
HAL Id: inria-00070691
https://hal.inria.fr/inria-00070691

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Fault-Tolerant Consistency Protocols for an
Adaptive Grid Data-Sharing Service

Gabriel Antoniu, Jean-François Deverge, Sébastien Monnet

To cite this version:
Gabriel Antoniu, Jean-François Deverge, Sébastien Monnet. Building Fault-Tolerant Consistency
Protocols for an Adaptive Grid Data-Sharing Service. [Research Report] RR-5309, INRIA. 2004,
pp.15. �inria-00070691�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50453952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070691
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
53

09
--

F
R

+
E

N
G

ap por t
de r ech er ch e

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Building Fault-Tolerant Consistency Protocols
for an Adaptive Grid Data-Sharing Service

Gabriel Antoniu and Jean-François Deverge and Sébastien Monnet

N˚5309

Septembre 2004

Systèmes communicants

Building Fault-Tolerant Consistency Protocols
for an Adaptive Grid Data-Sharing Service

Gabriel Antoniu
�

and Jean-François Deverge
�

and Sébastien Monnet
�

Systèmes communicants

Projet PARIS

Rapport de recherche n˚5309 — Septembre 2004 — 15 pages

Abstract: We address the challenge of sharing large amounts of numerical data within comput-
ing grids consisting of clusters federation. We focus on the problem of handling the consistency of
replicated data in an environment where the availability of storage resources dynamically changes.
We propose a software architecture which decouples consistency management from fault-tolerance
management. We illustrate this architecture with a case study showing how to design a consistency
protocol using fault-tolerant building blocks. As a proof of concept, we describe a prototype imple-
mentation of this protocol within JUXMEM, a software experimental platform for grid data sharing,
and we report on a preliminary experimental evaluation.

Key-words: Consistency protocols, fault-tolerance, grid, data-sharing

(Résumé : tsvp)

�
Gabriel.Antoniu@irisa.fr�
Jean-Francois.Deverge@irisa.fr�
Sebastien.Monnet@irisa.fr

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)

Téléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 02 99 84 71 71 - International : +33 2 99 84 71 71

Construction de protocoles de cohérence tolérants aux fautes
pour un service adaptable de partage de données

Résumé : Nous nous intéressons au partage de grandes quantités de données numériques dans
des grilles de calcul composées de fédérations de grappes. Nous nous concentrons sur le prob-
lème de la gestion de la cohérence de données répliquées dans un environnement où la disponibilité
des ressources de stockage change dynamiquement. Nous proposons une architecture logicielle qui
découple la gestion de la cohérence de la gestion de la tolérance aux fautes. Nous illustrons cette ar-
chitecture avec une étude de cas montrant comment concevoir un protocole de cohérence en utilisant
des modules résistants aux défaillances. Afin de valider ce concept, nous décrivons l’implémentation
d’un prototype de ce protocole dans JUXMEM, une plate-forme logicielle expérimentale de partage
de données pour la grille, et nous présentons une évaluation expérimentale préliminaire.

Mots-clé : Protocoles de cohérence, tolérance aux fautes, grille, partage de données

Building Fault-Tolerant Consistency Protocols for an Adaptive Grid Data-Sharing Service 3

1. Introduction

Data management in grid environments is currently a topic of major interest to the grid comput-
ing community. However, as of today, no sophisticated approach has been widely established for
efficient data sharing on grid infrastructures. Currently, the most widely-used approach to data man-
agement for distributed grid computation relies on explicit data transfers between clients and com-
puting servers. As an example, the Globus [12] platform provides data access mechanisms based on
the GridFTP protocol [1]. Though this protocol provides authentication, parallel transfers, check-
point/restart mechanisms, etc., it is still a transfer protocol which requires explicit data localization.
On top of GridFTP, Globus integrates data catalogs [1], where multiple copies of the same data
can be manually registered. Consistency issues are however at the user’s charge. IBP [6], provide
a large-scale data storage system, consisting of a set of buffers distributed over Internet. Transfer
management is still at the user’s charge and no consistency mechanisms are provided for the man-
agement of multiple copies of the same data. Finally, Stork [17] proposes an integrated approach
allowing the user to schedule data placement just like computational jobs. Again, data location and
transfer are at the user’s charge.

Within the context of a growing number of applications using large amounts of distributed data,
we claim that explicit management of data locations by the programmer arises as a major limitation
against the efficient use of modern, large-scale computational grids. Such a low-level approach
makes grid programming extremely hard to manage. In contrast, we have proposed the concept
of data sharing service for grid computing [2], which aims at providing transparent access to data.
This approach is illustrated by the JUXMEM software experimental platform. The user only accesses
data via a global identifier. The service handles data localization and transfer without any help
from the programmer. However, it is able to use additional hints provided by the programmer, if
any. The service also transparently uses adequate replication strategies and consistency protocols
to ensure data availability and consistency. These mechanisms target a large-scale, dynamic grid
architecture. In particular, the service supports events such as storage resources joining and leaving,
or unexpectedly failing. This is the framework within which we conducted the study presented in
this paper.

Handling consistency of replicated data. The goal of a data-sharing service is to allow grid ap-
plications to access data in a distributed environment. We are considering scientific applications,
typically exhibiting a code-coupling scheme: e.g. multiple weakly-coupled codes running on dif-
ferent sites and cooperating via periodical data exchanges. In such applications, shared data are
mutable: they can be read, but also updated by the different codes. When accessed on multiple sites,
data are often replicated to enhance access locality. Replication is equally used for fault tolerance,
since grid nodes may crash. To ensure that read operations do not return obsolete data, consistency
guarantees have to be provided by the data service. These guarantees are defined via consistency
models and are implemented using consistency protocols.

RR n˚5309

4 Antoniu, Deverge, Monnet

Difficulty: handling consistency in a dynamic context. The problem of sharing mutable data in
distributed environments has intensively been studied during the past 15 years within the context
of Distributed Shared Memory (DSM) systems [18, 20]. These systems provide transparent data
sharing, via a unique address space accessible to physically distributed machines. When the nodes
modify the data, some consistency action is triggered (e.g., invalidation or update), according to
some consistency protocol. A large variety of DSM consistency models and protocols [7, 13, 15,
20, 23] have been defined, their role being to specify which remote nodes have to be notified of the
modification, and when. They provide various trade-offs between the strength of the consistency
guarantees and the efficiency of the implementation.

However, traditional DSM systems have generally demonstrated satisfactory efficiency (i.e.,
near-linear speedups) only on small-scale configurations: in practice, up to a few tens of nodes [20].
This is often due to the intrinsic lack of scalability of the algorithms used to handle data consistency.
Most of the time, they rely on global invalidations or global updates of all existing data copies. On
the other hand, an overwhelming majority of protocols assume a static configuration where nodes
do not disconnect nor fail. It is clear that these assumptions do not hold any more in the context of a
large-scale, dynamic grid infrastructure. Faults are no longer exceptions, but they become part of the
general rule; resources may become unavailable and eventually become available again; finally, new
resources can dynamically join the infrastructure. In such a context, consistency protocols cannot
rely any more on entities supposed to be stable, as traditionally was the case. A new approach to
their design is definitely necessary, to integrate these new hypotheses.

This idea is at the core of the design of our grid data-sharing service [2], which we have defined
as a hybrid system inspired by DSM systems (for transparent access to data and consistency man-
agement) and P2P systems (for their scalability and volatility-tolerance). In this paper, we propose
an approach allowing consistency protocols to take into account fault tolerance by decoupling the
management of these two aspects. The motivations and the general principles are presented in Sec-
tion 2. In Section 3 we describe the detailed architecture and we show how to use traditional group
communication components of fault-tolerant distributed systems [11,19] as building blocks for con-
sistency protocols. We illustrate the approach in Section 4, with a case study explaining the design of
a fault-tolerant consistency protocol. Section 5 shows how this protocol has been implemented in the
JUXMEM platform and presents a preliminary experimental evaluation. Some concluding remarks
and future directions are given in Section 6.

2. Approach: decoupling fault tolerance management from con-
sistency management

Let us first note that both fault tolerance mechanisms and consistency protocols are traditionally
implemented using replication. However, the underlying motivations are totally different for each
of the two uses.

INRIA

Building Fault-Tolerant Consistency Protocols for an Adaptive Grid Data-Sharing Service 5

Replication in consistency protocols. Consistency protocols use data replication for performance
issues, to allow multiple nodes to read the same data in parallel via local accesses. However, when
a node modifies a data copy, the consistency protocol is activated, e.g. the other copies must be
updated or invalidated, to prevent subsequent read operations from returning invalid data. Note
that P2P systems also use replication to enhance access locality, but most of them do not address
consistency issues, since data is generally immutable.

Replication for fault tolerance. Replication is also commonly used by fault-tolerance mecha-
nisms [21] to enhance availability in an environment with failures. When a node hosting a data
copy crashes, other copies can be made available by other nodes. Various replication strategies have
been studied [14], leading to various trade-offs between efficiency and the level of fault-tolerance
guaranteed.

In distributed systems where both consistency and fault-tolerance need to be handled, replication
can be used with a double goal. Consequently, depending on whether these two issues are addressed
separately or not, two architectural designs are possible.

Integrated design. A possible approach consists in addressing consistency and fault tolerance at
the same time, relying on the same set of data replicas. For instance, data copies created
by the consistency protocols to enhance data locality can serve as backup if crashes occur.
Conversely, backup replicas created for fault tolerance can be used by the consistency protocol.
This approach has a major disadvantage: the design of the corresponding software layer is very
complex, as illustrated by some fault-tolerant DSM systems [16, 22].

Decoupled design. A different approach consists in designing the consistency protocol and the
fault-tolerance mechanism separately. This approach has several features. First, the design
of consistency protocols is simplified, since the protocols do not have to address fault toler-
ance issues at a low level. Therefore, it is possible to leverage existing consistency proto-
cols. Only some limited interaction between the consistency protocol and the fault-tolerance
mechanism needs to be defined (see Section 3.2). Second, consistency protocols and fault-
tolerance strategies can be developed independently. This favors a cleaner design, each of the
two components being dedicated to its specific role. Finally, this approach provides the abil-
ity to experiment multiple possibilities to couple various consistency protocols with various
fault-tolerance strategies.

The goal of this paper is to discuss how to manage consistency and fault tolerance at the same
time, in a decoupled way, using this second approach.

RR n˚5309

6 Antoniu, Deverge, Monnet

3. Using fault-tolerant components as building blocks for consis-
tency protocols

Traditional consistency protocols for DSM systems rely on stable entities in order to guarantee that
data accesses are correctly satisfied. For instance, a large number of protocols associate to each data
a node holding the most recent data copy. This is true for the very first protocols for sequential con-
sistency [18], but also for recent home-based protocols implementing lazy release consistency [23]
or scope consistency [15], where a home node is in charge of maintaining a reference data copy. It
is important to note that these protocols implicitly assume that the home node never fails.

Such an assumption cannot be made in a dynamic grid environment, where faults may occur. In
such a context, the role of home node has to be played by an entity able to transparently react to faults
and disconnections, in order to maintain a given degree of availability for the reference data copy. We
propose to design such entities using some basic building blocks that have been defined within the
context of fault-tolerant distributed systems [11,19]: group membership protocols, atomic multicast,
consensus, etc. We briefly introduce these blocks in Section 3.1. Then, Section 3.2 describes the
“glue layers” through which the consistency protocol interacts with these fault-tolerant blocks.

3.1. Basic fault-tolerant components

We consider that two types of faults need to be addressed in a grid environment. First, nodes may
crash, i.e. nodes act normally (receive and send messages according to their specification) until they
fail (crash failures). Second, we assume messages can be delayed or lost (omission failures). We
consider two main timing aspects: the communication delays and the computation times. We make
the assumption that upper bounds upon these times exist but are not known. Classical fault-tolerance
mechanisms are often built on these hypotheses, which are realistic in a grid context.

The group membership abstraction [11] is such a mechanism providing the ability to manage
a set of nodes running the same service. In our case, it applies to a group of nodes that together
play the role of home node. Requests sent to the group need to be delivered in the same order to
all group members. This property is commonly called atomic multicast. As members of the group
have to agree upon an order for message delivery, atomic multicast can be built using a consensus
protocol. The consensus problem in asynchronous systems can be solved thanks to unreliable failure
detectors [10]. The role of these detectors is to provide to higher layers a list of nodes suspected to
be faulty. The consensus protocol can cope with the approximate accuracy of the list contents.

These blocks can interact with each other in many ways. In this paper, we consider a layered,
decoupled design (Figure 1), inspired by [19]. Here, the adapter module allows higher-level software
layers to register to the failure detection service and to filter the list of suspected nodes according to
some user-specified quality of service, as in [8].

INRIA

Building Fault-Tolerant Consistency Protocols for an Adaptive Grid Data-Sharing Service 7

Group communication and
group membership

Detector
Unreliable Failure Unreliable

Communications

A
da

pt
er

send/receiveget suspect list

propose/decide

Consensus

multicast/receive

join/leave/getview/send/receiveget suspect list

Atomic Multicast

Figure 1: An architecture for group communication and group membership protocols.

3.2. A decoupled architecture: the big picture

Our idea is to use the abstractions described above to build fault-tolerant entities able to play the role
of critical entities in consistency protocols. For instance, each home node can be replaced by a group
of nodes handled via a group membership interface and supporting atomic multicast. However, some
actions like 1) group self-organization or 2) configuration of new group members need to be handled
by higher-level layers. Such actions are not necessarily specific to consistency protocols (i.e. they
can apply to several consistency protocols). They are situated precisely at the “boundary” between
fault-tolerance management and consistency management. Hence the need to introduce two interface
layers in our architecture, as shown in Figure 2.

The Proactive Group Membership layer handles the composition of a group of nodes that to-
gether act as a home node. The layer decides when to remove from the group nodes reported to be
faulty, by parameterizing the QoS of the failure detector. It also removes nodes that notify about
their future disconnections. Following such removals, the layer adds new members to the group,
to maintain the availability of the home node. To do so, it takes into account constraints specified
at allocation time: the necessary memory size, the network performance, or the replication policy
(expressed in terms of number of clusters where to spread data replicas, number of replicas per clus-
ter, etc.). Various trade-offs could be expressed at this level (e.g. smaller group sizes to enhance
communication efficiency vs. larger group sizes to increase the level of fault tolerance).

When some new node is added to the group that acts as a home node, the newcomer has to
initialize his state in order to be consistent with the state of the other members of the group. The
Dynamic Consistency Protocol Configuration layer defines how to instantiate a consistency protocol

RR n˚5309

8 Antoniu, Deverge, Monnet

management
Consistency

and Group Membership Protocol

Group Communication

Proactive Group Membership

Consistency Protocol (CP)

management
Fault−tolerance

Dynamic CP Configuration

Figure 2: Decoupled architecture for managing consistency and fault tolerance.

on such nodes. The new node must first take into account the configuration messages generated
by the other members of the group at the level of this layer, before reacting to external messages
addressed to the group.

4. Case study: designing a hierarchical, fault-tolerant consistency
protocol

The typical grid applications we target are loosely code-coupling applications, in which several
codes run in parallel on different clusters and iteratively exchange data. These data exchanges can
be carried out through read or write accesses to a data-sharing service, such as JUXMEM [2]. The role
of this service is to ensure consistent access to shared data, while transparently handling failures or
volatility events. This is where fault-tolerant consistency protocols relying on the approach proposed
in Section 3 are useful. As an illustration of this idea, this section describes how to build such a
protocol starting from a non fault-tolerant protocol implementing the entry consistency model.

4.1. The entry consistency model

Previous experience with DSM consistency protocols has shown that relaxed consistency models
can be implemented via efficient protocols at the price of restricted consistency guarantees. For
instance, the programmer must use synchronization operations, such as acquire, to make sure the
subsequent accesses are correctly satisfied, and release, to allow the local modifications to be
(eagerly or lazily) propagated to remote nodes. This general requirement is valid for models like
release consistency [13], entry consistency [7] or scope consistency [15].

INRIA

Building Fault-Tolerant Consistency Protocols for an Adaptive Grid Data-Sharing Service 9

In this paper, we focus on the entry consistency model. As opposed to other relaxed models, it
requires an explicit association of data to synchronization objects. This allows the model to lever-
age the relationship between a synchronization object that protects a critical section, and the data
accessed within that section. A node’s view of some data becomes up-to-date only when the nodes
enters the associated critical section. This eliminates unnecessary traffic, since only nodes that de-
clare their intention to access data will get updated, and only for the data which will be accessed.
Such a concern for efficiency makes this model a good candidate in the context of scientific grid
computing.

The programmer has to observe two main requirements. First, all shared data have to be asso-
ciated with at least one guarding synchronization object. Second, exclusive accesses to shared data
have to be explicitly distinguished from non-exclusive accesses by using two different primitives:
acquire, which grants mutual exclusion; acquireRead, which allows non-exclusive accesses
on multiple nodes to be performed in parallel. A detailed description of the model is given in [7].

4.2. A hierarchical consistency protocol

Our starting point is a non fault-tolerant protocol for entry consistency. We consider a home-based
protocol, in which a home node is associated to each data. This node is responsible for maintaining
a reference copy for that data. The home node also manages a lock associated to its data. When a
process enters a critical section protected by such a lock, the associated shared data is updated on
the node hosting that process (if necessary). On leaving the critical section, the local modifications
(if any) are transmitted to the home node. Consequently, accesses to shared data involve some
communication with the home node.

LDGLDG
LDG

C
CC C

C

C
C

C

C

LDG: Local Data Group
GDG: Global Data Group

C: Client node

GDG

(b)

C
CC C

C

C
C

C

C

Local
home

Local
home

Local
home

(a)

Global home

Figure 3: A hierarchical architecture for the fault-tolerant consistency protocol.

Let us note that, in a grid consisting of clusters federation, inter-cluster networks get generally
lower communications performances than intra-cluster networks. In order to improve the protocol
efficiency, a suitable approach can rely on minimizing the inter-cluster communications. This idea
has been used in some DSM systems and has lead to the design of hierarchical consistency protocols.

RR n˚5309

10 Antoniu, Deverge, Monnet

In CLRC [5], local caches are created on each cluster, to optimize the locality of consecutive accesses
to remote data modifications.

Let us now consider a hierarchical version of the protocol sketched out above. This version is
very similar to the hierarchical, home-based protocol for release consistency described in [3]. The
idea is to use a two-level hierarchy of home nodes. On each cluster, a local home will serve accesses
from the local cluster, whereas a global home will serve data accesses to the clusters, i.e. to the
local homes (Figure 3 (a)). When a client needs to access some data, it will require the associated
lock to its local home. If this home owns the corresponding access rights to the data, it can satisfy
the access. Otherwise, it will request the lock from the global home, with an updated copy of the
data. Note that the global home only serves the requests issued by the local homes; it has no control
on what requests are subsequently served by the local homes. However, to minimize inter-cluster
communications, a local home serves local requests with higher priority than remote requests issued
on other clusters, received via the global home. To avoid starvation, a limit is set on the number of
consecutive accesses served by each local home, so that remote requests be served too. Details about
this hierarchical lock management scheme are given in [3].

4.3. A fault-tolerant hierarchical protocol

In the protocol sketched out above, the local homes and the global home are clearly critical and must
be available for the protocol to be operational. Since in a grid environment we cannot realistically
assume that they can be implemented by failure-free nodes, this is where the approach proposed in
Section 3 can be applied. Our proposal is to make these entities fault-tolerant using an enriched
version of the group membership abstraction. Each local home is replaced by a set of nodes that
we call Local Data Group (LDG). At a higher level, the global home is replaced by a Global Data
Group, whose members are the LDGs (Figure 3 (b)). The GDG and the LDGs have the following
properties: 1) All messages sent to such a group are received by all members of the group, in the
same order (atomic multicast); 2) The groups are self-organizing: they maintain some user-specified
replication degree by dynamically and adding new members when necessary in a “smart” way. The
selection of the new members is handled by the Proactive Group Membership layer, whereas their
initialization is managed by the Dynamic Consistency Protocol Configuration layer (as explained in
Section 3.2).

The number of simultaneous faults supported by this solution depends on the implementation of
the underlying fault-tolerant building blocks (consensus, atomic broadcast). Our current implemen-
tation supports up to ��������� simultaneous failures within a LDG or GDG group, where � is the group
size.

Note that the consistency protocol can use the GDG and the LDGs exactly in the same way
it initially used the global and local nodes respectively. It assumes they are always available, but
this property is now achieved transparently for the protocol, thanks to the implementation of the
Proactive Group Membership abstraction. The consistency protocol and the replication-based fault-
tolerance mechanism are thus clearly decoupled. Thanks to this approach, the consistency protocol
implements exactly the same distributed algorithm as in its initial, non fault-tolerant version.

INRIA

Building Fault-Tolerant Consistency Protocols for an Adaptive Grid Data-Sharing Service 11

5. Implementation and preliminary evaluation

To experiment our approach, we have used the JUXMEM software experimental platform for grid
data sharing, described in [2]. We have refined its architecture according to the decoupled approach
proposed in this paper and we have implemented the fault-tolerant consistency protocol described in
Section 4.3.

Cluster BNode

Client

Provider

Cluster manager

Cluster CCluster A

Overlay network

Physical network

Group "cluster C"

Group "cluster B"

Group "cluster A"

Group "juxmem"

GDG
LDGLDG

Figure 4: JUXMEM: a hierarchical architecture for a grid data service.

The general architecture of JUXMEM mirrors a federation of distributed clusters and is there-
fore hierarchical (Figure 4). It consists of node sets, called cluster groups, which correspond to
physical clusters. These groups are included in a wider group, the juxmem group, which gathers all
the nodes running the data-sharing service. Note that these service groups consist of different nodes
with different states. They do not make up a replicated service and do not rely on the same abstrac-
tions (group membership, atomic broadcast) as the groups previously described, that act as home
nodes. Any cluster group consists of provider nodes which supply memory for data storage.
The memory available in the group is handled by a cluster manager. Any node (including providers
and cluster managers) may use the service to allocate, read or write data as clients, in a peer-to-peer
approach. This architecture has been implemented using the JXTA [24] generic P2P platform.

When allocating memory, the client has to specify on how many clusters the data should be
replicated, and on how many nodes in each cluster. This results into the instantiation of the GDG

RR n˚5309

12 Antoniu, Deverge, Monnet

and LDG entities used by the consistency protocol, as explained in Section 4.3. In the example
shown on Figure 4, data is replicated across two LDGs created on two different clusters. Each LDG
is made up of three physical nodes. The allocation operation returns a global data ID. To read/write a
data block, clients only need to specify this ID. The platform transparently locates the corresponding
local LDG or instantiates it if necessary. Subsequent accesses to data are directed to this LDG by
the consistency protocol.

At the low level of our architecture, the LDG and GDS components have been implemented
based on the fault-tolerant, leader-based group communication protocol proposed in [9]. Our imple-
mentation supports node crashes and link failures. In each LDG or GDG group, up to ����� � � failures
are supported, where � is the group size.

Preliminary evaluation. For our preliminary experiments, we have used the JDF [4] deployment
suite to run our tests over a 64-node cluster of 2,4GHz bi-Pentium IV with 1GB RAM, intercon-
nected through a Fast-Ethernet network. We partitioned our physical cluster into 8 cluster groups,
8 nodes each. Our software environment is JUXMEM running over JXTA 2.2.1 and Java 1.4.2.

We first analyzed the impact of the replication degree on the cost of data allocation. The allo-
cation procedure consists of 3 steps: 1) the client has to discover enough providers in the JUXMEM

network to satisfy the replication degree; 2) the client sends allocation requests to a set of discovered
providers, selected in order to satisfy the user-specified constraints (concerning replication degrees,
locality, etc.); 3) the selected providers perform the actual allocation and instantiate the consistency
protocol layer and the necessary group communication components; this results in creating the cor-
responding LDGs and GDG.

�����������
� ����������		

�

�
�������������� ������������ �����������

� ���� ���� ���� ���� ���� � � !�!!�! ""## $$%
%
&�&&�&'�''�' (())*�**�*+�++�+ ,�,,�,

,�,
-�--�--�- ../
/
0011 223
3 4445556�66�67�77�7 8899 :�::�:;�;;�; <

<<===>�>>�>?�??�? @@AAB�BB�BC�CC�C D
D
EEF�FF�F
F�F
G�GG�GG�GHIJ�JJ�JKK LMN�NO PQR�RR�RSST�T U�UU�UU�U

U�UU�U
V�VV�VV�V
V�VV�V
WWW
WW
XXX
XX
Y�YY�YY�Y
Y�YY�YY�Y
ZZZ
ZZZ

[[[
[[[
[

\\\
\\\
\

]]]
]]]
]]

^^^
^^^
^^

__

```
```
``

aaa
aaa
aaa
a

bbb
bbb
bbb
b

ccc
cc
ddd
dd
e�ee�ee�e
e�ee�ee�e
f�ff�ff�f
f�ff�ff�f
ggg
ggg
g

hhh
hhh
h

iii
iii
ii

jjj
jjj
jj

k�kk�kk�k
k�kk�kk�k
k�kk�kk�k
k�k

l�ll�ll�l
l�ll�ll�l
l�ll�ll�l
l�l

mmm
mmm
mmm
mm

nnn
nnn
nnn
nn

o�oo�oo�o
o�oo�oo�o
o�oo�oo�o
o�oo�o

p�pp�pp�p
p�pp�pp�p
p�pp�pp�p
p�pp�p

q�qq�qq�q
q�qq�q
r�rr�rr�r
r�rr�r
sss
sss
s

ttt
ttt
t

uuu
uuu
uu

vvv
vvv
vv

www
www
www

xxx
xxx
xxx

yyy
yyy
yyy
y

zzz
zzz
zzz
z

{�{{�{{�{
{�{{�{{�{
{�{{�{{�{
{�{{�{{�{

�		�		�
�		�		�
�		�		�
�		�		�

}}}
}}}
}}}
}}}
}

~~~
~~~
~~~
~~~
~

���������
������
���������
������
���
���
��

���
���
��

���������
���������
���������
���

���������
���������
���������

���
���
���
���
�

���
���
���
���
�

���������
���������
���������
���������
���

���������
���������
���������
���������
���

���
���
���
���
��

���
���
���
���
��

���������
���������
���������
���������
������

���������
���������
���������
���������
������

���
�
�������
�
���
�
�������
�
��
�
��
�
�������
�
������
���
��
� ������
������

������
������ ��
��

��
��

������
������

¡¡
¡¡
¡

¢¢
¢¢
¢

££
££
££

¤¤
¤¤
¤¤

¥¥
¥¥
¥

¦¦
¦¦
¦

§§
§§
§§
§

¨¨
¨¨
¨¨
¨

©©
©©
©©
©©
©©
©

ªª
ªª
ªª
ªª
ªª
ª

«�««�«
«�««�«
«�««�«
«�««�«
«�««�«

¬�¬¬�¬
¬�¬¬�¬
¬�¬¬�¬
¬�¬¬�¬
¬�¬¬�¬

®®
®®
®®
®®
®®

¯¯
¯¯
¯¯
¯¯
¯¯

°°
°°
°°
°°
°°

±�±±�±
±�±±�±
±�±±�±
±�±±�±
±�±±�±
±�±

²�²²�²
²�²²�²
²�²²�²
²�²²�²
²�²²�²
²�²

³³
³³
³³
³³
³³
³³

´´
´´
´´
´´
´´
´´

µ�µµ�µ
µ�µµ�µ
µ�µµ�µ
µ�µµ�µ
µ�µµ�µ
µ�µµ�µ

¶�¶¶�¶
¶�¶¶�¶
¶�¶¶�¶
¶�¶¶�¶
¶�¶¶�¶
¶�¶¶�¶

·�··�·
·�··�·
·�··�·
·�·

¸�¸¸�¸
¸�¸¸�¸
¸�¸¸�¸
¸�¸

¹¹
¹¹
¹¹
¹¹

ºº
ºº
ºº
ºº

»»
»»
»»
»»

¼¼
¼¼
¼¼
¼¼

½½
½½
½½
½½
½½

¾¾
¾¾
¾¾
¾¾
¾¾

¿¿
¿¿
¿¿
¿¿
¿¿
¿

ÀÀ
ÀÀ
ÀÀ
ÀÀ
ÀÀ
À

Á�ÁÁ�Á
Á�ÁÁ�Á
Á�ÁÁ�Á
Á�ÁÁ�Á
Á�ÁÁ�Á
Á�Á

Â�ÂÂ�Â
Â�ÂÂ�Â
Â�ÂÂ�Â
Â�ÂÂ�Â
Â�ÂÂ�Â
Â�Â

ÃÃ
ÃÃ
ÃÃ
ÃÃ
ÃÃ
ÃÃ
Ã

ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
Ä

Å�ÅÅ�Å
Å�ÅÅ�Å
Å�ÅÅ�Å
Å�ÅÅ�Å
Å�ÅÅ�Å

Æ�ÆÆ�Æ
Æ�ÆÆ�Æ
Æ�ÆÆ�Æ
Æ�ÆÆ�Æ
Æ�ÆÆ�Æ

ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ

ÈÈ
ÈÈ
ÈÈ
ÈÈ
ÈÈ

É�ÉÉ�É
É�ÉÉ�É
É�ÉÉ�É
É�ÉÉ�É
É�ÉÉ�É
É�ÉÉ�É

Ê�ÊÊ�Ê
Ê�ÊÊ�Ê
Ê�ÊÊ�Ê
Ê�ÊÊ�Ê
Ê�ÊÊ�Ê
Ê�ÊÊ�Ê

ËË
ËË
ËË
ËË
ËË
ËË
Ë

ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
ÌÌ
Ì

Í�ÍÍ�Í
Í�ÍÍ�Í
Í�ÍÍ�Í
Í�ÍÍ�Í
Í�ÍÍ�Í
Í�ÍÍ�Í
Í�ÍÍ�Í
Í�ÍÍ�Í

Î�ÎÎ�Î
Î�ÎÎ�Î
Î�ÎÎ�Î
Î�ÎÎ�Î
Î�ÎÎ�Î
Î�ÎÎ�Î
Î�ÎÎ�Î
Î�ÎÎ�Î

ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏ

ÐÐ
ÐÐ
ÐÐ
ÐÐ
ÐÐ
ÐÐ
ÐÐ
ÐÐ

Ñ�ÑÑ�Ñ
Ñ�ÑÑ�Ñ
Ñ�ÑÑ�Ñ
Ñ�ÑÑ�Ñ
Ñ�ÑÑ�Ñ
Ñ�ÑÑ�Ñ
Ñ�ÑÑ�Ñ
Ñ�ÑÑ�Ñ
Ñ�Ñ

Ò�ÒÒ�Ò
Ò�ÒÒ�Ò
Ò�ÒÒ�Ò
Ò�ÒÒ�Ò
Ò�ÒÒ�Ò
Ò�ÒÒ�Ò
Ò�ÒÒ�Ò
Ò�ÒÒ�Ò
Ò�Ò

Ó�Ó�Ó�ÓÓ�Ó�Ó�ÓÓ�Ó�Ó�Ó
Ô�Ô�Ô�ÔÔ�Ô�Ô�ÔÔ�Ô�Ô�ÔÕ�Õ�Õ�ÕÕ�Õ�Õ�ÕÖ�Ö�Ö�ÖÖ�Ö�Ö�Ö
×�×�×�×Ø�Ø�Ø�Ø

 0

 45000

 40000

 35000

 30000

 25000

 20000

 15000la
te

nc
y

(m
se

cs
)

 10000

 5000

Consistency protocol instanciation

Providers discovery

Communications

1x1
1x2

1x3
1x4

1x5
1x6

1x7
2x1

2x2
2x3

2x4
2x5

2x6
2x7

3x1
3x2

3x3
3x4

3x5
3x6

3x7
4x1

4x2
4x4

4x3
4x5

4x7
4x6

5x1
5x2

5x3
5x4

5x5
5x6

5x7

GDG and LDG group sizes (GDGxLDG)

Figure 5: Allocation costs depends on replication degree.

We have evaluated the impact of the replication degree on the allocation cost by varying the sizes
of the GDG and LDG groups (Figure 5). We can note that: 1) the architecture initialization cost is
largely overcome by the communication involved by the first two steps described above (discovery

INRIA

Building Fault-Tolerant Consistency Protocols for an Adaptive Grid Data-Sharing Service 13

and allocation requests); 2) the discovery cost grows linearly with respect to the replication degree;
3) the cost of the actual allocation is quasi-constant despite the number of required replicas, because
the client makes all these requests in parallel.

Read 4M
Update 4M
Read 512K

Read 16K
Update 16K

Update 512K

 1 2 3 4 5 6 7

 13

 360

 808

 2808

LDG replication degree

 69
la

te
nc

y
(m

se
cs

)

Figure 6: Cost of the basic primitives: read/update.

We have also measured the cost of the basic operations of the consistency protocol: data read
and data update. These operations involve communications between a client and its local LDG. We
measured the cost of these operations while varying the cluster-level replication degree (i.e. the
LDG size). This is illustrated on Figure 6. First, we can note that the overhead due to replication
is significant for small data sizes (e.g. 16 KB): the read and update operations are three times
slower, because our atomic multicast protocol uses a two-phase commit strategy. However, this cost
increases very slowly with the replication degree. Second, for large data sizes (e.g. larger than
512 KB), the fault-tolerance overhead is negligible compared to the data transfer delay. The cost
of update operations linearly increases with the replication degree. This is due to our leader-based
implementation of the group communication protocol, where the leader node sends the data to all
the group members across the network. We plan to perform further measurements to evaluate: 1) the
service throughput; 2) the impact of failures on the performance of the service operations.

6. Conclusion

In this paper, we have addressed the problem of handling the consistency of replicated data in a grid
data-sharing service. In such a context, the availability of storage resources changes dynamically.
We have shown the advantages of a software architecture which decouples consistency management
from fault-tolerance management. We have illustrated our approach by showing how to design a
fault-tolerant consistency protocol which implements the entry consistency model. As a preliminary
experimental validation, we have implemented a prototype of the proposed fault-tolerant consistency
protocol within JUXMEM, a software experimental platform for grid data sharing.

RR n˚5309

14 Antoniu, Deverge, Monnet

The main advantage of the proposed approach is that it allows the consistency protocol and the
replication strategy to be designed independently, while only a small interaction has to be defined
through the Proactive Group Membership and the Dynamic Consistency Protocol Configuration
layers. Thereby, existing consistency protocols can be made fault-tolerant by carefully defining this
interaction. Different trade-offs (e.g., efficiency vs. level of fault-tolerance) can be obtained by
tuning this interface. Such studies are part of our planned future work.

Naturally, if the policy implemented by the Proactive Group Membership layer is well-tuned in
order to fit the characteristics of the physical architecture, the availability of the home nodes will be
guaranteed most of the time. This is true as long as the assumptions made about the fault types and
about the number of concurrent faults are correct. Otherwise, recovery will not be possible, and the
user application will be informed about this by the consistency protocol. It is then its responsibility
to react, according to its specific constraints (retry, rollback, etc.). Such events should however be
extremely rare if the proactive group membership policy is correctly tuned. We are currently working
on extensions of our approach, in order to define an extended semantics of the consistency protocol,
which should take into account such cases.

References

[1] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnel, and S. Tuecke. Data management and transfer in high-performance computational grid
environments. Parallel Computing, 28(5):749–771, 2002.

[2] G. Antoniu, L. Bougé, and M. Jan. JuxMem: An adaptive supportive platform for data sharing on the grid.
In Proceedings Workshop on Adaptive Grid Middleware (AGRIDM 2003), pages 49–59, New Orleans,
Louisiana, Sept. 2003. Held in conjunction with PACT 2003. Extended version to appear in Kluwer
Journal of Supercomputing.

[3] G. Antoniu, L. Bougé, and S. Lacour. Making a DSM consistency protocol hierarchy-aware: An efficient
synchronization scheme. In 3rd IEEE/ACM International Conference on Cluster Computing an the Grid
(CCGrid 2003), pages 516–523, Tokyo, Japan, May 2003. IEEE.

[4] G. Antoniu, L. Bougé, M. Jan, and S. Monnet. Large-scale deployment in P2P experiments using the
JXTA distributed framework. In Proc. 10th International Euro-Par Conference on Parallel Processing
(Euro-Par ’04), volume 3149 of LNCS, pages 1038–1047, Pisa, Italy, Aug. 2004. Springer.

[5] L. B. Arantes, P. Sens, and B. Folliot. An effective logical cache for a clustered LRC-based DSM system.
Cluster Computing Journal, 5(1):19–31, Jan. 2002.

[6] A. Bassi, M. Beck, G. Fagg, T. Moore, J. Plank, M. Swany, and R. Wolski. The Internet Backplane
Protocol: A study in resource sharing. In 2nd IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid 2002), pages 194–201, Berlin, Germany, May 2002. IEEE.

[7] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway distributed shared memory system.
In Proceedings of the 38th IEEE International Computer Conference (COMPCON Spring ’93), pages
528–537, Los Alamitos, CA, Feb. 1993.

[8] M. Bertier, O. Marin, and P. Sens. Implementation and performance evaluation of an adaptable failure de-
tector. In Proceedings of the International Conference on Dependable Systems and Networks (DSN ’02),
pages 354–363, Washington, DC, June 2002.

INRIA

Building Fault-Tolerant Consistency Protocols for an Adaptive Grid Data-Sharing Service 15

[9] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM Transactions
on Computer Systems, 20(4):398–461, Nov. 2002.

[10] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the
ACM, 43(2):225–267, Mar. 1996.

[11] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a comprehensive study.
ACM Computing Surveys, 33(4):427–469, Dec. 2001.

[12] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The International Journal
of Supercomputer Applications and High Performance Computing, 11(2):115–128, 1997.

[13] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared-memory multiprocessors. In 17th International Symposium Computer
Architecture (ISCA 1990), pages 15–26, Seattle, WA, June 1990.

[14] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE Computer, 30(4):68–
74, 1997.

[15] L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge between release consistency and entry
consistency. In Proceedings of the 8th ACM Annual Symposium on Parallel Algorithms and Architectures
(SPAA’96), pages 277–287, Padova, Italy, June 1996.

[16] A.-M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and I. Puaut. A recoverable distributed shared
memory integrating coherence and recoverability. In The 25th International Symposium on Fault-Tolerant
Computing Systems (FTCS-25), pages 289–298, Pasadena, California, June 1995.

[17] T. Kosar and M. Livny. Stork: Making data placement a first-class citizen in the grid. In Proceedings of
24th International Conference on Distributed Computing Systems (ICDCS 2004), pages 342–349, Tokyo,
Japan, Mar. 2004.

[18] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Transactions on
Computer Systems, 7(4):321–359, Nov. 1989.

[19] S. Mena, A. Schiper, and P. Wojciechowski. A step towards a new generation of group communication
systems. In Proceedings of International Middleware Conference, volume 2672 of LNCS, pages 414–432,
Rio de Janeiro, Brazil, June 2003. Springer.

[20] J. Protić, M. Tomasević, and V. Milutinović. Distributed Shared Memory: Concepts and Systems. IEEE,
Aug. 1997.

[21] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM
Computing Surveys, 22(4):299–319, Dec. 1990.

[22] F. Sultan, T. Nguyen, and L. Iftode. Scalable fault-tolerant distributed shared memory. In The IEEE/ACM
SuperComputing conference (SC ’00), pages 54–55, Dallas, Texas, Nov. 2000.

[23] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two home-based lazy release consistency
protocols for shared memory virtual memory systems. In Proceedings 2nd Symposium on Operating
Systems Design and Implementation (OSDI ’96), pages 75–88, Seattle, WA, Oct. 1996.

[24] The JXTA project. http://www.jxta.org/.

RR n˚5309

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 655, avenue de l’Europe, 38330 MONTBONNOT ST MARTIN

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

http://www.inria.fr
ISSN 0249-6399

