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Abstract: In this paper, we consider a set of HTTP flows using TCP over a common
drop-tail link to download files. After each download, a flow waits for a random think time
before requesting the download of another file, whose size is also random. When a flow is
active its throughput is increasing with time according to the additive increase rule, but if
it suffers losses created when the total transmission rate of the flows exceeds the link rate,
its transmission rate is decreased. The throughput obtained by a flow, and the consecutive
time to download one file are then given as the consequence of the interaction of all the flows
through their total transmission rate and the link’s behavior.

We study the mean-field model obtained by letting the number of flows go to infinity.
This mean-field limit may have two stable regimes : one without congestion in the link, in
which the density of transmission rate can be explicitly described, the other one with periodic
congestion epochs, where the inter-congestion time can be characterized as the solution of a
fixed point equation, that we compute numerically, leading to a density of transmission rate
given by as the solution of a Fredholm equation. It is shown that for certain values of the
parameters (more precisely when the link capacity per user is not significantly larger than
the load per user), each of these two stable regimes can be reached depending on the initial
condition. This phenomenon can be seen as an analogue of turbulence in fluid dynamics: for
some initial conditions, the transfers progress in a fluid and interaction-less way; for others,
the connections interact and slow down because of the resulting fluctuations, which in turn
perpetuates interaction forever, in spite of the fact that the load per user is less than the
capacity per user. We prove that this phenomenon is present in the Tahoe case and both
the numerical method that we develop and simulations suggest that it is also be present in
the Reno case. It translates into a bi-stability phenomenon for the finite population model
within this range of parameters.
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Résumé : Cet article étudie le partage de la bande passante d’un lien avec débordement
par des flots HTTP. Dans ce modèle, après chaque téléchargement de fichier, un flot attend
pendant une durée aléatoire avant de demander le téléchargement d’un nouveau fichier de
taille elle aussi aléatoire. Lorsqu’un tel flot est actif, son débit évolue selon l’algorithme
AIMD (additive increase, multiplicative decrease) de TCP: ce débit augmente linéairement
tant qu’il n’y a pas de débordement et il est divisé par 2 (RENO) ou ramené à une valeur
proche de 0 (TAHOE) lorsque des pertes sont détectées. Les débits obtenus par un flot et
les durées de téléchargement des fichiers sont donc déterminés par l’interaction de tous les
flots et leur compétition pour le partage de la bande passante de ce lien.

Nous étudions un modèle de champ moyen obtenu en faisant tendre le nombre des flots
vers l’infini. Le modèle limite peut avoir deux régimes stables, l’un sans congestion dans
lequel la distribution des débits peut être décrite de manière explicite, l’autre avec des
congestions périodiques. Pour ce deuxième régime, la période peut être obtenue comme
solution d’une équation de point fixe et la distribution des débits comme la solution d’une
équation de Fredholm.

Nous montrons qu’il existe des cas où la capacité du lien par flot est supérieure à la
charge par flot et où chacun de ces deux régimes peut cependant être atteint en fonction
des conditions initiales. Ce phénomène peut être vu comme un analogue de la turbulence
en dynamique des fluides: pour certaines conditions initiales, les transferts de fichiers pro-
gressent de manière fluide et sans interactions entre les flots. Pour d’autres, les flots entrent
en interaction et sont ralentis par les fluctuations qui résultent de cette interaction et ce
ralentissement favorise à son tour les interactions, qui persistent indéfiniment.

Nous prouvons que ce phénomène est présent dans le case de TCP TAHOE. Les méthodes
numériques que nous développons dans l’article ainsi que les simulations suggèrent que ce
phénomène est aussi présent dans le cas RENO.

Ces propriétés du modèle de champ moyen se traduisent par un phénomène de bi-stabilité
pour les modèles avec population finie.

Ces travaux de recherche s’inscrivent dans le cadre de l’"Opération Stratégique Con-
jointe" Alcatel-INRIA intitulée "End to End Analysis of IP Traffic".

Mots-clés : Champ moyen, connexion HTTP, TCP, contrôle de congestion, contrôle de
flux, algorithme de croissance additive et décroissance multiplicative, trafic IP, synchronisa-
tion. Classifications AMS 1980: principale 60K25; secondaire 60K20.
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1 Introduction

Consider the following toy model: two users with the same round trip time R share a buffer-
less link of capacity C. Each user alternates between OFF periods and download periods.
As an example, if C = ∞, each user has the following behavior: it remains silent during an
OFF period that is of duration β−1 and then downloads a file of µ−1 packets, alternating
between such OFF and download periods in a periodic way forever. Assume now that the
file transfers of these users are controlled by a TCP-Reno like congestion control mechanism
based on the additive increase multiplicative decrease (AIMD) rule for the transmission. To
make the problem as simple as possible, disregard slow start and time out.

• In case the link capacity C is infinite, the additive increase rule of the congestion
avoidance mechanism of TCP implies that each download takes t = R

√
2/µ, so that

each user has a periodic behavior of period β−1 + t in which it downloads files at a
long term average rate of ρ = (µ(β−1 +R

√
2/µ))−1 packets per second.

• If C > 2
√

2/(µR2) (which is the sum of the peak rates of the two flows), then the two
users never fill in the link capacity and TCP never lets them interact either.

• If C < 2
√

2/(µR2), then two things may happen depending on the initial phases of
the two flows.

– Assume first that the two flows are in phase, namely both simultaneously start
a download at time 0. Then the capacity of the link is exceeded before the
end of the two simultaneous transfers and (assuming full synchronization of the
losses) both flows then experience a loss at some time t′ < t which results in a
window being divided by two that we consider to be instantaneous at time t′. For
certain values of the parameters (see Figure 1), the two flows then complete their
download simultaneously at some epoch t′′ > t before the capacity of the link is
again exceeded, so that the two flows actually reach a periodic regime of period
t′′ +β−1 in which they download a long term average of ρ′ = (µ(β−1 + t′′)−1 < ρ
packets per second.

– Assume now that the two flows are out of phase, in such a way that, for instance,
when one is downloading, then the other one is OFF (which is possible if β−1 > t).
Then the situation seen by each flow is exactly as that in the case with C = ∞,
so that the long term average download rate is ρ

• If C <
√

2/(µR2), then the two flows experience losses in any case.

The main conclusion from this toy example is that the average rate obtained by the flows
depends on their relative phase.

The main question addressed in this paper is that of the possible persistence of this
phase dependence phenomenon in a more realistic model where the number of users is large

INRIA



HTTP Turbulence 5

Figure 1: Flow 1 is the solid line and flow 2 the dotted line. Top figure: two out of phase
flows with capacity above the peak rate of one flow; no interaction. Middle figure: two
in phase flows with capacity larger than twice the peak rate of one flow: no interaction.
Bottom figure: two in phase flows with capacity between the peak rate and twice the peak
rate; the interaction regime is reached and this slows down the file transfers.

and where both the file sizes and the OFF periods are independent random variables, with
given distribution functions on the positive real line. It could be expected that in contrast
with the last deterministic model, the "mixing" operated by the randomness of the file sizes
and the OFF periods leads to some form of dephasing of the various flows and hence to a
throughput that is independent of the initial phase condition.

We will consider two cases: the Reno case based on the additive increase multiplicative
decrease (AIMD) rule for of the transmission rate and the Tahoe case. The Reno case will
be the default assumption throughout the paper.

Informed readers may be concerned that our model for interacting HTTP flows sharing
a common link is oversimplified. It is well known that within the context of the Internet,
it is appropriate to assume that the distribution of file sizes and OFF periods have heavy
tails (e.g. Pareto file sizes and Weibull or lognormal OFF periods, as for example in [10]).
However, in most of the mathematical derivations of the present paper, we will assume heavy
tails because we are unable to solve the associated mathematics at this stage (nor can the
rest of the scientific community to the best of our knowledge). We will rather concentrate

RR n° 5205
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on the version of the problem where both file sizes and OFF periods are exponential random
variables and where all files and OFF times are mutually independent.

Why study a model based on statistical assumptions that are clearly inappropriate? The
rationale is as follows: the exponential case is tractable and allows one to identify and prove
the presence of phenomena that are also observed by simulation in the heavy tailed case. So
the mathematical study based on the exponential case will be important step in the direction
of the understanding of the interaction of HTTP flows with the more realistic statistics.

In the mathematical analysis, we assume the existence of a stationary deterministic
mean-field limit when the number of flows goes to infinity. In this deterministic limit there
are two possible stable regimes. If the file sizes are small enough the link is able to carry all
the traffic without congestion. The average transmission rate stabilizes at a value calculated
below giving an overall utilization of the link which is less than one. In the other stable
regime there is a series of congestion epochs where the buffer overflows and the active flows
experience losses and cut their transmission rate in two. The main aim of this paper is to
investigate these two regimes, and in particular the conditions under which they appear and
the stationary distributions they lead to.

Section 3 gives a necessary condition for the existence of stationary regimes with con-
gestion epochs. This necessary condition is based on the rate conservation principle which
allows one to pose a fixed point problem for the rate of congestion epochs. The numerical
aspects associated with this fixed point equation are discussed in detail in this section: the
functions that are used in this fixed point equation are obtained as the solutions of Fredholm
integral equations of the second kind, which are derived from a regenerative analysis of the
rate of a tagged flow. This leads to an efficient way of calculating the possible values of the
period of the mean-field model.

Section 4 focuses on a necessary and sufficient condition for the existence of stationary
regimes with congestion epochs. For this, we first study the interaction-less regime, for which
we establish a partial differential equation. We give both an explicit solution of this PDE and
an efficient numerical way to solve it via yet another Fredholm equation of the second type,
which has a natural regenerative interpretation. We then establish an invariant equation
describing, for a given inter-congestion period of the mean-field process, the stationary
distribution of rates at a congestion epoch. The existence of a probability measure solution
of this invariant measure equation that satisfies certain conditions described in the paper is
a necessary and sufficient condition for the existence of such a periodic congestion regime.
The associated integral equation is again a Fredholm integral equation of the second kind.

One of the key observations is made in Section 4 : within this setting, it is possible to
have multiple stationary mean-field regimes depending on the initial conditions: for certain
values of the parameters, there exist both a "fluid regime" where flows do not interact at
all and a "turbulent regime" where the fact that flows interact once implies a slow down of
the whole system that propagates interaction forever.

Section 5 extends the approach to a model with a simple representation of slow start.
Section 7 gathers simulation results on the bi-stability phenomenon and on the case with
heavy tailed file sizes and OFF-times. We show by simulation and analysis that the phe-
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nomena that are identified in the exponential model are also present in the heavy tailed
case. Section 6 focuses on the comparison of our results with those of earlier models of the
literature. In particular, we compare this model to the processor sharing Engset model.
Finally Section 8 gathers some packet level simulations based on ns2 [1]. The aim of this
section is to confirm the presence of the results identified via the fluid mathematical models
and the fluid simulation of the present paper in a packet level simulation.

2 Related Work

Modeling TCP through the fairness it achieves (or equivalently the utility functions that it
optimizes) has been a very active area of research since the work of Kelly in [15]. A general
extension of this framework to dynamic traffic with a large number of flows is described in
[10]. In [18] this framework is used to study the performance of networks with dynamic
traffic (in [18] files to be transmitted arrive according to a Poisson process), with several
types of fairness assumptions. In [12] the results proven in this previous paper are extended
to a Poisson arrival process of sessions, each associated with a file download having a general
distribution. [12] contains a proof that if the network can be modeled by a processor sharing
queue - or equivalently if instantaneous fair sharing can be assumed in the network - then
the mean throughput only depends on the average requested size per session. Comparison
with simulations is provided but as the authors themselves remarked, this result might be
challenged in real networks either for very small flows, that do not last long enough to benefit
from their possible fair share in the network capacity, or for close to critical load where the
discrimination between flows and the unequal sharing due to TCP are more frequent.

At the same time, a few papers focused on TCP bandwidth sharing for dynamic traffic
when taking into account the AIMD rule. In [14], one of the first models developed on
dynamic traffic, a version of the Engset model is proposed and shown to be insensitive
w.r.t the file size distribution. TCP is modeled as a constant transfer rate calculated from
the study of TCP sharing for a fixed number of persistent flows that are exactly in phase
(increasing their window and decreasing it by the same amount at the same time). This
model is extended by Kherani and Kumar under exponential assumptions in [16] where the
inter-congestion period and the increase of the total rate is now dynamically changing with
the traffic. In this model the flows contributing to the traffic are all in phase (they all react
together at the same time and in the same way) ; the analytical result cannot be explicitly
given in the general case but only in the low load, large file case where TCP bandwidth can
be approximated by a completely fair allocation.

Our work extends these two papers; we are not assuming that the flows are in phase
or that they share the bandwidth equally. We study the asymptotics of a model with N
ON/OFF flows sharing a link according to an AIMD rules, when N tends to infinity. Our
goal is to provide - in the exponential case that we can entirely characterized via fixed point
equation - observations on the efficiency of the TCP sharing, with no assumption of the
fairness achieved, and for any load on the network.

RR n° 5205
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3 A Necessary Condition for the Existence of a Regime

with Periodic Congestion

3.1 Model

We suppose N HTTP flows share a link which has no buffer or rather a small buffer that
cushions collisions. The link rate is CN packets per second so the link drops packets at
random when the transmission rates of the flows exceed the link rate. We assume each
HTTP flow is silent for an exponential time with a mean 1/β. After the silence period the
flow transmits a file where the distribution of file sizes is exponential with a mean 1/µ. The
default option is that each flow implements TCP Reno so the transmission rate increases at
rate 1/R2 during the transmission of a file where R is the round trip time of packets. When
the file has been transmitted the transmission rate is reset to zero.

The interaction between flows is via the sum of their rates. As long as this sum, which we
refer to as the aggregate rate, is less than NC, then there is no interaction between the flows.
When the aggregate rate reaches the link capacity CN , an event that we call a congestion
epoch occurs. For the sake of tractability, we assume that all losses taking place before the
flows react take place instantaneously. This reaction consists in the fact that Reno may cut
the rate given to each of the N flows independently with a probability p. The parameter p,
which is the proportion of flows that experience a loss at such a congestion epoch, is called
the synchronization rate of the model (this parameter is evaluated from queueing theory by
Baccelli and Hong in [6]). After this reaction, the aggregate rate is again less than C and a
new interaction-less phase starts. In the TCP-Tahoe case, the rate of flows that experienced
a loss is reset to 0.

3.2 Rate Conservation

DefineX(t) to be the transmission rate of a tagged flow participating in the steady state. As-
sume that there exists a stationary regime for X(t), namely that it is a stationary stochastic
process defined on a probability space {Ω,F , P}. The distribution of X(t) is therefore the
distribution of all the transmission rates in the steady state. X(t) increases linearly at rate
1/R2 when it is active; i.e. with mean rate P(X(0) > 0)/R2. This increase is counteracted
by negative jumps when a file finishes and the transmission rate drops to zero. It is also
counteracted by a reduction by one half when a packet is lost at a congestion epoch.

The following point processes will be useful:

• T , the point process of congestion epochs, with inter-arrival times τ , with Palm ex-
pectation E

τ
0 ; let τ̄ denote the expectation of the inter-congestion times w.r.t. P

τ
0 ;

• D, the point process of file completions of the tagged flow, with intensity λδ and with
Palm expectation E

δ
0.

When a file is completely downloaded, the throughput is reset to zero. Hence, with the
introduced notation, the rate of decrease of the transmission rate due to file completions is

INRIA
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λδE
δ
0(X(0−)). In addition to that, the mean rate at which the tagged flow suffers a packet

loss is p/τ̄ , and the tagged flow divides its transmission rate by 2 for each loss. Consequently
the rate of decrease of the transmission rate due to packet loss is p

τ̄ E
τ
0 [X(0−)/2]. Since the

utilization is exactly one when the congestion epoch begins it follows that E
τ
0 [X(0−)] = C

so the rate of decrease of the transmission rate due to packet loss is pC/(2τ̄).
By the rate conservation principle (RCP, see e.g. [5], Chapter 1), the mean rate of

increase equals the mean rate of decrease. So

P(X(0) > 0)

R2
=
pC

2τ̄
+ λδE

δ
0[X(0−)]. (1)

On the left hand side the unknown quantity is the steady state probability that a flow is
active while on the right hand side we have λδ , the rate at which file completions occur and
E

τ
0 [X(0−)], the mean transmission rate observed when the file is completely downloaded.

In the Tahoe case, the RCP equation reads

P(X(0) > 0)

R2
=
pC

τ̄
+ λδE

δ
0[X(0−)]. (2)

In what follows, the RCP will be used as a way to determine the possible values of τ .
As we shall see in §3.3 below the expressions that show up in the RCP equation, namely
P(X(0) > 0) and E

δ
0[X(0−)] can be computed as a function of τ , so that this equation can

be seen as a fixed point equation for τ .

3.3 The Fredholm Equations

In this section and in the rest of the paper, we let the parameter N tend to ∞ and we
assume the existence of a stationary mean-field limit as N → ∞ in the same spirit as in [7],
[10] or [6]. In such a mean-field regime the inter-congestion times become deterministic and
we have propagation of chaos; i.e. each flow becomes independent. We will concentrate on
the case where the stationary regime of the mean-field limit has inter-congestion times are
all equal some constant τ .

We will see below that when assuming τ known, all quantities in Equation (1) can be
computed as the solutions of certain Fredholm integral equations, and that (1) can be used
as fixed point for determining τ .

In this section, we assume τ to be given. We define a cycle to start at a congestion epoch
where the tagged flow is idle. The cycle ends at the first congestion epoch when the flow is
idle again. We use the following notation :

• Σ is the point process of congestion epochs where the tagged flow is idle, with inter-
arrival times σ and with Palm expectation E

σ
0 .

The rationale for defining such cycles is that the sequence of successive cycles associated
with the tagged flow is i.i.d. or in other words that the beginning of cycles are regeneration
times for the tagged flow.

RR n° 5205
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3.3.1 Expected number of files in a cycle

Define f(t) to be the expected number of files that will be transmitted by the end of the
current cycle given that the tagged flow is inactive at the current time t (where 0 ≤ t < τ).
Also define g(z) to be the expected number of files that will be transmitted by the end of
the current cycle given that the current transmission rate of the tagged flow is z packets per
second and that the current time is immediately after a congestion epoch.

Our goal is to evaluate f(0) but we find f(t) for all t ∈ [0, τ [. Since the silence period
has an exponential distribution we can condition on the time when the flow has a new file
to transmit. There are two possibilities. Either the file arrives before the next congestion
epoch at some time r where t ≤ r ≤ τ or it does not. If it hasn’t arrived, the current cycle
ends and f(t) = 0.

If it does, for a time r where t ≤ r ≤ τ , we condition on the size y of the arriving
file. There are again two cases. Either the transmission of this file is completed before the
next congestion or there is some remaining data to be transmitted after the next congestion
epochs. We are in the first case if we can transmit y packets in τ − r time units given
that the flow starts out with transmission rate zero. Since the transmission rate increases
at rate 1/R2 it will take t′ time units to transmit y packets if y = (t′/2)(t′/R2), ; i.e. if
t′ = R

√
2y. Consequently y packets can be transmitted before the next congestion epoch

only if y ≤ (τ −r)2/(2R2). In this case we add one to the number of files transmitted during
the current cycle plus a renewal term. We can summarize this first case by

∫ τ

t

βe−β(r−t)



∫ (τ−r)2

2R2

0

µe−µydy(1 + f(r +R
√

2y)


 dr.

In the second case the y packets cannot be transmitted before the next congestion epoch.
In this case, which occurs with probability exp(−µ(τ −r)2/(2R2)), we do not add one to the
number of files transmitted, but only the expected number of files transmitted after the next
congestion epochs. It depends on the throughput seen after congestion : by the congestion
epoch the transmission rate of the tagged flow is (τ − r)/R2. There is probability p that the
tagged flow suffers a packet loss which reduces the transmission rate to (τ − r)/(2R2).

We can summarize the expected number of files that will be transmitted by the end of
the current cycle given we are in this second case as

∫ τ

t βe
−β(r−t)e−µ (τ−r)2

2R2
(
pg( τ−r

2R2 ) + (1 − p)g( τ−r
R2 )

)
dr.

We conclude that f(t) is given by :

∫ τ

t

βe−β(r−t)

{∫ (τ−r)2

2R2

0

µe−µy(1 + f(r +R
√

2y))dy

+e−µ (τ−r)2

2R2

(
pg(

τ − r

2R2
) + (1 − p)g(

τ − r

R2
)

)}
dr. (3)

INRIA



HTTP Turbulence 11

We now turn to g(z). The residual number of packets to transmit from the current file
Y has an exponential distribution. Again there are two cases. Either the current file can be
transmitted before the next congestion epoch or it can’t.

In the first case Y is exponentially distributed between 0 and zτ + τ 2/(2R2) since this is
the maximum amount that can be transmitted in τ time units. After Y units are transmitted
we add one to the total number of files transmitted in the current cycle plus a renewal
term representing the expected number of files we will transmit in the remaining time of
the current cycle. The time t when the first transmission was completed satisfies y =
tz+ t2/(2R2); i.e. t = R

√
R2z2 + 2y−R2z. At this time, the tagged flow is becoming idle.

Consequently this first case contributes to the value of g(z) by :

∫ zτ+ τ2

2R2

0

µe−µy(1 + f(R
√
R2z2 + 2y −R2z))dy.

The second case occurs if Y > zτ + (τ 2/(2R2)), and thus with a probability equal to
exp(−µ(zτ + τ2/(2R2))). When the next congestion epoch begins the tagged flows has
the remaining of the file (exponentially distributed) to transmit, and a transmission rate
of z + τ/R2. With a probability p the tagged flow suffers a packet loss in this congestion
epochs ; in this case, its transmission rate is reduced to (z + τ/R2)/2. We summarize this
case as follows:

e−µ(zτ+ τ2

2R2 )

(
pg(

z + τ
R2

2
) + (1 − p)g(z +

τ

R2
)

)
.

As a conclusion, g(z) can be written :

∫ zτ+ τ2

2R2

0

µe−µy(1 + f(R
√
R2z2 + 2y −R2z))dy

+e−µ(zτ+ τ2

2R2 )

(
pg(

z + τ
R2

2
) + (1 − p)g(z +

τ

R2
)

)
. (4)

Equations (3) and (4) constitute an integral equation of the Fredholm type for the pair
(f, g).

3.3.2 Expected "on" period during a cycle

Let h(t) denote the expected cumulative time that the flow is active in the remaining time of
the current cycle given that the tagged flow is inactive at the current time t with 0 ≤ t < τ .
Let i(z) be the expected cumulative time that the flow is active in the remaining time of the
current cycle given that the current time is immediately after a congestion epoch, and that
the tagged flow is active with a current transmission rate of z. With the notation defined
above, we have E

σ
0 [
∫ σ

0 1X(t)>0dt] = h(0). Arguments similar to those given above lead to
the following Fredholm equations for the (h, i) pair that are given in (5).

RR n° 5205
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3.3.3 Expected duration of a cycle

Let j(t) denote the expected residual time before the end of the current cycle given that
the tagged flow is inactive at the current time t with 0 ≤ t < τ . Let k(z) be the expected
residual time before the end of the current cycle given that the current time is immediately
after a congestion epoch, and that the tagged flow is active with a current transmission rate
of z.

We have E
σ
0 [σ] = j(0) and again (j, k) can be seen as the solution of a Fredholm equation

(see (6))

3.3.4 Expected jumps down due to completions of files during a cycle

Finally, let l(t) denote the expected cumulative throughput reductions due to file completions
from now to the end of the cycle given that the tagged flow is inactive at the current time
t with 0 ≤ t < τ .

And let m(z) be the expected cumulative jumps down due to file completions from now
to the end of the cycle given that the current time is immediately after a congestion epoch,
and that the tagged flow is active with a current transmission rate of z.

We have E
σ
0 [
∫ σ

0 X(t−)D(dt)] = l(0), where D, already introduced, denotes the point
process of file completions.

As well as the other functions introduced, (l,m) are linked by a Fredholm Equation that
is described on (7).

3.3.5 Expression of the three unknowns of the fixed point equation

For given τ , from the numerical solution of the set of Fredholm equations, one can efficiently
determine

• E
σ
0 [KB ] := f(0), the mean number of births during a cycle (which is also the mean

number of file completions during a cycle;

• E
σ
0 [
∫ σ

0
1X(t)>0dt] = h(0), the mean cumulative ON time over a cycle;

• E
σ
0 [σ] = j(0), the mean duration of a cycle and

• E
σ
0 [
∫ σ

0
X(t−)D(dt)] = l(0), the mean cumulative throughput reductions due to file

completions over a cycle.

From this we can deduce the following representations for the 3 unknowns of (1):

λδ =
E

σ
0 [KB]
E

σ
0 [σ] = f(0)

j(0)

E
δ
0[X(0−)] =

E
σ
0 [
∫

σ

0
X(t−)D(dt)]

E
σ
0 [KB] = l(0)

f(0)

P(X(0) > 0) =
E

σ
0 [
∫

σ

0
1X(t)>0dt]

E
σ
0 [σ] = h(0)

j(0) .

Notice that the product λδE
δ
0[X(0−)] which is used in (1) is equal to l(0)

j(0) so that the (f, g)

pair is actually not required for solving this fixed point equation.
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h(t) =

∫ τ

t

βe−β(r−t)dr





∫ (τ−r)2

2R2

0

µe−µy(R
√

2y + h(r +R
√

2y)) dy

+e−µ (τ−r)2

2R2

(
τ − r + pi(

τ − r

2R2
) + (1 − p)i(

τ − r

R2
)

)}

i(z) =
∫ zτ+ τ2

2R2

0 µe−µy(R
√
R2z2 + 2y −R2z + h(R

√
R2z2 + 2y −R2z)) dy

+e−µ(zτ+ τ2

2R2 )

(
τ + pi(

z + τ
R2

2
) + (1 − p)i(z +

τ

R2
)

)
. (5)

j(t) = (τ − t)e−β(τ−t) +

∫ τ

t

βe−β(r−t)dr





∫ (τ−r)2

2R2

0

µe−µy((r − t) +R
√

2y + j(r +R
√

2y)) dy

+ e−µ (τ−r)2

2R2

(
τ − t+ pk(

τ − r

2R2
) + (1 − p)k(

τ − r

R2
)

)}
.

k(z) =

∫ zτ+ τ2

2R2

0

µe−µy(R
√
R2z2 + 2y −R2z + j(R

√
R2z2 + 2y −R2z)) dy

+e−µ(zτ+ τ2

2R2 )

(
τ + pk(

z + τ
R2

2
) + (1 − p)k(z +

τ

R2
)

)
. (6)

l(t) =

∫ τ

t

βe−β(r−t)dr





∫ (τ−r)2

2R2

0

µe−µy(

√
2y

R
+ l(r +R

√
2y)) dy

+ e−µ
(τ−r)2

2R2

(
pm(

τ − r

2R2
) + (1 − p)m(

τ − r

R2
)

)}
.

m(z) =

∫ zτ+ τ2

2R2

0

µe−µy(z +
R
√
R2z2 + 2y −R2z

R2
+ l(R

√
R2z2 + 2y −R2z))dy

+e−µ(zτ+ τ2

2R2 )

(
pm(

z + τ
R2

2
) + (1 − p)m(z +

τ

R2
)

)
. (7)

3.4 The Tahoe Case

Given τ , the rate of the tagged flow is again a regenerative process with the same cycle
structure as in the Reno case, namely starting with a congestion period when the rate of
the tagged flow is 0 and ending at the next congestion is again 0. Using the same notation
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14 F. Baccelli, A. Chaintreau, D. De Vleeschauwer & D. McDonald

as in the Reno case, we now get

f(t) =

∫ τ

t

βe−β(r−t) (8)

·
{∫ (τ−r)2

2R2

0

µe−µy(1 + f(r +R
√

2y)dy

+e−µ (τ−r)2

2R2

(
pg(0) + (1 − p)g(

(τ − r)

(R2)
)

)}
dr

and

g(z)=

∫ zτ+ τ2

2R2

0

µe−µy(1 + f(R
√
R2z2 + 2y − R2z))dy

+e−µ(zτ+ τ2

2R2 )
(
pg(0) + (1 − p)g(z +

τ

R2
)
)
. (9)

The other equations can easily be derived by similar arguments and are omitted.

3.5 Numerical Evaluation of the Fixed Point

In this section we present the method that we developed to numerically study the fixed
point equation satisfied by τ . The main result is a common linear equation describing the
integral equations for the pairs (f, g), (h, i), (j, k), (l,m).

Each of the pairs of functions (f, g), (h, i), (j, k), (l,m) satisfies a Fredholm equation of
the second type where all equations share some common terms. It is shown in Appendix
10.5 that the general form of these equations is as follows: we look for a functions A, defined
on [0; τ ] and a function B defined on [0; +∞[ such that they verify Equation (10) where
κ = µ/(R2) and where the functions U and V are given in the following table for all 4 cases:

A(t) =

∫ τ

t

βe−β(r−t)

(
U(r) +

∫ τ

r

κ(s− r)e−κ (s−r)2

2 A(s)ds

+ e−κ (τ−r)2

2

(
pB(

τ − r

2
) + (1 − p)B(τ − r)

))
dr .

B(r) = V (r) +

∫ τ

0

κ(r + s)e−κ s2+2sr
2 A(s)ds

+e−κ τ2+2τr
2

(
pB(

τ + r

2
) + (1 − p)B(τ + r)

)
. (10)

A(t) B(r) U(r) V (r)
f(t) g

(
r

R2

)
− 1 1 0

h(t) i
(

r
R2

)
aτ (r) bτ (r)

j(t) k
(

r
R2

)
aτ (r) 1

β + bτ (r)

l(t) m
(

r
R2

)
− r

R2

aτ (r)+ p

2 cτ (r)

R2

bτ (r)+ p

2 dτ (r)

R2
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with the functions aτ , bτ , cτ , dτ defined as:

aτ (r) =

∫ τ

r

e−κ (s−r)2

2 ds ; bτ (r) =

∫ τ

0

e−κ s2+2sr
2 ds ;

cτ (r) = (τ − r)e−κ (τ−r)2

2 ; dτ (r) = (r + τ)e−κ τ2+2τr
2 .

Let (Γ(t), Γ̃(r)) be the solution (A,B) of Equation (10) for (U, V ) = (1, 0), let (Θ(t), Θ̃(r))
denote the solution for (U, V ) = (aτ , bτ ), and let (∆(t), ∆̃(r)) be the solution of this equation
for (U, V ) = (cτ , dτ ). According to the last table, we have :

Γ(t) = f(t) ; Θ(t) = h(t) and, as Equation (10) is linear,

1

β
Γ(t) + Θ(t) = j(t) and

Θ(t) − p
2∆(t)

R2
= l(t).

We numerically solve Equation (10) in the following way. First, we set B(r) = 0 for
x > Kτ . This is motivated by the fact that for physical reasons B(r) has to decrease as r
increases, a fact that can be proved mathematically, but we omit the proof here. Second, we
discretize the functions A(t) and B(r) uniformly with a density of M samples per interval
of length τ . So, the function A(t) is approximated by a vector of M samples and B(r) by
a vector of KM samples. We stack both vectors and hence obtain a vector of dimension
(K + 1)M . Approximating the integrals in (10) by weighted sums of the samples of the
functions, Equation (10) reduces to a matrix equation. Solving this matrix equation involves
the inversion of a (K + 1)M × (K + 1)M matrix.

The numerical error introduced in this procedure can be controlled by the choice of the
parameters K and M . In each of the examples shown in this paper we made sure that K
and M were large enough for the numerical errors to be small enough. With the parameters
(β and κ) used in this paper and for ranges of τ -values considered in this paper K=8 and
M=40 turned out to give accurate enough values for the fixed points. A detailed study of
how the numerical error decreases as the parameters K and M increase is beyond the scope
of this paper.

3.6 Determination of τ

As shown above, τ satisfies the following equation :

pC

2τ
+
l(0)

j(0)
=

1

R2

h(0)

j(0)
(11)

or equivalently
pC

2τ
+

1
R2 (Θ(0) − p

2∆(0))
1
β Γ(0) + Θ(0)

=
1

R2

Θ(0)
1
β Γ(0) + Θ(0)

.
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16 F. Baccelli, A. Chaintreau, D. De Vleeschauwer & D. McDonald

The most convenient form of this fixed point equation is the following one:

C =

(
∆(0)

1
β Γ(0) + Θ(0)

)
τ

R2
. (12)

This form is valid both for the Reno and the Tahoe cases, for appropriate definitions of Θ
and Γ. In Figure 2, we have computed the right-hand side of Equation (12), which does not
depend on C, as a function of τ for a fixed setting of the parameters 1/β = 2s, 1/µ = 2000
Pkts, R = 100ms, p = 0.8 On this plot we can see that if the link capacity is large enough

Figure 2: The RHS of (12) as a function of τ ; the fixed points are the intersections of this
RHS with the horizontal line C, in the Reno and the Tahoe cases.

there is no value of τ making this function vanish (here for C = 290 Pkts/s.). In this case, the
only possible stable regime is congestion-less. For smaller values of the capacity, we observe
either two fixed points (e.g. for C=270 Pkts/s.) or one (e.g. for C=250 Pkts/s.). In the case
with two solutions, we have several candidates for a stable regime, with different periods.
In the next section we will present a method helping to distinguish between solutions that
may be the inter-congestion time of a stable regime and other solutions. From Figure 2 we
can conclude more:

• for all C-values above 273.4 Pkts/s. (283.3 in the Tahoe case), there are no intersec-
tions;
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• for 263 < C < 273.5 Pkts/s. (263 < C < 283.3 in the Tahoe case), there are two
intersections and

• for C < 263 Pkts/s., there is only one intersection.

4 A Necessary and Sufficient Condition for the Existence

of a Congestion Periodic Regime with a Given Period

We start with a detailed study of the interaction-less regime (this is the free regime, i.e. the
regime when C = ∞), which will be an essential ingredient of the analysis of the congestion
regime which may occur when C <∞ as we shall see in §4.2 below.

4.1 The Free Regime

4.1.1 The free regime regenerative rate process

In the case without congestion, each flow increases its transmission rate linearly at rate 1/R2

and can transmit a file of size y packets in time t where y = t2/(2R2); i.e. in time t = R
√

2y.
The density of the transmission time of a file is

µ
t

R2
e−

µt2

2R2

(as easily seen by the change of variable t → v = t2/2R2) and the mean file transmission
time is therefore

TON = R

∫
∞

0

µ exp(−µy)
√

2ydy = R

√
π

2µ
. (13)

A tagged flow alternates between periods composed of a silence period of exponential dura-
tion with parameter β and a active period of mean duration TON, distributed according to
the above density.

The rate X(t) of the tagged flow at time t is a regenerative process that stays equal to 0
during OFF periods and increases linearly with time during activity periods. This stochastic
process regenerates after the completion of one OFF and one ON period. The point process
of regeneration epochs of a tagged flow will be denoted by S.

During each ON period a flow transmits on average 1/µ packets. Consequently the
average transmission rate per flow is

ρ = (1/µ)/(1/β + TON)). (14)

The proportion ν of flows which are idle is (1/β)/(1/β+TON)). Notice that the transmission
rate equals νβ/µ. This is intuitively obvious since νβ is the rate at which new flows come
on-line and each new flow must transmit on average 1/µ packets.
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Hence when the regime without congestion occurs, the average transmission rate per flow
ρ is less than C; i.e. νβ/µ < C and

ρ =
νβ

µ
=

(
µ

(
1/β +R

√
π

2µ

))
−1

< C. (15)

4.1.2 The free regime PDE

Let ν(t) be the proportion of idle flows at time t. Let s(z, t) be the density of the transmission
rates of active flows in the mean-field regime (we consider first the case with a density for
the sake of clear exposition). Consequently,

∫
∞

0

s(z, t)dz = 1 − ν(t). (16)

From the partial differential evolution equation introduced by Baccelli et al. in [7] we can
see that the density function verifies the PDE:

∂s

∂t
(z, t) +

1

R2

∂s

∂z
(z, t) = −µzs(z, t). (17)

Multiplied by dz, the second term on the left hand side represents the rate of change of the
proportion of transmission rates in [z, z + dz] due to the linear increase in the transmission
rate. The right hand side represents the rate at which files complete transmission since
s(z, t)dz is the proportion of flows with transmission rates in the interval [z, z + dz] and
flows with transmission rates in this interval complete transmission at a rate µz.

The rate at which flows become active is βν(t) hence in time dt the area βν(t)dt is
added under the graph of s(z, t) between 0 and dt/R2 because this area is cleared out by
the additive increase in the transmission rates. The area under the graph of s(z, t) between
0 and dt/R2 is s(0, t)dt/R2 to first order. Hence,

s(0, t)/R2 = βν(t). (18)

4.1.3 The Fredholm equation for solving the free regime PDE

We define the Laplace transforms

ŝz(u) =

∫
∞

0

e−uts(z, t)dt, (19)

ν̂(u) =

∫
∞

0

e−utν(t)dt. (20)

Taking the Laplace of (17) w.r.t. t, we get

uŝz(u) − s(z, 0) +
1

R2

∂

∂z
ŝz(u) = −µzŝz(u)
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or equivalently
∂

∂z
ŝz(u) = −R2(u+ µz)ŝz(u) +R2s(z, 0).

The solution of this ordinary differential equation is

ŝz(u) = e−R2(uz+µz2/2)
(
ŝ0(u) +R2

∫ z

0

eR2(ux+µx2/2)s(x, 0)dx

)

= R2

∫ z

0

e−R2u(z−x)e−R2µ( z2

2 −
x2

2 )s(x, 0)dx +R2e−R2(uz+µz2/2)βν̂(u), (21)

where we used the fact that ŝ0(u) = βR2ν̂(u), which follows from (18).
We now remark that

R2

(
z2

2
− x2

2

)
= zR2(z − x) − (R2(z − x))2

2R2
,

and we introduce t = R2(z − x), so that x = z − t
R2 . The previous equation becomes :

ŝz(u) = R2

∫ z

0

e−R2u(z−x)e−µ(zR2(z−x)− (R2(z−x))2

2R2 )s(x, 0)dx +R2e−R2(uz+µz2/2)βν̂(u),

=

∫
∞

0

e−ute−µ(zt− t2

2R2 )s(z − t

R2
, 0)dt+R2βe−R2µ z2

2 ν̂(u)e−uzR2

. (22)

By immediate Laplace inversion, we can then write :

s(z, t) = s(z − t

R2
, 0) e

−µ
(

tz− t2

2R2

)

+R2β e−µR2 z2

2 ν(t− zR2). (23)

Using now (16), one finally gets the following Fredholm equation for s(z, t):

s(z, t) = s(z − t

R2
, 0) e

−µ
(

tz− t2

2R2

)

+ e−µR2 z2

2 R2β

(
1 −

∫
∞

0

s(x, t− zR2)dx

)
(24)

which turns out to be quite handy for numerical exploitation as we shall see below.
Equation (24) is easy to interpret when considering the two cases: for the rate to be z

at time t, either the transfer of the file transmitted at time 0 is not yet completed at time t,
which requires that the rate was z − t/R2 ≥ 0 at time 0, or it is completed, which requires
that the flow was inactive at time t − zR2 > 0 and there was a transition from inactive to
active at that time. In fact it is clear that (24) can be generalized to describe the evaluation
of a measure S(dz, t) representing the distribution of transmission rates at time t starting
from an arbitrary measure S(dz, 0):

S(dz, t) = R2β

(
1 −

∫
∞

x=0

S(dx, t− zR2)

)
e−µR2 z2

2 dz + S(dz − t

R2
, 0) e−µ(zt− t2

2R2 ).(25)
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4.1.4 Further properties of the solution of the PDE

Let

α(t) =

∫
∞

0

zs(z, t)dz. (26)

The function α(t) represents the aggregate rate (sum of the transmission rates at time t
where the sum is over all flows). Let

α̂(u) =

∫
∞

0

e−utα(t)dt. (27)

The two following lemmas are proved in Appendix 10.

Lemma 1 The solution of the free regime PDE is such that

α̂(u) =
ν(0) β

β+u Î(u) + Ĵ(u)

1 − µ β
β+u Î(u)

, (28)

where

Î(u) = R2

∫
∞

0

xe−R2ux−R2µx2/2dx (29)

and Ĵ(u) is given by

R2

∫
∞

z=0

eR2uz+ R2µz2

2 s(z, 0)

∫
∞

x=z

xe−R2ux−R2µx2

2 dxdz. (30)

The limiting behavior of the solution of the free regime PDE is given by the following
expressions:

Lemma 2 The stationary distribution of the rates is:

ν(∞) =

1
β

1
β +R

√
π
2µ

(31)

s(z,∞) =
R2e−R2µz2/2

1
β +R

√
π
2µ

. (32)

The stationary aggregate rate is:

α(∞) =
1

µ

1

1
β +R

√
π
2µ

= ρ. (33)
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As we shall see in Figure 9, for certain initial conditions, the aggregate rate function α(t)
may have a "bump", namely a maximal value that is significantly larger that ρ (see also
Figure 19 for the same phenomenon under other statistical assumptions).

In Appendix 10, we also give an interpretation of the transforms of Lemma 1 in terms
of renewal theory (§10.3) and a closed form expression for the solution of the PDE in the
time domain (§10.4).

4.2 The Interaction Regime(s)

4.2.1 The invariant measure equation

Assume there exists a periodic regime of period τ . Then τ should be a solution of (1). In
addition the couple (ν0, S0(dz)) that gives the proportion of OFF sources and the distribution
of rates just after congestion epochs should be invariant w.r.t. the shift that moves from a
congestion epoch to the next.

First τ and (ν0, S0(dz)) should be such that the aggregate rate function α0 obtained
when taking S(dz, 0) = S0(dz) is such that α0(τ) = C and α0(t) < C for all 0 < t < τ .

In addition, given that at congestion epochs, a proportion p of the windows are halved,
the (ν0, S0(dz)) should satisfy the integral equation (which will be referred to as the invariant
measure equation)

S0(dz) = (1 − p)S(dz, τ) + pS(d2z, τ), (34)

where S(dz, t) is the solution of (25) with the initial condition S(dz, 0) taken equal to S0(dz).
When using the integral representation of α0(.) given in (50) one gets that the last

integral equation for S0(.) can also be seen as a Fredholm type integral equation of the
second kind.

In the Tahoe case the transmission rates of active sources has a measure which must
have a point mass at zero at congestion epochs; the invariant measure equation then reads

S0(dz) = (1 − p)S(dz, τ) + pδ0(dz)

∫
∞

0

S(dv, τ). (35)

A few remarks are in order before addressing numerical issues:

• The existence of a couple (ν0, S0(dz))) solution of (34) and such that the α0(τ) = C
and α0(t) < C for all t < τ is necessary and sufficient for the existence of a congestion
periodic regime of period τ . Using this, it is easy for instance to check that in the
region where the RCP equation has two fixed points, the rightmost fixed point is
spurious. This immediately follows from the fact that the condition α0(t) < C for all
t < τ is not satisfied for this other fixed point (see Figure 4).

• The more general problem of finding all possible periodic regimes can be stated as
follows: find all pairs made of a real number 0 < τ <∞ and of a couple (ν0, S0(dz)))
such that (34) (or (35) in the Tahoe case) holds and such that α0(τ) = C and α0(t) < C
for all t < τ .
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Figure 3: Evolution of the aggregate rate with time: non spurious case.

• Of course, other stationary regimes are possible like e.g. periodic regimes where the
aggregate rate has a period that consists of k > 1 congestions, or even non periodic
regimes (although we did not find such regimes by simulation).

• Injecting the couple (ν0, S0(dz))) as an initial condition into Equation (24) determines
the proportion of active flows and the throughput distribution of active flows S(dz, t)
for all 0 ≤ t < τ . The mean stationary throughput obtained from this function
averaged over continuous time is given by the following cycle mean:

1

τ

∫ τ

t=0

∫
∞

z=0

zS(dz, t)dt. (36)

4.2.2 Numerical solution

We have chosen a numerical procedure to find an approximation for s(z, t) based on Equa-
tions (24) and (34). The alternative that consists in using the explicit expressions obtained
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Figure 4: Evolution of the aggregate rate with time: case with a spurious solution to the
RCP Equation

in the appendix for the s(z, t) (Equation (48) combined with the expression for α given

by (50)), would involve the numerical inversion of certain Laplace transforms (like ξ̂ and η̂
defined there) and this is not practical. Therefore we opted for the following method. We
discretize the function s(z, t) with L+ 1 samples over its time domain (an interval of length
τ) and with a density of L samples per interval of length τ

R2 over its space domain (i.e. the
z variable). We use L+1 samples in the time domain as there is a crucial difference between
the time instant just before a congestion epoch (the L-th sample) and the time instant
just after (the 0-th sample). We truncate the s(z, t) function in the z direction by putting
s(z, t) = 0 for z > K τ

R2 . This truncation is motivated by the solution of the interaction-less
system where this function decays like the tail of a Gaussian distribution.

The discretized version of Equations (24) and (34) define a matrix equation. Notice that
in this case (in contrast to the case of solving for A(t) and B(r) in §3.5) there are L2K
unknowns and the matrices involved may become very large. Therefore, we used Equation
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(24) and (34) as a recursive rule to calculate an approximation for s(z, t). The larger L and
K are chosen the better the approximation (but more computations are needed). For the
examples considered in this paper K=5 and L=200 turned out to be adequate values.

4.2.3 The multiple stationary regime region

In this section, we give both numerical and simulation evidence showing that the condition
that the load factor

ρ = (1/µ)/(1/β + TON))

is less than C (namely the capacity per user is more than the mean load per user) is not
sufficient for having an interaction-less mean-field regime for all initial conditions. The nu-
merical part is based on the solution of the set of Fredholm equations of the last subsections.
The simulation is based on the N2N code [3], a discrete event simulator which computes the
AIMD sharing for a finite number of ON/OFF flows, interacting through the sum of their
rates, as described in Section 3.1.

We also show that there exist values of the parameters such that depending on the initial
condition describing the rates of the various flows, one may enter either into an interaction-
less stationary regime or into a stationary congestion regime.

In the case considered here 1/µ = 2000 Pkts, 1/β = 2 s., p = 0.8 and R = 0.1 s. The
load factor ρ is then around 263 Pkts/s. We take C = 270 Pkts/s.

• When the initial condition is chosen according to the stationary law given in (31)–(32),
then α(t) = ρ for all t and no congestions occur at all since ρ < C.

• As already shown in Section 3.6, the rate conservation principle gives two values of
τ solution of the fixed point equation (1), the smallest of which is τ ∼ 3.7s. Using
the solution of the invariant measure equation of Section 4.2.1, we find that for this
value of τ , there exists a probability measure satisfying the integral equation (34) and
satisfying the key condition that the associated α function first reaches C at time τ
(see Figure 3). The p.d.f of this distribution as obtained numerically is depicted in
Figure 5 for Reno.

The existence of such a regime is confirmed by the N2N simulation of 1 Million HTTP
users with the above characteristics and sharing a link of capacity 270 Pkts/sec (see
Figure 7). Moreover, the steady state distributions found by simulation match quite
precisely those obtained numerically.

In other words, depending on the initial phases of the flows, one either enters into a
congestion-less regime or into a periodic regime with infinitely many congestions. The first
case occurs when the initial conditions are chosen independently for all flows, and each flow
is in the stationary regime it would reach if there were no interaction at all. The second
case occurs if the flows are more in phase: here all start inactive at time 0.

Here are a few remarks of interest:
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Figure 5: Numerical solution of the invariant measure equation. Distributions obtained for
Reno. 1/µ = 2000 Pkts, 1/β = 2 s., p = 0.8 and R = 0.1 s. and C = 270 Pkts/s. In red,
steady state probability distribution function of the rate just after a congestion epoch; in
green, continuous time stationary rate distribution.

• The same period and periodic regime are reached when the initial condition is that
with all flows initially active and with null rate;

• The largest value of C for which we observe these two possible stationary regimes is
approximately 273.5 Pkts/sec as shown independently by the N2N simulator and the
fixed point method;

• the second solution of the RCP happens to be spurious. There exists a probability
solution of (34) but as easily seen on Figure 4, the associated α function crosses the
C level before this value of τ .

• Similar results hold for Tahoe. The associated distributions are plotted in Figure 8.
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Figure 6: N2N simulation of 1 Million HTTP flows. Distributions obtained for Reno in the
same case as in Figure 5.

4.2.4 Dependence of bi-stability region w.r.t. the parameters

Let CT be the maximum C for which there is an interaction regime, ρ be given as in (14)
and define the over-provisioning ratio (for guaranteeing the absence of interaction) to be
ω = CT /ρ. Here are a few data on this ratio in the exponential case with p = 0.8 and
1
µ = 2000 Pkts.

• 1/β = 2 s., R = 0.1 s.: ω = 1.04;

• 1/β = 4 s., R = 0.1 s.: ω = 1.06;

• 1/β = 8 s., R = 0.1 s.: ω = 1.09;

• 1/β = 2 s., R = 0.05 s.: ω = 1.06;

• 1/β = 8 s., R = 0.05 s.: ω = 1.12;

• 1/β = 2 s., R = 0.025 s.: ω = 1.09;

• 1/β = 8 s., R = 0.025 s.: ω = 1.15.

The region is larger for small RTTs and for short think times.
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Figure 7: Evolution of aggregate rate when all flows are initially active and with null rate
for C = 270 Pkts/s.

4.2.5 Proof of the existence of congestion regimes with load less than capacity

Let us consider the Tahoe case with an initial condition consisting of all sources active and
with 0 rate. The functions α(t) (the aggregate rate defined in (26)) and γ(t) = 1 − ν(t)
(the proportion of active flows) associated with this initial condition play a key role in the
construction of this section. They are depicted in Figure 9 in the case 1/µ = 2000, 1/β = 2
and R = 0.1.

Let

• M denote the maximum of α(t) over all t > 0;

• θ denote argmax of α(t);

• m denote the minimum of α(t) over all t > τ ;

• γ denote the minimum of γ(t) over all t > 0.

In the particular case of Figure 9, we have M = 301.8, θ = 5.5, m = 258.1 and γ = 0.723.
Let

C̃ = pγM + (1 − pγ)m. (37)
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Figure 8: Example of distributions obtained numerically for Tahoe in log scale. C=270
Pkts/s., R=0.1 s., 1/µ=2000 Pkts, 1/β=2 s., p=0.8. The RCP fixed point for Tahoe is
τ=4.222s. Notice the Dirac-impulses at multiples of τ

R2 =422.2 Pkts/s. They stem from
sources that experience a loss at some congestion epoch and are put to a rate of 0 there.
After one congestion epoch such a source has a rate of τ

R2 .

Lemma 3 For the above initial condition, if C̃ > ρ, then the Tahoe version of the model
experiences an infinite number of congestion epochs for all C in the interval ρ ≤ C ≤ C̃.

Proof Assume that k ≥ 0 congestion epochs (we include time 0 in the set of congestion
epochs) took place at T0 = 0, T1, . . . , Tk. At time Tk, flows can be partitioned into classes
according to the index of their last congestion time (this is a partition of flows because we
consider a flow that never experienced congestion on the (0, Tk] interval as being in class 0).
Let pk

i be the proportion of flows that are of class i at time Tk.
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Figure 9: The α function with its bump (top) and the γ function (bottom).

RR n° 5205



30 F. Baccelli, A. Chaintreau, D. De Vleeschauwer & D. McDonald

Assume that there is no congestion after time Tk. Then for all t ≥ 0, the aggregate rate
of the Tahoe model at time Tk + t is given by the following expression:

a(t) = pk
kα(t) + pk

k−1α(Tk − Tk−1 + t) + . . .+ pk
0α(Tk − T0 + t).

Similarly, if k > 0, the proportion of active flows at time T−

k is

g(Tk) = pk−1
k−1γ(Tk − Tk−1) + . . .+ pk−1

0 γ(Tk − T0),

so that
g(Tk) ≥ pk−1

k−1γ + . . .+ pk−1
0 γ = γ.

This in turn implies that pk
k ≥ g(Tk)p ≥ pγ for all k ≥ 0.

When evaluating a at θ, we get:

a(θ) = pk
kα(θ) + pk

k−1α(Tk − Tk−1 + θ) + . . .

+pk
0α(Tk − T0 + θ)

≥ pk
kM + (pk

k−1 + . . .+ pk
0)m

= pk
kM + (1 − pk

k)m

≥ pγM + (1 − pγ)m = C̃ > C

which contradicts the fact that the continuous function a(t) remains smaller than C for all
t. Hence, there is at least one more congestion period. ut

So in our example, when p = 0.8, we are sure that Tahoe exhibits infinitely many
congestions as soon as C ≤ C̃ = 283.38. Notice that this is only a sufficient condition for
congestion, namely C̃ > CT in general.

From our numerical and simulation estimates, it seems that the bi-stability region for
Tahoe is larger than for Reno (see Figure 2).

Of course, under the assumption of the last lemma, if the initial condition for the flows
is that of the steady state of the interaction-less regime, then one remains in this regime
forever.

We have no analogue of Lemma 3 in the Reno case at this stage. The fact that Reno
could have a turbulent regime when the load per user is less than the capacity per user is
hence only backed by simulation and numerical evidence at this stage.

4.3 Properties of the Stationary Rate

We first study the stationary continuous time mean throughput obtained by one flow. Figure
10 plots this mean throughput in function of the mean file size µ−1 in the Reno case and
when when C = 270 Pkts/sec, R = 0.1 s., p = 0.8 and β−1 = 2 s.

We observe that a sharp decrease of the mean performance of about 15% takes place
at a value of the mean file size that is significantly smaller than that obtained by a mean
load analysis. This sharp decrease is that due to the jump from the congestion-less to the
congestion stationary regimes described above.
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Figure 10: Average throughput as a function of the mean burst size 1/µ

We now study more detailed properties of the stationary throughput. Figure 11 gives the
stationary rate pdfs obtained by simulation and numerically in the case C=250 Pkts/sec,
p=.4, 1/µ=2200 Pkts, 1/β=2 s., R=.1 s. The fractal and intricate structure of the pdf of
the rate at congestion epochs should not come as a surprise (similar shapes were obtained
for long lived sessions by Chaintreau and De Vleeschauwer in [9]). Compared to the case of
Figure 5 the irregularities of the pdf are enhanced by the smaller value of p. This irregular
structure is not a simulation artifact: the same structure is clearly observed via the numerical
method too as shown by Figure 13.

The continuous time has a somewhat more regular rate pdf.

5 Extension of the Approach to the Slow Start

5.1 Mathematical Analysis

A thorough analytical or simulation treatment of slow start for dynamic flows is beyond the
scope of this paper. We limit ourselves to a discussion of the simplest way to represent slow
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Figure 11: N2N Simulation: in red, steady state probability distribution function of the rate
just after a congestion epoch. In green, continuous time stationary rate distribution. Both
are obtained by simulation. Reno case, C=250 Pkts/s., p=.4, 1/µ=2200 Pkts, 1/β=2 s.

start within this framework; i.e. an instantaneous jump of some random size at the birth of
a flow. The rationale for this is that the associated exponential growth phase is quite quick
compared to the congestion avoidance phase and that it can hence in a first approximation
be seen as a jump from 0 to some random value H that may be either obtained from
measurements or estimated as e.g. a proportion of the max window size.

The RCP equation of Section 3.2 then becomes

pC

2τ
+ λδE

δ(X(0−)) =
P (X(0) > 0)

R2
+ λδE

B(H). (38)

It is also easy to extend the integral equations of Section 3.3 from knowledge of the
distribution η(z) of H . The regenerative cycles admit the very same definition as in the case
without slow start, whereas the integral equation giving the expression of f(t) (3) should be
rewritten as indicated in (39). We limit ourselves to the expression for f as the others are
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Figure 12: N2N simulation of the same case as in Figure 11 but with C=270 Pkts/s.

obtained in the same way; in particular the equations for g, i, k and m are unchanged.

f(t) =

∫ τ

t

βe−β(r−t)dr

{∫
∞

0

η(w)dw

∫ w(τ−r)+
(τ−r)2

2R2

0

µe−µydy(1 + f(r +R
√
R2w2 + 2y −R2w)

+e
−µ

(
w(τ−r)+ (τ−r)2

2R2

)

(
pg(w/2 +

τ − r

2R2
) + (1 − p)g(w +

τ − r

R2
)

)}
. (39)

So the fixed point equation based on the RCP can be extended almost directly to the case
with this simplified representation of slow start.

Finally, the partial differential equation of Section 4.1 for the interaction-less process
should be replaced by

∂s

∂t
(z, t) +

1

R2

∂s

∂z
(z, t) = ν(t)βη(z) − µzs(z, t). (40)

It the density η(z) converges weakly to a Dirac measure at zero then the slow-start case
reduces to the congestion avoidance case studied in Section 4.1. In particular for any z > 0,
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Figure 13: The same case as in Figure 11 obtained by the numerical method.

the solution sSS(z, t) to (40) converges pointwise to sFR(z, t), the solution of (17) and (18).
To see this, suppose η(z) has support on [0, h/R2]. Equation (40) on (z, t) ∈ [h/R2,∞] ×
[0,∞] is then the same as (17) on the same interval. The solution to (17) is determined
by the boundary values sSS(h/R2, t), t ≥ 0 and s(z, 0), z ≥ h/R2. Now integrate (40) over
z ∈ [0, h/R2]. To first order it follows that sSS(h/R2, t) = ν(t)βR2 = sFR(0, t). By the
continuity of sFR(z, t) it follows the solution to (40) is arbitrarily close, as h → 0, to the
solution of (17) and (18) on (z, t) ∈ [h/R2,∞] × [0,∞].

The stationary aggregate rate associated with the solution of (40) is:

α(∞) =
1

µ

1
1
β +

∫
∞

z=0

∫
∞

u=0
η(z)µe−µu

(√
z2R4 + 2uR2 − zR2

)
dudz

= ρ. (41)
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By arguments similar to the ones of §4.1 one gets that the solution of (40) satisfies the
Fredholm integral equation

s(z, t) = R2β

∫ z

v=0

(
1 −

∫
∞

x=0

s(x, t−R2(z − v))dx

)
e
−µR2

(
z2

2 −
v2

2

)

η(v)dv

+ s(z − t

R2
, 0) e

−µ
(

tz− t2

2R2

)

. (42)

The invariant measure equation keeps the same form as (34) but with s0(., .) now obtained
from the last equation rather than from (24). The same machinery can then be used, in
particular for the necessary and sufficient condition for the existence of a periodic regime
of period τ , which is the direct analogue of what was done above in the case without slow
start.

The numerical methods used for solving the RCP and the invariant measure equation
and the simulation methodology are direct extensions of those used in the case without slow
start.

Consider the case where H is deterministic and equal to C/2 (see §5.2 below).
Consider, for instance, the case where the parameters are still C = 270 Pkts, 1/β = 2 s.,

p=0.8, R=0.1 s. and 1/µ=2000 Pkts. Both the N2N simulator and the RCP equation (38)
give and a period of τ = 1.89 s. The numerical solution of (42) leads to an aggregate rate
function α(.) that satisfies the required property of first hitting C = 270 Pkts at τ = 1.89
sec, so that this solution of the RCP is non-spurious.

5.2 HTTP 1.1 Example

We propose to focus on HTTP 1.1 where the files successively downloaded by a flow use the
same TCP connection. This assumes of course that the successive downloads of this user
are made from the same server and that the Keepalive Timer (usually 15 s.) does not expire
(for the last point, see [2]).

We then refer to IETF RFC 2581 [4] to state the following concerning TCP:

• When the TCP connection is idle for more than one retransmission timeout (RTO,
roughly a few RTTs), CWND is reduced to IW (initial window), which we will assume
to correspond to decreasing the rate to 0.

• SSTHRESH is however kept to save information on the previous value of the congestion
window. We propose here to take SSTHRESH= C/(2(1 − ν)), where ν denotes the
stationary probability that a flow is idle at a congestion epoch. The rationale for this
is as follows: when the last loss occurred (a loss always occurs for each flow in the finite
population model), the proportion of active flows was 1 − ν and the average rate was
per flow was C; hence due to symmetry, each active flow had an average of C/(1− ν);
so it indeed makes sense to take SSTHRESH= C/(2(1 − ν)).

Hence in our slow start model, the rate of a flow jumps to C/(2(1−ν)) at the beginning of
each file transfer, and a congestion avoidance phase then starts until file completion. This is
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one model among many other possibilities, which has engineering meaning under the above
assumptions (all flows access the same server, HTTP 1.1 is used, and the Keepalive Timer
is large) and provided CWNDMAX is large and the exponential phase of the slow start is
fast enough to be neglected.

Of course ν is unknown. To cope with this, in a first step, we solve the model of §5.1
with H = C/2. This determines τ1 and ν1. In a second step, we solve the model again with
H = C/2(1−ν1) and so on until convergence. When applying this procedure to the example
of the last section, τ1=1.89 s. and ν1=0.226 at the first step and τn=1.73 s. and νn=0.225
for all n ≥ 2. The regime associated with the last values is such that the α function first
reaches C = 270 Pkts at τ=1.73 s. The joint trajectories of two flows (among thousands)
controlled by these dynamics as obtained by simulation are plotted for illustration in Figure
14.
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Figure 14: Two HTTP 1.1 flows with slow start C=270 Pkts/s., p=.8, 1/µ=2000 Pkts,
1/β=2 s.

The stationary distribution of the rate is exemplified in Figure 15.
The basic observation is the same as in the case without slow start: in cases where the

load per user is less than the capacity per user, one can get a turbulent mean-field limit
with infinitely many congestions for appropriate initial conditions. Here is an example of
such a turbulent regime: C=364 Pkts/s., p=.8, 1/µ=2000 Pkts, 1/β=2 s. One gets a period
of τ=5.568 s. and a load per user of 356.618 Pkts/s. Here, the load per user is defined
using the same ideas as above: when the transfer of a file starts, the rate jumps from 0
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Figure 15: Stationary pdf of the rate of one flow with slow start; C=270 Pkts/s., p=.8,
1/µ=2000 Pkts, 1/β=2 s.

to H = C/(2(1 − ν)) and then evolves according to the congestion avoidance AIMD rules.
In this last expression, ν is the continuous time probability that a flow is active in the
interaction-less regime. Notice that determining ν requires the solution of a fixed point
equation (as this probability depends on H which itself depends on ν).

6 Comparisons

6.1 Comparison to the Long Lived Flow AIMD Model

The issue addressed here is that of the limiting behavior of the ON-OFF model considered
in this paper when the size of the files tends to infinity and the comparison to the results
of [6] and [9] on the long lived (or persistent) flow case. We recall that in the long lived
flow case [6], the inter-congestion time is τLL = R2Cp/2 and the mean throughput of a flow
is C(1 − p/4). In Figure 16, we plot (together with another curve) the mean throughput
obtained by one flow in function of the mean file size 1/µ. The rightmost part of the AIMD
curve has an horizontal asymptote of app. C(1 − p/4) which suggests that the limiting
behavior in question is indeed that of the long lived flow case.
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Consider the fixed point equation (11). Multiplying by R2 we get:

R2Cp

2τ
+R2l(0)/j(0) = h(0)/j(0),

where the second term in the LHS can be interpreted as the jumps down at the end of the
downloads and the RHS as the fraction of flows that are "on". We see that when letting
1/µ go to infinity, we have the following consistent limits: τ tends to τLL, the contribution
of the second term in the LHS (the jumps down) tends to 0 and the RHS tends to 1 from
below.

The s(z, 0) function that we obtain is also consistent with what was found in the case of
long lived flows: s(z, 0) has spikes at q = (p/2)C and all the other values predicted in [9] on
long lived flows.

6.2 Comparison to the Processor Sharing Engset Model

Another interesting issue concerning non persistent flows is the comparison of the bandwidth
sharing that results from the AIMD induced dynamics of the present paper to that of the
processor sharing (PS) approximations proposed in the literature (see Section 2). The closest
large population PS model would be the Engset model withN users, whereN is large. In this
model the active sessions generate 1/µ packets which are queued at a single server processor
sharing node serviced with rate CN packets per second. Once served, these sessions move to
an infinite server think time node where they stay for a duration of 1/β seconds. In steady
state these sources are independent and the proportion in the think state will be θ. The
rate at which new sessions are created is therefore θNβ. This must be matched by the rate
at which sessions finish. This rate would be the same if we served the sessions in a FIFO
manner and the rate for this is 1/((1/µ)/NC)(1− πN (0)) = µNC(1− πN (0)), where πN (0)
denotes the steady state probability that the PS queue is empty. It is easy to check from
the product form of the finite population Engset model that when N tends to infinity, there
are two basic regimes:

• If β < µC, then πN (0) tends to 1 when N tends to infinity, so that the PS queue is
always empty in the large population asymptotic model. So in this case, the mean
rate obtained by each flow is x = β/µ;

• If β > µC, then πN (0) tends to 0 and consequently θ = µC/β. In this case, the
intensity of the arrival point process in the PS queue grows to infinity like NµC
whereas the steady state queue size grows to infinity like N(1− θ). Hence Little’s law
allows us to determine the mean waiting time W of a tagged file transfer in the PS
queue via the formula

W = (1 − θ)
1

µC
.

Consequently, the mean rate obtained by each flow is

x =
1

µ

1

1/β +W
= C.
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Our conclusion is that the rate in the large population Engset PS model is given by the
formula:

x = βmin

(
1

µ
,
C

β

)
. (43)

Figure 16 below compares this to the expressions obtained from our AIMD model, with and
without slow start. In the case without slow start, the rate in the increasing part of the
curve of the AIMD model (i.e. the part where no congestion occurs) is obtained from (14).
As one can check, the match is not so good unless the load is small. Notice that there is
actually no reason for these models to be close because in the processor sharing formula
there is no dependence on the RTT.

Figure 16: The average rate as predicted by the PS and the AIMD models.

The rightmost part of the PS curve postulates full bandwidth sharing whereas the AIMD
dynamics does not. The rightmost part of the AIMD curve has an horizontal asymptote of
app. C(1 − p/4) (that is here .8 × C) as predicted.
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The qualitative properties found in the present study have no analogues in these processor
sharing models: there are no multiple stationary regimes depending on the initial condition:
above, we looked at the steady state of the Engset model and then let N (population) go to
infinity. That is we let first time go to infinity (to get steady state) and we then let N to to
infinity. Had we started the Engest model in some transient state (e.g. all users thinking,
rather than in steady state), the steady state obtained when letting first N go to infinity
and then letting time go to infinity is the same as the one obtained above as is easily seen
by a direct analysis of the transient mean-field Engset model.

Notice that these multiple regimes appear in the vicinity of critical load, which is precisely
a region where processor sharing is not expected to provide an accurate model for TCP
bandwidth sharing anyway.

7 Simulation

The simulation results of this section are based on the N2N simulation tool [3].

7.1 Meta-stability

The fact that the mean-field limit has two stationary regimes for some values of the parame-
ters translates into the existence of two meta-stable regimes for any finite stochastic system
with the same mean parameters, with rare oscillations from one stable regime to the other.
This phenomenon (see e.g. [13] for another example pertaining to protocols) is depicted in
Figures 17 and 18 which feature both the Tahoe case with 1/µ = 2000 Pkts, 1/β = 2 s. and
R = 0.1 s.

In Figure 17, the number of sources is rather small (1000) and we wish to choose the
capacity between ρ and the critical value CT above which the mean-field system has only one
uncongested mode. In practice we estimate CT by the height of the bump in the empirical
aggregate rate function (which estimates α(t), given at (26) and we estimate ρ by the long
run average rate per flow. The two modes are clearly visible in the trajectories in Figure
17. The fluctuations are high enough to make the system move frequently enough from one
mode to the other.

In Figure 18, the number of sources is larger (10000) so that fluctuations are more limited
which implies more difficult transitions from one mode to the other. In this case, we let the
system start with all sources active and with 0 rate. We chose C = 278, a region where both
modes are possible in the limit. As one can check, the rare event that allows the system to
move from the congested to the uncongested mode only happens after appr. 5400 s.

7.2 Heavy Tailed Case

The setting is the same as that of the previous sections with lognormal distribution functions
for the file size and the OFF-time. The scenario is the following: TCP Reno, with RTT
R = 30 ms. and with synchronization rate p = 0.8; the file size and the OFF-period follow
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Figure 17: Bi-stability: 1000 Tahoe flows with C = 282, p = .8.

lognormal distributions: the file size has mean value 2000 Pkts and standard deviation 8669
Pkts, and the OFF-period has a mean value of 2 sec and a standard deviation of 8.7 s.
Variance is much higher than in the exponential case.

Simulations (or direct calculations) show that the mean load per source is appr. ρ = 620
Pkts/s. Figure 19 gives the aggregate rate when C = ∞ for the initial condition with all
sources active and with null rate. We observe the same phenomenon as in the exponen-
tial case, with a first maximum at 717 Pkts/sec, significantly larger than the horizontal
asymptote at ρ, though with a shape that is different from that in the exponential case.

Our simulation suggests that as in the exponential case, congestion regimes show up for
values of C larger than ρ. Here, such regimes are possible for all C between a threshold that
seems to be located between 670 and 680.

8 Packet Level Simulation

8.1 The Bump

Simulations using ns2 [1] were conducted in which 400 ON/OFF flows access a shared link
with capacity C through distinct links with capacity 20Mbps each. The throughput for
individual flow never attain this high value even without losses because file tranfers finish
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Figure 18: Bi-stability: 10000 Tahoe flows with C =278, p = .8.

before this rate is attained. Their common RTT is 61ms, and the shared buffer is 300
packets. The ON and OFF periods are exponentially distributed with mean 2 s. and 2000
pkts respectively. The slow start was switched off for each flow, replicating conditions close
to those of the mathematical model.

Figure 20 gives the empirical aggregate rate function, and its associated bump, when C
is chosen to be large (2.5 Gbps) to put the network in its free regime. We obtain a long run
average throughput, or estimated load, of 3.31 Mbps per flow.

8.2 The Fluid and Turbulent Regimes

Next, we choose the capacity to be 5% more than the estimated load of all flows (C=1.39Gbps),
that is less than the height of the bump. We observe that the traces of the ns2 packet sim-
ulator, Figure 21, exhibit the same bi-stability between the turbulent and the fluid regimes,
as was observed in N2N simulation, Figure 18. Notice the transition to the interaction-
less regime at time t=1000s. In a later stage of the simulation, shown in Figure 22, the
interactions regime is observed.

We characterize the interactionless regime in Figure 21 by the spectral analysis shown
in Figure 23 (top), computed from the trace between time 1010s and 1350s. The same
analysis is made for the interaction regime in Figure 23 (bottom), comptured from the
traces between time 2600s and 2780s. Notice that the peak in the periodogram at frequency
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Figure 19: The mean-field aggregate rate of Reno when C = ∞ and all flows are initially
active and with 0 rate.

0.27 corresponds to a period of 2.32s, which is roughly the observed intercongestion period
(seen Figure 24

9 Conclusion

The main achievement of the present paper is an interaction model for TCP controlled
dynamic flows that is based on the AIMD dynamics of TCP rather than on the frequently
made assumption that TCP bandwidth sharing is well described by the processor sharing
discipline. Thanks to a mathematical model based on the mean-field limit, some unexpected
qualitative results are found. In particular the system may enter into a congestion regime for
loads that are significantly smaller than the link capacity. Also multiple stationary regimes
may be reached depending on the initial phases of the ON-OFF flows. This property that can
be seen as an analogue of turbulence. These phenomena, which translate into a bi-stability
property for systems with finite population, are absent in the PS model.

Another interesting property is the fractal nature of the p.d.f of the stationary rates
as already observed in the long-lived flow case by Chaintreau and De Vleeschauwer in [9]:
the randomness and the mixing of the ON-OFF structure seems to be compatible with a
complex self-similar structure for the rates. Even for the (rather unrealistic) exponential
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Figure 20: ns2 aggregated traffic when all flows start active at time 0

model analyzed here, several important theoretical questions have to be solved to complete
the present study. These include the proof of the mean-field limit (which should be feasible
along the lines of what was already done for the long lived flow case) and the mathematical
confirmation of the numerical findings presented in Section 4 in the Reno case.

The main step after that is of course to extend the approach to non exponential file sizes
and particularly to heavy tailed distributions. Other interesting extensions along the lines of
what is already known for the long lived flow case would address the multiple link case and
the non-linear dynamics induced by a large tail-drop buffer. Finally, it should be possible to
mix this HTTP traffic model with the model for long lived flows to give a single interactive
dynamical system.
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Figure 21: ns2 aggregated traffic: alternance between the two regimes.
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10 Appendix

10.1 Proof of Lemma 1

By arguments similar to those in the proof of (18),

d

dt
ν(t) = −βν(t) + µα(t), (44)
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Figure 22: ns2 aggregated traffic: interaction regime.

so that

ν̂(u) =
1

β + u
(ν(0) + µα̂(u)) . (45)

This and (18) give

ŝ0(u) =
βR2

β + u
(ν(0) + µα̂(u)) .

When using the last expression in (21), we get

ŝz(u) = e−R2(uz+µz2/2)
(

βR2

β+u (ν(0) + µα̂(u))

+R2
∫ z

0 e
−R2u(z−x)e−R2µ( z2

2 −
x2

2 )s(x, 0)dx
)
.

(46)
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Figure 23: Periodograms : interactionless regime (top) and interaction regime (bottom).

When multiplying both sides of (46) by z and integrating w.r.t. z, we get

α̂(u) =
β

β + u
Î(u) (ν(0) + µα̂(u)) + Ĵ(u), (47)
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Figure 24: A zoom of aggregated traffic in the congestion regime.

where Î(u) and Ĵ(u) are the integrals defined in §4.1.3. The expression in (28) follows
immediately.

10.2 Proof of Lemma 2

Tauberian theorems (see e.g. [11]) applied to the expressions obtained above for ν̂(u) and
ŝz(u) and α̂(u) lead to the stationary distribution (31) and (32) for the rates (note that this
is a truncated Gaussian) and to (33) for the aggregate rate.

10.3 Regenerative Interpretation for the Results of Lemma 1

We now give the interpretation of the expressions in Lemma 1 in terms of the regenerative
process X(t).
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• The function µÎ(u) is the Laplace transform of the function

µI(t) = µ
t

R2
e−

µt2

2R2 ,

which is the density of the random duration of an ON period (a file transfer);

• The function µÎ(u) β
β+u is the Laplace transform of the random variable equal to the

sum of one OFF and one ON period, namely the duration of a regeneration cycle;

• The function

ξ̂(u) =
1

1 − µ β
β+u Î(u)

is the Laplace transform of the density ξ(t) of the renewal measure (see [11], Vol 2,
pp. 184 and following) of the renewal point process S associated with the regenerative
process X(t); ξ(t) can be interpreted as the density with respect to the Lebesgue
measure of the expected number of points in the (0, t] interval of the Palm version of
the renewal process, or intuitively as the probability density that the Palm version of
the renewal point process hits t;

• The function Î(u) is the Laplace transform of the product of t/R2 and of the probability
that a flow that starts active and with 0 rate at time 0 and is continuously active until

time t: I(t) = t
R2 e

−
µt2

2R2 . From this and a simple renewal theory argument, one sees
that the function

ψ̂(u) =

β
β+u Î(u)

1 − µ β
β+u Î(u)

is simply the Laplace transform of the function ψ(t) that gives the expected value of
X(t) when the tagged flow starts inactive at time 0 and has an arbitrary number of
OFF and on periods in between;

• The function Ĵ(u) is the Laplace transform of the function

J(t) =

∫
∞

0

s(z, 0)

(
z +

t

R2

)
e
−µ

(
zt+ t2

2R2

)

dz,

in which we recognize the expected value of X(t) when the tagged flow starts active
and with rate sampled according to s(., 0) at time 0 and remains continuously active
between time 0 and t; also notice that an integral of the form

∫
∞

z=0

s(z, 0)dz

∫ t

v=0

(
z +

v

R2

)
e
−µ

(
vz+ v2

2R2

)

dv

∫ t−v

u=0

µβe−β(t−v−u)e−µ (t−v)2

2R2
t− v

R2
du
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can also be seen as

∫
∞

z=0

s(z, 0)dz

∫ t

v=0

µ
(
z +

v

R2

)
e
−µ

(
vz+ v2

2R2

)

dv

∫ t−v

u=0

βe−β(t−v−u)e−µ
(t−v)2

2R2
t− v

R2
du,

where µ
(
z + v

R2

)
e
−µ

(
vz+ v2

2R2

)

is the density of the random duration of an ON period
that starts with initial rate z. So this integral is the expected value of X(t) on the
event that the initial ON period ends and there is then one OFF period and one
uninterrupted ON period until time t; so, a renewal argument allows us to conclude
that the term

ζ̂(u) =
Ĵ(u)

1 − µ β
β+u Î(u)

is the Laplace transform of the function ζ(t) that gives the expected valued of X(t)
when the tagged flow starts active at time 0 with a rate sampled according to s(., 0)
and has an arbitrary number of OFF and ON periods in between.

10.4 Explicit Solution of the Solution of the PDE

By direct Laplace inversion of (21), one gets the following expressions for ν(t) and s(z, t):

s(z, t) = ν(0)βR2φ(z, t) + µβR2

∫ t

0

α(u)φ(z, t− u)du+ e
−µ

(
tz− t2

2R2

)

s(z − t

R2
, 0)(48)

ν(t) = ν(0)e−βt + µ

∫ t

0

e−β(t−u)α(u)du, (49)

where

φ(z, t) = e−
R2µz2

2 e−β(t−R2z)

is the inverse Laplace transform of the function

φ̂z(u) =
1

β + u
e−R2zu−R2µz2/2.

Similarly α(t) can be expressed as follows:

α(t) = ν(0)R2ψ(t) +R2

∫ t

0

e−µv2/(2R2)ξ(t− v)

∫
∞

0

e−µzv(z +
v2

R2
)s(z, 0)dz dv (50)

with ψ and ξ defined in §10.3.
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10.5 A Common Linear Equation for (f, g), (h, i), (j, k), (l, m)

We start from the equation given for (f, g) and described for other functions in (5)-(7). They
can be put in the following general form (where the γ and ζ functions have no connection
to those defined in the earlier sections of the paper) :

γ(t) = η0(t) +

∫ τ

t

βe−β(r−t)dr





∫ (τ−r)2

2R2

0

µe−µydy(η1(t, r, y) + γ(r +R
√

2y)

+e−µ (τ−r)2

2R2

(
η2(t, r) + pζ(

τ − r

2R2
) + (1 − p)ζ(

τ − r

R2
)

)}
. (51)

ζ(z) =

∫ zτ+ τ2

2R2

0

µe−µy(η3(z, y) + γ(R
√
R2z2 + 2y −R2z))dy

+e−µ(zτ+ τ2

2R2 )

(
η4(z) + pζ(

z + τ/R2

2
) + (1 − p)ζ(z + τ/R2)

)
. (52)

for the following values:

γ(t) ζ(r) η0(t) η1(t, r, y) η2(t, r) η3(z, y) η4(z)
f(t) g(z) 0 1 0 1 0

h(t) i(z) 0 R
√

(y) τ − r R
√
R2z2 + 2y −R2z τ

j(t) k(z) (t− τ)eβ(t−τ) r − t+ R
√

2y τ − t R
√
R2z2 + 2y −R2z τ

l(t) m(z) 0 1
R

√
2y 0 1

R

√
R2z + 2y 0

For the first equation defining γ, we introduce the following change of variable :

• For the integral in y, corresponding to the case where a file download is started and
completed before τ , let s be the time of completion of this file:

s = r +R
√

2y such that y =
(s− r)2

2R2
and hence dy =

s− r

R2
ds.

For the second equation, defining ζ, we introduce the change of variable :

• First we study ζ as a function of r = R2z, which corresponds to the time to obtain a
rate equal to z, if the flow start from rate zero, in the case it had no congestion.

• For the integral in y, corresponding to the case where the remaining file download is
completed before τ , let s be the time of completion of this file:

s = R
√
R2z2 + 2y −R2z =

√
r2 + 2R2y − r such that

y =
s2 + 2sr

2R2
and hence dy =

s+ r

R2
ds.
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Doing so, we obtain the following version of the general equation:

γ(t) = η0(t) +

∫ τ

t

βe−β(r−t)dr

{∫ τ

r

µ
s− r

R2
e−µ (s−r)2

2R2 (η1(t, r, s) + γ(s))ds

+e−µ (τ−r)2

2R2

(
η2(t, r) + pζ(

τ − r

2
) + (1 − p)ζ(τ − r)

)}
. (53)

ζ(r) =

∫ τ

0

µ
s+ r

R2
e−µ s2+2sr

2R2 (η3(r, s) + γ(s))ds

+e−µ( 2rτ+τ2

2R2 )

(
η4(r) + pζ(

r + τ

2
) + (1 − p)ζ(r + τ)

)
. (54)

with
γ(t) ζ(r) η0(t) η1(t, r, s) η2(t, r) η3(r, s) η4(r)
f(t) g(z) 0 1 0 1 0
h(t) i(z) 0 s− r τ − r s τ

j(t) k(z) (t− τ)eβ(t−τ) s− t τ − t s τ
l(t) m(z) 0 1

R2 (s− r) 0 r + 1
R2 s 0

To save space, we now denote µ
R2 by κ. An integration by parts to simplify the integrals

associated with η1 and η4 gives:
∫ τ

r

κ(s−r)e−κ (s−r)2

2 dsη1(t, r, s) = η1(t, r, r)−e−κ (τ−r)2

2 η1(t, r, τ)

∫ τ

r

e−κ (s−r)2

2
∂η1(t, r, s)

∂s
ds.

and

∫ τ

0

κ(s+ r)e−κ s2+2sr
2 η3(r, s)ds = −e−κ τ2+2τr

2R2 η3(r, τ) +

∫ τ

0

e−κ s2+2sr
2

∂η3(r, s)

∂s
ds

So we can write :

γ(t) = η0(t) +

∫ τ

t

βe−β(r−t)dr

{
η̃1(t, r) +

∫ τ

r

κ(s− r)e−κ (s−r)2

2 γ(s)ds

+e−κ (τ−r)2

2

(
η̃2(t, r) + pζ(

τ − r

2
) + (1 − p)ζ(τ − r)

)}
. (55)

ζ(r) = η̃3(r) +

∫ τ

0

κ(s+ r)e−κ s2+2sr
2 γ(s)ds

+e−κ( τ2+2rτ
2 )

(
η̃4(r) + pζ(

r + τ

2
) + (1 − p)ζ(r + τ)

)
. (56)

where the coefficient are :

η̃1(t, r) = η1(t, r, r) +

∫ τ

r

e−κ (s−r)2

2
∂η1(t, r, s)

∂s
ds ; η̃2(t, r) = η2(t, r) − η1(t, r, τ)

η̃3(t, r) = η3(r, 0) +

∫ τ

0

e−κ s2+2rs
2

∂η3(t, r, s)

∂s
ds ; η̃4(t, r) = η4(r) − η3(r, τ)
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γ(t) ζ(r) η0(t) η̃1(t, r) η̃2(t, r) η̃3(r, s) η̃4(r)
f(t) g(r/R2) 0 1 −1 1 −1
h(t) i(r/R2) 0 aτ (r) 0 bτ (r) 0

j(t) k(r/R2) (t− τ)eβ(t−τ) r − t+ aτ (r) 0 bτ (r) 0

l(t) m(r/R2) 0 1
R2 aτ (r) − τ−r

R2

r+bτ (r)
R2 − r+τ

R2

with

aτ (r) =

∫ τ

r

e−κ (s−r)2

2 ds and bτ (r) =

∫ τ

0

e−κ s2
−2rs
2 ds

Equation (10) can easily be deduced from this for functions (f, g), (h, i) and (l,m). For the
functions (j, k), we should perform another integration by part :

∫ τ

r

βe−β(r−t)(t− τ)dr = −(t− τ)e−β(t−τ) +

∫ τ

r

e−β(r−t)dr.

The first term in the RHS compensates exactly η0(t) for this function, while the second term
of the RHS can be seen as 1/β to add inside the integral w.r.t. the variable r.

References

[1] http://www.isi.edu/nsnam

[2] http://lists.w3.org/Archives/Public/ietf-http-wg-old/2000SepDec/0078.

html

[3] http://www.n2nsoft.com

[4] http://www.faqs.org/rfcs/rfc2581.html

[5] F. Baccelli, P. Brémaud (2002), Elements of Queueing Theory, Springer Verlag,
second edition.

[6] Baccelli, F., Hong, D. (2002) AIMD, Fairness and Fractal Scaling of TCP Traffic.
in Proc. of INFOCOM, New York, June.

[7] Baccelli, F., McDonald, D. R., Reynier, J. (2002). A mean-field model for mul-
tiple TCP connections through a buffer implementing RED. Performance Evaluation
Vol. 11, (2002) pp. 77-97. Elsevier Science.

[8] Barakat, C., Thiran, P., Iannaccone, C., Diot, C., Owezarski, P. (2002) A
flow-based model for Internet backbone traffic. Internet Measurement Workshop 2002.

[9] Chaintreau, A., De Vleeschauwer, D. (2002) A closed form formula for long-lived
TCP connections throughput. Performance Evaluation 49(1/4): 57-76 (2000).

RR n° 5205



54 F. Baccelli, A. Chaintreau, D. De Vleeschauwer & D. McDonald

[10] Chang, C.-S., Liu, Z. (2002) A Bandwidth Sharing Theory for a Large Number of
HTTP-like Connections. In Proceedings of the IEEE Infocom 2002 Conference, New
York City , June 2002.

[11] Feller, W. (1971) An Introduction to Probability Theory and its Applications, Wiley,
second edition.

[12] Fred, S., Bonald, T., Proutiere, A., Régnié, G., Roberts, J. (2001) Statis-
tical bandwidth sharing: a study of congestion at flow level. in Proceedings of ACM
SIGCOMM 2001: pp111-122

[13] Gibbens, R. J., Hunt, P. J. and Kelly, F. P. (2002) Bistability in Communication
Networks, in Disorder in Physical Systems.

[14] Heyman, D., Lakshman, T., Neidhardt, A. (1997) A new method for analyzing
feedback-based protocols with applications to engineering web traffic over the Internet.
in ACM Sigmetrics, 1997, pp. 24–38.

[15] Kelly, F. (1997) Charging and Rate Control for Elastic Traffic. European Transactions
on Telecommunications, vol. 8, pp. 33–37, 1997.

[16] Kherani, A.A., Kumar, A. (2000) Performance Analysis of TCP with Nonpersis-
tent Sessions. Workshop on Modeling of Flow and Congestion Control, INRIA, Ecole
Normale Supérieure, Paris, September 4-6, 2000.

[17] Massoulié, L., Roberts, J. (1999) Bandwidth sharing: objectives and algorithms in
Proceedings of IEEE INFOCOM, Vol. 3. New York, NY, pp. 1395–1403.

[18] Roberts, J., Massoulié, L. (1998) Bandwidth sharing and admission control for
elastic traffic. ITC Specialist Seminar, Yokohama, October.

INRIA



Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399


