
HAL Id: inria-00070674
https://hal.inria.fr/inria-00070674

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Factorising temporal specifications
Marieke Huisman, Kerry Trentelman

To cite this version:
Marieke Huisman, Kerry Trentelman. Factorising temporal specifications. RR-5326, INRIA. 2004,
pp.28. �inria-00070674�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50453967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070674
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
53

26
--

F
R

+
E

N
G

ap por t
de r ech er ch e

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Factorising temporal specifications

Marieke Huisman — Kerry Trentelman

N° 5326

Septembre 2004

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Factorising temporal specifications

Marieke Huisman , Kerry Trentelman

Thème SYM — Systèmes symboliques
Projets Everest & RSISE, Australian National Univeristy

Rapport de recherche n° 5326 — Septembre 2004 —28 pages

Abstract: This paper proposes a method to factorise the verification of temporal properties for
multi-threaded programs over groups of different threads. Essentially, the method boils down to
showing that there exists a group of threads that establishes the property of interest, while the re-
maining threads do not affect it. We fine-tune the method by identifying for each property particular
conditions under which the preservation is necessary. As specification language we use the so-called
specification patterns, developed at SAnToS. For each specification pattern we propose a decompo-
sition rule. We have shown the soundness of each rule using the pattern mappings as defined for
LTL. The proofs have been formalised using the theorem prover Isabelle.

Key-words: Specification, program verification, Java, multi-threading, temporal logic

Factorisation de spécifications temporelles

Résumé : Cet article propose une méthode pour factoriser la vérification des proprietés temporelles
pour des programmes multi-treaded sur des groupes de threads différents. Essentiellement, la mé-
thode demande qu’on montre qu’il existe un groupe des threads qui vérifie la proprieté, et que les
autres threads ne l’affectent pas. Nous précisons la méthode en identifiant pour chaque proprieté
les conditions particulières pour lesquelles la préservation est nécessaire. Nous utilisons comme
langage de spécification les specification patterns, développés à SanToS. Pour chaque pattern nous
proposons une règle de décomposition. Nous avons montré la correction de chaque règle en utili-
sant le pattern mapping défini pour LTL. Les preuves ont été formalisées dans l’assistant de preuve
Isabelle.

Mots-clés : Spécification, vérification des programmes, Java, multi-threading, logique temporelle

Factorising temporal specifications 3

Contents

1 Introduction 4

2 Program model 6
2.1 Labelled Transition Systems . 6
2.2 Modeling Java . 8

3 Temporal Formulae 8

4 The Factorisation Rules 10

5 Formalisation and correctness 13

6 Example 19

7 Conclusions 22

A Universality Rules 25

B Existence Rules 26

C Precedence Rules 27

D Response Rules 28

RR n° 5326

4 Huisman & Trentelman

1 Introduction

Over the last few years significant progress has been made in the formal verification of software.
Different tools and techniques have been developed that allow one to analyse and verify realistic
applications formally; see e.g. [2], [1] and [19]. However, when it comes to verifying multi-threaded
applications, most of these techniques fail to scale up because the verification of a multi-threaded
application requires the consideration of all possible interleavings of the different threads, all running
in parallel.

To make verification of multi-threaded applications feasible, several techniques can be used to
lighten the proof burden. First of all, there are abstraction techniques, which reduce the possible state
space of a program; see e.g [5]. Second, there are slicing techniques, removing all those instructions
that are irrelevant to the property being checked; see e.g. [12]. Finally, recent work proposes the use
of atomicity checkers that establish whether the outcome of a method can be affected by the possible
interleavings with other threads; see [10] and [14]. Any atomic method can be verified in isolation
without considering the possible interleavings.

We advocate an alternative approach: in order to simplify the verification tasks we factorise the
temporal specifications for the whole system into specifications for a subset of the threads. We do
this by defining rules of the form

T1 |= φ C |= T2 preserves V

T1‖T2 |= φ

where φ is a temporal specification, T1 and T2 are sets of threads, V is a set of variables and C an
additional condition under which the variables in V should not be changed. Such rules state that if
we wish to verify whether a composed system T1‖T2 satisfies a temporal property φ, it is sufficient
to show that one can decompose the system into T1 and T2, such that T1 satisfies φ, while T2 does not
affect the validity of φ. The latter follows from showing that T2 preserves a set of variables V which
depends on the property φ and on the threads in T1. In this paper we will not discuss in detail how
this set V can be constructed, we assume that we have an appropriate dependency analysis available;
see e.g. [12].

Our work is motivated by the observation that often one wishes to specify and validate properties
only for components of the program, because they are independent of the rest of the program. For
example, the behaviour of a bounded channel, receiving messages and delivering them whenever
possible, will not depend on the surrounding components that create and consume the messages.
Our method allows us to verify the channel thread in isolation, without considering interleavings
with the consumer and producer threads. Moreover, if new threads are added to the application, one
does not have to redo the verifications, one only has to verify that the new threads do not interfere
in an unwanted way, i.e. one has to show that under some particular conditions that depend on the
property, the new thread does not affect the variables related to the property. For example, suppose
we are verifying the property if the bounded channel is full, it will eventually become non-full. Our
factorisation method allows us to reduce this to (1) the verification of this property for the bounded
channel thread, and (2) proving that all other threads do not affect the channel whenever the channel
is full. The possibility of putting conditions on the factorisation distinguishes our method from, for

INRIA

Factorising temporal specifications 5

example, slicing. We believe that checking whether a thread does not affect certain variables can
be done efficiently using techniques to check frame conditions; see e.g. [21] for a sound method to
verify frame conditions.

The model that we use to represent multi-threaded applications is inspired by the programming
language Java [11]. There is an arbitrary number of threads, all running in parallel, all using the
same shared, global memory. Data can be protected by a lock; only one thread at the time can hold
such a lock. The set of possible executions of a Java program is the set of all possible interleavings
of the sequential threads, only restrained by the requirements on the locks.

The program model and the temporal specification language have been formalised in Isabel-
le/HOL [17]. Moreover, the proof rules presented below have all been proven correct w.r.t. our
formalisation.

Related Work Our work is directly inspired by a compositional verification method for Unity
[18]. However, the program model of Unity composes non-deterministic processes. Each action in
a process is considered to be atomic (even when it has multiple side-effects) and can be executed
repeatedly. This is in contrast to our Java program model, where each process is sequential and the
level of atomicity is prescribed by the Java memory model [11].

Our work has also been influenced by Santone’s compositional approach to verification of con-
current systems, specified using the selective µ-calculus [20]. However, this approach focuses on
processes with synchronised communication, while we concentrate on the shared value model.

As explained above, our work differs from existing approaches to abstraction [5], slicing [12]
and atomicity checks [10, 14], in that it does not consider the whole application as a single unit.
These techniques all aim at reducing the verification burden by eliminating unnecessary verification
tasks, while our technique aims at decomposing the program into different parts for which different
verification tasks exist.

Finally, we mention compositional model checking and verification approaches; see e.g. [6],
[15] and [22]. These differ from our approach in that they assume an arbitary specification for each
component and show that these local specifications are sufficient to ensure the global correctness. In
contrast, our approach shows under which conditions it is sufficient to verify a global property only
on part of the system.

Notice that our approach does not exclude any of the techniques mentioned above; instead we
would advocate a combined use of all the different techniques mentioned.

Organisation of the paper The remainder of this paper is organised as follows. The next sec-
tion introduces the multi-threaded program model and discusses how this relates to Java. Section 3
introduces the temporal logic that we use to specify program properties. Section 4 discusses the
proof rules that we use to factorise temporal specifications, while Section 5 discusses the formali-
sation and verification of the method. Section 6 shows how our method works in practice. Finally,
Section 7 draws conclusions and discusses future work, including possible extensions of our factori-
sation rules.

RR n° 5326

6 Huisman & Trentelman

2 Program model

We represent programs by labelled transition systems (LTSs). Each thread in the program is rep-
resented by a single LTS, the program is represented as their composition. We briefly recall some
definitions. Below we will discuss how we assume Java programs to be represented as LTSs.

2.1 Labelled Transition Systems

Definition 1 (LTS) A Labelled Transition System (LTS) is a 4-tuple T = (S,A,→, I), where S is
a non-empty set of states,A a set of transition labels, →⊆ S×A×S the transition relation denoting
whether a state can be reached from another state by an action, and I ⊆ S the set of initial states.
For convenience, we write s

a
−→ t for (s, a, t) ∈→. We say a transition a ∈ A is enabled in state s,

denoted enabled T s a, if there is a state t such that s
a
−→ t.

Since we model Java programs, we assume that we have a single global shared memory and we
only define composition of LTSs with the same state space. The transition relation of the composed
LTS is defined as the union of the two individual transition relations, while initial states are defined
as the intersection of the individual initial states. This ensures that if both threads initially are
enabled, they also will be initally enabled after composition. Formally, the composition of two LTSs
is defined as follows.

Definition 2 (T1‖T2) Given LTSs T1 = (S1, A1,→T1
, I1) and T2 = (S2, A2,→T2

, I2) such that
S1 = S2, we define their composition T1‖T2 = (S,A,→T1‖T2

, I), where

• S = S1 = S2,

• A = A1 ∪ A2,

• →T1‖T2
= →T1

∪ →T2

• I = I1 ∩ I2

Notice that composition is commutative and associative.
Execution traces of the LTSs are infinite sequences of states. Each state in the trace can be

reached by a transition from the previous state, or, if there are no more transitions enabled, it is the
same as the previous state.

Definition 3 (Trace) Given an LTS T = (S,A,→, I), we say that the infinite sequence x =
x0 x1 x2 . . . of states is a trace of T , written trace T x, if

• x0 ∈ I and

• for all i,
if there exists an a ∈ A such that enabled T xi a,

then there exists an a′ ∈ A such that xi
a′

−→ xi+1,
otherwise xi = xi+1.

INRIA

Factorising temporal specifications 7

If there are no more transitions enabled we say a trace is stuttering. In particular, we use stuttersxi
to denote that the trace stutters from xi onwards, i.e. ∀j. j ≥ i. xj = xi.

We say a finite sequence x0, . . . , xn is an initial trace fragment up to n, denoted trace_uptoT xn,
if for all i between 0 and n it satisfies the conditions above.

We use trace_pred T x to denote that the infinite sequence satisfies the second condition of the
definition above. Notice that we have

trace T x ⇔ trace_pred T x ∧ x0 ∈ IT

The notation xj denotes the suffix trace xj , xj+1, xj+2, . . ., while xji denotes the segment trace
xi, xi+1, . . . , xj−1, xj .

Below we sometimes use a generalisation of traces, denoted trace_q q T x, where we require
the first state to satisfy an arbitrary predicate q (instead of simply requiring that it is an initial state).
Hence we write

trace_q q T x⇔ q(x0) ∧ trace_pred T x

Notice that this immediately gives us

trace T x⇔ trace_q (∈ I) T x

Finally, we will assume that all executions are fair, i.e. no transition can be enabled forever
without being executed. Fairness is defined as follows: if a transition is enabled, then eventually it
will happen, otherwise it will become disabled.

Definition 4 (Fairness) Given an LTS T and infinite sequence x such that trace T x, we say x is
fair if for all i and a such that enabled T xi a, there exists a j ≥ i such that either

• ¬enabled T xj a, or

• xj
a
−→ xj+1.

All definitions have been formalised in Isabelle/HOL and several useful results have been proven.
Of these, the most interesting result is that any initial trace fragment can be extended to a full trace
fragment by arbitrarily picking enabled transitions until no transitions are enabled anymore. This is
exhibited in the following equation which states that for every x that is an initial trace fragment up
to j, we can find a trace x′ that coincides with x on the first j elements.

trace_pred_upto T x j ⇒
∃x′. trace_pred T x′ ∧ (∀i. i < j → xi = x′i)

(1)

RR n° 5326

8 Huisman & Trentelman

2.2 Modeling Java

As mentioned above, our program model is inspired by the programming language Java. Following
the Java language specification [11], an execution of a (multi-threaded) Java program can be seen as
a sequence of memory actions. These memory actions can be lock, unlock, write, read, store, load,
assign and use, all with appropriate parameters. These actions cannot occur in arbitrary order: a set
of rules exist that restrict the possible interactions; see [11] and [4]. Typically, we would assume
that these actions are the labels of our transitions (the state space is modelled as a mapping from
variables to values). However we never make this explicit, we only assume that identically labelled
transitions have identical effects on the state space:

s
a
−→ t ∧ s′

a
−→ t′ ⇒

∀x. s(x) = s′(x) ⇒
s(x) 6= t(x) ∧ s′(x) 6= t′(x)

(Ass 1)

This assumption states that if we have two identically labelled transitions s
a
−→ t and s′

a
−→ t′,

then if s and s′ coincide on x, then if the first transition will change the value of x (i.e. s(x) 6= t(x)),
then the second transition will also change the value of x, thus s′(x) 6= t′(x).

In fact, in Java, each thread also has a private memory. We could explicitly incorporate this,
but this is not strictly necessary: it is sufficient to assume that certain parts of the global memory
will only be changed by a single thread. We assume that all threads are already created and can be
represented by a single LTS1.

3 Temporal Formulae

We use the specification patterns as originally proposed within the Bandera project at Kansas State
University as a property specification language; see [8] and the specification patterns website2. Spec-
ification patterns describe the most common constructs found in temporal logic specifications. For
each pattern a mapping into different logics, such as LTL [9], CTL [9] and regular alternation-free
µ-Calculus [16] is defined. The aim of the specification patterns project is to make it easier and more
intuitive to write temporal system specifications.

Basically, each pattern describes a property that has to hold in a certain region of the system
execution. This region is called the scope of the pattern. Two kinds of properties are distinguished:
occurrence patterns (absence, universality and existence) and order patterns (responds-to and pre-
cedes). Figure 1 shows the Isabelle datatypes that formalise the patterns (where ’s is a polymorphic
type representing the state).

To give a semantics to these specification patterns, we use the mapping of the patterns into LTL
as defined on the specification patterns website – we call this mapping pat2ltl – and formalise the
semantics of LTL – following [9] – in Isabelle. We say T satisfies property φ, denoted T |= φ, if

1Our model would allow dynamic thread creation, however, this would make the separation in different threads more
involved.

2http://patterns.projects.cis.ksu.edu/

INRIA

Factorising temporal specifications 9

types ’s pred = "’s => bool"

datatype ’s scope =
Globally

| After "’s pred"
| Before "’s pred"
| Between "’s pred" "’s pred"
| AfterUntil "’s pred" "’s pred"

datatype ’s pattern =
Universal "’s pred" "’s scope"

| Absent "’s pred" "’s scope"
| Exists "’s pred" "’s scope"
| RespondsTo "’s pred" "’s pred" "’s scope"
| Precedes "’s pred" "’s pred" "’s scope"

Figure 1: Isabelle formalisation of specification patterns

for all infinite sequences x such that traceT x we have x |=LTL pat2ltl(φ), where |=LTL corresponds
to the usual satisfaction relation of LTL-formulae. Alternatively, we sometimes write T , q |= φ if
all traces starting with property q satisfy the formula φ, i.e. for all infinite sequences x such that
trace_q q T x we have x |=LTL pat2ltl(φ). We call this q-satisfaction.

Notice that to show that a property ψ with a scope Between q r holds on T , it is sufficient to
show that T q-satisfies ψ Between q r.

T , q |= ψ Between q r ⇒ T |= ψ Between q r (2)

Similar results can be proven for the scopes After q and AfterUntil q r.
Whilst formalising the semantics, we found some small ambiguities in the mappings (miss-

ing brackets, etc.) and we encountered one major problem. Following the website, the pattern
p Precedes q (After r) is mapped into the LTL-formula []¬r ∨ 〈 〉 (r ∧ (¬q W p)) (where W is the
weak until operator, i.e. pW q means p holds until q, or p holds forever). This formula says that
either r never holds, or there is a place where r holds and from that point on q will not hold, unless
p has held before.

However, notice that this mapping does not require that the property ¬q W p holds for the first
time r is true, it only requires it to hold some time that r is true. Thus it would accept the following
trace, because the second time r is true, the property ¬q W p holds (since in the next state p holds
and only one state later q becomes true3.

...r q r p q

3We assume only the properties mentioned in the states to hold; all other properties are false.

RR n° 5326

10 Huisman & Trentelman

In our opinion this trace should be considered incorrect, because after the first occurrence of r,
q occurs without a preceding occurrence of p. Therefore we changed the mapping of the pattern
p Precedes q (After r) into

¬r W (r ∧ (¬q W p))

This rejects the trace above and corresponds better to our intuition of the meaning of this pattern.
Moreover, this closely resembles the mapping of this pattern into a CTL formula.

4 The Factorisation Rules

As explained above, our aim is to factorise the verification of temporal properties over the threads in
a program. Given a program and a temporal property, we divide the different threads in the program
into two groups: for the threads in the first group we show that they establish the property, for the
threads in the other group we show that they do not affect it. We assume that each thread is modelled
by a labelled transition system and that a program consists of a collection of threads. However, since
our LTS composition operator is associative and commutative, it is sufficient to provide factorisation
rules for the composition of two LTSs T1‖T2.

Preservation To show that an LTS does not affect a temporal property, we require that it does not
change any variable that is related to the property. Typically, these related variables will be all the
variables that are mentioned in the property and any variable on which these variables (directly or
indirectly) depend. However, in general it is not necessary that the second LTS always preserves the
set of variables. For each temporal property we can state the precise conditions under which this
set of variables has to be preserved. Moreover, in some cases the second thread might also make a
step which does not preserve the set of variables, but actually makes the temporal property hold for
the composed system. For example, to show that a property Exists p Globally holds on a composed
system – i.e. on every path there always exists a p – it is sufficient to show that the second group of
threads preserves the set of variables on which p depends, unless it makes p true. To be as general as
possible, our factorisation rules allow the second group of threads, wherever possible, to make the
property hold for the composed system.

Before formally defining preservation, we first define equality of states w.r.t. a set of variables
V . As explained above in Section 2, we consider states as mappings from variables to values. We
consider that two states are V -equal if they coincide on the values of all variables in V .

Definition 5 (V -equality) Given states s and t and a set of variables V , we define V -equality be-
tween s and t, denoted s =V t, as follows.

s =V t⇔ (∀v. v ∈ V ⇒ s(v) = t(v))

Notice that V -equality is reflexive, symmetric and transitive. Further, it is preserved by the
subset-relation. Notice that V -equality w.r.t. the empty set reduces to true, while V -equality w.r.t. the
universal set reduces to standard equality4.

4We use V to denote the universal set of variables.

INRIA

Factorising temporal specifications 11

s =V s

s =V t ⇔ t =V s

s =V t ∧ t =V u ⇒ s =V u

s =V t ∧W ⊆ V ⇒ s =W t

s =∅ t ⇔ true

s =V t ⇔ s = t

Now we are ready to define preservation.

Definition 6 (Preserves) Given an LTS T , a set of variables V and state predicates p and q, we
define preservation as

p |= T preserves V | q ⇔

∀s t a. p(s) ⇒ s
a
−→ t⇒ (s =V t ∧ p(t)) ∨ q(t)

Thus when p holds in a state s, all states that are directly reachable from this state should either
preserve V or make q hold.

Notice that it is straightforward to prove that preservation is preserved by the subset relation.

U ⊆ V ⇒
p |= T preserves V | q ⇒ p |= T preserves U | q

Here we do not go further into how the preservation property can be checked, but we believe
that this can be done relatively easily using existing standard techniques for program verification,
for example, those used to check assignable clauses of JML specifications [3, 21].

Dependency sets As explained above, for each temporal property we define the set of variables
that have to be preserved. This set of variables depends on the variables used in the different state
properties and on the program, or more accurately, on the program’s dependency graph. Again, we
do not go into details about dependency analysis, but we refer e.g. to [13] for an identification of the
different dependencies that can occur in a multi-threaded Java program. We use deppT to denote the
set of variables on which the variables in p depend w.r.t. the program represented by T . We assume
that our dependency analysis distributes over conjunction and negation.

depp∧q T = depp T ∪ depq T (Ass 2)

dep¬p T = depp T (Ass 3)

For convenience we write depp,q T to denote depp T ∪ depq T .
Further, we assume that the dependency relation properly coincides with the transition relation:

meaning that for any transition s
a
−→ t that does not preserve the variables in the dependency set,

and for any state s′ that is equivalent to s w.r.t. the dependency set, we can find a state t′ that can
be reached with a similar transition and is equivalent to t w.r.t. the dependency set. This ensures
that the dependency set is closed and that there are no “leaking” dependencies. In other words, if

RR n° 5326

12 Huisman & Trentelman

we would reduce the state space to V the transitions are indistinguishable. Formally, we specify this
assumption as follows.

s
a
−→ t ⇒ s 6=depp T t⇒

∀s′. s =depp T s′ ⇒

∃t′. s′
a
−→ t′ ∧ t =depp T t′

(Ass 3)

A last important assumption concerning the dependency set is that if two states s and t are
equivalent w.r.t. to the set depp T , then p holding in s implies p holds in t (and vice versa, which
follows directly from the symmetry of the V -equality relation).

s =depp T t⇒ p(s) ⇒ p(t) (Ass 4)

The rules Finally we are ready to present the different rules. In the remainder of this section we
present the intuition for two rules (φ = Exists p Between q r and φ = pRespondsTo q After r). The
next section discusses our verification strategy and presents the proof of one of these rules in detail.

We refer to the appendix for an overview of the rules for universality, existence, precendence
and response. The rules for absence can be directly derived from the rules for universality by using
the following equivalence (where γ denotes an arbitrary scope).

T |= Absent p γ ⇔ T |= Universal ¬p γ

Exists p Between q r If we would like to show that a composed LTS T1‖T2 satisfies a property
φ = Exists p Between q r, it is sufficient to show that (1) every trace in T1 that starts with a state
satisfying q satisfies the property, i.e. T1 q-satisfies φ, and (2) T2 preserves the properties p and r
until p is true.

T1, q |= φ ¬p ∧ ¬r |= T2 preserves (depp,r T1) | p

T1‖T2 |= φ

To understand that this is sufficient, suppose we have a trace x of T1‖T2 on which there is a state
where q is true. If r eventually holds later on this trace, then we have to show that p holds earlier,
otherwise the property trivially holds. The first hypothesis of the proof rule states that T1 ensures
this, i.e. for any trace of T1 starting with q, if r eventually holds then p holds before. The second
hypothesis ensures that any trace of T1‖T2 between q and r can actually be considered equivalent to
a trace of T1, because T2 does not disturb it, i.e. as long as p and r are not true, T2 will not change
their validity. There is one exception to this, namely T2 is allowed to make p true itself. In this case
the dependency sets of p and r no longer have to be preserved, because it is sufficient to have a single
existence of p.

INRIA

Factorising temporal specifications 13

p RespondsTo q After r Similarly, if we wish to show that a composed system T1‖T2 satisfies a
property φ = p RespondsTo q After r, i.e. if after r somewhere q holds, then eventually p will hold,
it is sufficient to show that (1) any T1 trace starting with a state satisfying r satisfies φ, and (2) as
long as ¬p holds, T2 preserves p and q unless it makes p true.

T1, r |= φ ¬p |= T2 preserves (depp,q T1) | p

T1‖T2 |= φ

The validity of this rule can be intuitively understood as follows. Suppose we have a trace in
T1‖T2 for which we want to show p RespondsTo q After r and suppose r holds on this trace. The
first hypothesis tells us that any T1 trace starting with r satisfies the property. The second hypothesis
tells us that any trace of T1‖T2 can be considered equivalent to a T1 trace up to the moment p holds,
because T2 does not change any of the relevant variables. As in the example above, as an exception
T2 can make p hold, in which case the formula on the composed system trivially holds.

5 Formalisation and correctness

As mentioned above, all rules have been formalised and proven correct using Isabelle [17]. This
section sketches the correctness proof of one such rule – for Exists p Between q r – in more detail.
Similar proofs have been constructed for all other rules. However, first we will sketch the general
approach we used for verification of the rules.

All factorisation rules have the following shape (where C1, C2 and C3 are arbitrary boolean
formulae containing the atomic propositions in φ)

T1 |= φ C1 |= T2 preserves (depC2
T1) | C3

T1‖T2 |= φ

Suppose that we would like to show the correctness of such a rule. In order to do this we have
to show that for an arbitrary trace of T1‖T2 the property pat2ltl(φ) holds. Intuitively, if we have a
trace x of a composed LTS, we should be able to find an equivalent trace of the isolated T1 system,
because T2 is guaranteed not to affect the variables relevant to the property5. However x can contain
arbitrary transitions that are irrelevant w.r.t. the property φ. These transitions can be made both by T1

and T2. Therefore we use slicing to construct (an initial fragment of) a trace y from x, and we show
that y is (an initial fragment of) a trace of T1. Since we know that T1 satisfies φ and T2 preserves the
appropriate set of variables, we can conclude that T1‖T2 satisfies φ.

The main challenge in the verification of the different rules is the proof that one can construct
the (initial fragment of a) trace of T1. Essentially, we need to show that if a state s is enabled in the
sliced T1 trace, then a transition is made, otherwise the trace stutters. We relate s to a state s′ in the
original trace and consider the different possibilities for s′ in the original trace:

• s′ is stuttering;

5In many cases, such as for the rule for ExistspBetween q r, it suffices to show that there is an equivalent initial fragment.

RR n° 5326

14 Huisman & Trentelman

• s′ makes a transition to a state that is equivalent w.r.t the slicing relation, which is thus not
visible in the sliced trace; or

• s′ makes a transition to a state that is different w.r.t. the slicing relation, and which is thus
visible in the sliced trace.

In the latter case, we have to distinguish whether the transition is made by T1 or T2 (the latter of
these usually leads to a contradiction). These proofs are long and involved and we will not go into
further details here.

Below, we first introduce appropriate definitions and assumptions that we use for slicing, and
then we discuss the proof of the rule Exists p Between q r in more detail.

Slicing As explained above, in our proofs we use the notion of slicing to remove irrelevant transi-
tions from our LTSs. In addition, we define a function that given a normal trace, produces a trace of
the sliced LTS.

Ordinarily, slicing techniques are applied to code, removing those parts of a program that are
irrelevant to the property being verified. The sliced program is then modelled by a smaller, more
manageable LTS; see [13] for an automated approach to slicing Java programs. In our model how-
ever, rather than slicing the program, we slice the LTSs themselves.

In our verifications, we assume that if we want to show that an LTS T satisfies a property p,
then slicing that system w.r.t. depp T will not change the system’s ability to satisfy p. We do not
formally prove this, but we refer to [13] for a proof that properties (expressed in LTL) are preserved
by slicing. Below, we will show the formalisation of this assumption.

The following definitions show how we slice states, LTSs and traces. For all slicing operations,
we fix a set of variables V on which the property φ depends. Remember that states are defined as a
mapping from variables to values; a sliced state is a restriction of this mapping to the variables in V .
Since all functions in Isabelle have to be total, we map all other variables to some unknown constant
arbitrary.

Definition 7 (Sliced state) Given a state s, we define the sliced state s|V as follows.

s|V = λv. if v ∈ V then s(v) else arbitrary

Notice that we immediately can prove the following results for sliced states.

s =V t ⇔ s|V = t|V
(s|V)|V ′ = s|V ∩V ′

V ⊆ V ′ ⇒ (s|V ′)|V = s|V
s|V =V s

For convenience, given an arbitrary boolean state predicate C mentioning only variables in V ,
we use C|V to denote the sliced state predicate

λs. ∃s′. C(s′) ∧ (s′|V = s)

INRIA

Factorising temporal specifications 15

Next, we define a sliced LTS. The sliced transition relation is defined as a restriction of the
original transition relation, only keeping the transitions that affect variables in V . Note that initial
states are preserved by slicing.

Definition 8 (Sliced LTS) Given LTS T = (S,A,→, I), we define a sliced LTS w.r.t. the set V , as
slice T V = (S′, A′,→′, I ′), where:

• S′ =
⋃
s∈S s|V

• A′ = A

• →′= {(s′, a, t′) | ∃s t. s
a
−→ t ∧ s|V = s′ ∧ t|V = t′ ∧ s′ 6= t′}

• I ′ =
⋃
i∈I i|V

As mentioned above, an important assumption of our model is the slicing assumption which
states that properties are preserved by slicing, i.e. an LTS T q-satisfies a temporal property iff
slice T V q-satisfies the same property. We formalise this assumption as follows.

T , q |= φ ⇔ slice T V, q|V |= φ (Ass 5)

Notice that q can be instantiated with λs. s ∈ I , when using this assumption for temporal
properties with scope Before or Globally.

In order to define sliced traces, we use an auxiliary function nrss (for Number of Sliced States),
which counts the number of different states (w.r.t. V) in the first k states of a trace. This function is
recursively defined by the following two equations:

nrss V x 0 = 0
nrss V x (Suc k) = (if xk =V xSuc k then 0 else 1) + nrss V x k

Notice that this function is monotonous in its last argument.

i ≤ j ⇒ nrss V x i ≤ nrss V x j

In addition, if the number of sliced states up to i is the same as the number of sliced states up to
j, this implies that xi is V -equivalent to xj .

nrss V x i = nrss V x j ⇒ xi =V xj

Notice that the converse is not necessarily the case, since an LTS can reach a single state several
times.

Finally, we are ready to define a sliced trace.

RR n° 5326

16 Huisman & Trentelman

Definition 9 (Sliced trace) Given a trace x, we define a sliced trace w.r.t. V as follows:

slice_trace V x =
λi. if (∃j. i ≤ nrss V x j)

then (x(least j.nrss V x j=i))|V
else (x(least j. ∀k. j≤k⇒nrss V x j=nrss V x k))|V

If we want to know what the ith state is in slice_trace V x, we do the following.

• First we check whether there exists at least i different states in x, w.r.t. V .

• If this is the case, then if j is the smallest number for which nrss V x j = i, then we return xj
restricted to V .

• Otherwise, there are less than i different states, thus the sliced trace is stuttering.

• Suppose xj is the first state where the stuttering begins, i.e. afterwards the number of sliced
states remains constant: ∀k.j ≤ k ⇒ nrss V x j = nrss V x k. In that case we return xj
restricted to V .

To conclude, we present two properties concerning sliced traces. The first property shows how
the sliced trace relates to the function nrss: for any i, if j is the number of different sliced states up
to i, then the jth state in the sliced trace is equal to xi restricted to V .

(slice_trace V x)nrss V x i = (xi)|V

The second property tells us that every state in the sliced trace can be related to a state in the
original trace, i.e. for the ith state in the sliced trace there exists a j such that this state is equal to xj ,
restricted to V , and either the number of different sliced states up to j is equal to i, or the number of
different sliced states is strictly less than i for any k. In the latter case, the sliced trace is stuttering
from the ith state onwards.

∃j. (slice_trace V x)i = (xj)|V ∧ (nrss V x j = i ∨ ∀k. nrss V x k < i) (3)

Verification of the rule for Exists p Between q r. Next, we shall look at the proof for the rule for
the formula Exists p Between q r in detail. Below, we write φ for Exists p Between q r.

T1, q |= φ ¬p ∧ ¬r |= T2 preserves (depp,r T1) | p

T1‖T2 |= φ

First we observe that because of equation (2) (page 9) it is sufficient to show that T1‖T2 q-satisfies
this property.

Second we observe that the pattern Exists p Between q r maps into the LTL formula

[] ((q ∧ ¬r) ⇒ (¬rW(p ∧ ¬r)))

INRIA

Factorising temporal specifications 17

Using the semantics of LTL, this tells us that we have to show the following:

∀x. trace_q q (T1‖T2) x⇒
∀i. q(xi) ∧ ¬r(xi) ⇒

(∃k. p(xi+k) ∧ ¬r(xi+k) ∧ (∀j. j < k ⇒ ¬r(xi+j))) ∨
(∀l. ¬r(xi+l)))

Suppose we have x and i such that trace_q q T1‖T2 x, q(xi) and ¬r(xi). Notice that we imme-
diately have trace_q q T1‖T2 (xi).

We wish to prove by absurdum, i.e. we assume the negation of the conclusion and we try to
establish a contradiction. Assuming the negation of the conclusion gives us the following extra
assumptions:

• ∀k.p(xi+k) ⇒ (r(xi+k) ∨ ∃j. j < k ∧ r(xi+j))

• ∃l. r(xi+l)

Let l be given such that r is true in the i+ lth state of x; we know that there must be a smallest
n such that r is true.

r(xi+n) ∧ ∀j. r(xi+j) ⇒ n ≤ j

Using the assumptions, we can then easily derive the following property:

∀j. j < n⇒ ¬p(xi+j) (4)

Next we apply the slicing assumption (Ass 5) to the first hypothesis of the rule which gives us
(remember φ = Exists p Between q r).

(slice T1 (depp,r T1)), q|(depp,r T1) |= φ (5)

To be able to use this result, we show that given the different hypotheses, if xi is a q-trace of the
composed LTS and n is the smallest number such that r(xi+n) holds, then slicing xi w.r.t. depp,r T1

returns an initial trace fragment of slice T1 (depp,r T1). This initial trace fragment takes at least
nrss (depp,r T1) (xi) n steps of the sliced LTS. Formally:

T1, q |= Exists p Between q r ⇒
¬p ∧ ¬r |= T2 preserves (depp,r T1) | p⇒
trace_q q T1‖T2 (xi) ⇒
r(xi+n) ⇒
∀j. r(xi+j) ⇒ n ≤ j ⇒ trace_q_upto q|(depp,r T1)

slice T1 (depp,r T1)
slice_trace (depp,r T1) (xi)
nrss (depp,r T1) (xi) n

Using equation (1) (page 7), we know that this initial trace fragment can be extended to a trace
of slice T1 (depp,r T1).

RR n° 5326

18 Huisman & Trentelman

Next, let the extended trace starting with slice_trace (depp,r T1) (xi) be called y. We can derive
immediately that q|depp,r T (y0). By using (5), we can immediately conclude that y satisfies the
temporal property Exists pBetween q r. If we use the mapping into LTL and the LTL semantics, we
can instantiate the resulting formula with i = 0. This tells us that we have

(∃k. p|(depp,r T1)(yk) ∧ ¬r|(depp,r T1)(yk) ∧ ∀j.j < k ⇒ ¬r|(depp,r T1)(yj))

∨
(∀l. ¬r|(depp,r T1)(yl))

(6)

Notice that using (Ass 4) and the definition of V -equality and sliced states, we get for all k and
l:

(xk)|(depp,r T1) = yl ⇒ p(xk) ⇔ p|(depp,r T1)(yl)

(xk)|(depp,r T1) = yl ⇒ r(xk) ⇔ r|(depp,r T1)(yl)
(7)

We use these properties and a case distinction on the disjunction in (6) above to finish the proof.

Case 1: first disjunct
Suppose we have a k such that

• p|(depp,r T1)(yk),

• ¬r|(depp,r T1)(yk) and

• (∀j. j < k ⇒ ¬r|(depp,r T1)(yj))).

Now we make a case distinction on whether nrss (depp,r T1) (xi) n is less than k.

Case 1.1: nrss (depp,r T1) (xi) n < k

In this particular case, predicate r does not hold in the state ynrss (depp,r T1) (xi) n. However this state
is equivalent to (xi+n)|(depp,r T1) and we already know that r(xi+n), which gives a contradiction.

Case 1.2: nrss (depp,r T1) (xi) n ≥ k

By using equation (3) (page 16) we know that we can relate yk to a state xm such that either

1. nrss (depp,r T1) (xi)m = k or

2. ∀j. nrss (depp,r T1) (xi) j < k.

The latter inequality immediately gives us a contradiction with nrss(depp,r T1)(x
i)n ≥ k, therefore

nrss (depp,r T1) (xi)m = k.

Next, we make a case distinction on whether m is smaller than n.

Case 1.2.1: m < n

INRIA

Factorising temporal specifications 19

We know by (4) that ¬p(xi+m), thus ¬p|(depp,r T1)(yk) which creates a contradiction with the as-
sumption p|(depp,r T1)(yk).

Case 1.2.2: n ≤ m

Using monotonicity of the function nrss, we derive the equivalence

nrss (depp,r T1) (xi) n = nrss (depp,r T1) (xi)m.

Thus xi+n =(depp,r T1) xi+m, and therefore r(xi+m) and thus r|(depp,r T1)(yk), which also leads to
a contradiction.

Case 2: second disjunct First we suppose that ∀l. ¬r|(depp,r T1)(yl). We had assumed that r(xi+l).
There exists a state in y that is the restriction of xi+l to depp,r T1. By property (7) above, r|(depp,r T1)

holds in this state, which immediately leads to a contradiction with ∀l. ¬r|(depp,r T1)(yl).
This concludes the proof.

6 Example

To illustrate how our factorisation method works in practice, we consider the code fragments in
Figures 2 and 3 (adapted from [7]). This fragment defines a class Buffer, that is accessed by three
different threads, a consumer C and a producer P and a thread that processes the buffer by moving
the items in the incoming buffer to the outcoming buffer PB.

Typical properties that one may wish to verify are for example:

• If the incoming buffer is full, it eventually will become non-full; and

• After the incoming buffer has become non-empty, eventually the outgoing buffer also will
become non-empty.

Using the specification patterns, we can specify these properties formally.

(φ) !Buffer.inIsFull() RespondsTo

Buffer.inIsfull() Globally

(ψ) Exists !Buffer.outIsEmpty()
After !Buffer.inIsEmpty()

Using our factorisation rules, we can show that it is sufficient to prove that these properties are
guaranteed by the ProcessBuffer thread PB only. Notice that we only have to show the property ψ
for traces where initially the incoming buffer is not empty. We can use any existing techniques for
the verification of (multi-threaded) programs to establish this.

PB |= φ

PB, !Buffer.inIsEmpty() |= ψ
(8)

RR n° 5326

20 Huisman & Trentelman

final class Buffer{
int [] inbuf, outbuf;
int inbound, outbound, inhead, outhead,

intail, outtail;

public Buffer(int inb, int outb){
inbound = inb; outbound = outb;
inbuf = new int[inbound];
outbuf = new int[outbound];
inhead = 0; outhead = 0;
intail = inbound - 1; outtail = outbound - 1;}

public synchronized boolean inIsFull(){
return inhead == intail;}

public synchronized boolean outIsFull(){
return outhead == outtail;}

public synchronized boolean inIsEmpty(){
return inhead == ((intail+1)%inbound);}

public synchronized boolean outIsEmpty(){
return outhead == ((outtail+1)%outbound);}

public synchronized void add(int o) {
while (inIsFull())

try {wait();}catch(InterruptedException e){};
inbuf[inhead] = o;
inhead = (inhead+1)% inbound;
notifyAll();}

public synchronized void process() {
while (inIsEmpty())

try {wait();}catch(InterruptedException e){}
intail = (intail + 1) % inbound;
while (outIsFull())

try {wait();}catch(InterruptedException e){}
intail = (intail+1) % inbound;
outbuf[outhead] = inbuf[intail];
outhead = (outhead+1)%outbound;
notifyAll();}

public synchronized int take() {
while (outIsEmpty())

try {wait();}catch(InterruptedException e){}
outtail = (outtail+1)%outbound;
notifyAll();
return outbuf[outtail];}

}

Figure 2: Implementation of a buffer INRIA

Factorising temporal specifications 21

final class ProcessBuffer extends Thread{
Buffer buf;
public ProcessBuffer(Buffer b) {buf = b;}
public void run(){

while(true)buf.process();}
}

final class Producer extends Thread{
Buffer buf;
public Producer(Buffer b) {buf = b;}
public void run(){

int i = 0;
while(true){buf.add(i); i++;}}

}

final class Consumer extends Thread{
Buffer buf;
public Consumer(Buffer b) {buf = b;}
public void run(){

while(true)System.out.println(buf.take());}
}

Figure 3: Three parallel threads: Consumer, Producer and ProcessBuffer using the buffer

RR n° 5326

22 Huisman & Trentelman

In addition, we need to show that the producer P and consumer C do not disturb the validity of
the properties provided the appropriate conditions hold, i.e. provided the incoming buffer is full, re-
spectively, the outgoing buffer is empty. In order to do this, we first need to determine the appropriate
dependency sets. Using a standard dependency analysis, we find the following sets:

depφ PB = {inhead, intail, inbound}
depψ PB = {outhead, outtail, outbound}

Now, appropriately instantiating the factorisation rules for RespondsTo Globally and Exists

After, we find that we have the following extra proof obligations.

Buffer.inIsFull() |=
C‖P preserves depφ PB | !Buffer.inIsFull()

Buffer.outIsEmpty() |=
C‖P preserves depψ PB | !Buffer.outIsEmpty()

(9)

It is straightforward to see that these proof obligations are satisfied. However, notice that without
the extra conditions, these factorisations would not have been possible. We explicitly use that the
producer P does not produce any new elements when the incoming buffer is full, and vice versa,
that the consumer C does not take any elements when the outgoing buffer is empty.

From (8) and (9) we can conclude the following.

PB‖C‖P |= φ

PB‖C‖P |= ψ

Notice that if these three threads had been used in a larger context many of the typical other
properties on buffers (e.g. all elements that are taken first must have been added) can be factorised to
these three threads only; for all other threads one only would have to show that they do not disturb
the validity of the property.

7 Conclusions

We have presented a method to factorise the verification of temporal properties for multi-threaded
programs over different threads. Contrary to other approaches that aim to reduce the verification
burden by eliminating unnecessary verification tasks for the entire application, our approach is more
modular in nature. We decompose the program into different parts for which different verification
tasks exist, giving added flexibility to program verification. We feel that our technique can be used
to improve the applicability of these other techniques.

As a property specification language we have used the specification patterns developed at SAn-
ToS. This language, along with our program model, has been formalised in Isabelle/HOL. We have
designed 25 rules that describe the factorisation of a given temporal property and have proven each
rule correct w.r.t. to our formalisation. We have also identified and corrected minor deficiencies
within the patterns.

INRIA

Factorising temporal specifications 23

As future work, we would like to develop an automatic technique to check for the preservation of
variables. We believe that it will be possible to define this as an extension of existing techniques for
checking so-called frame conditions [21, 3], i.e. specification clauses that describe which variables
may be modified by a method.

A natural extension to our approach will be to take invariants into account (following [18]). If a
property J is known to hold in all reachable program states, i.e. if it is an invariant, then this can be
used to ease the verification process. The factorisation rules could be changed as follows:

T1, J |= φ C1, J |= T2 preserves (depC2
T1) | C3

T1‖T2, J |= φ

Intuitively, the proof rule would now read: in order to prove that the composed system T1‖T2

satisfies property φ, assuming that we have an invariant J , it is sufficient to prove that (1) T1 satisfies
φ assuming the invariant J , and (2) T2 preserves the variables on which V depends, also assuming the
invariant J . One could also imagine using other, more elaborate properties as additional assumptions
to the factorisation. It is the subject of future work to study those kind of properties which would be
useful.

References

[1] C. Breunesse, N. Cataño, M. Huisman, and B. Jacobs. Formal methods for smart cards: an
experience report. Technical Report NIII-R0316, NIII, University of Nijmegen, 2003. To
appear in Science of Computer Programming.

[2] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino, and E. Poll. An
overview of JML tools and applications. In T. Arts and W. Fokkink, editors, Formal Methods
for Industrial Critical Systems (FMICS 2003), volume 80 of ENTCS. Elsevier, 2003.

[3] N. Cataño and M. Huisman. Chase: a static checker for JML’s assignable clause. In L.D.
Zuck, P.C. Attie, A. Cortesi, and S. Mukhopadhyay, editors, Verification, Model Checking and
Abstract Interpretation, number 2575 in LNCS, pages 26–40. Springer, 2003.

[4] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural operational
semantics of multi-threaded Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of
Java, number 1523 in LNCS, pages 175–200. Springer, 1999.

[5] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM Transac-
tions on Programming Languages and Systems, 16(5):1512–1542, September 1994.

[6] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking. In Fourth IEEE
Symposium on Logic in Computer Science, pages 353–362. IEEE Press, 1989.

[7] J. Corbett, M.B. Dwyer, J. Hatcliff, and Robby. Expressing Checkable Properties of Dynamic
Systems: the Bandera Specification Language. Technical Report 2001-04, Kansas State Uni-
versity, Department of Computing and Information Sciences, 2001.

RR n° 5326

24 Huisman & Trentelman

[8] M.B. Dwyer, G. Avrunin, and J. Corbett. Property specification patterns for finite-state verifi-
cation. In M. Ardis, editor, 2nd Workshop on Formal Methods in Software Practice (FMSP’98),
pages 7–15, 1998.

[9] E.A. Emerson. Temporal and Modal Logic, chapter 16. Elsevier, 1990.

[10] C. Flanagan and S.N. Freund. Atomizer: A dynamic atomicity checker for multithreaded
programs. In X. Leroy, editor, Principles of Programming Languages (POPL 2004), pages
256–267, 2004.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, second edition.
The Java Series. Addison-Wesley, 2000.

[12] J. Hatcliff, J.C. Corbett, M.B. Dwyer, S. Sokolowski, and H. Zheng. A formal study of slicing
for multi-threaded programs with JVM concurrency primitives. In International Symposium
on Static Analysis (SAS’99), number 1694 in LNCS, pages 1–18. Springer, 1999.

[13] J. Hatcliff, M.B. Dwyer, and H. Zheng. Slicing software for model construction. Higher-Order
and Symbolic Computation, 13(4):315–353, 2000.

[14] J. Hatcliff, Robby, and M.B. Dwyer. Verifying atomicity specifications for concurrent object-
oriented software using model checking. In B. Steffen and G. Levi, editors, Verification, Model
Checking and Abstract Interpretation (VMCAI 2004), number 2937 in LNCS, pages 175–190.
Springer, 2004.

[15] K. Laster and O. Grumberg. Modular model checking of software. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 1998), volume 1384 of LNCS, pages 20–35.
Springer, 1998.

[16] R. Mateescu. Local model-checking of an alternation-free value-based modal mu-calculus. In
A. Bossi, A. Cortesi, and F. Levi, editors, 2nd International Workshop on Verification, Model
Checking and Abstract Interpretation, 1998.

[17] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. Number 2283 in LNCS. Springer, 2002.

[18] I. Prasetya and S. Swierstra. Factorizing fault tolerance. Theor. Comp. Sci., 290(2):1201–1222,
2003.

[19] Robby, E. Rodríguez, M.B. Dwyer, and J. Hatcliff. Checking strong specifications using an
extensible software model checking framework. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2004), pages 404–420, 2004.

[20] A. Santone. Automatic verification of concurrent systems using a formula-based compositional
approach. Acta Informatica, 38:531–564, 2002.

[21] F. Spoto and E. Poll. Static analysis for JML’s assignable clauses. In G. Ghelli, editor, Foun-
dations of Object-Oriented Languages (FOOL-10), 2003.

INRIA

Factorising temporal specifications 25

[22] C. Sprenger, D. Gurov, and M. Huisman. Simulation logic, applets and compositional verifica-
tion. Technical Report RR-4890, INRIA, 2003.

A Universality Rules

α = Universal p Globally

β = Universal p After q

γ = Universal p Before r

δ = Universal p Between q r

ε = Universal p AfterUntil q r

V = depp,r T1

T1 |= α p |= T2 preserves (depp T1) | false

T1‖T2 |= α

T1, q |= β p |= T2 preserves (depp T1) | false

T1‖T2 |= β

T1 |= γ ¬r |= T2 preserves V | false

T1‖T2 |= γ

T1, q |= δ ¬r |= T2 preserves V | false

T1‖T2 |= δ

T1, q |= ε p ∧ ¬r |= T2 preserves V | r

T1‖T2 |= ε

RR n° 5326

26 Huisman & Trentelman

B Existence Rules
α = Exists p Globally

β = Exists p After q

γ = Exists p Before r

δ = Exists p Between q r

ε = Exists p AfterUntil q r

V = depp,r T1

T1 |= α ¬p |= T2 preserves depp T1 | p

T1‖T2 |= α

T1, q |= β ¬p |= T2 preserves depp T1 | p

T1‖T2 |= β

T1 |= γ ¬p ∧ ¬r |= T2 preserves V | p

T1‖T2 |= γ

T1, q |= δ ¬p ∧ ¬r |= T2 preserves V | p

T1‖T2 |= δ

T1, q |= ε ¬p ∧ ¬r |= T2 preserves V | p ∨ r

T1‖T2 |= ε

INRIA

Factorising temporal specifications 27

C Precedence Rules
α = p Precedes q Globally

β = p Precedes q After r

γ = p Precedes q Before r

δ = p Precedes q Between q r

ε = p Precedes q AfterUntil q r

V = depp,q T1

W = depp,q,r T1

X = depp,q,s T1

T1 |= α ¬p ∧ ¬q |= T2 preserves V | p

T1‖T2 |= α

T1, r |= β ¬p ∧ ¬q |= T2 preserves V | p

T1‖T2 |= β

T1 |= γ ¬p ∧ ¬q ∧ ¬r |= T2 preservesW | p ∨ r

T1‖T2 |= γ

T1, r |= δ ¬p ∧ ¬q ∧ ¬s |= T2 preservesX | p ∨ s

T1‖T2 |= δ

T1, r |= ε ¬p ∧ ¬q ∧ ¬s |= T2 preservesX | p

T1‖T2 |= ε

RR n° 5326

28 Huisman & Trentelman

D Response Rules

α = p RespondsTo q Globally

β = p RespondsTo q After r

γ = p RespondsTo q Before r

δ = p RespondsTo q Between r s

ε = p RespondsTo q AfterUntil r s

V = depp,q T1

W = depp,q,r T1

X = depp,q,s T1

T1 |= α ¬p |= T2 preserves V | p

T1‖T2 |= α

T1, r |= β ¬p |= T2 preserves V | p

T1‖T2 |= β

T1 |= γ ¬p ∧ ¬r |= T2 preservesW | p ∨ r

T1‖T2 |= γ

T1, r |= δ ¬p ∧ ¬s |= T2 preservesX | p ∨ s

T1‖T2 |= δ

T1, r |= ε ¬p ∧ ¬s |= T2 preservesX | p

T1‖T2 |= ε

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Program model
	Labelled Transition Systems
	Modeling Java

	Temporal Formulae
	The Factorisation Rules
	Formalisation and correctness
	Example
	Conclusions
	Universality Rules
	Existence Rules
	Precedence Rules
	Response Rules

