane Pi. The L2 distance between Ti and Pi is:

L2(Ti, Pi) = 1

6
(d2

1
+ d2

2
+ d2

3
+ d1d2 + d1d3 + d2d3)|Ti|. (3)

As for the minimization, we find the best-fit Xi of the region Ri simply using: Xi =
(

∑

Ti∈Ri
gi|Ti|

)

/
(

∑

Ti∈Ri
|Ti|

)

,

where gi stands for the barycenter of triangle Ti, i.e. gi = (v1+v2+v3)/3.
The best-fit normal Ni of the region Ri is equal to the eigenvector corresponding to the smallest eigenvalue of the

following matrix:
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Formulas for L2,1L2,1L2,1 For a triangle Ti of area |Ti|, of normal ni, and of associated proxy Pi = (Xi,Ni), the L2,1

error is computed as follows:
L2,1(Ti,P) = ‖ni − Ni‖2|Ti|. (4)

Now for region Ri, the optimal proxy normal Ni is simply equal to the vector:
∑

Ti∈Ri
|Ti|ni, after normalization to

make it unit.
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