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Un Point de Vue d’Analyse Convexe sur les Coupes Disjonctives

Résumé : Nous considérons sous ’angle de ’analyse convex le probéme général des plans sécants en optimi-
sation combinatoire. Nous nous intéressons particuliérement aux coupes disjonctives et & la construction de
facettes. Nous terminons par quelques considérations sur le développement de générateurs de coupes efficaces.

Mots-clés : Programmation en nombres entiers, plans sécants, séparation, lift and project, coupe disjonctive,
anaylse convexe
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1 Introduction

An important tool in combinatorial optimization is cut generation:

T2 must be maximized over a “hard-to-deal-with” set S C R (typically a huge set of

(i) a linear function ¢
integer points);
(ii) for want of a tractable method, S is relaxed to some “easier” set R, usually polyhedral, over which ¢'z is
maximized;
(iii) this may produce some Z not even belonging to conv (.5), the closed convex hull of S;
(iv) then the problem is to separate Z from S by some cutting plane(s), in order to describe S — or ¢onv (S) —
more accurately.
A cutting plane is defined by the equation d' z = k, where the nonzero direction d € R” and the righthand side
k € R satisfy
d'z2>k and d'z<k forallze s

or equivalently: d'Z > os(d), where og is the so-called support function of S (some essential concepts from

convex analysis are given in the Appendix).

Because S is hard to deal with directly, a possible approach for constructing cutting planes is to introduce
an intermediate set P D S not containing  and to find d separating & from P. Some desirable properties for a
good cut are as follows:

— It should touch P, which fixes & to its smallest possible value: ¥ = op(d). Thus, finding a cut is a problem
in d € R" only.

— Tt should be as deep as possible, i.e. d'Z—op(d) should be maximal in a certain sense. Naturally, this requires
in particular an appropriate normalization of d (to avoid obtaining d"Z — op(d) = +o0); several works are
devoted to defining suitable normalizations [2, 6, 3, 11].

— When the enlargement P is polyhedral, a good cut should also touch P on a facet; this means that the face
Fp(d) of P exposed by d (see (15) in the Appendix) should have maximal dimension.

The present paper is thus devoted to the general problem of defining good cuts according to the above criteria;

and for this we use the language and tools from convex analysis.

An application that we have in mind is in integer programming. For example in the case of pure 0-1
programming, S has the form S := RN {0,1}" for some given polyhedron R C [0,1]". Optimizing c¢'x over the
relaxation R yields some point Z. When Z € {0,1}", the integer program is solved. When this is not the case,
then 0 < Z; < 1 for some j, and a natural choice for the above-mentioned enlargement P of S is the (convex
hull of the) union of the polyhedra

RnN{z: z; =0} and RN{z: z; =1}.

The inequalities that separate Z from this set P are called the lift-and-project cuts [2]. In practice, a small set
of lift-and-project cuts with the good characteristics mentioned earlier are appended to the definition of R, thus
strengthening the relaxation. The process can be repeated several times for further strengthening.

In a mixed integer linear program, S := RN (NP x R?) where p, g are positive integers such that p + ¢ = n,
and R C R is a polyhedron. If the point Z obtained by optimizing ¢z over R does not belong to conv (S), one
may strengthen the relaxation R by adding cuts, such as split cuts [8] defined as follows. Consider a disjunction
“rTe L mo or m'x > m + 17 satisfied by all points of S but not by Z. A particular choice that gives a valid
disjunction for S is (m,mo) € N**1 with 7; =0 for j = p+1,...,n. The set P is the union of

Rn{z:n'z<m} and RN{z: 7'z >m +1}

and split cuts are inequalities that separate Z from P. A lift-and-project cut is a special type of split cut.
Another well-known example is Gomory’s mixed integer cut [9].

More generally, disjunctive programming, as was introduced by Balas in the 1970’s [1], considers a union
of polyhedra. Specifically, given a finite number of polyhedra P;, one would like to separate z from U;P; or
equivalently from P := conv (UF_; P;). We will refer to P as the disjunctive polyhedron. Unfortunately, a
description of the disjunctive polyhedron as P = {z € R" : Az < b} may require an exponential number of
constraints Az < b. Balas’ key result is that P has a compact representation in a higher-dimensional space,
namely there is a polyhedron P := {(z,y) € R*? : Cz + Dy < d}, whose projection onto the z-space is P, and
P has only around kn variables and Zle m; constraints; here k is the number of polyhedra and m; denotes
the number of constraints of P;. As a consequence, separating Z from P can be solved efficiently by linear
programming. We also mention [7], in which unions of non-polyhedral sets are considered.

RR n° 5317



4 Gérard Cornuéjols , Claude Lemaréchal

The paper is organized as follows. Sections 2 to 4 introduce from different points of view the fundamental
objects for cutting: the reverse polar cone and its associated support function. In §5 they are particularized to
unions of sets and the polyhedral case is studied in §6. Finally we have a conclusion section: it turns out that
good cuts between T and P are attached to the direction pointing from Z to some point z* € P, and we suggest
some possibilities to choose x*. Essential concepts from convex analysis are gathered in an Appendix.

2 Reverse polar and gauge

In this section we consider a nonempty set @ C R" (standing for P — %), which we want to separate from
the origin. As observed in the introduction, this amounts to finding a direction d such that og(d) < 0.
Separating directions thus form an open set, which is delicate to manage numerically, when one wants to choose
a distinguished element in it. The following definition, given in [1], ingeniously turns the difficulty around,
taking advantage of positive homogeneity: the set

Q ={deR": oq(d) < -1} W

will be called the reverse polar of Q.

&ome (Q)
eome @ @~ \ )i

Figure 1: Reverse polar

Theorem 2.1 Assume 0 ¢ conv (Q).

(i) The reverse polar Q= is nonempty closed and convez.
(ii) Let lin (Q) be the linear space generated by Q. Then Q= has the form R+ (lin (Q))*, where R C lin (Q).
(#i) A direction d separates 0 from Q if and only if td € Q~ for some t > 0.

Proof. (i) Closedness and convexity hold because the function o¢ is itself closed and convex; see the Appendix
for notation. Nonemptiness is just standard separation between conv (Q) and {0}.
(ii) The property £ L lin (Q) is equivalent to

Tz=0, ie. (d+0)"z=d"z, forallzeqQ.

Thus og(d) = og(d + £) and therefore d € Q- & d+ L€ Q.
(iii) Finally, d separates 0 from () means that og(d) < —1/¢, for some ¢ > 0; this is equivalent to og(td) < —1,
ie. tde Q. O

It is observed in [2] — and will be confirmed below — that, to compute good separating directions, it is
advisable to maximize some linear function over the reverse polar set. This motivates the following definition
and notation:

Definition 2.2 The support function of Q-

R* 3 g yq(g) == sup ¢'d (2)
g (d)<-1

will be called the reverse gauge of Q: v = 0g-.
The (possibly empty) optimal set is the face of Q= exposed by q:

Tq(q) :=Fg-(q) = A;ggn_ax q'd. |

INRIA
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The following result goes along the lines of [3, Thm. 12].

Theorem 2.3 Assume 0 ¢ conv (Q).

(i) The reverse gauge is a closed sublinear function.
(i1) Denoting by cone (Q) the closed conical hull of Q, there holds

<0 if q € come (Q)
=400 otherwise .

YQ(q) {

(i1i) If q € conv (Q) then vo(q) < —1.

Proof. (i) Being a support function, vg is closed sublinear.

(ii) Use the notation K := c¢one (()) and observe that Q~ C K°: if ¢ € K, then the objective value in (2) is
nonpositive, as well as its supremum.

On the other hand, let ¢ ¢ K: there exists dy € K° such that ¢'dy > 0 (separation between q and K, see
(14) in the Appendix). Note: og(do) < ok (do) <0 (see (19) in the Appendix). Take d € @~ C K°, & > 0 and
form the vector

d(é‘) =dy +edC K°.

For & small enough, ¢'d(e) > 0. By subadditivity of o¢, we also have

0q(d(e)) < 0g(do) +e0g(d) < —¢.

Then, for t - +o0, we have
og(td(e)) = —oo and ¢ (td(e)) = +oo.

(iii) If ¢ € conv(Q) then ¢'d < og(d) for all d (separation theorem, see (14) in the Appendix). Thus
q"d < —1 for any feasible d and this inequality is still valid for the supremum. m|

We finish this section with a comment on our nonemptiness assumption. The case ) = () is somewhat trivial
but also pathological: we may set og = —o0 (see Note2, p.15) and it is natural from (1) to set @~ = R"; then
70 (0) = 0 and yg(d) = +oo for all d # 0.

3 Geometric characterizations

This section is devoted to describing vg and I'g in terms of @) itself, without any reference to og. This can be
done via the following problem:
supt
t>0 (3)
g € tconv (Q)

and Theorem 3.2 below will justify our terminology “reverse gauge” (see the Appendix for the definition of a
gauge).

In the remainder of this section, we will assume ¢ € ¢onv (@), which is the case of interest for the applications
we have in mind. Observe that, by positive homogeneity, this amounts to taking ¢ anywhere in the cone generated
by @; up to the closure operation, this essentially amounts to assuming vg(g) < +oo (see Theorem 2.3 (ii)).

Lemma 3.1 Assume 0 ¢ conv (Q) and let q € conv (Q). Then the optimal t in (3) is not smaller than 1 and
the optimal value is attained (the sup is actually a maz).

Proof. Call t* the optimal value of (3). The property t* > 1 is obvious by our choice of q.
Let ¢ be a maximizing sequence: ¢/t € conv (@) and 1/¢;, — 1/t* (a finite number, possibly 0). Then
q/tr — q/t*, which has to lie in the closed set conv (Q). O

Theorem 3.2 Assume 0 ¢ conv (Q) and let g € conv (Q)). Then the optimal value in (3) is —vg(q).

RR n° 5317



6 Gérard Cornuéjols , Claude Lemaréchal

Proof. Apply Lagrangian duality to (2) (a convex problem which satisfies Slater’s condition):

. T, _ _
10(@) = jnf sup [g'd~t(og(d) + )] = inf [~t +6(1)],
where 6(t) := supy[q' d —tog(d)]. Observe that 6(t) > 0 (just take d = 0). Because yg(q) < —1 (Theorem 2.3),
we may impose the constraint ¢ > 1. Then

6)(t)_{o if g €tQ,

1 400 otherwise .

To see this, either invoke [10, §E.1] (more specifically Example 1.1.5 and Theorem 1.3.5) or argue as follows: by
positive homogeneity 6(t) = +oo if there is d such that ¢'d — tog(d) > 0, i.e. g/t ¢ @ (separation between
@ and g/t, (14) in the Appendix). On the other hand ¢/t € Q means (q' /t)d — og(d) < 0 for all d and then
0(t) = 0.

It follows that yo(t) =inf {—¢t: t > 0, ¢ € tQ}. ]

This result, together with Lemma 3.1, reveals important objects attached to () and g:

Definition 3.3 Denoting by t7,(q) the optimal value of (3),

U S
T o=l th(9)

is the visible point from the origin in the direction q. m|

Geometrically, ¢* is the closest point to the origin on the line-segment [0, g], still lying in ¢onv (Q); see [3,
Corr. 14]. In fact, (3) can also be written (setting s := 1/t):

infs, >0, sq€ conv(Q).

Clearly enough, g — t7,(q) is positively homogeneous: the length of ¢ has no real influence on (2) or (3) or ¢*.
The points g € conv (Q) that are visible from the origin are those such that t3,(¢) = —yq(q) = 1.

Figure 2: Visible point and exposed face

Theorem 3.4 Assume 0 ¢ conv (Q)), let ¢ € conv (Q) and use the notation of Definition 3.3. Then T'g(q) is the
set of d in the normal cone to conv (Q)) at ¢* that satisfy q' d = yg(q). In other words, d € Tg(q) is equivalent
to

d"(x—q*)<0forallzeqQ (4)
and d'q =vo(q) . (5)

Proof. Let d satisfy (4); maximizing over x € @ shows that og(d) < d'¢*. If, in addition, d satisfies (5),
og(d) € —1: d is feasible in (2); use again (5) to conclude that d is also optimal.
Conversely, let d € Tg(q); then og(d) < —1 and ¢"d = yg(q), hence

og(d) < -1=d'q". (6)

INRIA
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However, ¢* € ¢onv (@) (Lemma3.1 and Theorem 3.2). By definition of a support function, og(g*) > d" ¢*: by
(6), we conclude (see (15) in the Appendix)

7" € Fomv () (d), ie. d€Negmy(@)(d"),
where the last equivalence is (17) in the Appendix. O

The meaning of this result is that a direction d € T'g(gq) exposes ¢* in ¢onv (Q)). Said differently, d € T'g(q)

defines a hyperplane

{zeR": d'z=0¢(d)}
that supports conv (@) at ¢*. The important property to characterize I'g(q) is (4), while (5) just serves to
specify the length of d.

The constructions given in this section are intrinsic: they do not rely on any representation of ). It can
be mentioned that the dilation effect revealed in (3) may result in rather intricate calculations when @) is
represented by nonlinear constraints — see [7]. For affine constraints, the calculations considerably simplify —
see §6 below, more specifically Remark 6.5.

4 Normalizations

Computing the reverse gauge can also be done via an optimization problem with a single linear constraint,

namely:
infog(d), q'd>-1; (7

we will denote by k* and D* its optimal value and optimal set. Observe that (7) is just (2) with the objective
function and constraint interchanged.
It is not difficult to see that the constraint in (2) or (7) can be turned to an equality:

Lemma 4.1 Assume 0 ¢ conv (Q) and let g € conv (Q). Then:
(i) vo(q) and T'g(q) are the optimal value and optimal set of

maxq'd, og(d)=-1;
(i) k* < 0 and D* are the optimal value and optimal set of
minog(d), ¢'d=-1.

Proof. Let d be feasible in (2): og(d) =: a < —1; by definition of a support function, ¢'d < og(d) < 0. By

positive homogeneity, og(-%) = -1 and ¢ -L > ¢"d, with strict inequality if —a > 1. This proves (i). The
proof of (ii) goes the same way. O

Up to positive homogeneity, (2) and (7) are actually equivalent:

Theorem 4.2 Assume 0 ¢ conv (Q)) and let q € conv (Q). Then

1 D*
7@((1)=F and Tq(q) =

—k*

Proof. We use the shortened notation v := yg(q). Recall that v < —1 (Theorem 2.3 (iii)).
Let € > 0. In view of Lemma4.1(i), we can take d. such that og(d:) = —1 and ¢"d. > v —e. Then set
d:= %, so that ¢'d > —1: d is feasible in (7), hence

1 1
* < opld) = d.) = .
K <oqld) = - oqld) = ~—

Since € > 0 is arbitrary, k* < 1/7, i.e. k*y > 1,1e. v < 1/k*
On the other hand, Lemma4.1(ii) allows us to force € €10, —*[ and to take d. such that ¢"d. = —1 and
oo(d.) < k*+¢ <0. Then set d := d —, so that og(d) < —1: d is feasible in (2), hence

1
€

RR n° 5317



8 Gérard Cornuéjols , Claude Lemaréchal

Since € > 0 is arbitrarily small, v > 1/x*. Altogether, v = 1/k*.
Now d € T'g(g) means
¢'d=v and og(d)=-1,

while d € D* means

1
¢'d=-1 and og(d) = S
The relation between I'g(g) and D* follows by positive homogeneity. O

With reference to our introduction, the constraint in (7) can be viewed as a normalization: to construct a
tightest cut d amounts to minimizing og and requires a bound on d. The above result establishes that bounding
q"d (from below) does the job: it imposes the simplest possible constraint to give a meaning to the minimization
of og. It does not necessarily produce a separating direction, though: consider in R? the circle

Qi={z=¢n: E-1)+@n-1)><1}

and take ¢ = (1,0). Then vg(q) = —1 (Theorem 3.2). However, no d € (0,R_) = Ng(q) satisfies d"q¢ = —1: in
fact Tg(q) = 0.

Q
0 q=q"
Q- q¢" +Nql(g")

Figure 3: No separator exposes ¢*

Remark 4.3 The proof of Theorem 3.2 shows that (3) is the Lagrangian dual of (2). A similar interpretation
applies to (7) through the following formulation of (3):

inf ¢ tg==x.
zecg,tzo’ =7

Dualizing the constraint tq — x = 0 with multiplier d, we obtain the Lagrangian dual

su inf t+d (tg—1zx).
deﬂ%)n T€EQ, 20 ( q )

The internal inf-problem can be solved separately in x and t. Remembering the definion of og, we obtain

sup —oq(d), q'd+1>0,
deRn

which is nothing other than (7).
Note also the optimality condition of
inf —d"z,
T€EQ

which is d € Ng(z) and “explains” Theorem 3.4. O

5 The case of a disjunction

Let Q¢ and @; be two nonempty subsets of R". In this section, we take @ = Qo U Q1 and we apply the above
results to compute the reverse elements of @) in terms of the data Qo and Q.

INRIA



Analyse Conveze et Coupes Disjonctives 9

Lemma 5.1 Denote by o; and ~y; the support function and reverse gauge of Q;, i =0,1. There holds
0@ =max{oo,01}, Q7 =Q¢ Ny, 7o =conv(min{y,n}).
Proof. See the Appendix for og. The formula for ~ follows easily. See again the Appendix for 7o = og-. O
In the following result, the notation S is used for the closure of a set S.
Theorem 5.2 Assume 0 ¢ conv (Q)) and let g € conv (Q)). Then —yg(q) s the optimal value of

sup to + t1
020,620

q € toconv (Qo) + ticonv (Q1) .

Proof. Apply Theorem3.2: —p(g) is the optimal value of (3). Now ¢conv (Q) is clearly conv (¢Q)), which is
the closure of S; := conv (¢Q)). Using associativity of convex combinations, we can write

Sy = {atgo + (1 — a)tqr : a € [0,1], go € conv(Qo), q1 € conv (Q1)}.

Introduce the notation to := at, t; := (1 — a)t. When « describes the segment [0, 1], to and ¢; describe the
corresponding segment dilated by ¢ > 0, so that

Sy = {to conv (Qo) + t1 conv (Ql) tt0 20,61 20,80+t = t} . O

Introducing the visible point ¢g* of Definition 3.3 allows the characterization of I'g(g) in terms of normal
cones (see (16) in the Appendix):

Theorem 5.3 Assume 0 ¢ conv (Q) and let g € conv (Q)). Then T'g(q) is the set of d satisfying

d"(x —q*) <0 forallzeQo,
d'(x—q*)<O0foralzeQ,
and ¢"d =vg(q) -

Proof. Use Theorem 3.4 and observe that, if d satisfies d' (z — ¢*) < 0 for all z € Q;, i = 0,1, then the same
inequality holds

— for all z € conv (Qo U Q1) by convex combinations,

— and for all z in the closure of the latter set, by continuity.

Altogether, (4) is satisfied. The converse is obvious. O

Figure 4: Apexed convex hull and corresponding normal cone

Remark 5.4 This results suggests that the normal cone Ng(q*) (where Q is a union) is the intersection of two
appropriate normal cones, as illustrated by Fig. 4: for i = 1,2, we have

Qf :=conv(Q;U{¢*}) = {(1-a)¢*+az:z€Q; acl0,1]}
¢ +{a(Qi—¢"): a €[0,1]}.

It follows that the directions d satisfying

d"(z—q*) <0 forallz e Q;,

RR n° 5317



10 Gérard Cornuéjols , Claude Lemaréchal

or equivalently
d"a(z —q*) <0 for all x € Q; and o € [0,1]

just make up the normal cone Ng:(q*) to QF at ¢*. As a result, d € Tq(q) means

d € Nz (¢") N Ne; (¢7)
and q"d = vo(d) .

The whole issue when dealing with a disjunction is thus to characterize a normal cone of the type Neonv (suoy)(0),
for some set S (here S = Q; — q*). Such a cone can also be viewed as the polar of cone (S).

One can also compute the reverse elements of a disjunction using a normalization, as in §4:
Theorem 5.5 Denote by k* and D* the optimal value and optimal set (possibly empty) of

infr, k>o00(d), k>o01(d), ¢ d=-1.

1 D*
Then vq(q) = — and 'g(q) = —.
K —-K
Proof. Use Lemma 5.1 in (7): the result is a straigtforward application of Theorem 4.2. o

6 Polyhedra

A polyhedron can be described in two different ways: as a convex hull (Theorem 6.1 below), or as an intersection
of half-spaces, as in §6.1. The case of a disjunction (§6.2) is somewhat intermediate.

Theorem 6.1 Let Q be a nonempty closed convex polyhedron not containing the origin. Then Q= is also a

nonempty closed convex polyhedron; in particular, if Q = conv (x',...,z*) 4+ cone (r!,...,r%), then
d'z*< -1 fori=1,...,k
d E — ) ) b 9
@ {dTrjgo forj=1,...,¢.

Furthermore, g is a piecewise linear function in the domain where it is finite; T'g(q) is a closed convex
polyhedron, nonempty if q € cone (Q) = cone (Q).

Proof. Everything is rather clear; in particular, (2) is a linear program, which has a nonempty optimal set if
it has a finite optimal value. O

Now comes a result motivating this theory.
Theorem 6.2 The face Fg(d) exposed by d € Q~ is a facet of Q if and only if

d

= —oq(d)

is an extreme point of Q= Nlin (Q).

Proof. The points = € @ that lie in Fg(d) are those such that d"z = 0g(d), i.e. (d*) 'z = —1.

Let p denote the dimension of lin (Q)™. Suppose Fo(d) is a facet of  and let z',...,2" P be n — p affinely
independent points in Fg(d). Then d* satisfies a system of n — p independent equations (d*)"z* = —1 which
uniquely determines it up to the linear space lin (Q)J‘. Conversely, if d* is an extreme point of @~ N lin (Q),
there exist n — p affinely independent points z',...,z" P in @ that satisfy (d*) "z = —1. These points lie in
Fo(d), therefore Fg(d) is a facet of Q. m|

INRIA
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6.1 Explicitly described polyhedra
Assume that @ is described by a set of constraints:

Q={zeR": Az <beR"}. (8)
A simple way of computing ~yg is then as follows:

Theorem 6.3 Assume Q of (8) does not contain the origin and let ¢ € Q; denote by A; the j* row of A.
Then 4
_ — 244
1e(9) max g =

Calling J(q) the set of j realizing the above maz, T'g(q) is the set of directions in cone (A;) normalized

jei(q)’
by the constraint d"q = vg(q).

Proof. Just apply Theorems 3.2 and 3.4: (3) takes the form
maxt, t>0, Ag<th.

Then use the known expression for the normal cone to a polyhedron. O

6.2 Union of polyhedra
Now take the situation of §5: @) := ¢onv (Qo U @1), where

Qi={zeR": Az <b eR™} fori=0,1 (9)

are nonempty closed convex polyhedra. Of course, all the constructions of the present section can be obtained
via appropriate linear programs. However, we will keep close to our convex-analysis point of view.
We start by a characterization of the closed convex hull () described above.

Lemma 6.4 With the notation (9), x € Q if and only if there are yo,y1 € R® and ag, a1 € R such that
T=yo+uy1, oo+oy1=1, Ay —ab;<0anda; >0 fori=0,1. (10)
Proof. Consider the set
S:={apro+a1z1: ag+ a1 =1, Ajz; <b;and a; >0 for i =0,1}.

Clearly enough, S C conv (Qo U Q1) and any point in conv (Qo U Q1) can be approximated to any accuracy by
a point in S. It follows that @ is the closure of S.
Now set y; := a;x; for i = 0,1, so that we have

S={yo+y1: ao+a1 =1, Ajy; < a;b; and o; >0 for i = 0,1},
whose closure is clearly the set described by (10). O
This result will be used to characterize t() in §3 by appropriate constraints.

Remark 6.5 The above proof makes more precise our comments at the end of §3. In fact, suppose @ = {x :
c(xz) < 0} (with ¢ convex but not necessarily affine). Then the feasible set in (3) is given by c(q/t) < 0, a nasty
nonconver constraint (with respect to the variable (q,t)). Here comes a trick: with t > 0 we can also write
tc(g/t) < 0 and this reveals the so-called perspective function of ¢ (see [10]):

R"x]0,+00[ 3 (g,t) = é(g,t) == tc(%) )

which happens to be conver (and even sublinear, see the Appendiz). When c is affine, & is linear, which results
in the simple formula (10). Otherwise, ¢ is rather involved, which explains the technicalities developed in [7]. O
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Theorem 6.6 With the notation (9), assume 0 ¢ Q and let g € Q. Then —yq(q) is the optimal value of

maxtg + t1
P t+q =g
Ajq; —tib; <0 fori=0,1 (11)
ti 20 fori=0,1.
Proof. Just dilate the set (10) by ¢t > 0, replacing a; by #; := ta;. 0

There remains to characterize I'g(g), i.e. the normal cone to @ at ¢*. The following result, inspired by
Remark 5.4, will allow the application of Theorem 5.3.

Proposition 6.7 With the notation (9) and ¢* of Definition 3.3, the cone
No:={deR": d"(z —q*) <0 forall z € Qo}
is the set of d = Aj ug, where ug > 0 € R™ satisfies (Aj ¢* — bo) Tug > 0.
Proof. Using an artificial multiplication by a > 0, we can write that d € Ny if and only if
ad (xr —q¢*) <0 for all 2 such that Agz < by and all & > 0

which, setting y := ax — ag®*, can also be written

dTy <0 forau(fi>eK0;

Now K is classically the set described by

(+)= (o 5) (3

Fixing r = 0 introduces the constraint

here Ko C R"*! is the cone defined by ( Ao qu —bo ) ( ) 0. This means that ( (g ) € K.

with (“ )>0€R”+1

(Aoq* — bo)TuO —v9 =0, Iie. (qu* - bo)TuO >0. O
The characterization of I'g(g) is now easy:

Theorem 6.8 With the notation (9), assume 0 ¢ Q and let ¢ € Q; introduce vo(q) of (11) and ¢* of Def-
inition 3.3. Up to the normalization d' ¢* = vq(q), Tq(q) is the set of d = AJuo = Af w1, with (ug,u1) €
R0 x R satisfying the set of constraints

Ajug = Alu; and (Aig" —b)"u; >0,i=0,1.
Proof. Straightforward from Theorem 5.3 and Proposition 6.7. |

Remark 6.9 It has been observed in Remark 4.3 that Tg(q) could also be obtained by applying duality to (3),
which is here (11). Indeed, multiply the objective function of (3) by some normalizing coefficient k > 0 and call
d the multiplier associated with qo + q1 = q. This gives the dual

min —¢q'd

d= Al fori=0,1
k+bju; <0 fori=0,1
u>0.

Its solution depends multiplicatively on k, which can be adjusted so as to reproduce q'd = v0(q). The “correct”
value is a posteriori K = —(Aoq*) "uo = —(A1¢*) Tu1. O
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7 Conclusion

This paper has studied the construction of cutting planes defined by (d, 8 = og(d)) € R* x R, separating the
origin from (the closed convex hull of) a set Q. With regard to our introduction, this is also the problem of
separating a point Z from (the closed convex hull of) a set P: it suffices to set Q) := P — Z, and to use the
obvious relation og(d) = op(d) — d'z.

The d-part of a cut is conveniently computed with the help of some ¢ € ¢onv (Q), or rather its corresponding
visible point ¢*. We solve (2) or (7) which, in the translated context, take the form

sup d"(z—z) or inf op(d) —d'Z
op(d)—dTz<—-1 ( ) dT(z—z)>-1 ( )

(here z — F stands for ¢, with z € P).
We have not considered the problem of choosing g in ) —i.e. z in P; but some suggestions can be made. A
guide for this choice might be the depth of a cut, defined as follows.

Definition 7.1 The depth of a cut separating T from a closed convex set P is the Fuclidean distance between
T and the separating hyperplane. If the cut is defined by

d'z=o0p_z(d), whereop_z(d)=op(d)—d'z<0,

—O'P_j(d)

O
lldl

its depth is

In fact, P. Bonami [5] performed experiments in the context of lift-and-project cuts to solve maxc'z over
S ={re{0,1}": Az < b}. He compared two choices of ¢ = z — Z by choosing z € S in two different ways:
in the first, £ was chosen to be a good heuristic solution to the integer program and in the second z was a bad
solution (obtained by minimizing ¢"x instead of maximizing it). One would expect the direction q to be more
central in cone (Q) in the second case. On 15 instances of Miplib 3.0, the average depth of a cut generated by
the first choice of z was 0.026 whereas it was 0.084 with the second choice. Adding cuts for all 0-1 variables z;
where Z; was fractional gave an average improvement in objective value of 6% (of the gap between the linear
and integer program objective values) in the first case and 6.6% in the second case. When the cuts were added
to Az < b and this strengthened linear program was solved again to compute a new solution Z, this process
being repeated iteratively for one minute of CPU, the difference was even more significant (38% versus 53%).

This small experiment suggests that it seems preferable to choose deep cuts, and one may therefore wish to
find the deepest one; this corresponds to projecting Z onto P:

Proposition 7.2 With the above notation, call z* the solution of

min ||z — Z| .
zEP

Then d* := T — z* defines the deepest cut between T and P.

Proof. Using positive homogeneity, a cut (d,3) can be restricted to a normalized d. Thus, a deepest cut is a
solution of

where, because the optimal objective value is negative, the constraint ||d|| = 1 can be replaced by ||d|| < 1.
Thus, a deepest cut is a solution of

min sup d' (z — ).
ldi<1 zep

This is the min-maximization of a bilinear function over a product of closed convex sets, one of which (the unit
ball) is compact. Using a standard minimax theorem, for example [12, Corollary 37.3.2], we can equivalently

solve
. T _
sup min d' (z —1I).
zeP lldl<t
For given z € P (and hence different from Z), the internal minimization gives

r—2z

1h'l:‘t:p ://www.caam.rice.edu/«bixby/miplib/miplib3.html
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and our minimax problem boils down to
sup —||lz — z||,
zeP

whose unique solution is clearly the projection z* of Z onto P. O

Thus, to construct the deepest cut between a closed convex set P and a point Z ¢ P, one needs to project
Z onto P. When P is a polyhedron, this amounts to solving a linear-quadratic problem.

When solving an integer program by a cutting plane approach, generating just one cut is usually not enough,
even the deepest one. A better strategy is to generate many cuts at once; and as already mentioned, these
should preferably be facets of P. An attractive approach is therefore to operate as follows:

(i) Compute the projection z* of Z onto P. Set d* =T — x*.
(ii) Construct cuts, say
(dk,UP(dk)—.’Z‘Tdk), k=1,....K
corresponding to facets of P passing through z*.
(iii) Append to the above list (d*,op(d*) —Z ' d*) (this step is useless if (ii) has produced enough cuts, so that
d* is a positive combination of the dj’s).
Assume for example the situation of §6.2: P = ¢onv (P U P;) where

Pi:={zeR": Aiz<beR™} fori=0,1.
According to Lemma 6.4, (i) amounts to solving the problem with 2n + 2 variables and 1+ mg +m; constraints

min 3||yo + y1 — Z||?

ag+a; =1

Ay —ab; <0 fori=0,1
a0,

which produces an optimal solution z* = y§ + y;. Then Step (ii) should be done with the help of the active
constraints; this, however, is not completely straightforward and is currently under study.

Let us also mention that Bonami [4] used the following idea for generating facets of P that define the optimum
of max,epc'z. First find Z solving the relaxation max,cr ¢’ (we use the notation of the introduction). Then
solve the linear program based on (11) to find a cut (di,op(di) — ' dy) separating Z from P (any ¢ € Q will
do in (11): for example ¢ = x* — F where, as above, z* is the projection of Z onto P). Let R! be the relaxation
obtained by adding this cut to R, and let ' maximize ¢"z over R!. The procedure is then repeated: the kth
iteration generates
—acut (dp,op(dy) — Z"dy) separating zy_; from P,

— an improved relaxation R¥ obtained by adding this cut to RF~1,

— and a point £* maximizing ¢ "z over R¥~L.

The procedure terminates when 2* € P. Bonami tried this procedure on the Miplib problems mentioned earlier,
for the lift-and-project relaxation

Pryp = ﬂ conv ((RN{z; =0 U (RN {z; =1})).

On average, maximizing ¢' 2 over Prgp closed 30% of the gap between R and conv (S9).

Appendix: basic concepts from convex analysis

We summarize here some material mainly extracted from [10, Chap. C].

Support functions An important object associated to a nonempty subset S of R” is its so-called support
function
R" 5d+ o5(d) :=supd ' x. (12)
z€eS
In other words, og is the result of optimizing a linear function over S.
A support function enjoys the following important properties:
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(i) It is convex (being a supremum of linear functions?).
(ii) It is positively homogeneous: og(td) = tog(d) for all ¢ > 0, so that d in (12) can be understood as a
direction (knowing that a5(0) = 0).
Functions that are convex and positively homogeneous are called sublinear; they are in particular sub-
additive, i.e.
os(dy + da) < os(dy) + os(da) .

Note also that og is linear if and only if S is a single point. Being convex, g would be continuous if it
were finite everywere. However, we may have og(d) = 400 (when S is unbounded; for example og~(d) is
0 if d = 0 and +oo otherwise).

(iii) Nevertheless, a support function is lower-semicontinuous, or closed®.

The set of functions that are sublinear and closed is important, as it directly generalizes the set of linear
functions.

Correspondence between analysis and geometry Let conv (S) denote the closed convex hull of S, equiv-
alently defined as

— the topological closure of the convex hull of S (the closure operation is superfluous if S is already closed and
bounded)

— or the intersection of all the half-spaces containing S.

Recall that a half-space associated to (d, ) € R® x R is defined as

{zeR": d"z<B}.

It is clear enough that 05 = 0gomy (5), and this is the starting remark for a fundamental result: the closed
convex sets S in R™ are in one-to-one correspondence with the functions o from R™ to RU{+o0} that are closed
and sublinear. The correspondence S — o is given by (12); its inverse is given by

o S:={reR": o(d)>z'd foralld e R*} = 90(0), (13)
where the last equality is obvious, if one remembers the definition of a subdifferential:
Oo(d) :=={z€R™: 0(d) 2 0(d)+2"(d—d) forallde R"}.

From the definition (12) itself, d" z < og(d) for all d € R® whenever x € conv (S). The above result states that
the converse is true:
z € conv (S) = Vde R, d"z < og(d), (14)

which is nothing other than the familiar separation theorem
x ¢ conv (S) = 3deR": d'z > os(d).

Isomorphic aspects Not only closed convex sets and closed sublinear functions, but also operations between
them are in correspondence via (12) and (13), which is indeed an isomorphism. For example,

05148, =05, T 05, -

Two other important operations are as follows: given an index set J (possibly infinite), consider closed convex
sets {S; : j € J} and closed sublinear functions {o; : j € J} related by

o;j is the support function of \S;,
or equivalently: S; = 00;(0) .

Form the following two pairs (S, 0):

2The assumption S # @ is convenient. We may also define op = —00, although this is a somewhat pathological “function”.
3This means:

— its epigraph {(z,7) € R® xR: r > o5(x)} is a closed set in R?*1,

— or equivalently: its sublevel sets {d : o5(d) < B} are closed sets (possibly empty) in R”, for any g,

— or equivalently: if dy, — d and o5(dy) — ¢, then £ > og(d).
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(i) Set S := éonv (U;S;) and o := sup; os;.
(i) Set S :=N;S; and let o [:= conv (inf; 0;)] be the closed convex hull of the ¢;’s: this is the function whose
epigraph is the closed convex hull of the union of the epigraphs of the o;’s*

Then, in both cases (i) and (ii) we have

o is the support function of S,
or equivalently: S = 90(0) .

Exposed faces and normal cones Here S is assumed to be closed and convex. A half-space {z : d'z < 8}
contains S if and only if 8 > o5(d). If § = 05(d) and if the supremum in (12) is attained, then the hyperplane
{z: d"x = 05(d)} is said to support S. The contact set

Fs(d) := Argmaxd 'z ={z € S: d'z = 05(d)} (15)
€S
is called the face (of S) exposed by d (note: Fg(0) = 5).
Knowing that the normal cone to S at x € S is

Ng(z):={d€R": d"(¢' —2) <O for all z' € S}, (16)

the following equivalence is clear:
z €Fg(d) <= deNg(x). (17)

Gauges and polar sets The polar of a set S C R” is
Se:={y:y'z<lforallz € S} ={y: os(y) <1}. (18)

Being an intersection of closed half-spaces, S° is always closed and convex.
Besides (12), another function associated with S is its gauge

= inf ¢
5@ = ik s
(knowing that vs(q) = +oo if tq € S for no t > 0). Polarity establishes a duality correspondence between o
and 7:
If S is closed and convex, then yg = 0g- and og = 7yge

(note: if S is the unit-ball of some norm, (18) defines the dual norm, namely the one having S° as unit-ball).
When S is a cone, (i.e. tx € S whenever z € S and ¢ > 0), S° is not changed if the righthand side “1” of
(18) is replaced by any nonnegative number, say 0. Thus, the polar cone of a cone K is the closed convex cone

K°={y:yTe<0forallze K} ={y: ox(y) <0} (19)

of directions making an obtuse angle with all directions in K. Note: the polar of K is its normal cone at 0.
The polar of K°, i.e. the bipolar K°° of K, is just the closed convex hull of K (i.e. K°° = K if K is a closed
convex cone). The gauge and support function of a closed convex cone are clearly either 0 or +oco: indeed

0 ifye K°

For a closed convex cone K, [y (y) =] ok (y) = { +oo  otherwise

When K is a polyhedral cone, namely K = {z € R" : Az < 0}, Farkas’ lemma states that K° = {AT)\ :
m
AeRT}
4The epigraph of o is thus the intersection of the half-spaces containing the epigraphs of all the 0;’s: the property r > o(d)
means

> a'd+ B for all o, 8 such that
a'd +B8<oj(d) foralld €R™ and all j € J.
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