
HAL Id: inria-00070786
https://hal.inria.fr/inria-00070786

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvements and Study of the Accuracy of the Tasks
Duration Predictor, New Heuristics

Yves Caniou, Emmanuel Jeannot

To cite this version:
Yves Caniou, Emmanuel Jeannot. Improvements and Study of the Accuracy of the Tasks Duration
Predictor, New Heuristics. [Research Report] RR-5206, INRIA. 2004, pp.52. �inria-00070786�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50453858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00070786
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
52

06
--

F
R

+
E

N
G

ap por t
de r ech er ch e

ThŁme COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Improvements and Study of the Accuracy of the Tasks Duration

Predictor, New Heuristics

Yves Caniou — Emmanuel Jeannot

N° 5206

May 2004

Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Improvements and Study of the Accuracy of the Tasks Duration
Predictor, New Heuristics

Yves Caniou∗ , Emmanuel Jeannot

Thème COM — Systèmes communicants
Projets AlGorille

Rapport de recherche n° 5206 — May 2004 —52 pages

Abstract: The Historical Trace Manager is a task duration predictor module embedded in the agent of
a Problem Solving Environment relying on the client-agent-server. The HTM is introduced in [CJ02a]
and [CJ04]. In this paper, we explain some improvements built into the HTM and NetSolve, the Prob-
lem Soving Environment we use for our tests, in order to synchronize the HTM to the reality.

We also introduce two new scheduling heuritics relying on the HTM information: Advanced HMCT and
Minimum Length.

We study the scheduling of several scenarios, including the simultaneous submissions of DAGS and in-
dependent tasks, on a real heterogeneous platform.

The excellent behavior of the HTM validates its estimations of the duration of each task concurrently
running in the system. It can consequently predict the contention tasks may have on each other if sched-
uled and executed concurrently on the same computing resource.

Heuristics performances show the relevancy of the HTM information through the experiments: their
ability of behaving with a constant quality between two executions of the same experiment as well as the
quality of their respective scheduling choices to optimize several criteria at the same time. We also show
that heuristics which rely on minimizing the contention give generally the best results regardless the crite-
rion.

We finally compare the behavior of the heuristics previously tested in [CJ04] to the one observed here
with more precise information on the global system state due to the synchronization mechanisms. Sur-
prisingly, in the time-shared model, it does not necessarily improve the job repartition among the servers,
performances can consequently decrease and the utilization of the fastest servers can become critical.

Key-words: time-shared resources, dynamic scheduling heuristics, historical trace manager, MCT, client-
agent-server

∗ This work is partially supported by the Région Lorraine, the french ministry of research ACI GRID

Amélioration et Étude de la précision du module de prédiction de la
durée des tâches, Nouvelles heuristiques

Résumé : Nous revenons tout d’abord sur le gestionnaire de l’historique des tâches (HTM), présenté pré-
cédemment dans [CJ02a] et [CJ04], auquel des améliorations ont été apportées. Il est maintenant capable
de se synchroniser avec ce qui est effectivement effectué sur chacun des serveurs.

Nous présentons aussi deux nouvelles heuristiques d’ordonnancement : Advanced HMCT et Minimum
Length.

Nous étudions l’ordonnancement sur une même plate-forme hétérogène de plusieurs types de scénarios,
comme la soumission concurrente d’applications sujettes à des contraintes de précédence concurrentes et
de tâches indépendantes.

Nous montrons que la qualité des estimations du HTM permet de prendre correctement en compte le
modèle temps partagé et de déduire le délai sur la terminaison des tâches occasionné par l’affectation et
l’exécution concurrente de plusieurs tâches sur un même serveur de calcul.

Les observations sur les performances des différentes heuristiques montrent l’intérêt du HTM dans la
prise de décision de l’ordonnanceur ainsi que dans la constance des résultats d’une exécution à l’autre
d’une même expérience. De plus, nous observons que les heuristiques dont l’objectif prends en compte la
minimisation de délais donnent de meilleures performances sur plusieurs critères comme le makespan ou
le temps de réponse moyen par exemple.

Enfin, nous comparons les performances des heuristiques que nous avions précédemment testées dans [CJ04]
à celles obtenues ici avec des informations plus précises sur l’état global du système. Nous expliquons que
dans le cadre des exécutions temps-partagé, une meilleure précision n’apporte pas forcément une meilleure
répartition des tâches et que l’utilisation des ressources les plus rapides peut devenir critique.

Mots-clés : ressources temps partagées, heuristiques dynamiques d’ordonnancement, gestionnaire d’historique
des tâches, MCT, client-agent-serveur

1. Introduction

The historical Trace Manager is a task duration predictor embedded in the agent of a Problem Solving
Environment which is built on the client-agent-server model. We know from the experiments undertaken
in [CJ04] that it lets heuristics consider other criteria than the unique completion date of the last request
entering the system. Indeed, it takes into account all the previous scheduling decisions done until the new
submission to give according information to the scheduler.

Several heuristics have been designed in [CJ02a] in order to optimize at the same time the finishing date
of the execution of the new request in the system as well as to give a better quality of service to still run-
ning tasks, for example the average response time. Indeed, running tasks can suffer from the delay the
affectation of the new task can perform. Our heuristics rely on the information given by the HTM at each
submission date. We have examined their performances on several criteria against Minimum Completion
Time, a scheduling heuristic widely used in common Problem Sovling Environment like NetSolve or Ninf.
The research rapport [CJ04] contains the experimentation procedural and the results obtained with real
world experimentations.

Then, the main objective of the HTM is to let take into account other criteria in the scheduling decisions.
If this does not imply 100% accurate estimations, a minimum of accuracy is naturally necessary to render
the system state and a priori the most accurate the estimation is, the best the scheduling must be.

Thus, we have improved the HTM and the Environment. We explain in Section 2 how it is synchronizes
to the reality. We present two new heuristics in Section 3. Experiments modalities are introduced in Sec-
tion 4. We study the accuracy of the HTM in Section 5. We then compare the performances of each heuristics
in Section 6 and, in Section 7, we compare their actual performances to the ones observed in [CJ04] when
estimations were less precise. After exposing our future work in Section 8, we finally conclude in Section 9.

2. HTM Improvement: Synchronization to the Reality

The HTM, firsly developped for [CJ02b] and [CJ02a] for simulation studies and coded in NetSolve for
real experimentations ([CJ04] and [CJ03]), has some new features to be synchronized to the real Problem
Solving Environment state. We expect them to improve even further the accuracy that the HTM used to
give.

The HTM is an environment simulator. Both the HTM and the scheduler, with which it cooperates, are
modules embedded in the agent. It focus on simulating what is performed on each component of the sys-
tem in order to be able to answer sharp questions to the scheduler: information are used by the heuristic
which does not only rely on the completion date of the new task but also on the duration of each still run-
ning one.

It uses the time-shared model to simulate the environment: all networks links, which are consequently
assumed in our work to be LAN, and servers can use their resource capacities equally between the works
they have to perform. Hence, a server that computes n tasks at a given instant gives 1/n of CPU time to
each of them. Further information can be obtained in previously mentionnned papers.

We have implemented some new features in the HTM, and have in consequence changed the code of
NetSolve in order to build some mechanisms on which the HTM has to rely: when a client requests the
agent for a job, it is given back a ranked list of possible servers like before but also a global ID for its re-
quest. This ID is transfered with the problem data to the server and when the task finishes, the ID is sent

RR n° 5206

back in a completion message to the agent. The agent uses it in two ways: it firstly testifies that the task
has been effectively scheduled on the previously proposed server, and secondly this information is used to
correct what has been simulated on the HTM and improve the quality of predictions (correct them in the
former case). Indeed, all future finishing dates are re-computed and the heuristic uses those a priori more
precise information for later scheduling.

The ID assignation and return mechanisms are also used in VisPerf 1, a soft utility to visualize what is
performed on the environment controlled by NetSolve. This ID, in addition to certify that the client has
contacted the server according to the scheduling decision, can also be used to correct the HTM data if this is
not the case, e.g. if another server has executed the task. However, this particular case is not considered in
this paper but we will study the response time (time to re-establish a good accuracy) and the performance
of the HTM facing that kind of situation in future works.

3. New Heuristics

In addition to the three heuristics HMCT, MP and MSF that we have already presented and whose per-
formances on real platforms are studied in [CJ04], we have designed and implemented two new ones:
AHMCT and ML.

The mechanism is the same than for the previous ones: when a new request arrives, the HTM simulates
the execution of the task on each server. Our heuristics use the HTM information, hence consider the
perturbation that tasks induce on each other and compute the ‘best’ server given an objective which is
explained in the corresponding subsection.

1 For each new task t
2 For each server j that can resolve the new submitted problem
3 Ask the HTM to compute Mj the makespan on server j, if t is executed on j
4 Map task t to server j0 that minimizes Mj0

5 Tell the HTM that task t is allocated to server j0

Figure 1. AHMCT algorithm

3.1. Advanced Historical Minimum Completion Time: AHMCT

AHMCT is Minimum Completion Time (MCT) like it would have normally been in the time-shared
model. Indeed, in the space-shared model, the completion date of the new request is also the makespan
(maximum task completion date) on the server.

When a new task arrives, the HTM simulates the mapping of the task on each server. Therefore, the
scheduler has an estimation of each still running task finishing date on each server before and after a pos-
sible execution of the task on the server.

AHMCT would normally computes each ‘global’ makespan (one per possible affectation) as the max-
imum between the makespan on the server where the task is simulated and the makespan on the other

1http://icl.cs.utk.edu/netsolvedev/applications/visperf.html

INRIA

servers. Then it chooses the server leading to a minimum global makespan. But theses computations can
be summarized by the n − 1 comparisons, if n is the number of servers, between the makespan on each
server after the simulation of the new request (see the algorithm in Fig. 1). Indeed, if we adopt the fol-
lowing notation: m′

k is the makespan on each server k before the simulation of the new task. We note
mi,j the makespan on the server j after the simulation of the task on server i. In that case, we have for all
j 6= i, mi,j = m′

j because the makespan is unchanged on the other servers.
With these notations, AHMCT chooses the server s0 = minservers maxserveri ms,i.

Then s0 = minservers max(maxserveri6=s ms,i, ms,s) e.g. s0 = minservers max(maxserveri6=s m′
i, ms,s). But

mi,i > mi then s0 = minservers ms,s.

The goal of AHMCT is the same as MCT’s: it expects to minimize the makespan of the application by
minimizing the makespan obtained after each new task.

The main drawback of this heuristic is that it tends to overload the fastest servers, which has two ef-
fects: unnecessarily delay running tasks completion date and servers may collapse, mainly due to a lack of
memory or to the incapability to handle the throughput of requests.

3.2. Minimum Length: ML

ML was designed jointly to MSF: it aims to minimize the left quantity of time that all the concurrent
running tasks require and that the server has to process. Therefore, after the new task is simulated on each
server, it chooses the server that minimizes the sum of the left amount of time of all running tasks (see
Fig. 2).

The main objective is to reduce the perturbation that tasks have on each other, while conducting a
makespan policy: perturbations also induce the left amount of time (equal for it to the total amount of
time) of the new task which is taken into account in the value to minimize.

1 For each new task t
2 For each server j that can resolve the new submitted problem
3 Ask the HTM to compute Pj =

∑
tasks i Ti − at

4 Map task t to server j0 such as Pj0 = minj Pj

5 Tell the HTM that task t is allocated to server j0

Figure 2. ML algorithm

4. Experiments Modalities

The HTM and all heuristics, on which information are available in [CJ02a], as well as improvements and
new heuristics have been coded in NetSolve for the following test suite.

NetSolve [CD96] is a Problem Solving Environment (PSE) built on top of a GridRPC architecture in-
stantiating the emerging standard promoted by the global grid forum (GGF)2. A GridRPC architecture is
heterogeneous and composed of three parts: a set of clients, a set of servers and an agent (also called a

2http://www.ggf.org

RR n° 5206

http://www.ggf.org

Type Machine Processor Speed Memory Swap System
Server spinnaker xeon 2 GHz 1 Go 2 Go Linux

artimon pentium IV 1.7 GHz 512 Mo 1024 Mo Linux
soyotte sparc Ultra-1 64 Mo 188 Mo SunOS
fonck sparc Ultra-1 64 Mo 188 Mo SunOS

Agent xrousse pentium II bipro 400 MHz 512 Mo 512 Mo Linux
Client zanzibar pentium III 550 MHz 256 Mo 500 Mo Linux

Table 1. Resources composing the testing environment

server task type 1 task type 2 task type 3
spinnaker 15 30 43
artimon 17 33.5 49.5
soyotte 128 256 382.5
fonck 127.5 254 380.9

Table 2. Duration of the
tasks per type on the un-
loaded servers

registry). The agent has in charge to map a client request to a server.

All results that are presented in this paper are issued from experiments conducted on the same set of re-
sources, whose characterics are given in Table 1. We consider the heterogeneity coefficient of the platform equal
here to 8.9. It is the maximum on all servers and on all tasks of the division of the maximum computing
time by the minimum computing time for the same task, e.g. maxtaski

maxservers di,s

minservers di,s
.

Experiments involve three types of tasks, whose resources requirements are given in Table 2. Tasks are
computing intensive and do not need memory. Several submission scenarios have been examined. Sce-
narios (a) to (i) were performed before the new features exposed in Section 2, e.g the task ID assignment
and the synchronization of the HTM to the reality. Heuristics performances for these scenarios as well as
more information on the experimental procedures and practical details can be found in [CJ04]. Scenarios
(a’) to (i’) are the same than the ones above, submitted to the improved HTM. A new scenario (j’) is also
considered to evaluate the heuristics facing a lower throughput of jobs and let do some remarks about the
‘thoughput’ and ‘server load’ notions. Table 3 gives a summary on the characteristics of each scenario, like
the number of experiments undertaken.

Note that in order to validate each experiment in a scenario, several runs have been performed. We
have already seen in [CJ04] that two runs could differ from each other as soon as a graph is involved: tasks
durations differ and so the submissions date of daughter tasks. With the synchronization mecanisms that
let register the real completion date of a task, submission dates differs as well as the recorded duration,
then even for independent tasks submissions, two runs would likely differ from each other. We have con-
sequently undertaken a number of runs of each experiment upon which average results should not change
anymore.

5. HTM Accuracy: Results

To evaluate the HTM (Section 5), we have preferred to study its accuracy along all the experiments. In-
deed, the submission of some tasks to validate its accuracy would only give an impression but not a real
basement for its use: as we’ll see, its utilization leads to consider the real capacity of the resources, thus
because heuristics have different tendencies like to load the fastest servers first, the model can be treated
roughly.

We present in this section the results on the accuracy of the HTM obtained from the experiments ordered
by scenario. They are presented with graphs and tables: tables give the average percentage error made
during the experiment and the standard deviation per server. The value depends greatly on the number of
tasks that has been assigned to the server, and on the perturbations they had on each other. Thus, graphs
present in the x axis the submission date of the task and two information in the y axis: the ratio of the

INRIA

Scenario Application(s) Independent Tasks Experiment

nbclients width x depth nbtasks µ (sec) nbseeds x nbrun total nbtasks
(a) 500 independent tasks - - 500 20, 17 and 15 3 x 3 , 3 x 5 500
(b) 1D-mesh 10 1x50 - - 4 x 6 500
(c) 1D-mesh 10 1x variable - - 4 x 6 500
(d) 1D-mesh + 250 independent tasks 5 1x50 250 20 4 x 6 500
(e) stencil (task 1) 1 10x50 - - 1 x 6 500
(f) stencil (task 3) 1 10x50 - - 1 x 6 500
(g) stencil + 174 independent tasks 1 10x25 174 28 2 x 3 424
(h) stencil + 86 independent tasks 1 10x25 86 40 4 x 6 336
(i) stencil + 86 independent tasks 1 5x25 86 25 4 x 6 211

Scenario Application(s) Independent Tasks Experiment

(a’) 500 independent wastecpu tasks - - 500 20, 17 and 15 3 x 1 500
(d’) 1D-mesh + 250 independent tasks 5 1x50 250 20 3 x 1 500
(e’) stencil (task 1) 1 10x50 - - 1 x 6 500
(h’) stencil + 86 independent tasks 1 10x25 86 40 3 x 1 424
(i’) stencil + 86 independent tasks 1 5x25 86 25 3 x 3 211
(j’) 1D-mesh 2 1x50 253 25 3 x 3 353

Table 3. Scenarios, modalities and number of experiments

real flow divided by the flow estimated by the HTM and the real number of tasks that have impacted the
considered task. If precised, the graph may be in log scale. A zoom of the ratio is generally provided: it
gives the percentage of accuracy of the prediction on the flow for each task. Graphs are only given for the
fastest servers spinnaker and artimon because regardless the heuristics, no task or a few are scheduled on
the SUN servers: the accuracy is then nearly 100%. Except when mentionned otherwise and because the
server where the same task has been mapped may change between two runs, graphs are the result of one
representative run of one experiment of the scenario.

Two methods have been used to compute the different graphs, one for the graphs before the global ID
assignment and one for after this improvement:

• Because no information were available before the implementation of the global ID assignment to
recognize which task have finished, it was difficult to establish a connection between the real and
the HTM walues. Therefore, values for real flow have been taken from the recorded entries on the
client side. Then, the real flow is the flow observed from the client point of view. The HTM flow
estimation is the one made at the submission of the task, because in that form the HTM considers
himself to simulate the exact reality. Thus, the evaluation done at the submission of the task is never
re-evaluated.

• Because of the global ID assignation, the connection between the HTM values and the real observed
dates is possible. A parsing of the agent log file gives the real submission date and completion date
of a task. Then, the HTM computes and records the duration of each task that it would have required
on the same but unloaded server. Indeed, the completion of a previous submitted task is used to
re-evaluate the estimation of the completion of each task on the server. The HTM flow estimation is
taken from the last estimation before the completion of the task (at which moment, the estimation of
the completion date is exactly the real one). With this method, only the agent log file is parsed.

RR n° 5206

As mentionned above, the ratio is the division of the real flow by the HTM estimation. In consequence,
when inferior to 1, the estimation gives a longer flow than the real one. The immediate scheduling conse-
quence is that the heuristic assumes that the server is more loaded than it really is and thus take scheduling
decisions accordingly: it sub-utilizes the servers.

In the following subsections, we present when possible the accuracy observed for each scenarios with
and without the HTM improvements ordered by heuristic. The goal is twofold: it firstly attempts to give
the evolution of the accuracy with this new feature and the heuritic. Secondly, one can then compare the
behavior of the same heuristic facing the same kind of experiment with a priori more accurate information
on the system state and the consequences that it implies.

5.1. Scenario (a) and (a’): Submission of Independent Tasks

Values used in figures that are given in this subsection for Scenario (a), e.g independent tasks submit-
ted to the HTM before the synchronization mechanisms, are the mean of a given number of runs of the
same experiment (see Table 3). This is only possible because the scheduling decisions, if dynamic, are
taken accordingly to the system state. But submissions are exactly the same between two runs of the same
experiment (tasks are submitted at the same time) then chosen servers are the same from one run to another.

This is not the case anymore for scenario (a’) submitted to the improved HTM. Real tasks completion
time are now taken into account to compute information at a new request arrival and tasks have not ex-
actly the same flow. Thus decisions are not identical between two runs and graphs result of one experiment.

We give in the graphs of Figures 3, 5 and 7 the accuracy observed for Scenario (a) at different rate sched-
uled by respectively HMCT, MP and MSF on spinnaker and artimon. When utilized, the accuracy on fonck
and soyotte is more than 98% accurate (if any, there are only small perturbations involving no more than 2
ou 3 tasks on these servers). Graphs given in Figures 4, 6 and 8 are results of Scenario (a’) scheduled by the
same heuristics. For each heuristic, it is interesting to note the accuracy obtained in regard to the rate of the
incoming jobs, as well as the number of tasks that have been scheduled to the servers.

5.1.1 HMCT

HMCT never uses the SUN servers fonck and soyotte before and after the HTM improvement, even at a
rate equal to 15 second where it cannot handle the throughput of incoming jobs: at a given moment, the
fastest servers refuse one or more job.

One can see from the graphs in Figure 3 that at rate µ = 20 seconds, most of the task flows are sub-
estimated: the HTM flow estimation is longer than the real one. The server is able to process a greater
quantity of work than the one modelized by the time-shared model. Moreover, Table 4 shows that an error
of 3.7% is done in average on spinnaker for Scenario (a).

The synchronization mechanisms induces a great improvement in the accuracy and consequently in the
resource management: at µ = 17 seconds, the HTM has a lower error regardless the server than before at
µ = 20 seconds. Moreover, the number of tasks scheduled on the fastest servers have increased and graphs
in Figure 4, showing the accuracy of an experiment at rate µ = 17 seconds, shows that more than 10 tasks
have interfered with another one during its execution on the fastest servers. Although the great variation
in the number of interfering tasks, the standard deviation is very small (see Table 5.

INRIA

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
re

al
 fl

ow
 d

iv
id

ed
 b

y
H

T
M

 fl
ow

 e
st

im
at

io
n

time in seconds

ratio

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

re
al

 fl
ow

 d
iv

id
ed

 b
y

H
T

M
 fl

ow
 e

st
im

at
io

n

time in seconds

ratio

Figure 3. Accuracy of the HTM during scenario (a), µ = 20 seconds, scheduled with HMCT, on
spinnaker on the top and artimon on the bottom

RR n° 5206

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
re

al
 fl

ow
 d

iv
id

ed
 b

y
pr

ed
ic

te
d

flo
w

time in seconds

ratio

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

Figure 4. Accuracy of the HTM during scenario (a’), µ = 17 seconds, scheduled with HMCT, on
spinnaker on the top and artimon on the bottom

INRIA

5.1.2 MP

We present in Figures 5 and 6 graphs of an experiment composed of independent tasks whose submission
rate is µ = 17 seconds. Again, we can establish the accuracy of the HTM and the consequent change in
behavior of the heuristic: more tasks are assigned to the fastest servers as the average error is minimized.
One can read in Tables 4 and 5 that for MP, and the consequent number of interfering tasks, the gain in
precision is much more in the standard deviation than in the average error.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

re
al

 fl
ow

 d
iv

id
ed

 b
y

H
T

M
 fl

ow
 e

st
im

at
io

n

time in seconds

ratio

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

re
al

 fl
ow

 d
iv

id
ed

 b
y

H
T

M
 fl

ow
 e

st
im

at
io

n

time in seconds

ratio

Figure 5. Accuracy of the HTM during scenario (a), µ = 17 seconds, scheduled with MP, on
spinnaker on the top and artimon on the bottom

RR n° 5206

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
re

al
 fl

ow
 d

iv
id

ed
 b

y
pr

ed
ic

te
d

flo
w

time in seconds

ratio

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

Figure 6. Accuracy of the HTM during scenario (a), µ = 17 seconds, scheduled with MP, on
spinnaker on the top and artimon on the bottom

INRIA

5.1.3 MSF

Graphs in Figures 7 and 8 confirm all previous commentaries and their relevancy are more on the behavior
of MSF: they express results of the same experiment, whose tasks are submitted at a rate equal to µ = 20
seconds, submitted to a HTM that has not and has synchronization mechanisms. In the last scheme, the
HTM has an average percentage error of 2.19% with a standard deviation of 2.10% on spinnaker, and 1.67%
and 1.14% respectively on artimon.

Tables 4 and 5 show that MSF has at a rate µ = 15 seconds information that have half the percentage of
error that it had before at a rate µ = 17 seconds !

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

re
al

 fl
ow

 d
iv

id
ed

 b
y

H
T

M
 fl

ow
 e

st
im

at
io

n

time in seconds

ratio

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

re
al

 fl
ow

 d
iv

id
ed

 b
y

H
T

M
 fl

ow
 e

st
im

at
io

n

time in seconds

ratio

Figure 7. Accuracy of the HTM during scenario (a) scheduled with MSF, on spinnaker on the
top and artimon on the bottom

RR n° 5206

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
re

al
 fl

ow
 d

iv
id

ed
 b

y
pr

ed
ic

te
d

flo
w

time in seconds

ratio

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

Figure 8. Accuracy of the HTM during scenario (a) scheduled with MSF, on spinnaker on the
top and artimon on the bottom

INRIA

5.1.4 Summary

As we could expect, the HTM provides now much better quality estimations than it used to be. The average
percentage error is lower even though the number of tasks that interfer with one another is greater. This
last issue also shows that the heuristics use now the resources at nearly their real capacity.

Indeed, one can see in Figure 9 that a high rate can decrease the HTM accuracy because of the too many
interferences (in fact, one must also note that this experiment is one of the rare cases where HMCT has been
able to handle the throughput of the jobs at that rate). This trend that we can also note in the next section
will be explained later. One must note that the HTM always underestimates the ability of the server to
execute the tasks. As it is plainly presented in Graphs 8 and 4 as well as in Table 5, this is not a priori the
case anymore and the average error like the standard deviation is very small, even at a high rate.

Despite of a lesser precision, our heuristics gave really good results. It is well known that a better accu-
racy leads to better scheduling: we will see further if they achieve any gain in comparision to the results
they used to perform.

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 0 1000 2000 3000 4000 5000 6000 7000 8000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

Figure 9. Scenario (a), µ = 15 seconds, tasks scheduled by HMCT on artimon

RR n° 5206

HMCT MP MSF
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker 3.96 (5.40) 4.21 (6.57) 2.97 (3.91) 3.71 1.21 (1.84) 1.03 (1.32) 1.01 (1.59) 1.08 3.00 (3.82) 3.70 (6.05) 2.35 (2.72) 3.02

artimon 1.59 (2.10) 2.12 (2.76) 1.53 (2.35) 1.75 0.81 (1.37) 0.82 (1.29) 0.60 (0.94) 0.74 1.85 (2.26) 2.14 (2.43) 1.61 (2.15) 1.87

soyotte 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.25 (0.66) 0.14 (0.21) 0.15 (0.26) 0.18 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00

fonck 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.11 (0.16) 0.06 (0.09) 0.25 (0.14) 0.14 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00

HMCT MP MSF
seed1 seed2 seed3 seed4 Avg seed1 seed2 seed3 seed4 Avg seed1 seed2 seed3 seed4 Avg

spinnaker 15.45 (15.3) 19.90 (20.6) 9.03 (10.6) 11.22 (12.0) 13.9 3.40 (5.4) 3.43 (5.8) 2.31 (4.2) 3.18 (6.0) 3.1 14.30 (15.4) 15.86 (18.2) 7.95 (10.5) 8.52 (9.5) 11.7

artimon 9.49 (10.6) 17.64 (18.8) 6.57 (8.5) 5.74 (6.4) 9.9 2.19 (4.0) 2.49 (3.0) 1.76 (2.6) 7.83 (24.8) 3.6 9.34 (10.4) 11.92 (13.9) 7.02 (9.1) 6.82 (7.7) 8.8

soyotte 0.00 (0.0) 0.00 (0.0) 0.00 (0.00) 0.00 (0.00) 0.0 0.26 (0.2) 0.25 (0.4) 0.23 (0.3) 0.22 (0.2) 0.2 0.00 (0.0) 1.27 (0.0) 0.00 (0.0) 0.00 (0.0) 0.3

fonck 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.00 (0.0) 0.0 0.31 (0.3) 0.24 (0.3) 0.23 (0.3) 0.28 (0.3) 0.3 0.75 (0.9) 0.72 (0.8) 1.67 (0.0) 0.00 (0.0) 0.8

Table 4. Scenario (a), µ = 20 and µ = 17 seconds: percentage of error

IN
R

IA

HMCT MP MSF
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker 3.87 (3.58) 3.05 (3.05) 2.63 (2.82) 3.18 1.93 (2.92) 1.63 (1.89) 2.68 (2.63) 2.08 2.74 (2.81) 2.64 (3.73) 3.50 (3.60) 2.96

artimon 1.63 (1.02) 1.70 (1.16) 1.69 (1.06) 1.67 1.74 (2.15) 1.62 (1.07) 1.70 (1.08) 1.69 1.53 (1.12) 1.79 (1.09) 1.65 (1.00) 1.66

soyotte 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.17 (0.14) 0.20 (0.26) 0.00 (0.00) 0.12 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00

fonck 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.23 (0.25) 0.17 (0.18) 0.00 (0.00) 0.13 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00

AHMCT ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker 2.98 (3.04) 2.75 (2.97) 2.43 (2.32) 2.72 2.49 (2.46) 2.18 (2.20) 0.00 (0.00) 1.56

artimon 1.71 (1.16) 1.71 (1.04) 1.60 (0.98) 1.67 1.50 (0.99) 1.61 (0.91) 0.00 (0.00) 1.04

soyotte 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00

fonck 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 1.16 (0.00) 0.00 (0.00) 0.00 (0.00) 0.39

HMCT MP MSF
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker 2.75 (2.11) 3.09 (2.45) 2.66 (2.12) 2.83 2.04 (2.07) 2.09 (1.85) 2.08 (1.82) 2.07 2.81 (2.38) 3.06 (2.30) 2.69 (1.92) 2.85

artimon 1.01 (0.90) 1.45 (2.03) 1.31 (1.03) 1.26 1.13 (0.95) 1.11 (0.90) 1.25 (0.93) 1.16 2.26 (4.57) 1.14 (0.99) 1.23 (0.98) 1.54

soyotte 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.25 (0.61) 0.22 (0.37) 0.24 (0.45) 0.24 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00

fonck 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.18 (0.18) 0.15 (0.06) 0.24 (0.30) 0.19 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00

AHMCT ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker 2.82 (2.30) 2.92 (2.23) 2.56 (1.85) 2.77 2.67 (2.08) 2.87 (2.37) 2.43 (1.92) 2.66

artimon 1.36 (2.03) 1.43 (1.84) 1.30 (0.93) 1.36 1.15 (1.02) 1.09 (0.86) 1.23 (0.95) 1.16

soyotte 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.96 (nan) 0.98 (0.07) 0.96 (0.03) 0.97

fonck 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.34 (0.43) 0.34 (0.41) 1.15 (1.70) 0.61

MP MSF ML
seed1 Avg seed1 Avg seed1 Avg

spinnaker 2.76 (2.18) 2.76 6.50 (6.02) 6.50 3.06 (2.01) 3.06

artimon 0.98 (0.80) 0.98 2.68 (4.20) 2.68 1.13 (1.04) 1.13

soyotte 0.34 (0.49) 0.34 0.36 (0.46) 0.36 0.42 (0.35) 0.42

fonck 0.39 (0.49) 0.39 0.63 (0.78) 0.63 0.36 (0.48) 0.36

Table 5. Scenario (a’), µ = 20, µ = 17 and µ = 15 seconds: percentage of error

RR n° 5206

5.2. Scenarios Involving the Submission of DAGS

We have found that problems could arise if DAGS were involved in the submission: indeed, Figure 10
shows the results observed for an experiment consisting in the submission of a 1D-mesh application by six
different cients in parallel with a log scale. This is a case where the agent faces a low/medium task rate but
the nature itself of the application conducts to some errors.

We explain in Figure 11 why there exists some cases where the precision of the HTM can degrade with
perturbations on the server. On can observe the submission of four tasks to a server. On the bottom where
the real execution is depicted, we can see that there is no perturbation on the server because tasks begin
to run after the completion of the previously assigned task. Nevertheless, on the top, we see that without
synchronization of the HTM to the reality, the task 1 finishes at a date computed with the average duration
of the task (obtained from benchmark). In consequence, the HTM notes a perturbation between task 1 and
task 2, thus delays the completion time of both tasks. There are two consequences: the error observed on
the ratio of the flow of both tasks is slightly worst. Of course, if this schema repeats itself, like for task 2 and
task 3 and then task 3 and task 4, the error grows. The synchronization mechanisms are implanted to vouch
for those cases to be correctly undertaken and consequently for the accuracy quality of the estimations to
be constant over time and load.

 0.111111

 0.333333

 1

 3

 9

 0 1000 2000 3000 4000 5000 6000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

Figure 10. Ratio of the HTM estimated duration and the real post-mortem duration on a 6
1D-mesh applications submission scheduled with HMCT

We present in Figures 12, 13, 14, and 15 the accuracy of the HTM estimations during the execution of
some experiments instantiating a scenario of Table 3, scheduled by different heuristics. The leftmost graphs
are in a log 2 scale to better render the variation of the ratio. These let understand the variation of the accu-
racy of a prediction in fonction of the interfered tasks. Tables 6, 7, 8 and 9 give the corresponding average
percentage of error done on each task flow estimation as well as the standard deviation, per heuristic and
servers.

We can observe from Figure 12 that the error grows as the number of tasks that interfere with one another
increases. Indeed, the zoom plot of both spinnaker and artimon presents a curve that has the inverse
behavior than the number of impacted tasks: the servers behave better than the time-shared model tells.
The errors grows to a maximum of 23% for a task that has suffered the interference of 18 tasks during its
execution.

INRIA

error1 error2

Tasks

Perturbation due to Task 3

Perturbation due to Task 2

Perturbation due to Task 4

Task1

Task2

Task3

Task4

Task1

Task2

Task3

Task4

error3

Reality

HTM

Tasks
Time

Time

Figure 11. Difference between simulation and reality at high rate

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

Figure 12. Accuracy of the HTM during scenario (d’), µ = 20 seconds, scheduled with HMCT, on
spinnaker on the top and artimon on the bottom

RR n° 5206

Although this too high number of tasks that must question the integrity of the heuristic, we can read in
Table 6 that the HTM achieves a respectable 5.5% of error in average with a standard deviation equal to
5 (experiment generated with the first seed). Nonetheless, no experiments generated with the second and
third seeds have correctly executed: a server, too much loaded, refused some job.

Figure 13 presents an experiment of Scenario (e’), e.g. the submission of a stencil application, scheduled
by MSF. Firstly, we note that the plot of arrival dates is more discret than in any of the other experiment:
tasks are submitted by groups. Secondly we note the number of tasks interfering with one another which
is always very high on spinnaker and on artimon. Nonetheless, the accuracy of the HTM is great during all
the experiment. In consequence, it predicts durations 96.6% accurate in average, with a standard deviation
of 3.4 (see Table 7).

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500 4000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 500 1000 1500 2000 2500 3000 3500 4000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000 2500 3000 3500 4000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 500 1000 1500 2000 2500 3000 3500 4000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

Figure 13. Accuracy of the HTM during scenario (e’), scheduled with MSF, on spinnaker on the
top and artimon on the bottom

One must note that HMCT has not been able to schedule Scenario (h’) generated with the first and the
third seed. AHMCT didn’t even achieve this performance: for both of them, spinnaker refused a request
because it was overloaded. In consequence, AHMCT does not appear in Table 8.

Arrival dates are less discret than previoulsy, mainly due to the submission of independent tasks in
parallel of the stencil application. One can see that even with the high number of interferences for each
task, the HTM achieves a respectable accuracy on spinnaker, and a quasi-perfect one on artimon. The

INRIA

average error is 4.6% with a standard deviation of 4.3 on spinnaker and only of 2% and 1.7 respectively on
artimon. The agent has then a really good snapshot of the system when the scheduler computes its choice.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500 4000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 500 1000 1500 2000 2500 3000 3500 4000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500 3000 3500

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 500 1000 1500 2000 2500 3000 3500

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

Figure 14. Accuracy of the HTM during scenario (h’), µ = 40 seconds, scheduled with ML, on
spinnaker on the top and artimon on the bottom

The same commentary can be done on Scenario (j’) of which we give an experiment scheduled by MSF
in Figure 15. The average error and the standard deviation are very small (under 2.5%).

This finishes to show that regardless the scenario, the HTM gives at any time accurate estimations of each
task in the system, even when there is a high number of interferences between tasks and a high variation
of instantaneous running tasks. We have shown that both events affect the accuracy. As they are heuristic
dependent, the choice of the heuristic to implement in the agent must also rely on these information to be
decided. Nevertheless, Tables 6, 7, 8 and 9 summarize the average error on the estimation of each task per
heuristic and per server. If a mean of all the values would not have any sens, we can highlight that:
the error is the highest on spinnaker (there are more interferences due to a greater number of tasks mapped
because of the heterogeneity of the platform and for performance reasons) ; this average error is usually
under 3-5% which is a really good score. Moreover, if we had to order the heuristics on the basis of these
tables, ML then MP then MSF would be the best ones. The next section will examine their respective
performances.

RR n° 5206

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 1000 2000 3000 4000 5000 6000 7000
re

al
 fl

ow
 d

iv
id

ed
 b

y
pr

ed
ic

te
d

flo
w

time in seconds

ratio

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 1000 2000 3000 4000 5000 6000 7000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

Figure 15. Accuracy of the HTM during scenario (j’), µ = 20 seconds, scheduled with MSF, on
spinnaker on the top and artimon on the bottom

INRIA

HMCT MP MSF
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker 5.48 (5.06) - - < 5.48 > 3.52 (4.18) (4.94) 3.51 (4.40) 3.8 5.74 (5.71) 7.47 (6.54) 7.24 (6.77) 6.82

artimon 3.95 (5.83) - - < 3.95 > 1.81 (3.89) 2.03 (3.14) 2.52 (3.89) 2.12 2.07 (3.25) 3.61 (5.37) 3.54 (4.94) 3.07

soyotte 0.00 (0.00) - - < 0 > 1.46 (1.66) 0.83 (0.97) 1.08 (0.98) 1.12 0.32 (0.42) 0.32 (0.43) 0.57 (0.61) 0.40

fonck 0.00 (0.00) - - < 0 > 0.21 (0.16) 0.28 (0.28) 2.12 (1.88) 0.87 1.02 (1.75) 0.18 (0.30) 0.53 (0.50) 0.58

AHMCT ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker 4.77 (4.57) 7.88 (6.32) - < 6.32 > 3.27 (2.57) 4.18 (4.20) 4.92 (5.21) 4.12

artimon 3.53 (5.11) 5.16 (6.27) - < 4.34 > 1.07 (0.93) 2.11 (3.95) 2.06 (2.80) 1.75

soyotte 0.37 (0.5) 0.39 (0.45) - < 0.38 > 0.19 (0.12) 0.54 (0.83) 0.78 (0.77) 0.50

fonck 0.55 (0.59) 0.66 (0.74) - < 0.60 > 0.30 (0.37) 0.29 (0.44) 0.38 (0.28) 0.32

Table 6. Scenario (d’): percentage of error

HMCT MP MSF AHMCT ML
seed1 Avg seed1 Avg seed1 Avg seed1 Avg seed1 Avg

spinnaker 2.79 (3.15) 2.79 1.38 (1.11) 1.38 3.40 (3.37) 3.40 2.76 (4.12) 2.76 3.17 (3.05) 3.17

artimon 2.66 (2.52) 2.66 2.77 (0.84) 2.77 2.44 (1.27) 2.44 2.28 (2.16) 2.28 2.48 (1.02) 2.48

soyotte 0.00 (0.00) 0.00 0.35 (0.49) 0.35 0.15 (0.14) 0.15 0.00 (0.00) 0.00 0.23 (0.20) 0.23

fonck 0.00 (0.00) 0.00 0.22 (0.18) 0.22 0.35 (0.41) 0.35 0.00 (0.00) 0.00 0.26 (0.35) 0.26

Table 7. Scenario (e’): Percentage of Error

HMCT MP MSF ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker - 9.32 (7.75) - 9.32 4.80 (4.71) 5.57 (6.25) 6.47 (7.14) 5.61 10.81 (7.72) 10.70 (8.75) 11.85 (8.33) 11.12 4.60 (4.27) 3.86 (3.01) 4.24 (3.82) 4.23

artimon - 8.19 (7.43) - 8.19 2.50 (2.18) 3.06 (5.06) 3.96 (6.01) 3.17 7.36 (6.87) 9.49 (9.61) 7.51 (8.12) 8.12 2.05 (1.67) 1.85 (0.89) 2.52 (3.55) 2.14

soyotte - 0.04 (0.0) - 0.04 0.21 (0.31) 0.27 (0.31) 1.01 (1.06) 0.50 0.14 (0.07) 0.11 (0.06) 0.11 (0.07) 0.12 0.20 (0.15) 0.14 (0.08) 0.11 (0.06) 0.15

fonck - 0.10 (0.09) - 0.10 0.38 (0.39) 0.30 (0.17) 1.03 (2.12) 0.57 0.17 (0.15) 0.18 (0.18) 0.25 (0.16) 0.20 0.25 (0.31) 0.22 (0.14) 0.19 (0.13) 0.22

Table 8. Scenario (h’): percentage of error

HMCT MP MSF
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker 2.48 (3.35) 2.55 (2.83) 2.66 (2.68) 2.56 2.02 (2.18) 1.89 (2.27) 1.63 (1.69) 1.85 2.48 (2.55) 2.30 (2.31) 2.36 (2.27) 2.38

artimon 1.69 (1.61) 1.66 (0.98) 1.64 (1.05) 1.66 1.54 (1.06) 1.66 (1.06) 1.62 (1.04) 1.61 1.63 (1.06) 1.71 (1.25) 1.66 (1.01) 1.67

soyotte 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.25 (0.16) 0.35 (0.34) 0.32 (0.46) 0.31 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00

fonck 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.27 (0.49) 0.35 (0.35) 0.16 (0.11) 0.26 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00

AHMCT ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

spinnaker 2.28 (2.06) 2.54 (2.79) 2.97 (3.22) 2.60 2.16 (1.90) 2.06 (2.32) 2.15 (2.17) 2.12

artimon 1.66 (1.02) 1.71 (1.04) 1.43 (0.98) 1.60 1.58 (1.04) 1.65 (1.00) 1.65 (1.05) 1.63

soyotte 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.58 (0.40) 0.00 (0.00) 0.00 (0.00) 0.19

fonck 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.70 (0.68) 0.62 (0.68) 0.00 (0.00) 0.44

Table 9. Scenario (j): percentage of Error

R
R

n°
5206

6. Heuristics Performances: Results

We invite the reader to refer to the research report [CJ04] where the same kind of study has been pre-
sented. He may find more detailed information about how to read the results as well as the performances
of HMCT, MP and MSF on scenarios given Table 3. There is nevertheless a difference here: graphs giving
the sumflow can be given in a log scale in order to point clearly at the difference of performances between
heuristics when differences are great: note that if so, it is mentionned in the section.

We compare next the performances of each heuristics relying on the HTM which has now some synchro-
nization mechanisms to the instiation of MCT that can be found in NetSolve. They are examined in each
subsection for each scenario.

6.1. Scenario (a’)

HMCT and AHMCT have not been able to handle the experiment corresponding to the rate µ = 15 sec-
onds. At this rate, they aim to map too many tasks on spinnaker at a time which refuses the job. These two
heuristics are ignored for this rate.

We present in Tables 10, 11 and 12 the utilization of the resources for each heuristic for the submission of
independent tasks at rates µ = 15, µ = 17 and µ = 20 seconds respectively. The percentage of task is given
as well as the percentage corresponding to each type of task in parenthesis, and the sumflow, sum of the
durations of all tasks, per server.

Tables 13, 14 and 15 gives the average gain that each task perceives when the agent uses a considered
heuristic for µ = 15, µ = 17 and µ = 20 seconds. Finally, a summary of all the results concerning indepen-
dent tasks (that is here all the tasks) can be found in Tables 16, 17 and 18.

Results are the average done on respectively one, two and two runs per rate for each of the three experi-
ments. In all, the results in this section required more than 12 ∗ 6 = 72 runs.

Our heuristics benefit from more precise information due to the use of the HTM (see Section 5). They
take into consideration the perturbation that tasks have on each other. Thus, they clearly outperform MCT
as it is shown in all the tables. This tendancy becomes more pronounced as the rate raises (e.g. µ decreases).
Indeed, when µ = 15 seconds, MP and ML achieve a 50% on the sumflow, on the average gain that each
task can benefit from this scheduling, and 88% of the tasks finish sooner than if scheduled by MCT.

When µ = 17 seconds, ML seems the best heuristics, providing average gains around 30% on the dura-
tion of each task, a lower sumflow, 72% of tasks finishing sooner than MCT, with 18% finishing at the same
date (in a range of 2 seconds) (see Table 17).

Finally when µ = 20 seconds, we can see that MSF and ML are very tight and give the best results
regardless the metric. We must also note that MP performs very poorly at this rate mainly because it
chooses unnecessarily a slower server than it could use.

experiment 1
server MCT MP MSF ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 52.0 (16.4 14.8 20.8) 42312 48.4 (16.2 14.6 17.6) 11641 52.2 (15.8 16.6 19.8) 28257 49.6 (14.2 15.0 20.4) 17411
artimon 46.6 (15.6 14.6 16.4) 40228 39.6 (12.0 11.0 16.6) 11087 43.6 (12.6 13.0 18.0) 27033 43.4 (12.6 13.6 17.2) 16661
soyotte 0.6 (0.4 0.0 0.2) 642 6.0 (2.2 2.0 1.8) 7989 1.6 (1.6 0.0 0.0) 1023 3.0 (2.6 0.2 0.2) 2363
fonck 0.8 (0.2 0.2 0.4) 1149 6.0 (2.2 2.0 1.8) 7892 2.6 (2.6 0.0 0.0) 1661 4.0 (3.2 0.8 0.0) 3175

total sumflow 84331 38609 57974 39610

Table 10. Scenario (a’), µ = 15 seconds: processors utilization

INRIA

experiment 1
server MCT HMCT MP

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 56.0 (19.0 17.0 20.0) 20527 56.0 (18.8 16.0 21.2) 14971 50.0 (17.4 14.2 18.4) 8689
artimon 44.0 (13.6 12.6 17.8) 16235 44.0 (13.8 13.6 16.6) 12076 38.2 (11.4 11.2 15.6) 7611
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 6.0 (2.2 2.0 1.8) 7533
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.8 (1.6 2.2 2.0) 7746

total sumflow 36762 27047 31579
experiment 2

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 54.8 (16.9 18.2 19.7) 20242 55.8 (16.0 21.4 18.4) 16730 50.4 (15.8 18.6 16.0) 8472
artimon 45.2 (13.7 17.0 14.5) 17863 44.2 (14.6 13.8 15.8) 13801 38.0 (11.4 12.4 14.2) 7833
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 6.0 (2.2 1.6 2.2) 7815
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.6 (1.2 2.6 1.8) 7589

total sumflow 38105 30531 31709
experiment 3

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 57.2 (20.9 19.8 16.5) 17342 55.4 (18.6 18.8 18.0) 12442 49.2 (15.8 17.8 15.6) 8104
artimon 42.8 (15.1 14.2 13.5) 13929 44.6 (17.4 15.2 12.0) 10113 39.2 (15.6 12.0 11.6) 6797
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.4 (2.0 1.8 1.6) 6680
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 6.2 (2.6 2.4 1.2) 7060

total sumflow 31271 22555 28641
MEAN

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 56.0 (18.9 18.3 18.8) 19370 55.7 (17.8 18.7 19.2) 14714 49.9 (16.3 16.9 16.7) 8422
artimon 44.0 (14.2 14.6 15.2) 16009 44.3 (15.3 14.2 14.8) 11997 38.5 (12.8 11.9 13.8) 7414
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.8 (2.1 1.8 1.9) 7343
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.9 (1.8 2.4 1.7) 7465

total sumflow 35379 26711 30643

experiment 1
server MSF AHMCT ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 55.4 (18.6 15.6 21.2) 14698 55.2 (17.2 16.8 21.2) 15111 54.8 (17.6 16.8 20.4) 12848
artimon 44.6 (14.0 14.0 16.6) 12613 44.8 (15.4 12.8 16.6) 12192 43.6 (13.4 12.8 17.4) 11293
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.2 (0.2 0.0 0.0) 129
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 1.4 (1.4 0.0 0.0) 893

total sumflow 27311 27303 25163

experiment 2
server MSF AHMCT ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 56.0 (17.2 20.4 18.4) 16331 55.2 (14.6 22.2 18.4) 16630 53.8 (15.0 19.8 19.0) 12878
artimon 44.0 (13.4 14.8 15.8) 14025 44.8 (16.0 13.0 15.8) 13887 44.2 (14.0 15.0 15.2) 11424
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.4 (0.4 0.0 0.0) 259
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 1.6 (1.2 0.4 0.0) 1274

total sumflow 30356 30517 25835
experiment 3

server MSF AHMCT ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 55.0 (19.0 18.8 17.2) 11975 55.4 (18.6 19.0 17.8) 12356 53.6 (17.6 19.4 16.6) 10896
artimon 45.0 (17.0 15.2 12.8) 10390 44.6 (17.4 15.0 12.2) 10302 44.8 (17.0 14.4 13.4) 9764
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.4 (0.4 0.0 0.0) 258
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 1.2 (1.0 0.2 0.0) 899

total sumflow 22365 22658 21817
MEAN

server MSF AHMCT ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 55.5 (18.3 18.3 18.9) 14335 55.3 (16.8 19.3 19.1) 14699 54.1 (16.7 18.7 18.7) 12207
artimon 44.5 (14.8 14.7 15.1) 12343 44.7 (16.3 13.6 14.9) 12127 44.2 (14.8 14.1 15.3) 10827
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.3 (0.3 0.0 0.0) 215
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 1.4 (1.2 0.2 0.0) 1022

total sumflow 26677 26826 24272

Table 11. Scenario (a’), µ = 17 seconds: processors utilization

RR n° 5206

experiment 1
server MCT HMCT MP

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 56.9 (18.7 16.5 21.7) 12463 59.5 (19.0 17.3 23.2) 10736 52.2 (16.8 15.5 19.9) 8138
artimon 43.1 (13.9 13.1 16.1) 9447 40.5 (13.6 12.3 14.6) 7254 35.4 (11.0 10.1 14.3) 6155
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.6 (2.0 1.8 1.8) 7018
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 6.8 (2.8 2.2 1.8) 8022

total sumflow 21910 17990 29333
experiment 2

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 57.3 (17.9 19.4 20.0) 13515 58.7 (17.6 21.1 20.0) 10703 52.4 (16.0 19.4 17.0) 8022
artimon 42.7 (12.7 15.8 14.2) 10662 41.3 (13.0 14.1 14.2) 7773 36.8 (11.4 12.4 13.0) 6152
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.0 (1.4 2.0 1.6) 6497
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.8 (1.8 1.4 2.6) 7887

total sumflow 24177 18476 28558
experiment 3

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 56.5 (20.0 19.4 17.1) 17586 55.2 (18.5 18.6 18.1) 12638 49.1 (16.0 17.3 15.8) 8141
artimon 43.5 (16.0 14.6 12.9) 13954 44.8 (17.5 15.4 11.9) 10154 39.2 (15.3 12.5 11.4) 6815
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.5 (2.1 1.8 1.6) 6776
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 6.2 (2.6 2.4 1.2) 7072

total sumflow 31540 22792 28804
MEAN

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 55.8 (18.6 18.5 18.6) 19868 55.6 (17.8 18.5 19.3) 15120 49.8 (16.4 16.6 16.8) 8483
artimon 44.2 (14.4 14.4 15.4) 16301 44.4 (15.3 14.4 14.7) 12172 38.5 (12.7 12.1 13.7) 7406
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.8 (2.2 1.9 1.8) 7327
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.9 (1.8 2.4 1.7) 7488

total sumflow 36169 27292 30704

experiment 1
server MSF AHMCT ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 57.9 (18.8 16.3 22.8) 10099 59.4 (18.8 17.2 23.4) 10709 57.5 (19.4 15.2 22.9) 9829
artimon 42.1 (13.8 13.3 15.0) 7669 40.6 (13.8 12.4 14.4) 7338 42.5 (13.2 14.4 14.9) 7891
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0

total sumflow 17768 18047 17720

experiment 2
server MSF AHMCT ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 58.5 (18.5 21.2 18.8) 10336 58.2 (16.8 21.2 20.2) 10634 57.3 (17.8 20.1 19.4) 10076
artimon 41.5 (12.1 14.0 15.4) 8033 41.8 (13.8 14.0 14.0) 7925 42.5 (12.6 15.1 14.8) 8143
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.2 (0.2 0.0 0.0) 129

total sumflow 18369 18559 18348
experiment 3

server MSF AHMCT ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 54.5 (18.3 19.0 17.2) 12136 55.1 (18.3 18.9 17.9) 12605 53.6 (17.7 19.1 16.8) 11046
artimon 45.4 (17.6 15.0 12.8) 10406 44.9 (17.7 15.1 12.1) 10336 44.9 (17.0 14.7 13.2) 9824
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.4 (0.4 0.0 0.0) 258
fonck 0.1 (0.1 0.0 0.0) 64 0.0 (0.0 0.0 0.0) 0 1.1 (0.9 0.2 0.0) 833

total sumflow 22606 22941 21961
MEAN

server MSF AHMCT ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 55.2 (18.1 18.3 18.9) 14596 54.9 (16.7 18.9 19.4) 15089 53.7 (16.4 18.5 18.7) 12344
artimon 44.7 (14.9 14.7 15.1) 12489 45.1 (16.4 14.1 14.6) 12475 44.6 (15.1 14.2 15.3) 10965
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.4 (0.4 0.0 0.0) 258
fonck 0.1 (0.1 0.0 0.0) 43 0.0 (0.0 0.0 0.0) 0 1.3 (1.1 0.2 0.0) 979

total sumflow 27128 27565 24546

Table 12. Scenario (a’), µ = 20 seconds: processors utilization

INRIA

We note the increase in resource consumption with the rate for heuristics focusing on the fast servers.
Interferences between tasks allocated on these servers grow thus the corresponding sumflow.

What seems remarquable is that AHMCT and HMCT give slighlty the same results, HMCT being quiet
better. We expected the opposite in regard to their respective design. MP gives very good results when the
throughput of jobs is high, but performs poorly when µ increases. We can conclude that among the three
rates, ML gives in average the best results over all heuristics.

mean flow gain in percentage
MCT (sec) MP MSF ML

type 1 85.6 50.2 24.8 39.6
experiment 1 type 2 169.4 51.3 33.2 53.1

type 3 239.7 57.1 32.1 57.1
MEAN - 164.9 52.9 30.0 49.9

Table 13. Scenario (a’), µ = 15 seconds: average percentage gain on each task given by type

mean flow gain in percentage
MCT (sec) HMCT MP MSF AHMCT ML

type 1 35.7 20.9 8.7 19.8 18.9 17.8
experiment 1 type 2 71.6 26.1 6.6 25.7 24.7 33.0

type 3 107.6 28.2 19.6 27.4 28.2 34.8
type 1 36.3 22.8 14.4 23.5 21.2 20.5

experiment 2 type 2 73.5 17.5 15.0 17.7 17.4 31.7
type 3 114.7 20.6 18.7 21.2 21.2 35.9
type 1 31.9 22.2 -1.4 23.5 21.6 19.2

experiment 3 type 2 59.6 27.7 -1.8 28.3 27.3 29.5
type 3 102.6 30.1 18.8 30.5 29.9 34.8

MEAN - 70.4 24.0 11.0 24.2 23.4 28.6

Table 14. Scenario (a’), µ = 17 seconds: average percentage gain on each task given by type

mean flow gain in percentage
MCT (sec) HMCT MP MSF AHMCT ML

type 1 22.1 14.8 -48.6 16.3 14.1 16.6
experiment 1 type 2 42.6 19.6 -44.0 21.5 19.0 21.4

type 3 63.5 17.9 -24.2 18.3 18.0 18.7
type 1 23.2 21.7 -18.5 22.7 21.2 20.8

experiment 2 type 2 47.5 23.6 -11.3 24.1 23.4 25.1
type 3 71.7 24.2 -22.7 24.4 23.7 24.4
type 1 22.1 14.7 -48.5 16.3 14.1 16.5

experiment 3 type 2 42.7 19.5 -43.8 21.4 19.0 21.4
type 3 63.7 17.9 -24.1 18.3 17.9 18.7

MEAN - 44.4 19.3 -31.7 20.4 18.9 20.4

Table 15. Scenario (a’), µ = 20 seconds: average percentage gain on each task given by type

RR n° 5206

NetSolve’s MCT MP MSF ML
seed1 Avg seed1 Avg seed1 Avg seed1 Avg

makespan 7713 7713 7922 7922 7648 7648 7634 7634

sumflow 84331 84331 38609 38609 57974 57974 39610 39610

maxflow 415.9 415.9 425.3 425.3 312.1 312.1 383.7 383.7

maxstretch 10.0 10.0 11.9 11.9 8.8 8.8 10.3 10.3

number of tasks
that finish - − 86 (13) 86(13) 88 (10) 88(10) 88 (11) 88(11)

sooner than with
NetSolve’s MCT

Table 16. Scenario (a’), µ = 15 seconds: results in seconds
NetSolve’s MCT HMCT MP

seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

makespan 8525 8513 8557 8532 8501 8504 8518 8508 8831 8821 8825 8826

sumflow 36762 38105 31272 35380 27047 30531 22555 26711 31579 31709 28641 30643

maxflow 257.6 256.0 271.3 261.7 192.1 206.3 200.6 199.7 408.3 412.8 393.6 404.9

maxstretch 6.6 7.0 7.3 7.0 5.0 5.4 5.3 5.3 10.0 10.1 9.4 9.8

number of tasks
that finish - - - − 72 (21) 68 (23) 69 (19) 70(21) 75 (18) 75 (16) 69 (18) 73(17)

sooner than with
NetSolve’s MCT

MSF AHMCT ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

makespan 8501 8505 8518 8508 8501 8504 8517 8507 8501 8505 8517 8507

sumflow 27311 30356 22364 26677 27303 30517 22657 26826 25163 25835 21817 24272

maxflow 196.3 202.8 199.2 199.4 199.3 202.4 224.3 208.7 154.2 254.2 254.0 220.8

maxstretch 5.2 5.0 5.3 5.2 5.1 5.8 5.9 5.6 8.7 8.8 9.0 8.9

number of tasks
that finish 71 (22) 68 (21) 69 (19) 69(21) 70 (22) 68 (23) 68 (20) 69(22) 73 (19) 74 (16) 69 (19) 72(18)

sooner than with
NetSolve’s MCT

Table 17. Scenario (a’), µ = 17 seconds: results in seconds
NetSolve’s MCT HMCT MP

seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

makespan 10134 9934 10134 10067 10120 9916 10120 10052 10456 10233 10456 10381

sumflow 21910 24176 21910 22665 17990 18475 17990 18152 29334 28558 29334 29075

maxflow 136.4 163.5 136.4 145.4 78.6 127.8 78.6 95.0 387.9 383.3 387.9 386.3

maxstretch 3.6 4.2 3.6 3.8 2.5 3.2 2.5 2.7 9.1 9.0 9.1 9.0

number of tasks
that finish - - - − 57 (25) 60 (21) 57 (25) 58(24) 57 (21) 63 (18) 57 (21) 59(20)

sooner than with
NetSolve’s MCT

MSF AHMCT ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

makespan 10119 9916 10119 10052 10120 9916 10120 10052 10119 9916 10119 10052

sumflow 17768 18369 17768 17968 18048 18559 18048 18218 17720 18348 17720 17929

maxflow 75.5 122.0 75.5 91.0 74.2 128.0 74.2 92.1 72.2 128.9 72.2 91.1

maxstretch 2.3 3.0 2.3 2.5 2.5 3.5 2.5 2.8 2.2 8.7 2.2 4.4

number of tasks
that finish 59 (22) 62 (19) 59 (22) 60(21) 58 (25) 60 (22) 58 (25) 59(24) 58 (20) 61 (18) 58 (20) 59(19)

sooner than with
NetSolve’s MCT

Table 18. Scenario (a’), µ = 20 seconds: results in seconds

IN
R

IA

6.2. Scenario (d’)

The exact composition of this scenario is given in Section 5.5 of the research report [CJ04]. Most of the
presentation of the following results is identical.

There are several things to look at in this section: results for each of the 5 clients and of the metatask on
metrics like the makespan, the sumflow, but we can also consider the quality of service given to each task
of the metatask. Then, one can see the average results of the 4 subsets of experiment, on two runs each,
resumed in Figures 16, 17, 18 and in Tables 19, 21, 20 and 22.

Note that the results for both HMCT and AHMCT do not appear in the graphs nor in the tables. During
the numerous attempts, a task is refused at a given moment by the server that would have normally execute
the task according to the scheduling decision. We do not deal with that kind of situation in this report like
we have mentionned in Section 2 then the HTM simply aborts the experiment.

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

task set25121218610390

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

 0

 5000

 10000

 15000

 20000

 25000

 30000

task set25121218610390

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

Figure 16. Scenario (d’): results on the makespan and on the sumflow for the first experiment

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

task set250213641714

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

task set250213641714

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

Figure 17. Scenario (d’): results on the makespan and on the sumflow for the second experiment

As already mentionned, when dealing with 1D-mesh applications, the makespan value is the sumflow
value added to the application head arrival date. Then we observe the same variations on the results among

RR n° 5206

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

task set2191571503817

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

task set2191571503817

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

Figure 18. Scenario (d’): results on the makespan and on the sumflow for the third experiment

the heuristics between the makespan and the sumflow graph except of course for the set of independent
tasks.

experiment 1
server MCT MP MSF ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 55.6 (19.5 17.3 18.8) 26255 52.6 (20.3 15.5 16.8) 14640 54.0 (19.2 16.0 18.8) 22210 51.7 (17.5 15.2 19.0) 17049
artimon 44.2 (16.0 12.8 15.4) 21911 39.2 (13.2 12.3 13.7) 12870 43.7 (14.6 13.7 15.4) 19915 41.7 (13.0 13.6 15.1) 16194
soyotte 0.0 (0.0 0.0 0.0) 0 3.7 (0.8 0.9 2.0) 6269 0.9 (0.6 0.3 0.0) 784 3.0 (2.2 0.7 0.1) 2834
fonck 0.2 (0.1 0.1 0.0) 303 4.5 (1.3 1.5 1.7) 6741 1.4 (1.2 0.2 0.0) 1033 3.6 (2.9 0.7 0.0) 3114

total sumflow 48469 40520 43942 39191
experiment 2

server MCT MP MSF ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 54.0 (17.7 18.7 17.6) 31283 50.6 (18.0 16.0 16.6) 18470 50.2 (13.7 18.3 18.2) 27117 47.1 (11.9 16.8 18.4) 20364
artimon 45.6 (15.4 13.9 16.3) 30505 40.4 (13.3 13.7 13.4) 16588 44.1 (14.4 13.9 15.8) 24236 42.5 (13.4 13.7 15.4) 19588
soyotte 0.2 (0.2 0.0 0.0) 227 4.4 (0.8 1.7 1.9) 7439 2.2 (1.9 0.3 0.0) 1595 4.7 (3.6 1.0 0.1) 4696
fonck 0.2 (0.1 0.0 0.1) 355 4.6 (1.3 1.2 2.1) 7410 3.5 (3.4 0.1 0.0) 2388 5.7 (4.5 1.1 0.1) 5317

total sumflow 62370 49907 55336 49965
experiment 3

server MCT MP MSF ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 54.1 (15.1 20.6 18.4) 33084 54.0 (18.0 18.9 17.1) 18420 52.1 (14.6 19.0 18.5) 28876 49.7 (13.6 17.7 18.4) 22183
artimon 45.1 (13.9 14.8 16.4) 30053 37.8 (10.0 13.5 14.3) 18489 43.0 (11.2 15.1 16.7) 25795 41.6 (9.8 15.5 16.3) 21533
soyotte 0.4 (0.2 0.0 0.2) 513 4.0 (0.8 1.3 1.9) 6954 2.1 (1.2 0.9 0.0) 1988 4.2 (2.9 1.1 0.2) 5195
fonck 0.4 (0.0 0.2 0.2) 890 4.2 (0.4 1.9 1.9) 7463 2.8 (2.2 0.6 0.0) 2382 4.5 (2.9 1.3 0.3) 5800

total sumflow 64540 51326 59041 54711

MEAN
server MCT MP MSF ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 54.6 (17.4 18.9 18.3) 30207 52.4 (18.8 16.8 16.8) 17177 52.1 (15.8 17.8 18.5) 26068 49.5 (14.3 16.6 18.6) 19865
artimon 45.0 (15.1 13.8 16.0) 27490 39.1 (12.2 13.2 13.8) 15982 43.6 (13.4 14.2 16.0) 23315 41.9 (12.1 14.3 15.6) 19105
soyotte 0.2 (0.1 0.0 0.1) 247 4.0 (0.8 1.3 1.9) 6887 1.7 (1.2 0.5 0.0) 1456 4.0 (2.9 0.9 0.1) 4242
fonck 0.3 (0.1 0.1 0.1) 516 4.4 (1.0 1.5 1.9) 7205 2.6 (2.3 0.3 0.0) 1934 4.6 (3.4 1.0 0.1) 4744

total sumflow 58460 47251 52773 47956

Table 19. Scenario (d’): processors utilization

We can see in Figures 16, 17, 18, the average makespan on the left hand and sumflow on the right hand
of all applications including the set of independent tasks, computed on 2 runs. For this set, the makespan

INRIA

mean flow gain in percentage
MCT (sec) MP MSF ML

type 1 54.8 19.5 5.9 -3.4
experiment 1 type 2 107.3 25.4 15.7 25.5

type 3 169.6 11.0 13.0 32.9
type 1 77.5 26.4 1.7 -10.1

experiment 2 type 2 160.6 26.5 17.8 28.5
type 3 233.1 21.4 16.4 34.6
type 1 76.1 31.9 2.0 -10.0

experiment 3 type 2 150.0 14.1 9.8 12.3
type 3 239.5 21.6 12.7 27.6

MEAN - 140.9 22.0 10.6 15.3

Table 20. Scenario (d’): average percentage gain for µ = 20 sec on each task given by type

1D-mesh clients
makespan sumflow

MP MSF ML MP MSF ML
experiment 1 8.9 2.9 7.2 17.0 5.5 12.9
experiment 2 9.4 4.9 9.7 15.3 7.3 14.4
experiment 3 14.2 4.1 8.9 19.0 6.2 12.7

MEAN 10.8 4.0 8.6 17.1 6.3 13.4

METATASK
sumflow

MP MSF ML
16.6 12.5 24.1
22.2 13.6 24
21.3 11.6 20
20 12.6 22.7

Table 21. Scenario (d’): average percentage gain against MCT on the makespan and the sumflow
for each client

is nearly constant among the heuristics, and we have already shown this to be expected.

One can see from the graphs that our heuristics clearly show a significant improvement. It seems
nonetheless hard to judge between MP and ML only on the average, but as one can easily see, MP has
a much greater standard deviation. The use of tables gives the following information: MP and ML are tight
on the resource consumptions (or management) (Table 19), from Tables 20 and 21 MP gives a better gain
(22%) than ML (15%) on each independent task duration, on the makespan and the sumflow of each 1D-
mesh client (11% for MP against 8.6% for ML) and both of them use around 22% less resources for executing
the set of independent tasks. Nonetheless MP gives a slightly worst makespan on this set (see Table 22).

Despite the great deviation, sign that MP uses more the slowest servers than ML, MP seems to be the
best heuristics facing that kind of scenario. Note that even with more runs, MP standard deviation would
a priori not necessarily be highly reducde but maybe extend to each graph client. Finally, ML achieves very
good and constant results.

RR n° 5206

NetSolve’s MCT MP MSF ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

makespan 5420 5160 5363 5314 5375 5261 5357 5331 5300 5134 5295 5243 5323 5164 5446 5311

sumflow 27350 37789 39284 34808 22800 28656 31118 27525 23943 32470 35311 30575 20761 28764 32658 27394

maxflow 375.9 399.9 515.3 430.4 484.7 509.0 568.6 520.8 289.3 278.2 325.2 297.6 283.6 416.2 700.6 466.8

maxstretch 12.8 10.5 13.5 12.3 14.1 15.5 15.4 15.0 9.3 10.6 12.1 10.6 14.4 16.3 20.6 17.1

number of tasks
that finish - - - − 75 (16) 85 (15) 81 (16) 80(16) 62 (27) 69 (28) 61 (35) 64(30) 70 (19) 76 (22) 75 (23) 74(21)

sooner than with
NetSolve’s MCT

Table 22. Scenario (d’): results in seconds for independent tasks

IN
R

IA

6.3. Scenario (e’)

We propose to study the submission of a unique 10*50 stencil graph composed of tasks of type 1 (the
shortest duration type) in this section. At most ten tasks are in the system at a given moment. We have
already explained in the previous research report [CJ04] that we can not expect a good makespan with MP:
the improvement in the HTM has no incidence in this because we have shown a very good accuracy with
that kind of scenario.

We present in graphs of Figure 19 the makespan and the sumflow obtained on the experiment for each
heuristic. Tables 23 shows the corresponding percentage of tasks that have been scheduled on each server
as well as the sumflow. Finally, gains on the makespan and on the sumflow per heuristic is summarized in
Table 24.

Surprisingly again, HMCT gives slightly better results than AHMCT. MSF achieves the best makespan,
with a gain of 18.9% over MCT. ML has very tight performances because it achieves a 18.2% gain which is
better than the 16.8% of HMCT. We note again that the heuristics specifically designed for the makespan,
even relying on the HTM information, are not the best.

Considering the sumflow, MP gives the best results: mainly because most of tasks achives to run with-
out or with less contention due to the use of the slowest servers. The drawback of this is naturally the
makespan (27.5% worst than MCT). We must note the very good result of ML: it achieves to spare nearly
half of the resources comparing to MCT ! It doubles the gain that can be done with MSF for nearly the same
performance on the makespan.

ML is indubitably the best heuristic of this scenario.

 3500

 4000

 4500

 5000

 5500

 6000

1

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

AHMCT
ML

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

AHMCT
ML

Figure 19. Scenario (e’): makespan and sumflow results

RR n° 5206

experiment 1
server MCT HMCT MP

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 45.2 (45.2 0.0 0.0) 13804 53.0 (53.0 0.0 0.0) 18479 64.4 (64.4 0.0 0.0) 5065
artimon 54.8 (54.8 0.0 0.0) 25390 47.0 (47.0 0.0 0.0) 16883 25.0 (25.0 0.0 0.0) 2284
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 4.0 (4.0 0.0 0.0) 2549
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 6.6 (6.6 0.0 0.0) 4198

total sumflow 39194 35362 14096

experiment 1
server MSF AHMCT ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 52.0 (52.0 0.0 0.0) 15670 53.0 (53.0 0.0 0.0) 18911 49.8 (49.8 0.0 0.0) 8459
artimon 46.2 (46.2 0.0 0.0) 14215 47.0 (47.0 0.0 0.0) 17065 44.4 (44.4 0.0 0.0) 8303
soyotte 0.4 (0.4 0.0 0.0) 255 0.0 (0.0 0.0 0.0) 0 1.6 (1.6 0.0 0.0) 1022
fonck 1.4 (1.4 0.0 0.0) 904 0.0 (0.0 0.0 0.0) 0 4.2 (4.2 0.0 0.0) 2681

total sumflow 31044 35976 20465

Table 23. Scenario (e’): processors utilization

makespan
HMCT MP MSF AHMCT ML

experiment 1 16.8 -27.5 18.9 16.1 18.2

sumflow
HMCT MP MSF AHMCT ML

9.8 64.0 20.8 8.2 47.8

Table 24. Scenario (e’): average percentage gain against MCT on the makespan and the sumflow
for each client

INRIA

6.4. Scenario (h’)

Experiments consist in the submission of a 10*50 stencil graph, composed of tasks of type 1, in parallel
of 86 independent tasks whose arrival dates are drawn from a Poisson distribution of parameter µ = 40
seconds and that has a probability of one third to be of a given type (durations are given in Table 2).

Figures 20, 21 and 22 present per heuristic on the left side the makespan and on the right the sumflow
of the applications submitted to the agent. The 1D-mesh application is launched as 9 independent tasks
are already submitted, and possibly finished. In these figures, the independent tasks are assumed to be
requested by one client.

Table 25 informs us about the management and the behavior of the heuristic: one can read the percentage
of task (given by type in parenthesis) and the sumflow per server and per heuristic. However, one should
be cautious because there is more tasks of type one due to the 1D-mesh graph. The gains that one can
expect on the makespan and on the sumflow for both clients is given in Table, 27. Finally, Tables 26 and 28
give ‘quality of service’ information per heuristic assuming that the independent tasks are submitted by
numerous clients: in that case, each task must obtain the best from the system.

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 3600

task set10

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

 5000

 10000

 15000

 20000

 25000

 30000

task set10

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

Figure 20. Scenario (h’): makespan and sumflow results for the first experiment

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 3600

task set10

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

 5000

 10000

 15000

 20000

 25000

 30000

task set10

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

Figure 21. Scenario (h’): makespan and sumflow results for the second experiment

RR n° 5206

 3050

 3100

 3150

 3200

 3250

 3300

 3350

 3400

 3450

 3500

 3550

task set10

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

 5000

 10000

 15000

 20000

 25000

 30000

task set10

tim
e

(s
ec

)

client number

MCT
MP

MSF
ML

Figure 22. Scenario (h’): makespan and sumflow results for the third experiment

experiment 1
server MCT MP MSF ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 54.8 (46.6 3.6 4.6) 19122 50.9 (42.6 3.7 4.6) 10104 51.2 (40.5 4.8 6.0) 13488 49.1 (38.8 4.8 5.5) 8035
artimon 45.1 (37.9 2.4 4.8) 18870 39.3 (33.6 1.8 3.9) 8799 40.3 (35.6 1.2 3.6) 11898 40.0 (34.8 1.2 4.0) 7369
soyotte 0.0 (0.0 0.0 0.0) 0 4.9 (4.2 0.3 0.4) 3093 3.7 (3.7 0.0 0.0) 1599 4.9 (4.9 0.0 0.0) 2216
fonck 0.1 (0.0 0.0 0.1) 191 4.9 (4.2 0.1 0.6) 3343 4.8 (4.8 0.0 0.0) 2044 6.0 (6.0 0.0 0.0) 2707

total sumflow 38183 25339 29029 20327
experiment 2

server MCT MP MSF ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 53.4 (43.9 4.8 4.8) 19815 48.7 (39.9 3.4 5.4) 8553 49.4 (39.4 4.5 5.5) 13285 48.2 (37.9 5.1 5.2) 7685
artimon 46.4 (39.6 3.6 3.3) 17884 40.5 (34.4 3.9 2.2) 7533 41.7 (35.3 3.9 2.5) 11399 41.2 (35.1 3.3 2.8) 7181
soyotte 0.1 (0.1 0.0 0.0) 65 5.5 (4.6 0.9 0.0) 3159 4.2 (4.2 0.0 0.0) 1789 4.9 (4.9 0.0 0.0) 2112
fonck 0.0 (0.0 0.0 0.0) 0 5.4 (4.8 0.1 0.4) 3144 4.8 (4.8 0.0 0.0) 2042 5.7 (5.7 0.0 0.0) 2495

total sumflow 37764 22389 28515 19473
experiment 3

server MCT MP MSF ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 54.0 (44.8 4.2 5.1) 22067 50.9 (42.4 4.0 4.5) 10851 49.7 (39.7 4.3 5.7) 13999 47.8 (36.9 4.2 6.7) 8674
artimon 45.8 (38.1 3.0 4.8) 18016 39.3 (32.4 2.5 4.3) 9257 40.2 (33.2 2.8 4.2) 13169 40.6 (34.5 3.0 3.1) 8162
soyotte 0.0 (0.0 0.0 0.0) 0 5.5 (5.1 0.1 0.3) 3349 4.6 (4.6 0.0 0.0) 2025 5.4 (5.4 0.0 0.0) 2485
fonck 0.1 (0.1 0.0 0.0) 65 4.3 (3.1 0.4 0.7) 3358 5.5 (5.5 0.0 0.0) 2355 6.2 (6.2 0.0 0.0) 2991

total sumflow 40148 26815 31548 22312
MEAN

server MCT MP MSF ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 54.1 (45.1 4.2 4.8) 20335 50.1 (41.6 3.7 4.8) 9836 50.1 (39.9 4.5 5.7) 13591 48.4 (37.9 4.7 5.8) 8131
artimon 45.8 (38.5 3.0 4.3) 18257 39.7 (33.5 2.7 3.5) 8530 40.7 (34.7 2.6 3.4) 12155 40.6 (34.8 2.5 3.3) 7571
soyotte 0.0 (0.0 0.0 0.0) 22 5.3 (4.6 0.4 0.2) 3200 4.2 (4.2 0.0 0.0) 1804 5.1 (5.1 0.0 0.0) 2271
fonck 0.1 (0.0 0.0 0.0) 85 4.9 (4.0 0.2 0.6) 3282 5.0 (5.0 0.0 0.0) 2147 6.0 (6.0 0.0 0.0) 2731

total sumflow 38698 24848 29697 20704

Table 25. Scenario (h’): processors utilization

We must firstly note that HMCT and AHMCT did not handle the throughput of the scenario regardless
the number of experiment we have tried. Thus, no real information can be processed and they do not ap-

INRIA

mean flow gain in percentage
MCT (sec) MP MSF ML

type 1 72.4 32.1 13.9 44.1
experiment 1 type 2 113.1 22.1 21.1 49.3

type 3 226.8 33.3 25.8 55.0
type 1 83.7 56.3 28.4 54.2

experiment 2 type 2 150.1 30.9 23.2 50.6
type 3 179.2 38.5 23.0 53.5
type 1 75.5 27.0 21.7 52.5

experiment 3 type 2 153.2 30.3 22.9 49.1
type 3 219.2 22.9 13.0 50.0

MEAN - 141.5 32.6 21.4 50.9

Table 26. Scenario (h’): average percentage gain for µ = 40 sec on each task given by type

1D-mesh clients
makespan sumflow

MP MSF ML MP MSF ML
experiment 1 12.8 9.8 8.1 34.9 24.7 44.5
experiment 2 6.9 13.5 9.2 41.2 24.6 46.6
experiment 3 11.1 10.8 8.1 36.9 23.4 41.6

MEAN 10.3 11.4 8.5 37.6 24.2 44.3

METATASK
sumflow

MP MSF ML
30.9 22.1 51.7
36.7 23.7 52.3
30.1 19.8 51
32.6 21.9 51.7

Table 27. Scenario (h’): average percentage gain against MCT on the makespan and the sumflow
for each client

pear in the results.

As far as the makespan is concerned, our heuristics achieves around 10% of gain against MCT. MP and
MSF are tight, and for the first time better than ML (Table 27). But as soon as we are interested in quality
of service or in resource management, ML gives the best results: it achieves to spare 8% on the sumflow
for the stencil against MP, e.g. 45% better than MCT ! With 53%, ML is the best on the sumflow of the set
of independent tasks, in front of MP which is 36% better than MCT. In addition, ML even uses each server
less than any other: if resources had a cost proportional to their power, using ML would represent a large
benefit (Table 25).

ML beats all heuristics on the quality of service as one can see in Tables 28 and 26. For example, an
independent task has a 81% probability in average to finish sooner with ML than with MCT (against 13%
to finish later) and 52% shorter.

MP gives very good results too, but is a large step behind ML performances, except on the makespan of
the stencil. In conclusion, ML is the best heuristic facing this scenario, with excellent performances against
MCT and a step higher than MP and MSF.

RR n° 5206

NetSolve’s MCT MP MSF ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

makespan 3531 3529 3498 3519 3489 3527 3481 3499 3488 3527 3481 3499 3488 3527 3481 3499

sumflow 11980 11638 13100 12239 8277 7017 9736 8343 9292 8811 10842 9648 5792 5516 6527 5945

maxflow 401.2 373.6 387.1 387.3 450.2 412.8 489.1 450.7 250.7 261.2 279.2 263.7 198.9 167.3 198.1 188.1

maxstretch 9.7 10.0 10.0 9.9 12.4 11.7 13.2 12.4 6.7 8.7 8.6 8.0 6.6 7.2 4.8 6.2

number of tasks
that finish - - - − 64 (28) 78 (18) 68 (25) 70(24) 60 (32) 67 (26) 57 (36) 61(31) 72 (20) 82 (14) 80 (13) 78(16)

sooner than with
NetSolve’s MCT

Table 28. Scenario (h’): results in seconds on independent tasks

IN
R

IA

6.5. Secnario (i’)

This section presents the results that we have obtained submitting a 5*25 stencil in parallel of 86 inde-
pendent tasks to the improved HTM. The details of the whole experimentation, the composition of the
independent tasks set is given in [CJ04].

There are three instantiations of this scenario, each of which has been executed three times. Figures 23, 24
and 25 and Tables 29, 30, 31 and 32 show the average results on these three runs as well as the average on
the scenario per heuristic.

We consider only two clients in the graphs: one who submits the stencil and the other responsible of the
set of tasks thus considered here as one unique application. Furthermore, the mean makespan and sumflow
is given but one should note the standard deviation computed on the three runs for each heuristic.

Table 29 contains the average resource consumption: the average percentage of task (also given par type
in parenthesis) and the sumflow (sum of all the flow of the tasks that have been mapped to the server) per
server. Table 30 summarizes the information contained in the figures (except the deviation) and gives the
gain one can expect against MCT if the scheduler is the corresponding heuristics. For example, using MSF
let the graph finish 6.1% sooner than MCT (0.9% for ML) and achieve a 13.5% gain on the sumflow (34.5%
for ML). The gain on the makespan for the tasks set is not given as already explained.

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

task set1

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

ML

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

task set1

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

ML

Figure 23. Scenario (i’): makespan and sumflow results for the first experiment

One can see that MCT, MP and ML have a greater standard deviation on the makespan of the graph than
the other. This is due to the use of the slow servers for our heuristics (see Table 29) and certainly due to the
censor report (and so to the quality of the information on the system state) for MCT. MSF and HMCT on the
opposite have small or no variation. Table 30 show that the gain on the makespan is low (a maximum of
6% for MSF) and that the gain on the sumflow depends greatly on the heuristics used, for the graph and for
the tasks set. We have explained in [CJ04] the behavior of MP which has a bad pert on the graph makespan
and consequently a good benefit on the sumflow of the graph and of the set. But we can note that HMCT
does not give any improvement against MCT and that MSF outperform MCT. The good surprise is that ML
gives slightly the same makespan than MCT and that it outperforms from far MSF with results even better
than MP !

RR n° 5206

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

task set1

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

ML

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

task set1

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

ML

Figure 24. Scenario (i’): makespan and sumflow results for the second experiment

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

task set1

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

ML

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

task set1

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

ML

Figure 25. Scenario (i’): makespan and sumflow results for the third experiment

INRIA

experiment 1
server MCT HMCT MP

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 53.7 (40.6 7.1 6.0) 10549 52.4 (39.3 6.5 6.6) 12281 48.5 (34.8 6.8 7.0) 2950
artimon 46.3 (35.7 4.7 5.8) 9734 47.6 (37.0 5.4 5.2) 10553 32.2 (22.3 5.1 4.9) 2057
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 8.2 (8.2 0.0 0.0) 2208
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 11.1 (11.1 0.0 0.0) 2968

total sumflow 20283 22834 10183
experiment 2

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 55.3 (42.0 6.0 7.3) 12698 53.4 (38.9 7.3 7.3) 13635 47.1 (32.5 7.3 7.3) 3452
artimon 44.7 (31.4 6.3 7.0) 10546 46.6 (34.6 5.1 7.0) 11604 37.1 (26.9 4.4 5.8) 2738
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 7.0 (6.0 0.2 0.8) 2426
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 8.8 (8.1 0.5 0.3) 2787

total sumflow 23244 25239 11403
experiment 3

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 53.9 (38.7 9.6 5.5) 9797 52.4 (37.0 9.3 6.2) 10905 44.5 (28.6 9.5 6.5) 2593
artimon 46.1 (34.8 6.5 4.9) 9051 47.6 (36.5 6.8 4.3) 9949 34.8 (24.2 6.6 3.9) 2154
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 9.5 (9.5 0.0 0.0) 2548
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 11.2 (11.2 0.0 0.0) 3010

total sumflow 18848 20854 10305
MEAN

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 54.3 (40.4 7.6 6.3) 11015 52.8 (38.4 7.7 6.7) 12274 46.7 (32.0 7.8 6.9) 2998
artimon 45.7 (34.0 5.8 5.9) 9777 47.2 (36.0 5.7 5.5) 10702 34.7 (24.4 5.4 4.9) 2316
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 8.2 (7.9 0.1 0.3) 2394
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 10.4 (10.1 0.2 0.1) 2922

total sumflow 20792 22976 10630

experiment 1
server MSF ML

% of tasks sumflow % of tasks sumflow
spinnaker 52.0 (39.5 6.3 6.2) 8765 46.6 (32.7 6.5 7.4) 4486
artimon 43.9 (32.7 5.5 5.7) 7918 43.8 (34.0 5.4 4.4) 4128
soyotte 1.1 (1.1 0.0 0.0) 299 3.6 (3.6 0.0 0.0) 978
fonck 3.0 (3.0 0.0 0.0) 807 6.0 (6.0 0.0 0.0) 1614

total sumflow 17789 11206
experiment 2

server MSF ML
% of tasks sumflow % of tasks sumflow

spinnaker 51.2 (36.7 7.7 6.8) 9170 47.4 (32.5 6.6 8.2) 5023
artimon 43.4 (31.4 4.6 7.4) 8235 42.7 (31.0 5.7 6.0) 4508
soyotte 1.6 (1.6 0.0 0.0) 426 3.8 (3.8 0.0 0.0) 1020
fonck 3.8 (3.8 0.0 0.0) 1021 6.2 (6.2 0.0 0.0) 1656

total sumflow 18852 12207
experiment 3

server MSF ML
% of tasks sumflow % of tasks sumflow

spinnaker 51.0 (36.5 8.2 6.3) 8322 49.3 (34.3 10.1 4.9) 4569
artimon 45.0 (33.0 7.9 4.1) 7390 41.7 (30.2 6.0 5.5) 4126
soyotte 1.6 (1.6 0.0 0.0) 426 3.3 (3.3 0.0 0.0) 918
fonck 2.4 (2.4 0.0 0.0) 638 5.7 (5.7 0.0 0.0) 1527

total sumflow 16776 11140
MEAN

server MSF ML
% of tasks sumflow % of tasks sumflow

spinnaker 51.4 (37.5 7.4 6.4) 8752 47.8 (33.2 7.7 6.8) 4693
artimon 44.1 (32.4 6.0 5.7) 7848 42.7 (31.7 5.7 5.3) 4254
soyotte 1.4 (1.4 0.0 0.0) 384 3.6 (3.6 0.0 0.0) 972
fonck 3.1 (3.1 0.0 0.0) 822 6.0 (6.0 0.0 0.0) 1599

total sumflow 17806 11518

Table 29. Scenario (i’): processors utilization

RR n° 5206

STENCIL
makespan sumflow

HMCT MP MSF ML HMCT MP MSF ML
experiment 1 1.3 -40.1 4.4 1.2 -4.9 25.5 11.7 32.8
experiment 2 -0.5 -23.0 5.2 2.6 -3.6 39.1 15.2 35.9
experiment 3 4.4 -45.3 8.9 -1.2 0.0 23.5 13.6 34.6

MEAN 1.7 -36.1 6.1 0.9 -2.8 29.4 13.5 34.5

TASKS SET
sumflow

HMCT MP MSF ML
-19.4 71.2 12.8 55.3
-13.9 62.5 19.8 56.2
-18.5 65.4 12.7 50.5
-17.3 66.4 15.1 54

Table 30. Scenario (i’): average percentage gain against MCT on the makespan and the sumflow
for each client

mean flow gain in percentage
MCT (sec) HMCT MP MSF ML

type 1 66.5 -19.1 69.1 9.4 48.8
experiment 1 type 2 135.7 -19.4 71.7 12.1 54.6

type 3 199.8 -19.4 71.8 15.0 58.8
type 1 79.3 -14.7 60.5 21.0 50.0

experiment 2 type 2 148.4 -16.0 61.6 18.9 56.5
type 3 229.5 -9.7 59.1 23.5 58.5
type 1 53.3 -39.8 55.6 -11.1 29.9

experiment 3 type 2 113.7 -24.1 67.3 7.6 46.3
type 3 181.1 -11.0 71.4 17.1 54.8

MEAN - 134.2 -19.2 65.3 12.6 50.9

Table 31. Scenario (i’): average percentage gain on each task given by type

INRIA

NetSolve’s MCT HMCT MP
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

makespan 2186 2256 2290 2244 2166 2248 2286 2233 2167 2242 2288 2232

sumflow 10781 13123 9450 11118 12867 14757 11458 13027 3107 5236 3112 3818

maxflow 311.8 330.2 329.3 323.8 288.0 324.1 310.6 307.6 90.6 316.1 99.1 168.6

maxstretch 8.3 8.3 9.1 8.5 6.9 8.0 7.6 7.5 2.9 11.0 4.7 6.2

number of tasks
that finish - - - − 30 (67) 31 (67) 32 (66) 31(67) 95 (3) 92 (8) 91 (7) 93(6)

sooner than with
NetSolve’s MCT

MSF ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

makespan 2167 2191 2287 2215 2166 2191 2288 2215

sumflow 9401 10275 8653 9443 4824 5723 4997 5181

maxflow 223.1 239.6 219.8 227.5 131.7 142.5 147.2 140.5

maxstretch 6.5 7.1 6.7 6.8 6.9 6.9 9.5 7.7

number of tasks
that finish 61 (37) 78 (21) 51 (46) 63(35) 87 (11) 92 (7) 79 (18) 86(12)

sooner than with
NetSolve’s MCT

Table 32. Scenario (i’): results in seconds on independent tasks

R
R

n°
5206

6.6. Senario (j’)

This scenario consists in two 1D-mesh submissions in parallel of a set of independent tasks whose arrive
at date with an inter-arrival drawn from a Poisson distribution of mean µ = 25 seconds. The two 1D-mesh
client submits their first task around respectively 300 and 2000 seconds.

Makespan and Sumflow graphs are given in Figures 26, 27 and 28 on respectively the left and right hand.
Resource management is summarized in Table 33, where one can read the percentage of tasks, also given
by type in parenthesis, affected per server as well as the sumflow. The gain over MCT per heuristic for each
client (we assume in this table that there is two clients, one per 1D-mesh graph, and a third that submits
the independent tasks) on both the makespan and the sumflow is presented in Table 35. Finally, Tables 34
and 36 give information about the quality of service of the heuristics: assuming that the independent tasks
are submitted by several clients, each of them wants a priori to see their task(s) finish the soonest. One can
read here the probability for its task to finish sooner as well as the expected gain on the duration.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

task set9012

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

AHMCT
ML

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

task set9012

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

AHMCT
ML

Figure 26. Scenario (j’): makespan and sumflow results for the first experiment

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

task set9012

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

AHMCT
ML

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

task set9012

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

AHMCT
ML

Figure 27. Scenario (j’): makespan and sumflow results for the second experiment

Except for MP, which has low performances on some criteria (like on the expected gain on duration and
the sumflow of the set of independent tasks), all of our heuristics give very tight performances here, then no

INRIA

experiment 1
server MCT HMCT MP

% of tasks sumflow % of tasks sumflow % of tasks sumflow
spinnaker 56.5 (19.5 18.5 18.5) 13630 56.4 (18.8 18.5 19.1) 9577 52.5 (18.6 16.6 17.3) 6280
artimon 43.5 (13.7 15.2 14.6) 9747 43.6 (14.4 15.2 14.1) 7405 37.9 (11.0 14.7 12.1) 5223
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 4.3 (1.5 0.9 1.9) 4127
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.3 (2.0 1.4 1.9) 4782

total sumflow 23377 16982 20412
experiment 2

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 54.6 (16.1 20.6 17.8) 13103 56.2 (16.7 21.1 18.4) 9228 51.9 (15.7 19.5 16.7) 6386
artimon 45.4 (15.6 16.8 13.0) 9897 43.8 (15.0 16.3 12.5) 7078 38.5 (12.3 14.3 12.0) 4973
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 4.6 (2.3 1.3 1.0) 3690
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 4.9 (1.5 2.3 1.1) 4296

total sumflow 23000 16306 19345
experiment 3

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 55.1 (16.9 18.7 19.5) 12152 56.7 (18.5 17.1 21.1) 9020 54.0 (18.8 17.6 17.7) 6468
artimon 44.9 (15.7 14.7 14.4) 8711 43.3 (14.1 16.3 12.9) 6753 37.3 (12.1 12.2 13.0) 4985
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 4.0 (0.9 1.3 1.7) 3989
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 4.7 (0.8 2.4 1.6) 4673

total sumflow 20863 15773 20115
MEAN

server MCT HMCT MP
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 55.4 (17.5 19.3 18.6) 12962 56.4 (18.0 18.9 19.5) 9275 52.8 (17.7 17.9 17.2) 6378
artimon 44.6 (15.0 15.6 14.0) 9452 43.6 (14.5 16.0 13.2) 7079 37.9 (11.8 13.7 12.4) 5060
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 4.3 (1.6 1.2 1.5) 3935
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 5.0 (1.4 2.0 1.5) 4584

total sumflow 22413 16354 19957

experiment 1
server MSF AHMCT ML

% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 56.0 (18.5 19.4 18.1) 9317 56.2 (18.0 19.6 18.5) 9541 56.2 (19.1 19.5 17.6) 9013
artimon 44.0 (14.6 14.4 15.0) 7527 43.8 (15.1 14.1 14.6) 7303 42.7 (12.9 14.2 15.6) 7393
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.4 (0.4 0.0 0.0) 171
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.8 (0.8 0.0 0.0) 341

total sumflow 16844 16844 16918
experiment 2

server MSF AHMCT ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 56.2 (17.7 21.4 17.1) 9006 56.7 (17.4 21.4 17.8) 9175 54.7 (16.1 20.8 17.8) 8553
artimon 43.8 (14.1 16.0 13.8) 7283 43.3 (14.4 16.0 13.0) 7393 45.0 (15.3 16.6 13.1) 7499
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.3 (0.3 0.0 0.0) 128

total sumflow 16289 16568 16180
experiment 3

server MSF AHMCT ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 56.0 (17.7 18.7 19.6) 8299 56.3 (17.4 18.2 20.7) 8827 54.9 (16.1 19.1 19.6) 8132
artimon 44.0 (14.9 14.7 14.4) 6891 43.7 (15.2 15.2 13.3) 6769 45.1 (16.4 14.4 14.4) 7081
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0

total sumflow 15190 15596 15213
MEAN

server MSF AHMCT ML
% of tasks sumflow % of tasks sumflow % of tasks sumflow

spinnaker 56.1 (17.9 19.8 18.3) 8874 56.4 (17.6 19.8 19.0) 9181 55.2 (17.1 19.8 18.3) 8566
artimon 43.9 (14.5 15.0 14.4) 7234 43.6 (14.9 15.1 13.7) 7155 44.3 (14.9 15.0 14.4) 7324
soyotte 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.1 (0.1 0.0 0.0) 57
fonck 0.0 (0.0 0.0 0.0) 0 0.0 (0.0 0.0 0.0) 0 0.3 (0.3 0.0 0.0) 156

total sumflow 16108 16336 16104

Table 33. Scenario (j’): processors utilization

RR n° 5206

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

task set9012

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

AHMCT
ML

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

task set9012

tim
e

(s
ec

)

client number

MCT
HMCT

MP
MSF

AHMCT
ML

Figure 28. Scenario (j’): makespan and sumflow results for the third experiment

mean flow gain in percentage
MCT (sec) HMCT MP MSF AHMCT ML

type 1 30.6 18.5 -1.0 21.4 19.0 11.4
experiment 1 type 2 63.8 25.1 21.3 27.2 24.4 27.2

type 3 104.8 30.3 -2.8 30.5 31.1 31.8
type 1 29.4 21.0 -13.6 20.3 16.6 18.7

experiment 2 type 2 67.6 27.9 7.6 29.0 27.0 29.1
type 3 99.8 32.3 14.3 32.3 30.6 32.8
type 1 30.3 25.9 17.5 27.7 24.9 28.3

experiment 3 type 2 58.6 21.6 -11.3 25.4 22.8 24.1
type 3 88.1 25.6 -6.7 28.4 27.2 29.1

MEAN - 63.6 25.4 2.8 26.9 24.8 25.8

Table 34. Scenario (j’): average percentage gain on each task given by type

real discussion can be provided for this scenario. The low throughput has two main incidences that explains
the previous remarks: sometimes, MP chooses a slow server and this results in the standard deviation that
we can observe on the graphs and to its performances ; the other heuristics behave much alike because
there are no real perturbation: in fact, the few perturbations, and the corresponding scheduling decisions,
do not produce a sufficient impact to be observable on the heuristic performances.

Remark We clearly see here that the HTM let take much better scheduling decisions. Moreover, the heuris-
tics behaves much alike when the throughput of the request is low and previous scenarios are necessary to
compare them. The server load has not a really correlation with the throughput in the sens that they are
always the most sollicited: a nuance must be done between the throughput of submitted jobs seen by the
agent and the rate of incoming tasks seen by servers, which is heuristic dependent.

INRIA

STENCIL
makespan sumflow

HMCT MP MSF AHMCT ML HMCT MP MSF AHMCT ML
experiment 1 22.5 23.6 21.7 23.8 22.3 28.8 28.1 27.7 30.3 28.9
experiment 2 22.0 27.8 21.5 22.3 22.9 29.5 36.4 29.0 29.9 30.6
experiment 3 17.7 14.3 19.5 18.1 19.1 24.5 23.0 26.8 24.9 26.3

MEAN 20.7 21.9 20.9 21.4 21.4 27.6 29.2 27.9 28.4 28.6

TASKS SET
sumflow

HMCT MP MSF AHMCT ML
26.7 6.0 27.9 26.9 27.0
28.4 7.2 28.9 27.1 28.7
25.6 -0.5 27.8 25.9 27.8
26.9 4.2 28.2 26.6 28.8

Table 35. Scenario (j’): average percentage gain against MCT on the makespan and the sumflow for each client

NetSolve’s MCT HMCT MP
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

makespan 6253 6304 6383 6313 6251 6300 6381 6311 6251 6383 6381 6339

sumflow 16577 16369 15036 15994 12159 11632 11382 11724 15581 15130 15671 15461

maxflow 202.0 200.3 177.4 193.2 147.4 128.3 112.9 129.5 398.7 401.7 399.2 399.9

maxstretch 5.5 5.3 4.6 5.1 4.0 3.3 3.1 3.5 9.6 9.6 9.6 9.6

number of tasks
that finish - - - − 69 (22) 72 (20) 69 (22) 70(21) 72 (19) 74 (19) 73 (19) 73(19)

sooner than with
NetSolve’s MCT

MSF AHMCT ML
seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg seed1 seed2 seed3 Avg

6251 6299 6381 6310 6251 6299 6381 6310 6251 6299 6382 6310

sumflow 11946 11583 10933 11487 12123 11922 11225 11757 12094 11578 10927 11533

maxflow 150.3 130.2 115.2 131.9 139.7 125.0 116.0 126.9 132.9 128.1 123.0 128.0

maxstretch 4.1 3.3 2.8 3.4 3.9 3.5 2.9 3.4 8.7 6.9 3.0 6.2

number of tasks
that finish 71 (19) 72 (20) 71 (20) 71(20) 69 (21) 71 (22) 68 (23) 69(22) 73 (18) 72 (20) 71 (20) 72(19)

sooner than with
NetSolve’s MCT

Table 36. Scenario (j’): results in seconds

R
R

n°
5206

7. Heuristics Performances and Behavior, HTM Improvement: Correlation ?

It is common knowledge that a better accuracy leads to better scheduling decisions thus implying better
performances in the space-shared model. The mechanisms that we have implemented in NetSolve and in
our HTM leads to synchronize the HTM to the reality: indeed, the HTM is aware of what is being con-
ducted on the environment. In consequence, the accuracy is improved as we have shown in Section 5 and
the heuristic uses the resources nearly to their real capacity.

The immediate question is: do heuristics behave now like they used to before the synchronization mecan-
isms implementation ? If not, how do their performances evolute, and do they significantly ? We will at-
tempt to answer these questions in this section. We invite the reader to refer to the research rapport [CJ04]
to have the exact and entire study of the scenarios and thus the results against which we will compare the
new ones.

7.1 Metatask

Concerning the submission of a set of independent tasks, there is not a big difference between heuristics
behaviour if the rate is low. For example when µ = 20 seconds, the average response time (and the other
quality of service metrics in general) is slightly the same, there is nevertheless a difference in the resource
management only on the third experiment.

When µ = 17 seconds, HMCT and MSF increase the number of tasks mapped to the fastest servers
spinnaker and artimon. Indeed, MSF does not use fonck and soyotte anymore. This leads for both of them
to a slightly pert in performance on QOS criteria because the scheduling decisions involve a little more
perturbations.

When the rate is high (µ = 15 seconds), consequences are more obvious: HMCT cannot handle the job
throughput anymore because of a too high load on spinnaker who refuses some tasks.

On the opposite, MP improves even slightly its performances with the increase of the rate: the policy of
minimizing the perturbation seems to pay here.

The reason of the heuristics behaviour is the following: we have shown good accuracy for a low and
medium rate. Then, HMCT, MP and MSF behaves the same for µ = 20, 17. But when µ < 17 seconds,
the HTM sub-estimated the fastest servers computing capacity as soon as 5 or 6 tasks were interfering
with another one. With the increase in accuracy, the heuristics have a precise evaluation of the situation
on the fast servers: depending on the design of the heuristic, more tasks will be consequently mapped on
the fastest servers. This change does not occur with MP which aims to minimize the perturbation: on the
opposite, a better accuracy leads necessarily to less perturbation and then to a better quality of service.

Scenario (d) vs (d’)
Firstly, we note that the HMCT, which has more precise information on the system state, does not appear
in the results: scheduling tasks on the fastest servers make them refuse some jobs. Moreover, we have seen
through all the experiments that this policy does not give good results on quality of service for independent
tasks and, even on the makespan, results can be much improved using another heuristic (ML for example).

When MSF is the heuristic embedded in the agent, spinnaker and artimon are more loaded than before:
it was predictable. Indeed, as information on the whole environment are more accurate, fast servers are
less sub-utilized like they used to be before. In consequence, we see more perturbations and performances
suffer it like the respective gains show: before, gains against MCT were on average (7.8%; 11.4%) on the

INRIA

makespan and sumflow of the five 1D-mesh clients and 20.6% on the sumflow of the task set ; they are now
(4%; 6.3%) and 12.6%. Even the average mean flow gains decrease from 15.7% to 10.6%. Nonetheless, we
also observe that the maxtretch and maxflow decrease. The HTM information leads also to less standard
deviation in the heuristic behavior on the makespan and sumflow during numerous runs.

MP seems to improve its performances (makespan, mean flow, max-stretch) or be constant (sumflow,
percentage of tasks finished sooner than MCT).

Scenario (e) vs (e’)
HMCT does not use fonck or soyotte anymore, thus increasing the sumflow on spinnaker and artimon due
to more perturbations. For HMCT and MSF, the same behavior is observed: performances seem to decrease
(but are 3% significant ?). MP seems marked even deeper by its drawback fully explained in [CJ04], and in
consequence the makespan is higher and the sumflow lower.

Scenario (h) vs (h’)
Like for the previous scenarios, HMCT make servers to refuse some jobs. The quality of the information
can be considered here as a drawback for this heuristic. MP and MSF increase their consumption in fast
resources and MSF has a negligeable standard deviation on its behavior between two runs.

We can do the same commentaries than above: the new features implemented in NetSolve and in the
HTM to increase the accuracy of its prediction has nearly no influence on MP performance (mainly because
the accuracy was fairly good) but MSF performances decrease due to more perturbations on the fastest
servers. Indeed, MSF average mean flow (or response time) decreases from 38.4% to 21.4% for example.

Scenario (i) vs (i’)
We observe again that the heuritics map more tasks on the fastest servers (see tables concerning the proces-
sors utilization). Nonetheless, the difference resides in that some heuristics already used to load the fastest
servers, thus an increase has more obvious consequences on some criteria like we will see below.

If a low difference between results of Scenario (i) and (i’) may not be in direct relation with a behavior
evolution, one must note that for example HMCT 5.6% gain on the sumflow of the application is now a
3% pert. MSF performance against MCT decreases from 27.5% to 13.5%. Performance evolutions for the
tasks set sumflow and on the average duration of independent tasks are even worst. Only MP achieves to
maintain the same level.

Most of these behaviors are direct implications of more perturbations on the fastest servers. Tasks are
delayed and so is the makespan. The average duration is longer. HMCT and MSF suffer the most as MP is
nearly untouched mainly beacause the HTM predictions were already accurate: MP delays the completion
of the graph by submitting some critical tasks on slow servers. It thus faces a lower job throughput than
the others in this scenario.

Assessment It is moderate: HMCT cannot face the throughput that it could before thus minimizing its
interest. MSF real performances with highly accurate information is less good than before on the quality
of service metrics but acts with a higher predictable behavior (we observe a lower standard deviation be-
tween two runs). It deals with the real capacity of computing resources and then maps more tasks to the
fastest servers then producing higher contention. Nonetheless, it still stay a good heuristics which clearly
outperforms MCT (and the two derivatives HMCT and AHMCT).

RR n° 5206

MP behaves slightly better because of its design to minimize the perturbation, then a higher quality of
service can be observed. It is also easily explained as the accuracy was already good.

Moreover, the most accuracte the predictions are, the better the model has to be because fast servers are
even more sollicited. Consequently, they may refuse to execute a request and the scheduling decision is
not put into effect. The other consequence is that simulation experiments may not be relevant if several pa-
rameters are not taken into account like: a given determinist task have not exactly the same duration from
one execution to another, and this can affect the modelization of the system ; if the scheduling decisions are
taken accordingly to the load given by some sensors, and that tasks are executed in a time-share system,
the environement is really hard to modelize to reflect the reality ; results of the modelization are generally
lower than they would be in the reality (systems behaves slightly better than the model seems to show) and
they depends on the perturbation created on each server at any time.

We have observed an execution of a run where someone logged on the server (spinnaker). The HTM
estimations were consequently lower than the real durations because of the perturbations that existed in
the real world and that the HTM was not aware of. Nonetheless, it regained a good accuracy with time as
shown in Figure 29. Although we are not able to determine what job has been performed (no information
were given in the log files), nor its characteristics like its duration, this result is encouraging.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

flo
w

 r
at

io
 a

nd
 im

pa
ct

ed
 ta

sk
s

time in seconds

nb of real impacted tasks
ratio

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

re
al

 fl
ow

 d
iv

id
ed

 b
y

pr
ed

ic
te

d
flo

w

time in seconds

ratio

Figure 29. The HTM is able to regain a good accuracy on a non-dedicated server

Finally, the difference of behavior and the performances tha we have observed on HMCT, MP and mostly
on MSF highlight the excellent performances of ML which achives to take the advantages of both MP and
MSF without their respective drawbacks.

8. Improvements and Future Work

We will consider the memory management in further work. It is implemented in the actual HTM by
a simple filter on the servers which do not dispose of sufficient memory to handle the job. It assumes a
constant memory load during the execution of the task, equal of the memory peak requirement. Of course,
heuristics implementing a trade-off between the memory requirement and other criteria can be developped
to advantageously replace the filter.

The accuracy at our disposal with the HTM information invite to go further and propose a system that
do not only rely on the duration of a task on idle servers anymore (obtained by benchmark), but on the

INRIA

use of the complexity polynomial and possibly on further acknowledgements on the task (like in [Sch98]
where Schopf has at her disposal the number of operations or the results of the profiling of the application).
Indeed, when a task is submitted, the HTM can easily compute an estimation of the duration of the new
task by extrapolation and uses its completion date to evaluate an estimation of one more coefficient of the
polynomial. This implies a better accuracy in the next estimation of the duration of the task on the idle
server etc. In that case, the system would achieve an increase in task duration prediction with time.

NetSolve in the 2.0 version is able to end a task if the client asks so to the agent. Shortly, the HTM will
take into account this kind of situation. Information on the system state will thus be up to date at any
moment.

Another possible extend of the functionnalities of the HTM is a scheduling by slices:
Firstly, the SCALAPACK functions perfectly know the graphs of the underlying computing applications.
When receiving that kind of request, the agent can give the graph to the scheduler with can in turn simu-
lates and prepare some basis for further scheduling like not map critical tasks on slow servers. This idea
can naturally also be used for a client who has the knowledge of his application: at each job submission,
the agent answer the scheduler choice, but has knowledge of further submission and take decisions accord-
ingly.
Secondly, if the agent faces a high throughput, requests can be delayed. Requests are recorded as a set of
tasks which has to be scheduled when the thoughput lowers. In that case, the agent acts also as a regulator
for the system.
Finally, relying on the same idea, the HTM can simulate the new request for different arrival dates (natu-
rally chosen as the date where a task finish and leaves the system). The scheduler can then take its decision
about where to map the task and at which time the task must enter the environment.

We also want to deal with non-dedicated servers in future work. Hence, we need to exploit the informa-
tion of sensors that are already executing on servers (NetSolve’s for the moment). The HTM can compare
the workload that the agent receives and the one that would normally be: if higher in a given range, then it
can conclude that some perturbations must be included in the computation of the Gantt chart, basis of the
information given to the scheduler. In that case, other estimations, obtained for example using probabilistic
behavior, can also be used and used in addition within the HTM.

9. Conclusions

We have introduced two new heuristics AHMCT and ML in this paper, which rely on the Historical Trace
Manager, a module embedded in the agent whose role is to predict the duration that any task requires on
the system. The HTM and the other heuristics HMCT, MP and MSF have already been presented in [CJ02a]
and [CJ04].

We have explained some new mechanisms: a global ID assignation for each new request in the system
and a completion message sent to the agent when a task finishes. Both mechanisms have been implemented
in NetSolve which required to change or improve all parts (client, agent and server). The HTM is now able
to take each task completion date into account to compute higher accurate information on the system state.

We have presented several scenarios that were scheduled and executed in real world experiments. Three
main studies have been conducted: the validation of the HTM estimations before and after the new features
; the comparison between all heuristics performances on several criteria including the makespan, the sum-
flow, the mean flow and probability of an independent task to finish sooner than if scheduled with MCT.

RR n° 5206

The HTM achives an excellent estimation of the duration of any task in the system at any moment. Thus,
heuristics can take according scheduling decisions with the real computing capacity of the resources. Some
previous bad behaviors that were encountered and explained have disappeared with the synchronization
mechanisms. It generally leads for the heuristics to higher load the fastest resources. Then the most accu-
rate is the module, the most accurate is has to be because the time-share model is treated roughly during
some experiments.

AHMCT performances confirm that trying to optimize the makespan by minimizing the makespan at
each request may not an efficient policy in an heterogeneous time-shared environment (it behaves better
than MCT because of better information on the system state but is much outperformed by the heuristics
that are designed to minimize the perturbations tasks have on each other).

Our heuristics are a real improvement in taking good scheduling decisions. The synchronization mecha-
nisms have changed some performances (HMCT and MSF) that appear to behave better if sub-utilizing the
resources. ML appears to mix the advantages of MP and MSF (quality of service criteria and makespan)
and may be used regardless the application type of the submissions.

References

[CD96] H. Casanova and J. Dongarra. Netsolve : A network server for solving computational science
problems. In Proceedings of Super-Computing -Pittsburg, 1996.

[CJ02a] Y. Caniou and E. Jeannot. Dynamic mapping of a metatask on the grid: Historical trace, minimum
perturbation and minimum length heuristics. Technical Report 4620, LORIA, Nancy, oct 2002.

[CJ02b] Y. Caniou and E. Jeannot. Ordonnancement pour la grille : une extension de mct. In Proceedings of
RenPar 2002, pages 58–65, Hammamet, Tunisia, April 2002.

[CJ03] Y. Caniou and E. Jeannot. New dynamic heuristics in the client-agent-server model. In Proceedings
of the 13th Heteregeneous Computing Workshop (HCW03), april 2003.

[CJ04] Y. Caniou and E. Jeannot. Study of the behaviour of heuristics relying on the historical trace man-
ager in a (multi)client-agent-server system. Technical Report 5168, LORIA, Nancy, 2004.

[Sch98] J. Schopf. Performance Prediction and Scheduling for Parallel Applications on Multi-Users Clusters. PhD
thesis, University of California, San-Diego, 1998.

INRIA

Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	. Introduction
	. HTM Improvement: Synchronization to the Reality
	. New Heuristics
	. Advanced Historical Minimum Completion Time: AHMCT
	. Minimum Length: ML

	. Experiments Modalities
	. HTM Accuracy: Results
	. Scenario (a) and (a'): Submission of Independent Tasks
	HMCT
	MP
	MSF
	Summary

	. Scenarios Involving the Submission of DAGS

	. Heuristics Performances: Results
	. Scenario (a')
	. Scenario (d')
	. Scenario (e')
	. Scenario (h')
	. Secnario (i')
	. Senario (j')

	. Heuristics Performances and Behavior, HTM Improvement: Correlation ?
	Metatask

	. Improvements and Future Work
	. Conclusions

