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Abstract: A simple and widely used way to make a robotic system walk without falling is to make it
track a reference trajectory in one way or another, but the stability obtained this way may be limited
and even small perturbations may lead to a fall. We propose here a series of heuristics to improve the
stability that can be obtained from such a tracking control law, through an online adaptation of the
choice of the reference trajectory being tracked. Encouraging simulations are obtained in the end on
a simple planar biped model.
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Adaptation en ligne de trajectoires de référence pour la
commande de systèmes marcheurs

Résumé : Une méthode simple et largement employée pour faire marcher un système robotique sans
tomber est de lui faire suivre une trajectoire de référence d’une façon ou d’une autre, mais la stabilité
ainsi obtenue peut être limitée, et même de faibles perturbations peuvent mener à la chute. Nous
proposons dans ce rapport une série d’heuristiques pour améliorer la stabilité qui peut être obtenue
à partir d’un tel suivi de trajectoire au travers d’une adaptation en ligne du choix de la trajectoire de
référence à suivre. Des simulations encourageantes sont alors obtenues pour une modèle simple de
robot bipède plan.

Mots-clés : Adaptation en ligne, trajectoires paramétrées, dynamique contrainte, systèmes mar-
cheurs, viabilité
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1 Introduction

When a mechanical system is walking, it has possibly many contacts with the ground which are
regularly broken and recovered in order to produce a displacement of the whole structure. This allows
to travel across obstacles with great versatility, but at the cost of a strong instability stemming from
the fact that the dynamics of walking systems depends strongly on the forces that can be obtained
from these contacts.

Being concerned with the stability of walking systems, this publication begins therefore in sec-
tion 2 with a general model of their dynamics that builds on a unilateral model of the contacts with
the ground and allows to specify which movements a walking system can do and which movements
it can’t [13, 14]. The possibility to avoid to fall can be modelled then as a viability and invariance
property.

A simple and widely used way to obtain such invariance properties is to make a walking system
track a reference trajectory in one way or another [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], but the
invariance obtained this way may be limited and even small perturbations may lead to a fall. How to
improve the capacity for a walking system to avoid to fall has therefore been the main goal of most
of the researches done in the field of walking systems, and especially in the field of biped walking
systems since this stability issue is particularly problematic for them.

Since the problem is the availability of contact forces, it has been proposed to deal more properly
with them by lowering the needs of the trajectory tracking, tracking for example trajectories with only
some parts of the system [10, 12] or allowing some deviations from the reference trajectories when
forced to do so [4, 6, 10]. It has been proposed also to adapt the reference trajectory being tracked to
the availability of contact forces, but most of such propositions so far don’t clearly define when and
how such an adaptation should occur, relying on parameters that need to set with no clear relation
to the global stability of the system [8, 15]. A more radical approach is even to completely generate
online the reference trajectories [2], but in a way, all of these approaches blur the effects of tracking
reference trajectories, leading to an uncertain result as to really improving the capacity to avoid to
fall.

Building on the analysis of section 2, we propose here, in section 3, a series of heuristics for the
online adaptation of the reference trajectory being tracked which builds on a well delimited set of ref-
erence trajectories and a strict tracking which continuously keeps an eye on the available forces [14].
We show then in section 4 how to apply these heuristics to a simple planar biped model, leading to
encouraging numerical experiments in section 5.

2 The dynamics and stability of walking systems

2.1 Structure of the dynamics

Whatever the walking system being considered, planar or three-dimensional, with any number of legs
with or without feet, its dynamics can be classically written as a set of Euler-Lagrange equations:

M(q) q̈ + N(q, q̇) q̇ + G(q) = T (q) u + C(q)T λ (1)

where T (q) u are actuation forces and C(q)T λ contact forces.
As for any mechanical system that is able to move around, its configuration vector q has to account

for two different informations, the shape of the system on one side, its position and orientation in
space on the other [6, 11, 13]. The shape of the system can be described by its joint positions, a
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4 Pierre-Brice Wieber , Christine Chevallereau

vector q1, and its position and orientation in space can be described by the position and orientation
of a frame attached to one of its parts, leading to a vector q2 of dimension 3 for planar systems, 6 for
three-dimensional systems.

If we consider then the structure of the vector q:

q =

[

q1

q2

]

we can split the dynamics (1) to exhibit the same structure:

[

M1(q)

M2(q)

]

q̈ +

[

N1(q, q̇)

N2(q, q̇)

]

q̇ +

[

G1(q)

G2(q)

]

=

[

T1(q)

0

]

u +

[

C1(q)
T

C2(q)
T

]

λ (2)

where the actuation forces don’t appear in the lower part [6, 11, 13]:

M2(q) q̈ + N2(q, q̇) q̇ + G2(q) = C2(q)
T λ (3)

2.2 Contact forces

It appears then that for a walking system to realize a movement q(t), equation (3) must be satisfied
with appropriate contact forces. But the physics of contact is such that these forces have limitations:
in the general case (no gluing, especially), contacting solids can push one another but they can’t
pull one another (what is referred to as the unilaterality of contacts), and friction between them is
limited [6, 7, 9, 13]. This can be expressed as a vector inequality on the amplitudes λ of the contact
forces:

A(λ) ≤ 0 (4)

Considering this restriction of contact forces together with the lower part of the dynamics (3), a
necessary condition for a walking system to realize a movement q(t) is that there exist contact forces
λ(t) such that:

{

M2(q) q̈ + N2(q, q̇) q̇ + G2(q) = C2(q)
T λ

A(λ) ≤ 0
(5)

Note that this condition can be shown to be a complete generalization of more usual criteria such as
the Center of Pressure or the Zero Moment Point criteria [14].

2.3 Impacts

Note also that when a part of a walking system lands on the ground, a sharp change of velocity may
happen, an impact which can be modeled as an instantaneous event, especially in the case of purely
rigid bodies [9, 13]. This way, an instantaneous version of the Euler-Lagrange equations:

M(q)
[

q̇+ − q̇−
]

= C(q)T Λ (6)

relates the velocity of the system before and after the impact, q̇− and q̇+, to impulsive contact forces
C(q)T Λ.
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viability kernel

Figure 1: The viability kernel gathers all the states from which it is possible to avoid to fall, equilib-
rium points and cyclic movements among others. The states outside this kernel are those from which
a fall cannot be avoided.

2.4 Avoiding to fall, a viability condition

Condition (5) shows that a walking system’s ability to control its movements, and especially to keep
its balance, is bound to the availability of appropriate contact forces: falling is a permanent threat
then, and a threat for the integrity of both the walking system and its environment. Avoiding to fall
should therefore be considered as an essential condition for walking systems, to be taken care of
before any other goal.

Now, if we consider the set F of positions where the system is considered as having fallen (where
a part of the system other than the feet is in contact with the ground, for example), avoiding to fall
means avoiding to be in a position q ∈ F . A viability condition [1, 13] naturally comes out then:

Definition : A state (q, q̇) is considered as viable if and only if the system is able to realize a move-
ment q(t) starting from this state that never gets inside the set F .

A state (q, q̇) is therefore either viable and the system is able to avoid to fall from it, or non-viable
and the system cannot avoid to fall from it. This way, if we consider the viability kernel, union of
all viable states (figure 1), avoiding to fall means always staying inside this kernel, what should be
considered then as the primary goal for every control law of walking systems.

This concept of viability appears to be very general: it applies to any type of locomotion, any
structure of robot as long as falling is considered as an event that should be avoided. It is unfortunately
of poor practical use since the complexity of the dynamics of walking systems is such that it is
generally computationally impossible to verify whether a state is viable or not.

Numerous viable states can be sorted out though, equilibrium points, cyclic movements or trajec-
tories leading to one of these, so that viability still seems to be an interesting concept to refer to in the
analysis and design of control laws, as we will see in the next section.

RR n° 5298



6 Pierre-Brice Wieber , Christine Chevallereau

Figure 2: Tracking a reference trajectory, here a static position, may lead to a fall if the system is
outside the corresponding largest invariant set, because of a perturbation for example (upper part).
But in such a case, the system might be able to track another trajectory, here a step forward, which
would allow to avoid to fall (lower part).

3 Tracking reference trajectories

3.1 Adapting the choice of the reference trajectories

A simple and widely used way to make a walking system avoid to fall is to make it track a reference
trajectory, in one way or another [2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Indeed, if a trajectory and
a neighbourhood of it lie inside the viability kernel, it may be tracked with a stable control law, what
may allow to avoid to fall.

But whatever the trajectory and the control law, such a tracking will allow to avoid to fall only
in a subset of the viability kernel, the largest invariant set for this tracking inside the viability kernel
(usually a time-dependant set). This means that if the system is put in a state outside this invariant
set, because of a perturbation for example, the tracking will lead to a fall (upper part of figure 2). But
in such a case, the state of the system might still be inside the viability kernel, so that there might still
be a possibility to avoid to fall.

For example, we may know another reference trajectory for which the state of the system is inside
the corresponding largest invariant set, so that tracking this other trajectory would allow to avoid to
fall (lower part of figure 2). A possibility then to improve the stability of walking systems could be to
adapt the choice of the trajectory being tracked to the actual state of the system. But the problem then
is to know when a trajectory can be safely tracked and when not: estimating the extent of the largest
invariant set of a trajectory tracking may not be impossible [14], but it is out of reach today.

Our proposition then is to consider stiff enough tracking control laws: requiring strong accelera-
tions if a deviation from the reference trajectories occurs, they may satisfy condition (5) only in small
neighbourhoods around them, but in these neighbourhoods, we may trust their ability to stay close

INRIA



Online adaptation of reference trajectories for the control of walking systems 7

enough to the trajectories to avoid that a fall happens. This way, the choice of the reference trajectory
to track will be the choice of a trajectory for which such a stiff tracking control law satisfies condition
(5).

3.2 About reference trajectories

A trajectory can be seen as a set of positions qd(t) indexed with time t. But on top of that, we
will consider a set of parameters p to describe each possible reference trajectory, for example the
step lengths, heights or any other possible variation of the walking patterns, so that to each value of
these parameters corresponds a reference trajectory qd(t, p) and reciprocally. This way, a change in
the choice of the reference trajectory is perfetcly reflected as a variation of these parameters p: for
example, instantaneous switches from one reference trajectory to another gives rise to a piecewise
constant function p(t).

But because of the second order dynamics (1), such instantaneous switches will most probably
give rise to transient behaviours of the trajectory tracking. We will prefer here to take care of such
transient behaviours directly in the choice of the reference trajectory: we will consider only continu-
ous variations of the parameters p(t).

More precisely, the second order dynamics will imply that the parameters p(t) be twice differen-
tiable with respect to time, and that on top of being twice differentiable with respect to time (except at
impact times), the reference trajectories qd(t, p) be also twice differentiable with respect to the param-
eters p. Of course, this requires that a continuous and twice differentiable set of reference trajectories
be at disposal (section 5.1).

Now, any twice differentiable function p(t) can give rise to a trajectory qd(t, p(t)) that can be use-
fully tracked, but which may probably not preserve any specific properties of the original trajectories,
those with constant parameters p. Examples of such properties not preserved can be the energy op-
timality of the movements or the fact that the velocity q̇d(t, p(t)) may not respect the impact law (6)
when ṗ(t) 6= 0, inducing a flaw in the trajectory tracking at impact times. Such transient behaviours,
when ṗ(t) 6= 0 and p̈(t) 6= 0, should therefore be used thriftily, only when they are strictly necessary
to avoid to fall.

We will also be interested in replacing the time t by a virtual time τ(t), since such a time scaling
has prooved to be an efficient way to adapt reference trajectories to the dynamical constraints of a
system [3]. This way, the parametrization of the reference trajectories qd(τ(t), p(t)) is such that this
τ(t) can be directly included in the parameters p(t): the parametrization of the reference trajectories
will therefore appear to be simply qd(p(t)).

4 Application to a simple biped model

4.1 A simple biped model

Let’s consider now a 7 link planar biped robot for which, following the presentation of section 2.1,
the configuration vector q is structured as: q1 for the joint positions, q2 for the position and orientation
of a frame attached to the foot on the ground (figure 4). In order to keep this model simple, we
consider that both feet are always parallel to the ground, and that an impact occurs when the foot in
the air lands on the ground (section 2.3), in such a way that it stays in contact with the ground and the
foot previously on the ground takes off immediately: the two feet switch their roles instantly, and we
change the model accordingly.

RR n° 5298



8 Pierre-Brice Wieber , Christine Chevallereau

q =

[

q1

q2

]

Figure 3: Structure of the configuration vector q of the 7 link planar biped robot: q1 for the joint
positions, q2 for the position and orientation of a frame attached to the foot on the ground.

This way, the robot is always in a single support phase except at impact times and we define the
contact forces in this case as the tangential force, the normal force and the momentum acting under
the support foot. C1(q) appears then to be a null matrix, C2(q) an invertible matrix and the inequality
(4) a linear inequality:

A(λ) = A λ − a ≤ 0

stating that the tangential and normal force lie inside the friction cone and that the Centre of Pressure
of the contact forces lies within the boundaries of the contact points [14]. We consider also that all
the joints are actuated with T1(q) an identity matrix so that the dynamics (2) of the system appears to
be in fact:

M1(q) q̈ + N1(q, q̇) q̇ + G1(q) = u

M2(q) q̈ + N2(q, q̇) q̇ + G2(q) = C2(q)
Tλ

On top of that, the shape and the mechanical behaviour of the ground, and the way we will design
the control law in sections 4.2 and 4.3 are such that the foot on the ground will always be considered
as motionless on a horizontal ground: q2 will be a constant ⇔ q̇2 = q̈2 = 0. A reduced model is
therefore straightforward, with only q1 to describe the configuration of the system:

M ′

1(q1) q̈1 + N ′

1(q1, q̇1) q̇1 + G′

1(q1) = u (7)

C−T
2

[

M ′

2(q1) q̈1 + N ′

2(q1, q̇1) q̇1 + G′

2(q1)
]

= λ (8)

A λ ≤ a (9)

(C2(q) is a constant matrix in this case). Some bounds on the actuation forces are also considered:

B u ≤ b (10)

INRIA



Online adaptation of reference trajectories for the control of walking systems 9

so that combining the dynamics (7)-(8) with the inequalities (9)-(10), a joint movement q1(t) with a
motionless foot on the ground can be realised if and only if it complies with the inequality:

[

B 0

0 A C−T
2

]

[

M ′(q1) q̈1 + N ′(q1, q̇1) q̇1 + G′(q1)
]

≤

[

b

a

]

(11)

which is the specific version of condition (5) for this system.

4.2 A trajectory tracking control law

For this biped robot, we will consider cyclic reference trajectories, with instantaneous double support
phases because of the impacts. In order to exploit the strategy of online adaptation proposed in
section 3, we will consider a set of trajectories with step lengths varying continuously between 0.3
and 0.65 m (we will see in section 5.1 how such a set can be obtained), and a time scaling will be
applied. Two parameters will be considered then, the step length p1 and the virtual time p2.

These reference trajectories will be tracked with a computed torque control law, a feedback lin-
earization:

u = M ′

1(q1) v + N ′

1(q1, q̇1) q̇1 + G′

1(q1) (12)

the result of which on the dynamics (7) is to obtain q̈1 = v, that we combine with a PD control law:

v = q̈1d(p(t)) + K(q1 − q1d(p(t))) + Λ(q̇1 − q̇1d(p(t)))

Following the proposition of section 3.2, we consider only twice differentiable variations of the pa-
rameters p(t) so that the velocity q̇1d and the acceleration q̈1d of the reference trajectory can be related
directly to the derivatives of these parameters:

q̇1d(p(t)) = J(p(t)) ṗ(t)

q̈1d(p(t)) = J(p(t)) p̈(t) + n(p(t), ṗ(t))

with J(p) =
d

dp
q1d(p) and n(p, ṗ) =

(

d

dt
J(p)

)

ṗ. This way, the PD control law appears as:

v = J(p(t)) p̈(t) + n(p(t), ṗ(t)) + K(q1 − q1d(p(t))) + Λ(q̇1 − J(p(t)) ṗ(t))

or, with a shortened notation:

v = J p̈ + n + K(q1 − q1d) + Λ(q̇1 − Jṗ) (13)

4.3 An online adaptation of the reference trajectories

In order to improve the capacity for the robot to avoid to fall, following the analysis of section 3.1, the
choice of the reference trajectory to track should be made according to the state of the system. More
precisely, the choice should be made of a trajectory for which the control law (12)-(13) complies with
the inequality (11), satisfying therefore the inequality (with a shortened notation):

[

B 0

0 A C−T
2

]

[

M ′

(

J p̈ + n + K(q1 − q1d) + Λ(q̇1 − Jṗ)
)

+ N ′q̇1 + G′

]

≤

[

b

a

]

(14)

Taking care of choosing a reference trajectory which complies with this inequality, we would like
now to have the robot stay as close as possible to an optimal motion, a 1 m.s−1 walk obtained with
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p1(t) = 0.462 and ṗ2(t) = 1 (see section 5.1 and figure 4), following it if possible and getting back
to it if driven away by a perturbation. Such a behaviour can be obtained with a PD regulation of the
walking parameters:

p̈× =

[

k1(p1 − 0.462) + k2 ṗ1

k3(ṗ2 − 1)

]

(15)

but having to comply with the inequality (14), we rather need to consider the following evolution law:

p̈ = arg min
π

‖π − p̈×‖

s.t. the inequality (14) is satisfied.

(16)

Indeed, trying to stay as close as possible to the optimal motion, this evolution law explicitely selects
a reference trajectory for which the control law (12)-(13) complies with the inequality (11) (note that
we regulate the pace of the steps ṗ2 without synchronization between the virtual time p2 and the real
time t).

General Remark : In a way, tracking a single reference trajectory qd(t) imposes an unnecessary and
unproductive reduction of the walking behaviour: the two-step control law that we propose here, (12)-
(13) together with (15)-(16), can be seen therefore as a way to widen this walking behaviour to a set
qd(p) with dim(p) > 1, giving back some freedom of movement to the walking system to help it cope
with the dynamical constraints (11) and adapt to its environment. Indeed, a single tracking control
such as (12)-(13) mobilizes all the actuators of the system to control the positions and velocities of
each of its articulations, leaving no simple possibility to deal then with such constraints. The term
p̈ that appears in (13) is used then in our scheme as a new input to the control law (12)-(13) which
is used in (15)-(16) to deal explicitly with such constraints, and once this is done, to deal with more
specific goals if it is possible.

5 Simulations

5.1 The set of reference trajectories

The joint trajectories that will be used in the control law (12)-(16) will be taken between two succes-
sive impacts as 4th degree polynomials of the virtual time p2, with coefficients being themselves 4th

degree polynomials of the step length p1:

q1d(p) =
4
∑

j=0

4
∑

k=0

(akj pk
1) p

j
2 (17)

They are obtained as follows:

• First, a walking motion with an average speed of 1 m.s−1 is obtained by computing the duration
T of the step and the coefficients of a 4th degree polynomial describing the joint trajectory such

that the energy consumption
∫ T

0

u2 dt is minimized, satisfying the continuous dynamics (7)-(10)

and the impact law (6). In fact this trajectory is set to satisfy an alternative version of inequality
(9): the Center of Pressure is set to stay at least 1 cm inside the boundaries of the contact points,
in order to allow a tolerance margin for the trajectory tracking. This optimal walking motion
is obtained with a step length of 0.462 m, obviously realised in 0.462 s (figure 4), and will be
considered as the preferred motion for this system.

INRIA



Online adaptation of reference trajectories for the control of walking systems 11

1.510 0.5

Figure 4: The 1 m.s−1 optimal walking motion with instantaneous double support phases due to
impacts is obtained with a step length of 0.462 m (feet not shown).

• Then, eight other trajectories are computed in a similar way, but for a duration fixed at 0.462 s,
and step lengths fixed between 0.3 and 0.65 m. Incidentally, we will consider now that the
virtual time p2 always takes values between 0 and 0.462.

• After that, positions at the middle of the trajectories (p2 = 0.231) and positions and velocities at
their end (p2 = 0.462) are obtained for every step length p1 ∈ [0.3, 0.65] by interpolating with
4th degree polynomials of p1 the corresponding positions and velocities taken from these nine
trajectories (figure 5). Note that this interpolation is specifically computed to match exactly the
preferred motion when p1 = 0.462.

• In order to obtain cyclic trajectories when p1 is constant, the positions at their beginning directly
reproduce the positions at their end, and the velocities at their beginning are computed from the
velocities at their end through the impact law (6) for an extensive series of step lengths and
interpolated only after (figure 5). Remember however that as soon as ṗ1 6= 0, the velocity
q̇d(p(t)) will probably not follow the impact law, and the tracking will be flawed.

• In the end, the coefficients of the polynomial (17) can be exactly fit to these positions and
velocities already expressed as 4th degree polynomials of p1.

Figure 5 shows that in the joint space, the 4th degree polynomials of p1 produce an efficient
interpolation of the beginning, middle and end positions and velocities. But the usual side-effect of
such interpolations is an incorrect positioning of the system in the cartesian space: we can observe
especially an incorrect height of the feet, inducing a mismatch in the impact times and, as a result,
an error in the trajectory tracking, what will be clearly observed in sections 5.2 and 5.3. Note though
that the interpolation has been computed to match exactly the preferred motion: this trajectory being
unaltered by the interpolation process, no mismatch of the impact times will occur when p1 = 0.462.

RR n° 5298
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0.262 0.312 0.362 0.412 0.462 0.512 0.562 0.612 0.662

−1.6

−1.4

−0.5

−1.2

0

0.5 Computed values
Preferred value  
Approximated values

−2

−1.8

−1.6

−1.5

−1

−0.5

0

p1 [m]

q1d(p1, 0.231) [rad]

q1d(p1, 0.462) [rad]

q̇1d(p1, 0.462) [rad.s−1]

q̇1d(p1, 0) [rad.s−1]

Figure 5: Result on an arbitrary joint of the 4th degree polynomials of p1 interpolating the positions
at the middle of the steps (p2 = 0.231), at their end (p2 = 0.462), and the velocities at their end. The
velocities at their beginning (p2 = 0) are computed with the impact law for an extensive series of step
lengths p1, and interpolated only after.

5.2 Perturbation of a trajectory tracking

Let’s consider this simple biped model perfectly tracking the 1 m.s−1 optimal walk (p1 = 0.462,
ṗ2 = 1) when a perturbation occurs, a horizontal force applied on the back of the trunk for 0.025 s

at the middle of a step. This perturbation might put the system in a state outside the largest invariant
set corresponding to this trajectory tracking, so a change of reference trajectory might be necessary
to avoid to fall.

When no adaptation of the reference trajectory is applied, external forces as large as 55 N can be
compensated by the control law (12)-(13) before it stops complying with the inequality (11). When
the strategy that we have proposed is applied, but adapting only the parameter p1, external forces as
large as 235 N can be compensated. When only the parameter ṗ2 is adapted, external forces as large
as 450 N can be compensated. And when both parameters are adapted, external forces as large as
750 N can be compensated: this strategy clearly improves the capacity for this biped model to avoid
to fall.

Figure 6 shows the application of our strategy when a 600 N force is applied: a strong rise of the
tracking error is induced, but the strategy reacts immediately by increasing slightly the step length
(5 mm) and mostly by increasing its pace (40 % faster). A step later, the system has completely come
back to the original 1 m.s−1 optimal walk, and falling has been avoided.

Note that there is a sudden rise of the tracking error at the first impact time: the tracking may be
flawed because ṗ1 6= 0, inducing a velocity q̇1d which doesn’t follow the impact law (6), but it seems
to be mostly flawed because p1 6= 0.462, inducing a mismatch in the impact times because of the
interpolation realised in section 5.1.
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Figure 6: Position of the Center of Pressure within the limits of the foot on the ground, variation of
the walking parameters p1 and ṗ2 and tracking error when a 600 N external force is applied on the
back of the system for 0.025 s.
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Figure 7: Position of the Center of Pressure within the limits of the foot on the ground, variation of
the walking parameters p1 and ṗ2 and tracking error when a hole has to be avoided at the last moment.

5.3 Avoiding a hole

Consider again this walking system tracking perfectly the 1 m.s−1 optimal walk (p1 = 0.462, ṗ2 = 1)
when a sensor such as a vision sensor suddenly detects, at the beginning of a step, that this step should
be 10 cm longer in order to avoid a hole (p1 should be 0.562).

One strategy could be to switch instantaneously the parameter p1 to the required value, but be-
cause of the stiff transient behaviour of the trajectory tracking that such a switch induces, subsequent
adaptations of both p1 and ṗ2 would be required to avoid to fall.

We will prefer therefore to stick to the proposition of section 3.2 of taking care of the transient
behaviour directly in the choice of the reference trajectory: we will simply switch the reference
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value in (15) from 0.462 to 0.562, and we can see on figure 7 that this induces a nice exponential
convergence of the step length, with virtually no tracking error. Once again, there is a sudden rise
of the tracking error at each impact time where p1 6= 0.462, but it is because of the mismatch in the
impact times induced by the interpolation realised in section 5.1.

This example demonstrates the possibility to integrate to the proposed control scheme a higher-
level supervisor which would drive the choice of the reference trajectory according to informations
gathered on the environment of the walking system.

6 Conclusion

We have seen that the movements of walking systems and therefore their capacity to avoid to fall are
bound to the availability of contact forces. A classical way to deal with these available contact forces
is to track reference trajectories that have been carefully designed to deal properly with them, but this
usually offers only a limited amount of stability: even small perturbations of the tracking may lead to
a fall.

Many propositions have been made then to improve this stability, all heuristics that keep an eye
on the available contact forces and either lower the objectives of the trajectory tracking or adapt them
when required. Our proposition here is to always fully track a trajectory that has been designed and
fixed in advance, but to continuously adapt the choice of the reference trajectory being tracked to the
available contact forces.

This general heuristic should be widely applicable to different walking systems, planar or three-
dimensional, with any number of legs with or without feet, but we have chosen for the sake of simplic-
ity to show here how it can be applied to a simple planar biped model, with very promising simulation
results. To apply this heuristic more generally should barely require a basic tracking control law for
the walking system being considered, dealing for example with multiple support phases or under-
actuation, and a set of reference trajectories that follows the few rules described in section 3. All this
is already available for example for fully three-dimensionnal humanoïd robots [5, 10].
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