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Abstract: Tumoral angiogenesis and anti-angiogenesis are modeled as a Nash game. We
consider the vessel-matrix-tumor system as a porous medium from the tumor viewpoint and
as an elastic structural medium from the host tissue viewpoint. We define a competition
between two density functions which are intended to represent respectively activators and
inhibitors of angiogenesis. The activators want to minimize the pressure drop while the
inhibitors intend to minimize the elastic compliance of the matrix or the drainage of the
tumoral neovascularization. Numerical results illustrate how -theoretical- tumors develop
multiple channels as an optimal response to optimal distribution of inhibitors.
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Jeux de Nash en anti-angiogénése tumorale

Résumé : L’angiogénése tumorale et les stratégies d’anti-angiogénése sont modélisées
comme un jeu de Nash. Notre approche consiste & considérer le systéme “vaisseau pré-
existant+matrice extracellulaire 4+ tumeur” comme un milieu poreux du point de vue de la
tumeur et comme une structure élastique du point de vue du tissu héte -matrice-. Nous
définissons une compétition entre deux densités qui représentent respectivement les activa-
teurs et les inhibiteurs d’angiogénése. Les activateurs ont pour objectif de minimiser la perte
en charge du milieu poreux, alors que les inhibiteurs ont comme objectif de minimiser la
compliance élastique de la matrice, ou encore, dans la version implémentée numériquement,
de minimiser le drainage du milieu poreux (jeu & somme nulle). Des résultats numériques
illustrent comment la tumeur développe des canaux multiples comme réponse optimale &
une distribution optimale d’inhibiteurs.

Mots-clés : angiogénse, jeux de Nash, optimisation topologique.
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1 Introduction

Angiogenesis is the biological process by which networks of blood vessels are initiated and
proliferate towards a mature vasculature.

At early development and growth, angiogenesis is necessary to go from the embryonic vas-
culogenesis into a complete and mature blood circulatory system. Moreover, angiogenesis
plays an important role in wound healing and tissue repairing.

But from other part, angiogenesis plays also a pathological role, being a fundamental
step in the growth of cancer tumors and in tumoral metastasis. Recently, oncologists have
suggested that the use of inhibitors of angiogenesis, an approach that is often referred to
as anti-angiogenesis, could prove effective in cancer treatment. Dozains of anti-angiogenic
drugs are currently undergoing clinical trials. Complete evidence of clinical efficiency for
human beings is still lacking, but specialists share a strong belief that anti-angiogenesis is
a promising therapy. Combined with directly curative drugs, anti-angiogenic drugs are in-
tended to efficiently stop the expansion of tumoral mass, forcing the tumor to dormancy or
even regression.

Angiogenesis and o fortiori anti-angiogenesis are however complex phenomena, with
complex set of interactions and external parameters. So there is a crucial need for tools,
amongst which mathematical modeling and computational methods, that could help the
specialist to acquire a qualitative understanding of effects of naturally present or medically
introduced (drugs) inhibitors, as well as yield indications on optimal use of them.

In the present work, we consider angiogenesis and anti-angiogenesis processes as result-
ing from a mathematical game between two players : activators of angiogenesis, willing to
provide the tumor with an efficient feeding (and waste expelling) network of blood vessels,
and inhibitors, with a specific action on the tumor vasculature.

From the tumoral angiogenesis viewpoint, the vessel-matrix-tumor system is seen as a

porous medium, defined by its porosity distribution. The latter is defined as a result of an
interaction between activators and inhibitors. Activators would like to design the porosity
in order to yield the minimal pressure drop.
From the host tissue viewpoint, the vessel-matrix-tumor system is seen as a linear elastic
continuum medium, defined by its material elasticity tensor. As for the porosity, the ma-
terial properties are defined as a result of an interaction between activators and inhibitors.
Inhibitors would like to design the material distribution in order to provide the matrix with
the minimal mechanical compliance.

Next section, we briefly outline some of basic and simple facts known to pro and anti an-
giogenesis processes. Then, in section 3 we introduce the mathematical -fluid and structural-
models. Follows section 4, devoted to the presentation of a Nash game framework, well suited
to our problem. An existence theorem of a Nash equilibrium is proved.

RR n° 5252



4 Abderrahmane Habbal

Within section 5, some computational issues are detailed, then we present two numerical
experiments related to a zero-sum game version where players want to minimize versus
maximize the pressure drop of the vasculature. Finally, section 6 ends the paper with some
concluding remarks.

2 Angiogenesis and anti-angiogenesis

At their early stage of growth, solid tumors are avascular. They do not need a blood net-
work, being small enough to get nutrients mainly by tissue diffusion.

However, their needs are proportional to their -growing- volume, while the feeding is pro-
portional to the surface in contact with the host tissue. So, they rapidly reach a critical size
for which the supply by diffusion is no more enough to continue developing. Then, avascular
tumors sometimes turn into a dormant phase during which the growth stops, as a result of
balance between proliferation and apoptosis of cancer cells.

Tumors which do not enter dormancy need ways alternative to diffusion. It is now well
known that solid tumors use vascular supply. Tumor-associated neovascularization allows
the tumor cells to express their critical growth advantage as reported by Saaristo et al.[1].
The process by which solid tumors develop a vascular network is called angiogenesis. An-
giogenesis is a complex process, a complete description of which is outside the scope of the
present paper. Readers interested in fundamental basics, particularly in view of mathemat-
ical modeling could refer to the well documented review paper by Mantzaris, Webb and
Othmer [18]. Readers could refer to the beginners tutorial of the US National Institute for
Cancer [14] for an illustrated introduction.

We sketch hereafter a -very- simplified description of angiogenesis process. Tumor cells
produce and release in the surrounding tissue specific growth factors which target endothe-
lial cells. There are two major growth factor families, the vascular endothelial growth factor
-VEGF- and angiopoietin -Ang-. These growth factors induce a chemotactic migration, pro-
liferation and division of endothelial cells, from a nearby existing vessel toward the tumor.
In order to find a way to the tumoral cluster, the endothelial cells produce enzymes which
degrade the extracellular matrix (host tissue surrounding the tumor), called matrix metal-
loproteinases -MMPs-. The endothelial cells organize into hollow tubes, forming capillary
then vascular networks.

Growth factors, endothelial cells and degrading enzymes are the three angiogenic key factors
that promote neovascularization, hence invasive growth of the tumors.

Moreover, experimental and clinical evidence suggests that the process of metastasis, which
makes cancer disease potentially lethal is angiogenesis-dependent. J. Folkman et al. [15]
have first proposed that anti-angiogenic therapy could be used as anti-cancer strategy, with
the help of natural or artificial inhibitors to the cited three angiogenic key factors. Examples
of inhibitors are anti-VEGF, anti-MMPs and inducers of apoptosis of endothelial cells.

INRIA



Anti-angiogenesis 5

Due to its complexity, anti-angiogenic therapy is nowaddays still a subject of discussion
between pros and cons [17]. Mathematical modeling and computational experiments re-
lated to some of its simplified mechanisms could be useful to answer questions rised by the
specialists.

3 Mathematical modeling

Most of the contributions to continuum mathematical models of tumor-induced angiogenesis
are of nonlinear parabolic reaction-diffusion type, see e.g. (8], [9] [4] and [18] where an
exhaustive bibliography is presented.

These models are based on equations which express balance or conservation laws of phys-
ical relevant quantities like as blood cells or extracellular matrix densities. An illustrative
presentation excerpt from Chaplain [3] is as follows :

chemotazis

random motility - A ~ haptotazis
— n ——
ng = vV.d,Vn — xV. (—VC) — pV.nVf
k+c
production degradation (1)
Py —
fe = Twn’ - punf
uptake
—~
G = — Anc

where

n : density of the blood vessels

f :density of the matrix tissue

¢ : concentration of angiogenic factors

Our approach is slightly different from the above modelings.
While still viewing the tumor+-extracellular matriz+ezisting vessel as an overall system, in
our case a porous media and linear elastic competing models are considered.

Our aim is to define a framework well adapted to the formulation of angiogenesis and
anti-angiogenesis as a game in the mathematical sense.
We shall deal with rather classical linear elliptic partial differential equations, within a
framework for which existence and uniqueness of solutions is well known, [10]. So, for the
sake of clarity of the exposure, we do not detail standard functional spaces, weak formulations
and regularity assumptions on the data, unless if necessary.

3.1 A porous media model for the tumor

The extracellular matrix as well as the tumoral vasculature (its blood network) are seen
as a porous medium, which occupies a volume O C RY (N = 2 or 3), see figure-1, with a

RR n° 5252
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Figure 1: A Fluid viewpoint

variable porosity denoted by p , which lies between the matrix porosity py; and blood vessel
porosity py :

0<pu<p<pv
The simplest effective model for porous media is the following, also known as the D’Arcy
Law, where the physical unknown variable is pressure p :

—div(pVp) = @ in Q
0
p—p = pg overly
52n 2)
— = 0 over I'y
on
P = 0 over I'r

The term @) represents a residual source of nutrients by diffusion through the host tissue,
it is assumed to be negligible compared to the inward blood flow g. It should be noticed
that we do not take into account what happens inside the tumor itself, considering only its
boundary I'r as an outlet.

Obviously, the pressure field depends on the porosity distribution.

We postulate that angiogenesis provides the tumor with an optimal drainage mechanism,
t.e. with a porosity such that the tumor optimal blood network minimizes the averaged

pressure drop.

The pressure drop denoted by L;(p;p) is given by the formula :

Li(p;p) =/dew+/ pgpds
Q I'y

INRIA
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3.2 A structural model for the extracellular matrix

Now, one may also consider the host surrounding tissue as a continuum mechanics medium
as in figure-2, let say a linear isotropic, nonhomogeneous, elastic material. This model is of
course a coarse approximation of the actual mechanical behavior of the living tissue ; see
the book [11] for an introduction to biomechanics. This medium is composed of healthy
and degraded tissues. The degradation could be due to established vascularization or to an
early enzyme’s action, like as the MMPs family.The elasticity tensor E lies then (in a certain
sense) between the degraded material tensor Ep, and the original -sane- extracellular matrix
tensor Epg.

Conforming to the linear elasticity classical equilibrium equations, the displacement vec-
tor u = (u;) solves

—div(Ee(u)) = b in Q
u = 0 overly 3)
Ee(u).n = 0 overly
Ee(u).n =t overIr

The strain tensor denoted by e(u) is defined with obvious notations as

().4_1 %_{_auﬂ'
eu”_Q 8$j ox;

The mechanical stress tensor is given by o(u) = Ee(u).

The body forces -such as selfweight- are denoted by b, and the normal tension which
models the stress induced by the tumor growthis denoted by t. The tissue is assumed to be
clamped to the mother vessel I'yy. A related model can be found in [2] where the authors
study the stress induced during avascular tumor growth.

The displacement vector u depends on the Elasticity tensor E. The latter itself depends
on the interaction between activators and inhibitors of tissue degradation.

A second fundamental assumption is that the host tissue is willing to keep its integrity,
by using all available factors it could control (one example is inhibitors of MMPs).

In continuum mechanics, it is usual to consider that such goal is achieved by maximizing
the stiffness, or equivalently, minimizing the compliance :

Ly(E;u) :/b.ud:c+/ t.uds
Q I'r

4 The Nash game

Any medical treatment could be seen as an interaction between two or more agents, the
illness and the healing agents. These agents are expected to have antagonistic objectives.

RR n° 5252
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Figure 2: A Structural viewpoint

Angiogenesis and anti-angiogenesis fit into this description, for which a game-theoretical
framework is well adapted.

Mathematical games are defined by the number of players and the strategy space as well as a
loss (or objective) function, for each of the players. Games differ from classical optimization,
each player’s objective depends not only on her or his own played strategy, but also on the
strategies played by all the other players. Games may be static or dynamic, meaning in the
latter sense that there is an ordering in time of the play, and leading often to emergence of
a leader and followers behavior. Readers may refer to the book by Gibbons [13].

Static games, referred to sometimes as blind or simultaneous, are designed for situa-
tions where there is no preponderance in the order of play. For simplicity, we skip here the
important notion of rationality of the players, and the fundamental assumption that this
rationality is a common knowledge. Static and dynamic games could also be with complete
or incomplete information, meaning that each player has a complete (deterministic) or an
incomplete (probabilistic) knowledge of the other’s objective, when a couple of strategies is
played.

Solutions to game problems are called equilibria. In the present study, we consider
a static with complete information modeling of the game between angiogenesis and anti-
angiogenesis. In this case, notion of equilibrium which is pertinent is the non-cooperative
Nash equilibium, see cited reference above.

Let us first briefly describe the antagonistic interaction. The illness agent, mainly composed
of the tumor itself and the proliferating endothelial cells, may use mechanisms and proteins,
generically denominated by Tumoral Angiogenic Factors or TAF -such as MMPs and VEGF-,
which favor the development of blood networks. Hence, without inhibition :

p=p(TAF) and E = E (TAF)

INRIA
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On the other hand, the healing agent may use antagonistic mechanisms and proteins,
generically termed anti-Angiogenic Factors or aAF, which interfere with TAF, trying to stop
or destroy the tumor neovascularisation. Such anti-Angiogenic Factors could be endogeneous
like as inhibitors of MMPs produced by the extracellular matrix, or inhibitors produced
and released by the endothelial and tumoral cells themselves (Interferon «, Angiostatin,
Endostatin,...) [16], or artificially introduced drugs.

Thus, in presence of inhibitors :

p = p(TAF,aAF) and E = E (TAF, aAF).

Intuitively, the porosity p increases with respect to TAF aggressive presence, and de-
creases with respect to aAF’s, while the elasticity tensor E is expected to have opposite
behavior.

4.1 Mathematical formulation of the game

It turns out that our approach naturally fits into the so called topology design framework,
amongst a large literature, one could refer to [6] [12] and the references therein.A multidis-
ciplinary topolgy design formulated within a Nash game framework can be found in [19].

As previously noticed, we consider a two-players static game of complete information.
The two players are the Tumoral Angiogenic Factors (TAF) which control density functions
of the activators, denoted by p, and anti-Angiogenic Factors (aAF) which control density
functions of the inhibitors, denoted by k.

Strategy spaces are defined as follows :

e (TAF) is equipped with a strategy space
S1 ={pel>() 0<p<l / pdz < 71|}
Q
e (aAF) is equipped with a strategy space

Sy = {keL™(Q) 0<k<1 /kdxsmﬂl}
Q

The constraints on two relative volume fractions express the fact that there is only a
limited available amount of activators and inhibitors.

A simultaneous (or blind) choice of (u; k) prompts an interaction between TAF and aAF,
which is modeled as follows :

e Interaction Law : 0 = u(1 — k)

RR n° 5252
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e Porosity : p=p(u;k) = pm + (pv — pu)P(0)
e Elasticity tensor : E = E (u;k) = Ey + (Ep — Epn)P(6)

where P(#) is the identity, an exact homogenization operator, or an interpolated SIMP-
like (Solid Isotropic Material Penalization) operator, see [7].

The interaction law is a very simple, arbitrary, choice. It states for example that the
inhibitor action is completely and immediately efficient. Realworld situations are of course
much more complex.

From other part, even if we content ourselves with linear porous media and elasticity
models, there is a need for a more accurate effective fluid and structural equations, taking
into account at least microscopic progressive degradation of the medium.

To end with the definition of the game, objective or loss functions are defined respectively
as :

Pressure Drop  ji(u; k) = L1(p;p) for player (TAF) (4)
Mechanical Compliance  jo(p; k) = L2(E; u) for player (aAF) (5)

where p is the pressure solution to the D’Arcy equation (2), and u is the displacement vector
solution to the elasticity equation (3).

Let us finally remark that even if the original game considered here is a noncoopera-
tive static game, computational requirments lead us to consider iterative solving methods.
The algorithmic version mimics then a repeated, partially non-cooperative game since the
two players exchange information about their respective partial optima during the iterative
process.

4.2 Existence of a Nash equilibrium

We consider the cases where either P(6) = 0 or P() is a restriction operator, i.e. P(f) = go Sgr(6),
with g convex and Sg a linear compact filter, cf [7] for details. We have the

Theorem 4.1 There exists a Nash equilibrium, i.e. a pair of strategies (u*, k*) € S1 x Sy
such that

w* solves  min jy(p, k*) (6)
pESL
* H - *
k* solves min Ja2(u*, k) (7

Proof. Let us first notice that the strategy spaces S; and Sy are convex and compact
for the weak-star L>° topology.

INRIA
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From one part, in case of P(f) = # and since the functions j; and jo are the respective
compliances of D’arcy and Elasticity equations, it is well known that these functions can be
expressed as supremum envelops of continuous affine functions with respect to respectively
u and to k (using a variational formulation of the equations (2) and (3)), so these functions
are convex and weak-star lower semicontinuous.

From other part, if P(f) is a restriction operator, j; and jo can still be expressed as
supremum envelops of continuous convex (but not necessarily affine) functions with respect
to respectively p and k. Convexity is preserved thanks to the linearity of the filter (and
convexity of g) and compactness of the filter implies the weak-star lower semicontinuity of
the objectives.

The assumptions are fulfilled in order to apply the Nash existence theorem,which yields
the existence of a Nash equilibrium, see Aubin [5].

Notice that the use of a restriction operator in topology design framework is generally a
necessary condition to get optimal solutions which are not a gray diffuse densities, but close
to black-or-white distributions.

For numerical experiments, we considered the minimax (or duel) problem

J2(u; k) = —j1(p; k) = —L1(p; p)

which models a game where the first player wants to minimize the pressure drop, while on
the contrary the second player wants to maximize it (or, equivalently, wants to minimize
the drainage of the network).

Such a game is also known as a zero-sum game.

5 Computational experiments

Solving a game consists mainly in finding its equilibrium or set of equilibria.

For a Nash game, due to the generally strongly nonlinear coupling between the players
strategies, one uses iterative methods. For each overall iteration, one must solve as many
as the number of players minimization problems. These minimization problems are, in a
context implying partial differential equations, of high computational cost, so a particular
attention must be paid to efficient, time saving algorithms.

We used a simple decomposition algorithm, which is well suited to coarse grained paral-
lelization of the two partial minimization problems.

Start from an initial guess s(®) = (u(®, k() € §; x S,

RR n° 5252
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(1) compute /i which solves min,eg, j1(u, k(™) ;
(2) compute (eventually in parallel) k which solves minges, jo(u(™, k) ;
(3) Set s(™ = (ji, k). Redo (1), until the sequence (s(™)) converges.

From the game theory viewpoint, this algorithm represents an iterative, partially cooper-
ative game (with partial exchange of information on the partially optimal strategies between
the players at the end of each iteration).

5.1 Approximations

The porous media equation is solved using a Triangular P1 finite element method. The
FEM solver was implemented within the Modulef library environment [20].

Triangular PO (i.e. constant over each triangle) approximation is used for the strategies
u and k ; the function 6 = u(1 — k) is then of the same nature.

The porosity is given by p(u; k) = py + (pv — pu)P(8), where P(#) = g o Sg(0) is a
restriction of 8, used to obtain more or less black-or-white acceptable solutions, see [7].

Notice that the formula 6 = u(1 — k) implies that if  is forced to take only 0 or 1 values,
then the strategies p and k are implicitely forced the same way. Numerical experiments
corroborate this observation.

The following choices are inspired from the cited reference :

ST -

Ix—yl}

o Sp(0) =D *0 , Pp(z,y) = max{0;1 — 7

Partial optimizations described in steps 1 and 2 of the algorithm are achieved by means
of a descent algorithm. We used the optimizer SCPIP written by Christian Zillober [22]. It
is based on sequential convex programming combined with the method of moving asymp-
totes [21].

The optimizer needs that the user provides the gradient information. We used a classical

97 95
adjoint state method in order to compute the respective gradients % and % [19].
w

INRIA
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5.2 Two Experiments

The Nash game between Tumoral Angiogenic Factors with a density p and anti-Angiogenic
Factors with a density k is the following :

(TAF) min, Pressure Drop
(aAF) max; Pressure Drop

We used the following physical data :

Q=107 g=+1
py =10 pu =107

These data do not correspond to particular biological parameters, the data calibration
for what may be called tumoral rheology is a still challenging problem, which must be taken
into account for the relevance of future applications.

We next present two numerical experiments. In both cases, the initial x4 and k densities
were chosen uniformly distributed, given by 1 = 71 and k& = 7, everywhere, in order to fulfill
the volume constraints.

5.2.1 Numerical Case I

The domain 2 is a rectangle. The upper side is 'y, and the lower is I'r.

Maximal allowed volume fractions are 40% for (TAF) and10% for (aAF).
The Nash overall loop converged in three iterations ; each partial optimization took around
thirty iterations (and two hundred FEM runs) to converge.

The strategies, converging to a Nash equilibrium, are presented in figures 3-4-5.

In figure-3, the first player (TAF), informed that the second player (aAF) has played
a uniform strategy, plays its optimal strategy which consists, as could be expected, in a
single channel, preserving the volume constraint, located at the central line of the rectangle
(thanks to the symmetry of the problem). At its turn, the second player, informed that the
first player has played a uniform strategy, simply puts as much anti-angiogenic as possible
around the tumor I'y. Quite unexpectedly, (aAF) does not play a uniform horizontal den-
sity, but creates a small excavation.

Then, at the second Nash iteration, the first player knows that the second one has cut
off the way to the tumor, so it starts to develop alternative channels. At the same time, the
second player knows now that the TAF has a strong presence within the excavation, which
is then filled, see figure-4.

The final iteration, yielding a numerical Nash equilibrium is shown in figure-5. The
resulting porosity distribution in figure-6 does not exhibit any arterial-tree branching struc-

RR n° 5252
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ture, but only multiple channels.

Multiple channels seem to be the best response of the activators to optimally distributed
inhibitors.
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5.2.2 Numerical Case I1
The geometry of the domain (2 is a trapezium with a circular hole, the upper side is I'y,and

the circular hole is I'r.
The maximal allowed volume fractions are 30% for (TAF) and 5% for (aAF). Notice that

with this volume fraction, (aAF) is not able to completely surround the circle I'y.

The Nash overall loop converged in 22 iterations ; strategies converging to a Nash equi-
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Figure 7: First Nash loop iteration.
Left: density p of the TAF. Right: density & of the aAF.

As observed with the first numerical experiment, during the first iteration, each player

has the information that the adverse party has played a uniform strategy, so as one may ex-
pect, the tumor opens a wide channel to the vessel, and the anti-angiogenic tries to cut off the
way from the vessel to the tumor, by surrounding the latter as much as possible, see figure-7.

Next, figure-8 shows the strategies obtained at the second iteration. The first player now

knows that the second one has surrounded the tumor, so it tries to develop alternative ways,
and creates channels, while the second player, having the information on the strategy played

by the first one (wide open channel) still keeps surrounding the tumor at places where outlet

of the wide open channel is located.
Finally, at the 22nd iteration, a numerical Nash equilibrium is reached. As shown in
figure-8, multiple channels are developed. Remark also that with a few available volume,

the best response of the inhibitors is not to surround the tumor.
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Figure 9: Final (22nd) Nash loop iteration.
Left: density p of the TAF. Right: density & of the aAF.
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Again, multiple channels is the best response of the activators to the best distribution
of inhibitors.
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Figure 10: Final (22nd) Nash loop iteration.
Porosity distribution (filtered) p.

6 Concluding Remarks

An original approach based on game theory framework was proposed to model anti-angiogenesis.
It relies on a competition between two density functions which are intended to represent re-
spectively activators and inhibitors of angiogenesis.

To illustrate our approach, we defined a porous media versus structural linear elasticity
theoretic game. The problem was formulated as a topology design static with complete
information game, for which existence of a Nash equilibrium is proved. We assumed that
activators would act to provide the tumor with an optimal drainage network, while the in-
hibitors would try to keep the structural compliance of the extracellular matrix as low as
possible (or try to minimize the drainage of the blood vessels network in the case of zero-
sum version). Computational issues were adressed, and numerical experiments related to a
zero-sum game were presented.

The numerical results clearly caracterize the multiplicity of feeding channels as an optimal
response of the activators to optimally distributed inhibitors.

This study is however based on simplified modeling and assumptions. Many improve-
ments should be considered.

First, the dynamic growth of the tumor must be taken into account, and more generally
a dynamic with incomplete information game is likely to be closer to the actual angiogenesis
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process.

Then, the fundamental assumptions on the nature of objectives targetted by angiogenesis
and anti-angiogenesis should be validated, confronting numerical results to biological data.
Another important direction of validation is related to the determination of actual rheological
data as well as models of interaction between pro and anti agiogenesis factors.
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