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Abstract: The Delaunay triangulation and its dual the Voronoi diagram are ubiquitous
geometric complexes. From a topological standpoint, the connexion has recently been made
between these constructions and the Morse theory of distance functions. In particular, algo-
rithms have been designed to compute the flow complex induced by the distance functions
to a point set.

This paper develops the first complete and robust construction of the extended flow
complex, which in addition of the stable manifolds of the flow complex, also features the
unstable manifolds. A first difficulty comes from the interplay between the degenerate
cases of Delaunay and those which are flow specific. A second class of problems comes from
cascaded constructions and predicates —as opposed to the standard in-circle and orientation
predicates for Delaunay. We deal with both aspects and show how to implement a complete
and robust flow operator, from which the extended flow complex is easily computed. We
also present experimental results.

Key-words: Voronoi diagrams, Distance functions, Critical points, Morse theory, Morse-
Smale diagram, Flow complex.
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Construction robuste de flot complexe étendu en
dimension trois

Résumé : La triangulation de Delaunay et son dual le diagramme de Voronoi sont des
constructions géométriques fondamentales. D’un point de vue topologique, la connexion
a été faite récemment entre ces objets et la théorie de Morse des fonctions distance. En
particulier, des algorithmes ont été proposés pour calculer le flot complere induit par la
fonction distance a un nuage de points.

Ce travail développe le premier algorithme complet et robuste pour le flot complexe
étendu, qui outre les variétés stables du flot complexe, contient aussi les variétés instables.
Une premiere classe de difficultés réside dans la gestion des cas dégénérés —ceux spécifiques
a Delaunay et ceux spécifiques au flot complexe. Une seconde classe de problemes vi-
ent des prédicats et constructions cascadés par opposition aux prédicats in_circle et
orientation suffisants pour la construction de Delaunay. Nous indiquons comment gérer
ces probléemes, et comment implémenter un opérateur de flot robuste. Celui-ci est alors
utilisé pour construire le flot complexe étendu. Des illustrations sont aussi données.

Mots-clés : Diagrammes de Voronoi, Fonctions distances, Points critiques, Theorie de
Morse, diagramme de Morse-Smale, Flot Complexe.



The robust extended flow complex 3

1 Introduction

1.1 Morse theory of distance functions

Given a collection of geometric objects, the loci of point equidistant from these objects
is a fundamental construction appearing under various names in differential geometry (cut
locus, medial axis) [Ber03, BG86], mathematical morphology (medial axis, skeleton) [Ser82],
non-smooth analysis (singular set, central set) [Hor94], Computational Geometry (Voronoi
diagram), etc. The construction is theoretically fundamental, and has countless practical
applications [OCO00].

An equally important construction is the collection of level sets of the distance function
to these objects. Investigating the evolution of these level sets when the distance increases
can be casted into the framework of Morse theory, which is concerned with the study of
functions defined on manifolds [Mil63]. In the setting of Computational Geometry (CG)
and Geometric Modeling, the framework of Morse theory has been approached from sev-
eral directions. The development of a-shapes [Ede92] and the investigation of topological
properties of collections of (growing) balls [Ede95] was probably the first time notions from
differential topology were used in CG —these constructions are essentially concerned with
topological events underwent by the level sets of the (power) distance function. In a nearby
vein, the precise framework of Morse theory has been applied to distance functions origi-
nating in the context of Euclidean Voronoi diagrams for points [Sie99], and a construction
termed the flow complex was developed in [GJ03] based on properties of the Delaunay and
Voronoi diagrams. These veins connected recently since its was shown a-shapes and flow
shapes are homotopy equivalent [aJGaMJ03, BGO05]. In a somewhat different realm, the dis-
tance function to a compact set has been used in mathematical morphology to investigate
properties of medial axes and skeletons [Ser82]. Further properties of this function were used
in [Lie03] to prove any open bounded subset of R™ has the same homotopy type than its
medial axis. From a global perspective, constructions related to distance functions bridge
the gap between local geometric and global topological properties.

Application-wise, distance functions proved recently to convey important informations
for the study of Van der Waals models [EFL98]|, in surface reconstruction [GJ02, Cha03,
Ede03, aJGaERaBS05], and shape segmentation [DGG]. Apart from this Euclidean setting,
Morse theoretic ideas related to Morse-Smale diagrams have been explored [CCLO03] in the
realm of Forman’s combinatorial Morse theory [For98].

1.2 Extended Flow complex versus Morse-Smale diagram

Following classical terminology in differential topology, a critical point of a differentiable
function is a point where the gradient of the function vanishes, and the function is called a
Morse function if its critical points are isolated and non degenerate. Given a Morse function
defined over a manifold M, and a critical point p of that function, the stable (unstable)
manifold W#(p) (W*(p)) is the union of all integral curves associated to the gradient of
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4 Cazals

the function, and respectively ending (originating) at p. The function is termed Morse-
Smale provided its stable and unstable manifolds intersect transversally [PdM82]. For such
a function, the Morse-Smale complez is the subdivision of M formed by the connected
components of the intersections W*(p) NW*(q), where p and ¢ range over all critical points.

In the setting of Voronoi diagrams, the focus has been so far on the flow compler. In
[aJGaMJ03], the construction of stable manifolds of index two saddles has been presented,
while a general construction of stable manifolds in any dimension is reported in [BGO05].

We define the Exztended Flow Complez as the collection of stable and unstable manifolds,
with the proper incidences. The extended flow complex encloses the flow complex, but
is weaker than a Morse-Smale diagram, since intersections between stable and unstable
manifolds are not explicitly reported.

1.3 Contributions and paper overview

The algorithms just mentioned operate under genericity hypothesis, and the question of
unstable manifolds is not addressed. Most importantly, the fact that robustness issues are
not addressed implies these algorithms are bound to fail on general inputs.

In this context, we make the following contributions. First, we precise some points
of terminology by (re)defining critical points. Second, we present algorithms for flowing
across Voronoi edges and facets, these algorithms being the cornerstone of a complete and
robust flow operator. Third, we explain how to use them to construct the extended flow
complex. In particular, our presentation provides a unified view of the complex, and avoids
the development of dedicated algorithms for stable and unstable manifolds of various indices,
as done previously. Degenerate cases and numerical issues are discussed. In particular, we
emphasize the fact that contrarily to the construction of the Delaunay triangulation, exact
constructions —versus predicates— are mandatory to ensure correctness in the general case.

In section 2, we review basics on the distance function to a compact set, and refine the
usual notion of critical point. In section 3, we present the complete road-book to flow across
Voronoi faces. Algorithms to flow across Voronoi edges and facets are presented in sections
4 and 5. In section 6, we explain how to construct the extended flow complex. Finally,
section 8 presents experimental results.

1.4 Notations

This section is meant as reference for notations. In particular, undefined notions are in-
troduced when appropriate in the text. Central to our constructions are the Voronoi and
Delaunay diagrams. We shall assume the Voronoi diagram is represented via its dual Delau-
nay triangulation. Following standard usage, we assume the Delaunay triangulation is given
as a collection of simplices with the proper incidences. For example, all Delaunay triangles
incident upon an edge e can be accessed by rotating around this edge; two consecutive such
triangles define a tetrahedron incident on e. When manipulating Voronoi/Delaunay faces

INRIA



The robust extended flow complex 5

of all dimensions, we shall use the following Voronoi/Delaunay terminology: Vertex/cell,
Edge/facet, Face/edge and Cell/vertex. In particular, an initial out of {V, E, F, C} or
{c, f, e, v} identifies unambiguously a Voronoi or Delaunay face. When the dimension is
not specified, a Voronoi/Delaunay face are denoted O/O*. Moreover, the duality operator
returning the Delaunay face associated to a Voronoi face, or vice-versa, is denoted with a
super-script, e.g. V* =c.

The center of the smallest ball circumscribing a Delaunay simplex of any dimension is
denoted z, while the center of the smallest empty ball is denoted y. In particular, recall z
always lies on the affine hull of the simplex. Delaunay simplices whose such balls are empty
are called Gabriel simplices.

For a set O, its boundary and relative interior are respectively denoted 9O and Rellnt(O).

Occasionally, to clarify figures, we shall use the signature of a tetrahedron defined as the
number of its critical points of all dimensions, that is (4,z,y,2) with4d —az +y—2z=1.

2 Distance function and critical points

2.1 The distance function dx to a compact set

Given a compact set K of R?, the distance function to K is defined by dx (p) = minge x d(p, q),
with d(p, ¢) the Euclidean distance. Function d is not differentiable on the medial axis of
K, but it has been shown that a generalized gradient coinciding with Vdg (p) where dk is
differentiable can be defined [Lie03]. To see how, for any point p, consider the set C(p) of
contact points to K, i.e. the points realizing the distance dx(p). Denote R(p) its radius,
d(p) the center of the smallest ball containing these contact points, and r(p) the radius of
this smallest containing ball. This generalized gradient is defined as [Lie03]:

_p—d(p)
Vdk(p) = W’ (1)
and satisfies N
Vi) =1 @)

This gradient defines the directions of steepest ascent for the function dg. It can be shown
it defines a flow, which tells how a point p moves so as to maximize function dg.

When the compact set is a collection of sample points, function d is easily studied since
the medial axis reduces to the (d — 1)-skeleton of the Voronoi diagram. In particular, if O
stands for the relatively open Voronoi face of smallest dimension containing point p, the set
C(p) corresponds to the vertices of the simplex O*. Because point d(p) actually indicates the
direction of this generalized gradient, its has been called the driver in [GJ03]. Equivalently,
the driver is characterized as the point of O* nearest to p.

RR n° 5903



6 Cazals

2.2 Elements of differential topology

When studying functions on manifolds, and more precisely Morse functions, critical points
induce a decomposition of the manifold. More precisely, the manifold has the homotopy
type of a CW complex with one cell of dimension k for every critical point of index k. This
decomposition is obtained by tracking the topological changes of the level set of the function
on the manifold [Mil63]. One change exactly occurs at each critical point, by attaching one
cell of dimension k corresponding to the inflow of the critical point.

2.3 Critical points of dx

The notion of critical point just recalled also applies to the generalized gradient of Eq. (1).
However, if one wishes to track topological changes of the level sets of function dg, the
notion of critical point is not sufficient anymore. As illustrated on Fig.1(a,b), the wavefront
does not systematically incur a topological change when a point such that Vdg(p) = 0 is
reached. To account for this subtlety, we define:

Definition. 1 A point p is called topologically critical (regular) if the level set of dx (does
not) incurs a topological change upon crossing point p.

Following the analysis carried out in [Sie99], we actually have:

Observation. 1 Point p is critical iff it belongs to the interior of the convex hull of its
contact points C(p).

Two comments are in order. First, this definition is different from that traditionally
used in the context of distance functions to compact sets [Lie03], where a point is termed
critical if it belongs to the convex hull of the contact points. Second, in the context of
Delaunay - Voronoi, this definition is also different from that using the intersection between
the Delaunay and Voronoi faces. In fact, the characterization of critical points from Obs.
1 is more general, since the convex hull of the contact points reduces to a simplex if no
degeneracy occurs in Delaunay. Following [Sie99, GJ03], the index of a critical point p is
d — k, with k£ the dimension of the open Voronoi face of lowest dimension containing p.

Definition 1 can be used to disqualify points with Vdg(p) = 0 as critical points, as
illustrated on Fig. 2 —refer to section 1.4 for the definition of points y,z. On Fig. 2(a),
two such critical points of index 1 and 2 associated to a Delaunay edge and triangle coincide
and can be discarded. On Fig. 2(b), two such critical points of index 1 and 2 associated to
a Delaunay triangle and tetrahedron can be discarded too. On Fig. 2(c), four such critical
points —one of index 1, one of index 3, and two of index 2— can be discarded.

INRIA



The robust extended flow complex 7

Figure 1: 2d examples with Vdg(p) = 0 in both cases (a)Point p is topologically regular
—the level set does not undergo a topological change when the distance shifts from d; to ds
(b)Point p is topologically critical —a maximum

Co

(a) (b) (c)

Figure 2: Points p which are topologically regular although Vdg(p) = 0 (a)0O0* N
Rellnt(0) # § (b)Rellnt(0O*) N O # B (c)Voronoi vertex on an edge. Signature of tetra is
(4,5,2,0)

3 Flowing across Voronoi objects: the road-book
Describing how one flows faces several types of difficulties: first, one needs to accommodate
flow to infinity across unbounded Voronoi faces and across Voronoi rays dual of Delaunay

triangles found on the convex hull; second, one needs to take care of flow specific degenerate
cases; third, one needs to handle Delaunay specific degenerate cases.

RR n° 5903
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3.1 Flow segment

Since the flow is linear in relatively open Voronoi faces, we shall iteratively follow a trajectory
by restricting it to an open Voronoi face. We define:

Definition. 2 Let p a point we want to flow from. By combinatorial flow segment, we
refer to the triple: (i) the relatively open Voronoi face S containing the Start point (ii) the
relatively open Voronoi face C Crossed from this point (iii) the endpoint Reached on the
boundary of S, or infinity if the point flows to infinity. By flow segment, we refer to the
trajectory followed by point p across the faces of the combinatorial flow segment.

Practically, a combinatorial flow segment is denoted by a triple S — C — R, each letter
taken from the symbols {V, E, F, C} to represent a Voronoi face. Given an initial position,
flowing consists of computing a sequence of flow segments. Computing a flow segment
—the primitive operation, requires identifying the face crossed and finding the trajectory
itself from which the face reached is obtained. Flowing across Voronoi edges and faces are
described in sections 4 and 5. Before presenting the operations, we discuss the identification
of the driver of a given point.

3.2 Drivers

To discuss the possible cases, we distinguish by the dimension of the Voronoi object con-
taining the start-point:

—Starting from the interior of a Voronoi region. The driver is the sample point associated
to the Voronoi cell.

—Starting from the relative interior of a Voronoi facet. The driver is the midpoint of the
Delaunay edge dual of the facet.

—Starting from the relative interior of a Voronoi edge. The driver is associated to the dual
Delaunay triangle or to one of its edges. See Figs. 3, 4, 5 for the possible combinatorial flow
segments.

—Starting from a Voronoi vertex. If the Voronoi vertex is critical, it is its own driver. If
not, the driver is associated to an edge or a triangle of the Delaunay tetrahedron dual of
the Voronoi vertex, see Figs. 6 and 7. A Voronoi vertex driven by a triangle flows along a
Voronoi edge. But as illustrated on Fig. 8, the converse is not true, due to a degenerate
geometry of the tetrahedron dual of the Voronoi vertex. Consider a Voronoi center ¢ of a non
critical tetrahedron driven by the middle d of edge pop;. Let S be the sphere circumscribed
to the tetrahedron, Sp; be the sphere whose diameter is pop1, and Bg; the ball bounded
by Sp1. Under our hypothesis, the ball By, contains ps and p3. The intersection S N Spq
is a circle Cy1, and since ps, p3 belong to S and are located inside Byi, they are located on
the lower spherical cap of S bounded by Cyi. Let p; stand for py or ps. If p; belongs to
the interior of this spherical cap, we are in the generic situation of Fig. 7. If p; belongs to
the circle Cpi, then triangle popip; is rectangle at p;, and the Voronoi segment (popip;)* is
collinear with the line-segment dc.

INRIA



The robust extended flow complex 9

Figure 4: Flow segments E-E-{V,oc}:

Figure 3: Flow segments E-E-{V,c0}: from.a Voronoi'ejdge f* dual of a non
from a Voronoi edge f* dual of critical Gabriel (non critical) Delaunay triangle

Delaunay triangle f.

Figure 5: Flow segments E-F-{V,E,c0}: Flow from a Voronoi edge f* dual of a Gabriel non
critical Delaunay triangle f. Driver is associated to edge e

RR n° 5903
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(Pop1pa)* (Popaps)*

(popaps)* [\ (p1paps)*

(Pop1ps)*

Figure 7: Flow segments V-F-{V ,E,cc}.

Figure 6: Flow segments V-E-{V,ocol. Signature of the tetrahedron shown is
Signature of the tetrahedron shown is (4,5,2,0).
(47 67 3’ 0)'

INRIA
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(pop1p2)*
(pop1p3)*

Figure 8: Point p; belongs to the minimum-enclosing ball defined by edge popi: Voronoi
edge (pop1p2)* is collinear with segment dc

3.3 Enumerating all possible flow segments

Before enumerating all possible flow segments, we need to accommodate the degenerate case
in Delaunay corresponding to n > 4 co-spherical points. We define:

Definition. 3 A point p is called a duplicate Voronoi vertex if it coincides with at least two
circumcenters of tetrahedra featuring co-spherical points. A Voronoi vertex which is non
duplicate is called simple. A Voronoi edge corresponding to a duplicate Voronoi vertex is
called trivial.

As discussed in section 2, a duplicate Voronoi vertex may be topologically regular. Such a
vertex may therefore yield a V-V-V flow segment.

The possible flow segments are listed on Table 1, where S and C respectively refer to
the Start and Crossed Voronoi faces. Algorithms for entries marked as [x] are developed in
the sequel, while entries marked as [0] are not  they are irrelevant for the calculation of
the extended flow complex. Before presenting these algorithms, one can observe that there
are actually three types of degeneracies:

—Generic Voronoi face, degenerate flow for selected starting points. This is the E-F-V case
depicted on Fig. 5.

—Non generic Voronoi face, non-generic flow. This occurs when flowing from a Voronoi
vertex, as on Fig. 8.

—Duplicate Voronoi vertices. This difficulty is independent from the previous two.

RR n° 5903
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dim(S) [ dim(C) 0 1 2 3
0 VV-V x| V-E-[V,oo} ] V-F-{V.E.>] [x] )
1 0 E-E-{V,} [x] E-F-{V.E,00} [x] 0
2 0 0 F-F-{V.E,0} [0] 0
3 0 0 0 C-C-{V,E,F,¢} [o]

Table 1: List of possible flow segments

4 Flowing across a Voronoi edge

We have two cases, depending on whether the start point is a Voronoi vertex or is located
in the interior of the edge.

4.1 Cases V-E-{V,0}

We assume V' = ¢* is a Voronoi vertex incident to a Voronoi edge F = f*. The flow consists
of flowing to the second endpoint of f*, associated to the tetrahedron neighbor of ¢ across f,
or to infinity if f is located on the convex hull. As a degenerate situation, we face the case
of a duplicate Voronoi vertex. In that case, moving to the neighbor of ¢ is still correct. After
a finite number of such moves, we either end up with a tetrahedron whose Voronoi vertex is
a maximum, or we end up on a non-degenerate Voronoi edge and the flow proceeds.

4.2 Cases E-E-{V,0}

Point p lies in the interior of the edge E = f* and is driven by a triangle. We have two cases
depending on whether FE is a Voronoi edge or ray. For a Voronoi edge, we have two sub-cases:
if facet f is critical, we flow to the Voronoi vertex located on the same half-Voronoi edge
as p; else, we flow to the Voronoi vertex farthest from p. For a Voronoi ray, the strategy
follows mutatis mutandis.

5 Flowing across a Voronoi facet

5.1 Overview

Consider a point p on the boundary of a Voronoi face e*. We assume point p is specified from
the smallest dimensional Voronoi object containing it. In particular, if point p coincides with
a duplicate Voronoi vertex, we assume it is specified from a Voronoi vertex and not from
a trivial Voronoi edge. Given such a point, we wish to find the open Voronoi face crossed
—the face itself or one of its boundary edge, together with the point reached by the flow.
Because we need to detect situations such as a flow along a Voronoi edge as on Fig. 8,
the algorithm consists of sequentially examining the Voronoi edges and/or rays bounding e*,
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The robust extended flow complex 13

so as to report the Voronoi edge or Voronoi vertex reached. Not surprisingly, the difficulty
consists of handling the interplay between flow specific and Delaunay degenerate cases —
when the Voronoi vertex V of Fig. 8 is duplicate.

5.2 The generic case

Algorithm. Let p be a point on the boundary of a Voronoi facet F' = e*: p is either a
Voronoi vertex, or lies in the interior of a Voronoi edge. Let dp' be the ray emanating from
d and passing through p. Assuming the facet e* is not Gabriel and since the flow is linear in
Voronoi objects, we need to compute the intersection between the ray dp™ and the boundary
of e*. To see how to proceed, let ¢ = (pop1) the non Gabriel Delaunay edge. To compute
the afore-mentioned intersections, we sequentially examine the intersection between the ray
dpt and the Voronoi edges or rays bounding the facet e*. Following best practices, we
distinguish between predicates and constructions.

Predicates. Consider a Voronoi segment c;c;y1 along the boundary of e*. To check
whether it is intersected by dp™, since edge e and its dual are orthogonal, it is sufficient to
compute the following signs:

so = sign(< dp Ade;, pop1 >), s1 = sign(< dp A dciy1, pop1 >). (3)

The predicate for a Voronoi ray is similar. Calling ¢; the finite Voronoi vertex and u the
unit vector orienting the ray, we compute:

s0 = sign(< dp A de;, pop1 >), and s = sign(< dp A u, pop1 >). (4)

Definition. 4 The signature of a Voronoi edge or ray dual of a Delaunay facet f is defined
by f = [s0, 81], with sg,s1 defined by Eqs. (3) or (4).

The signature of a Voronoi face is defined as the concatenation of the signatures of its
Voronoi edges/rays.

The following observations will be helpful in understanding the algorithm below:

Observation. 2 Let s; be the sign associated with Voronoi center ¢;. One has: s; = 0 iff
p=ci, or p# c¢; and dp is collinear to dc;.

Let s; be the sign associated with the direction u of a Voronoi ray. One has s; = 0 iff dp
and u are collinear, and in that case, the sign of the finite Voronoi vertex may be 0 or £1.

Construction. The predicates just presented allow the detection of the Voronoi edges
intersected at the expense of the evaluation of the sign of a polynomial. Assume we have
found a Voronoi edge or ray intersected by the ray dp*. The construction of p’ is easily
done by considering the intersection between the Voronoi line-segment or ray with the plane
defined by the triple pipsop. This intersection requires manipulating rational numbers.

RR n° 5903
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Notice the construction of point p’ needs to be done exactly: on Fig. 9, if point p’ lies
next to a Voronoi vertex, the rounding errors inherent to floating point computations may
yield a constructed point located on the wrong Voronoi edge, or outside the Voronoi edge.
In that case, ensuing computation may be erroneous.

dp*

Figure 9: Primitive for flowing across a Voronoi face

5.3 The general case

Exceptional and regular situations. When flowing from a (possibly duplicate) Voronoi
vertex across a Voronoi face, since the flow may reach another (possibly duplicate) Voronoi
vertex, the signature of the facet contains at most two sequences of the following type, each
associated with a (possibly duplicate) Voronoi vertex: [£1,0][0,0]*[0,F1]. (The * and *
exponents are used as in regular expression.) For example, the two Voronoi edges incident
on a simple Voronoi vertex yield the signature [+1,0][0, F1], whereas a multiple Voronoi
vertex yields the sequence [£1,0][0,0]7 [0, F1].

To handle the flow situations listed in Table 1, we first introduce the following exceptional
situations: —EX_SEG_VCC: f* is a trivial Voronoi segment.
—EX RAY_COLLINEAR: f* is a ray, dp* is collinear with that ray, and p coincides with
the finite Voronoi vertex.
EX_SEG_COLLINEAR: f* is a non trivial Voronoi segment, dpt is collinear with that
segment, and p coincides with one of the Voronoi vertices.

Next, we define the following situations, which assume none of the exceptional situations
just introduced hold:
—REG_INT_START: The signature of f satisfies f = [0,+1]. (If f* is a ray, notice this
subsumes that the first tetrahedron incident on f is finite.)
—REG_INT_END: The signature of f satisfies f = [+1,0]. (If f* is a ray, notice this
subsumes that the first second of f is finite.)
—REG_INT_INTERIOR : dual is a segment or a ray, and the intersection occurs in its

interior. That is f = [1,—1] or f = [—1,1].

INRIA



The robust extended flow complex 15

Algorithm. To present algorithm Flow_across_vor_facet, we shall need the following
data structures:

—X: a set containing the Delaunay facets dual of Voronoi edges which are intersected by
dp™, yet are of no interest. If p lies in the interior of a Voronoi edge, X contains the facet
dual of that edge; if p is a Voronoi vertex, X contains the two Delaunay facets whose dual
Voronoi edges intersect at the Voronoi vertex.

—Y: a list containing Delaunay facets dual of Voronoi edges which are intersected by dp™
at an endpoint of the Voronoi edge, and which may or may not be valid intersections due to
n > 4 co-spherical points.

—uw: boolean initialized to false stating whether the intersections recorded in Y are valid or
not.

—I: a list containing Delaunay facets dual of Voronoi edges defining valid intersections.

Equipped with these data structures, algorithm Flow_across_vor_facet sequentially
processes the Voronoi edges bounding e* as indicated in Algorithm 1. Upon termination of
the algorithm, one concludes as follows: if I = (), the flow ends at infinity while crossing
interior of e*; if | I |= 1, the flow ends up on a Voronoi edge after to have crossed e*
transversally; if | I |= 2, the flow ends on a Voronoi vertex. If the vertex is duplicate, notice
the algorithm records two non trivial Voronoi edges meeting at the vertex.

A final comment is in order. Using the set X to discard selected edges is valid. In a
degenerate situation such as that of Fig. 8, or if the flow starts from a point located in the
interior of this edge, we may flow along this edge —record in X. But such situations are
handled as exceptions and do not resort to X.

Rmk. Due to the convexity of Voronoi facets, the linear scan of Voronoi edges used in
Algorithm Flow_across_vor_facet can be replaced by a binary search.

6 Computing the extended flow complex

In this section, we show that the construction of stable and unstable manifolds of critical
points of indices one and two, which are the difficult cases, easily stems from the algorithms
developed in sections 4 and 5. Notice in particular that the construction of unstable mani-
folds of index one saddles, stable and unstable manifolds of index two saddles resort to the
construction of point p’ of Fig. 9, and that correctness of the extended flow complex is not
ensured in the general case if this construction is not done exactly.

6.1 Stable manifolds of index one saddles

These are just Gabriel edges.
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Algorithm 1 Algorithm Flow_across_vor_facet
Let ¢* be the Voronoi facet
Choose f such that f [0, ]
w «— false
for all Delaunay facets f incident on edge e do
Compute signature f of x*
{Flow to infinity along Voronoi ray}
if EX_ RAY_COLLINEAR then
Flow to infinity; DONE
{Flow to Voronoi segment endpoint}
if EX_SEG_COLLINEAR then
Flow to Voronoi vertex; DONE
{A duplicate Voronoi vertex with [0, 0] signature: set boolean}
if EX_.SEG_VCC then
if 0e fANDf € X then
w = true; NEXT
{Intersection at endpoint and f not forbidden: record in Y'}
if f=[£1,0] and f ¢ X then
record f into Y
{Closing the block [£1, 0][0, 0]*[0, F1]}
if f=[0,+1] then
if f ¢ X then
record f into Y
if w then
discard facets in Y
else
transfer facets of Y into [
{Intersection in the interior of the edge}
if f=[£1,F1] and f ¢ X then
record f into [

INRIA
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6.2 Stable manifolds of index two saddles

In [GJO03], a construction of stable manifolds of index two saddles is presented. Its primitive
operation consists of flowing across a Voronoi facet e* so as to find the pre-image by the
flow of a point located on a Voronoi edge bounding e*. Running the algorithm of section 5
backward instead of forward exactly provides this operation.

6.3 Unstable manifolds of index one saddle

Consider an index one critical point associated to a Delaunay edge e. Its outflow reaches
the Voronoi edges and vertices bounding the corresponding Voronoi facet. Tracing the flow
of Voronoi vertices has been explained above. Consider a Voronoi edge f* on the boundary
of e*. If it is critical, we are done. If not, the driver of this edge is one of the two edges of
its dual triangle, say edge ¢’. (Notice the third edge of this triangle is edge e.) The image
of f* under the action of the driver defined by €’ is a cone in the Voronoi facet e'*.

Summarizing, computing the unstable manifold of an index one saddle amounts to com-
puting the outflow of (portions of) Voronoi edges and of Voronoi vertices, which is easily
done from the algorithms of sections 4 and 5. Finally, one computes their union.

6.4 Unstable manifolds of index two saddles

The unstable manifold of an index two saddle consists of the (open) integral curves traced
from the critical point, and either reaching a maximum —possibly at infinity. Each such
curve starts with the open line-segment on the Voronoi edge apart from the critical point.
Since the flow is linear in Voronoi objects, to trace such a curve, one start from the Voronoi
vertex ending the edge. Consider such a vertex. If it corresponds to a maximum —possibly
at infinity, we are done. If not, we follow the flow of that vertex. In general, this flow crosses
Voronoi facets and edges, and is easily traced from the algorithms of sections 4 and 5.

7 Additional remarks

7.1 Iterated constructions and predicates

In section 5, we have seen how to compute a flow segment across one Voronoi face. In
general, computing stable and unstable manifolds requires cascading such constructions, so
that the predicates operate on input points and cascaded constructions.

7.2 The Hasse diagram

For selected applications, one is interested in the incidence diagram between the critical
points —which we may call the Hasse diagram due to its stratified structure, rather than
the geometry of the stable and unstable manifolds. See Fig. 10 for a 2d example.
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The incidences between the input points and the index one saddles is trivial from the
collection of Gabriel edges. So are those between the index two saddles and the maxima,
from the unstable manifolds of these saddles. To compute the incidences between the index
one and two saddles, we either resort to the stable manifolds on index two saddles, of the
unstable manifolds of index one saddles.

Critical value

o m D2 3

Figure 10: Example Hasse diagram for four points in 2d

8 Illustrations

The algorithms described have been implemented using the Delaunay triangulation of CGAL,
www.cgal.org. Due to the criticality of constructions, the kernel used is CGAL: :Exact_
predicates_exact_constructions_kernel. We illustrate the complexity of the flow com-
plex on two models: the vase model (2.7 k points), and a mechanical part (12.5 k points).
These two models are real data sets output by scanners. The code was compiled with gcc
version 3.4.4, and run on a PC at 2GHz.

Table 2 reports statistics on the number of critical points, and on the timings. Columns
read as follows: #p: model size in kilo points; idx;: number of critical points of index k; x:
Euler characteristic; tp (tp¢) time to construct the Delaunay triangulation (the extended
flow complex but the unstable manifolds of index one saddles). Table 3 provides two sets
of statistics. First, the minimum, maximum and average number of triangles in an index
two stable manifold —ming, maxy, pe. Second, the same statistics for the number of flow
segments along an index two unstable manifold —min;, maz;, u;

As can be seen from Table 2, building the extended flow complex is significantly more
demanding than building the Delaunay triangulation. Notice that much faster running times
can be achieved for Delaunay using filtered predicates. The same is not possible for the flow
complex due to the requirement of exact constructions. Another observation, not present on
the table, is that all degenerate cases discussed in sections 2.3 —collision and cancellation
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of critical points, and section 5 —duplicate Voronoi vertices, actually occur. This owes to
the fact that scanned data sets are often rounded on an integer grid.

Table 3 illustrates another main feature of the extended flow complex: the construction
is not local, in the sense that stable and unstable manifold may extend arbitrarily far. for
example, the minimum number of triangles forming an unstable manifold of index two is
three, but this number is as large as two hundreds on our models. The same holds for
unstable manifolds. this again stresses the numerical difficulties arising in the course of the
construction.

This is illustrated on Fig. 12, which features the critical points of all indices and then
largest index two stable manifold. The bottom most line-segment of this manifold, in orange,
is a boundary Gabriel edge. The stable manifold extends above in between the two branches
of the vase. Color codes for critical points are as follows: index 0 (grey), index 1 (yellow),
index 2 (orange), index 3 (red).

#p idxg idxy ideo  idrs x| tp tro/tp
vase 2.7k 2714 6126 4341 928 1 | 2.43 10.3
mec. | 12.5k | 12593 31632 21836 2846 1 | 16.1 25.1

Table 2: Critical points and running times

ming  Max Wy | min;  max; i
vase 3 264  7.17 1 39 9.14
mec. 3 201 6.40 1 87 15.07

Table 3: Statistics on stable and unstable manifolds of index two saddles
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Figure 11: The va

Figure 12: Let: far view of the critical points and of the stable manifold with 264 triangles.

Right: closeup.
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9 Conclusion

This paper presents the first complete and robust construction of the extended flow complex
of the distance function to a collection of points. We show this construction stems directly
from the flow operator, i.e. does not require dedicated algorithms for stable and unstable
manifolds of various indices. Degenerate cases and numerical issues are discussed. In par-
ticular, we emphasize the fact that exact constructions are mandatory to ensure correctness
in the general case, a rather annoying constraint yielding cascaded constructions.

Similarly to the Delaunay triangulation a few years ago, which had not had a deep
impact due to the lack of robust and efficient algorithms - software, we anticipate this
paper will foster the use of flow based constructions in geometric modeling. This paper
also open interesting research avenues. First, the cascaded constructions and predicates on
these call for the development of arithmetic filters and lazy strategies. Second, investigating
whether the intersection of stable and unstable manifolds defines a Morse-Smale diagram
is of interest. Third, these stable and unstable manifolds being rather elaborate geometric
objects, approximation schemes are also called for.

Acknowledgements. David Cohen-Steiner is acknowledged for discussions.
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