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Abstract: With the advent of XML as the de facto language for data interchange, scalable
distribution of data to large populations of consumers remains an important challenge.
Content-based publish/subscribe systems offer a convenient abstraction for data producer
and consumers, as most of the complexity related to addressing and routing is encapsulated
within the network infrastructure. Data consumers typically specify their subscriptions using
some XML pattern specification language (e.g., XPath), while producers publish content
without prior knowledge of the recipients, if any. A novel approach to content-based routing
consists in organizing consumers with similar interests in peer-to-peer semantic communities
inside which XML documents are propagated. In order to build semantic communities
and connect peers that share common interests with each other, one needs to evaluate the
similarity between their subscriptions. In this paper, we specifically address this problem
and we propose novel algorithms to compute the similarity of seemingly unrelated tree
patterns by taking advantage of information derived from the XML document types, such
as valid combinations of elements, or conjunctions and disjunctions on their occurrence.
These results are of interest in their own right, and can prove useful in other domains, such as
approximate XML queries involving tree patterns. Results from a prototype implementation
validate the effectiveness of our approach.
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Overlays.
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Evaluation de la similarité entre filtres arborescents

pour les systèmes à routage basé sur le contenu

Résumé : Avec l’avènement de XML comme language standard d’échange de données,
la distribution extensible de données à de larges populations de consommateurs reste un
défi important. Les systèmes de type publication/abonnement dont le routage est basé
sur le contenu offrent une abstraction commode pour les producteurs et consommateurs de
données; en effet, la complexité afférante à l’adressage et au routage est en grande partie
encapsulée à l’intérieur de l’infrastructure du réseau. Typiquement, les consommateurs de
données spécifient leurs souscriptions en utilisant un language de filtrage XML (e.g., XPath),
tandis que les producteurs publient du contenu sans connaissance à priori des destinataires,
s’il y en a. Une approche novatrice consiste à organiser les consommateurs partageant des
intérêts similaires dans des communautés sémantiques pair-à-pair, au sein desquelless les do-
cuments XML sont propagés. Afin de construire ces communautés sémantiques et connecter
les pairs partageant des intérêts communs, il est nécessaire d’évaluer la similarité entre leurs
souscriptions. Dans cet article, nous nous intéressons à ce problème en particulier , et nous
proposons des algorithmes novateurs pour calculer la similarité entre filtres arborescents ap-
paremment sans rapports, en tirant parti de l’information dérivée des types des documents
XML, tels que les combinaisons valides d’éléments, ou les conjonctions et disjonctions de
leurs occurences. Ces résultats relèvent d’un intérêt à la fois pragmatique et théorique. Bien
que décrits dans le contexte publication/abonnement, ils peuvent être utilisés pour resoudre
différents problèmes de réseaux ou de gestion de données. Les résultats expérimentaux
découlant d’une implémentation prototype valident l’efficacité de notre approche.

Mots-clés : Gestion de données, Routage basé sur le contenu, XML, Filtrage arborescent,
Réseaux recouvrants sémantiques.



Evaluating Tree Pattern Similarity for Content-based Routing Systems 3

1 Introduction

XML (eXtensible Markup Language) [1] has become the dominant standard for data encod-
ing and exchange. Given the rapid growth of XML traffic on the Internet, the effective and
efficient delivery of XML documents has become an important issue. As a consequence, there
is growing interest in the area of XML content-based filtering and routing, which addresses
the problem of effectively directing high volumes of XML-document traffic to interested
consumers based on document contents.

Unlike conventional routing, where packets are routed based on a limited, fixed set of
attributes (e.g., source/destination IP addresses and port numbers), content-based pub-
lish/subscribe systems route messages on the basis of their content and the interests of the
message consumers. Consumers typically specify subscriptions, indicating the type of XML
content that they are interested in, using some XML pattern specification language (e.g.,
XPath [2]). For each incoming XML document, a content-based router matches the docu-
ment contents against the set of subscriptions to identify and route the document to the
(sub)set of interested consumers. Therefore, the “destination” of an XML document is gen-
erally unknown to the data producer and is computed dynamically based on the document
contents and the active set of subscriptions.

Traditional content routing systems are usually based on a fixed infrastructure of reliable
brokers that filter and route documents on behalf of producers and the consumers. This
routing process is a complex and time-consuming operation, as it often requires the mainte-
nance of large routing tables on each router and the execution of complex filtering algorithms
(e.g., [3, 4, 5]) to match each incoming document against every known subscription. The
use of summarization techniques (e.g., subscription aggregation [6, 7]) alleviates those issues,
but at the cost of significant control message overhead or a loss of routing accuracy.

We have recently proposed an original approach to XML content routing [8] that does
not rely on dedicated network of content routers, nor on complex filtering and forwarding
algorithms. Instead, producers and consumers are organized in a peer-to-peer network that
self-adapts upon peer arrival, departure, or failure. The underlying idea is to connect peers
with similar interests so as to form semantic communities and use an extremely simple for-
warding algorithm: a peer propagates to its neighbors every incoming message that matches
its interest while other messages are essentially discarded. Therefore, messages are quickly
spread inside the community of interested consumers and vanish as soon as they reach its
boundaries.

Obviously, the price to pay for this simplicity is that routing may not be perfectly
accurate, in the sense that some consumers may receive some messages that do not match
their interests (false positives), or fail to receive relevant messages (false negatives). One
can, however, limit the scope of this problem by organizing the peers according to adequate
proximity metrics, i.e., by creating semantic communities that correctly map to the interests
of the consumers.

In [8], we have proposed a proximity metric based on the notion of subscription contain-
ment: we say that a subscription p contains another subscription q, or q ⊑ p, if and only if
any message m that matches q also matches p (note that this relation is transitive and de-
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4 Chand & Felber

fines a partial order). By organizing consumers in a tree topology according to subscription
containment, one can build a content routing network that produces no false negatives and
very few false positives. This approach does, however, suffer from two important drawbacks:
its poor applicability to subscriptions with little or no containment relationships; and its
tree topologies that may be fragile with dynamic consumer populations. These limitations
can be alleviated with a more general proximity metric that creates semantic communities
with graph topologies instead of trees. The actual challenge lay in the design of a proximity
metric that can determine with high accuracy whether distinct tree pattern subscriptions
are likely to represent the same set of documents, and hence should be part of the same
semantic community.
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Figure 1: Example tree patterns (top) and XML document tree (bottom).

In this paper, we specifically address the problem of computing the similarity between
sets of tree patterns (which do not have containment relationships in the general case). The
objective is to evaluate the proximity between two given XPath expressions in terms of
filtering error on XML documents, i.e., the error that would be induced when filtering XML
documents against one expression instead of the other. Obviously, consumers with highly
similar subscriptions are expected to be good neighbors in the overlay network.
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Evaluating Tree Pattern Similarity for Content-based Routing Systems 5

Briefly, our tree pattern similarity problem can be stated as follows: given a tree pattern
p and a set of tree patterns S, find q ∈ S such that filtering XML documents against q
instead of p induces the minimal error.

Example 1.1 Consider the two tree pattern subscriptions pa and pb shown in Figure 1: pa

specifies documents with a root element labeled “media” that has a child labeled “CD”, which
in turn has a grand-child labeled “last” with a sub-element labeled “Mozart”; pb specifies
documents that have an element labeled “CD” (at any depth) with a sub-element labeled
“Mozart”. Here the node labeled “*” (wildcard) represents any label, while the node labeled
“//” (descendant) represents some (possibly empty) path.

The XML document T shown in Figure 1 matches pa but not pb because the sub-element
labeled “Mozart” in T does not have a parent element labeled “CD”. As a matter of fact,
it is unlikely that any XML document with the same type descriptor (DTD) as T matches
pb because the name of the CD’s author is expected two levels deeper than specified in the
pattern. A document matching pa is thus unlikely to match pb and conversely, and the
patterns have therefore low similarity.

Pattern pc specifies documents that have an element labeled “CD” and an element labeled
“Mozart” (both can appear at any depth). The XML document T matches pc and it trivially
appears that pc contains pa—any document that matches pa also matches pc—but the con-
verse is not true: a wide range of XML documents can match pc but not pa. In particular,
“Mozart” doesn’t need to be the composer of a CD, but could be for instance the title of a
book. Therefore, while there is some similarity between pa and pc, these patterns are clearly
not equivalent.

Pattern pd specifies documents that have an element labeled “composer” (at any depth)
with a child labeled “last” and a grand-child labeled “Mozart”. Formally, there is no con-
tainment relationship between pa and pd although document T matches both. Taking into
account the XML document type and assuming that T shows all valid elements (i.e., other
XML documents of the same type will have the same structure, with variations only in the
cardinality of the elements and the values at the leaves), then any document that matches pa

must also match pd and conversely: the “*” in pa must correspond to “composer” while the
“//” in pd must correspond to the path “media/CD”. Therefore, both patterns are equivalent
with respect to T and XML documents of the same type. �

So far, work on tree pattern similarity has partially addressed the problem of proximity
without exploiting the constraints expressed in XML type descriptors [7]. In contrast, the
main focus of this paper is to accurately evaluate the similarity of seemingly unrelated tree
patterns (e.g., patterns pa and pd in Figure 1) using information derived from the XML
document types, such as valid combinations of elements, or conjunctions and disjunctions
on their occurrence. We illustrate the benefits of our proximity metric for content routing
and evaluate its accuracy. We would like to stress that the usefulness of our results on
tree pattern similarity is not limited to content-based routing, but also extends to other
application domains such as approximate XML queries involving tree patterns.

RR n 5891



6 Chand & Felber

The rest of the paper is organized as follows: We first formulate the problem in Section 2.
We introduce the notion of tree pattern expansion in Section 3 and describe how it is used
to compute the similarity of tree pattern in Section 4. We evaluate the effectiveness of our
algorithms in Section 5 and discuss related work in Section 6. Finally, Section 7 concludes
the paper.

2 Problem Formulation

2.1 Definitions

We use a subset of XPath for expressing tree-structured XML queries. A tree pattern is an
unordered node-labeled tree that specifies constraints on the content and the structure of an
XML document. In this paper, we mostly reuse the terminology and notation introduced
in [7]. The set of nodes of a tree pattern p is denoted by Nodes(p), where each node
v ∈ Nodes(p) has a label, label(v), which can either be a tag name, a “*” (wildcard that can
correspond to any tag), or a “//” (the descendant operator). A descendant operator must
have exactly one child that is either a regular node or a “*”. We define a partial ordering
� on node labels such that if a and a′ are tag names, then (1) a � ∗ � // and (2) a � a′ if
and only if a = a′.

The root node root(p) has a special label “/.”. We use Subtree(v, p) to denote the subtree
of p rooted at v, referred to as a sub-pattern of p, Children(v) to denote the set of children
of v, parent(v) to denote the parent of v, and root(p) → v to denote the path from the
root of p to node v. Tree patterns can also define simple conditions and predicates on the
values associated with the elements and attributes of XML documents. These constraints
are typically specified in terms of equality (=, 6=), order relation (>, <, ≥, ≤), or string
containment (prefix, suffix, substring). We denote by Pred(v) the set of predicates associated
with node v. Some examples of tree patterns are depicted in Figure 1 (for instance, tree
pattern pa specifies value predicate last = “Mozart”). XML documents are represented as
node-labeled trees, referred to as XML trees. The notation for Nodes, Subtree, Children,
parent, label, and root also applies to XML trees.

Let T be a node-labeled XML tree with t ∈ Nodes(T ), and p be a tree pattern with
v ∈ Nodes(p) \ root(p). We say that T matches or satisfies Subtree(v, p) at node t, denoted
by (T, t) |= Subtree(v, p), if the following conditions hold: (1) if label(v) is a tag, then t has
a child node t′ labeled label(v) such that for each child node v′ of v, (T, t′) |= Subtree(v′, p);
(2) if label(v) = “*”, then t has a child node t′ labeled with an arbitrary tag such that for
each child node v′ of v, (T, t′) |= Subtree(v′, p); and (3) if label(v) = “//”, then t has a
descendant node t′ (possibly t′ = t) such that for each child v′ of v, (T, t′) |= Subtree(v′, p).

Let T be an XML tree with tr = root(T ), and p be a tree pattern with vr = root(p). We
say that T matches or satisfies p, denoted by T |= p, if and only if the following conditions
hold for each child node v of vr: (1) if label(v) is a tag a, then tr is labeled with a and for
each child node v′ of v, (T, tr) |= Subtree(v′, p); (2) if label(v) = “*”, then tr may have any
label and for each child node v′ of v, (T, tr) |= Subtree(v′, p); (3) if label(v) = “//”, then
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Evaluating Tree Pattern Similarity for Content-based Routing Systems 7

tr has a descendant node t′ (possibly t′ = tr) such that T ′ |= p′, where T ′ is the subtree
rooted at t′, and p′ is identical to Subtree(v, p) except that “/.” is the label for the root
node v (instead of label(v)). The reason for treating vr differently from the rest of the nodes
of p is illustrated by pc in Figure 1: the node labeled “CD” may appear anywhere in the
XML document, including at the root, and it may or not be an ancestor of the node labeled
“Mozart”. This cannot be expressed without our special root label “/.” as tree patterns do
not allow a union operator.

We say that a tree pattern q is contained in another tree pattern p, denoted by q ⊑ p,
if and only if for any XML tree T , if T matches q then T also matches p. We refer to p as
the container pattern and q as the contained pattern. We say that p and q are equivalent,
denoted by p ≡ q, if p ⊑ q and q ⊑ p.

It is worth mentioning that our tree patterns are graph representations of a class of
XPath expressions, which are similar to the tree patterns that have been studied for XML
queries (e.g., [9, 10]).

XML documents are optionally accompanied by a document type definition (DTD) [1]
that defines the legal building blocks and the structure of valid XML documents. A DTD
is typically represented as an extended context free grammar [11] and defined by a tuple
D = (E,P, r), where E is a set of element types, P is a set of production rules that define
element types, and r is a distinguished element type called the root type. For each element
type e ∈ E, P (e) is a regular expression α ::= S | e′ | ǫ | α|α | α, α | α∗, where S denotes
the string type (PCDATA), e′ ∈ E is an element type, ǫ is the empty word, and “|”, “,”,
and “*” denote disjunction, concatenation, and the Kleene closure, respectively. Production
rules can also use the symbols “?” (zero or one) and “+” (one or more) as a syntactic facility
for specifying the cardinality of regular expressions. A DTD containing some element type
that is defined in terms of itself, directly or indirectly, is said to be recursive. We do not take
into account attributes and ID/IDREF, as they are not relevant for computing tree pattern
similarity, nor the ordering imposed by concatenation. Note that the type information used
by our algorithms could also be derived from an XML schema [12].

<!ELEMENT a (b?,c?,d?)>

<!ELEMENT b (e+,f?,(g|h)?)>

<!ELEMENT e (k|m)+>

<!ELEMENT k (#PCDATA)>

<!ELEMENT m (#PCDATA)>

<!ELEMENT f (#PCDATA)>

<!ELEMENT g (#PCDATA)>

<!ELEMENT h ((k|m)+|n*)>

<!ELEMENT c (f|o)+>

<!ELEMENT o (n*)>

<!ELEMENT n (#PCDATA)>

<!ELEMENT d (e+,(p|q)?)>

<!ELEMENT p (#PCDATA)>

<!ELEMENT q (k|m)+> m

c

a

f o

nk m

b

e f g h

mk n

d

p

m

e

k

q

k

Figure 2: Sample DTD (left) and its graph representation (right).

Example 2.1 Figure 2 shows a sample DTD, compatible with the XML document of Ex-
ample 1.1 (we have replaced tag names by synthetic labels for conciseness), together with a
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8 Chand & Felber

graph representation of the hierarchical organization of element types. Note that the graph
is actually a tree because the DTD is not recursive; edge directions have hence been omitted.
The root element type is “a”, which has three optional children: “b”, “c”, and “d”. Element
“b” has at least one child “e”, an optional child “f”, and an optional child whose type is
either “g” or “h”. Element “c” has a non-empty set of children of type “f” or “o”. Element
“d” has at least one child “e”, as well as an optional child whose type is either “p” or “q”.
Elements “e” and “q” have a non-empty set of children of type “k” or “m”. Element “h”
has either a non-empty set of children of type “k” or “m”, or an optional set of children of
type “n”. Element “o” has an optional set of children of type “n”. The remaining elements
are of string type. �

2.2 Problem Statement

We can now state the tree pattern similarity problem that we address in this paper as
follows. Consider two tree pattern subscriptions p and q. Let S be the universe of all
possible subscriptions. We define the similarity between p and q, denoted by (p ∼ q), as a
function of S2 7→ [0, 1] that returns the probability that an XML document T matching p

also matches q. We define the proximity between p and q, denoted by (p ≈ q), as (p∼q)+(q∼p)
2 .

Note that the proximity relation is symmetric while similarity is not. It directly follows from
these definitions that p ⊑ q ⇒ (p ∼ q) = 1 and p ≡ q ⇒ (p ≈ q) = 1.

Given a tree pattern p and a set of tree pattern subscriptions S, we want to find q ∈ S
such that:

∀q′ ∈ S, q′ 6= q : (p ≈ q) ≥ (p ≈ q′)

Obviously, the similarity and proximity relations are valid for a finite set of XML docu-
ments or, more generally, for all documents of a given type D.

3 Tree Pattern Expansions

In order to compute the similarity of two tree patterns p and q, we first determine the class
of XML documents that match p. This is achieved by building the so-called “expansion” of
p with respect to document type D. We then use this expansion to evaluate the probability
that the same type of documents match q.

Accurate evaluation of tree pattern similarity requires a good understanding of the XML
documents on which these patterns apply. Although we only need to know the structure of
valid documents, we can take advantage of additional knowledge about correlations between
the elements, as well as their frequency distribution. This information can be extracted from
DTDs and from historical data, maintained in the form of a compact synopsis and updated
as XML documents stream by.

INRIA



Evaluating Tree Pattern Similarity for Content-based Routing Systems 9

3.1 Extracting Correlations from DTDs

In addition to the structure of valid XML documents, DTDs allow us to derive two types of
correlations between elements:

1. Constraints on the cardinality of single elements, expressed using regular expression
operators: “?” for zero or one, “*” for zero or more, “+” for one or more, no operator
for exactly one.

2. Constraints expressed as choices in groups of elements, expressed using the “|” dis-
junction operator: (a|b) means that element a or b may appear, but not both.

We say that two elements a and b are in opposition when only one of them may appear
in a given context, as in (a|b). By extension, we say that an element is in opposition with
itself if it may appear at most once, as in (a) or (a?).1

We use the following rules and simplifying assumptions when parsing a DTD to analyze
element correlations:

(a?) or (a) imply that element a is in opposition with itself.

(a#)& is always equivalent to a∗, where # and & are two different regular expression
operators. For example, (a+)? is equivalent to a∗. Thus, element a is not in opposition
with itself.

(a|b)∗ is equivalent to (a∗, b∗) except for the ordering. Elements a and b are not in
opposition.

(a|b)? is equivalent to (a?|b?). Elements a and b are in opposition.

(a|b)+ is not equivalent to (a + |b+) nor to (a+, b+). Elements a and b are not in
opposition.

(a|b) is a regular disjunction and elements a and b are in opposition.

The rules exposed above trivially extend to more than two elements and to compound
elements. Note that the opposition relation is symmetric and transitive.

Example 3.1 The DTD of Figure 2 allows us to derive the following constraints: Under
element “a”, every element (“b”, “c”, and “d”) is in opposition with itself. Under element
“b”, “f” is in opposition with itself while “g” and “h” are in opposition with each other.
Under element “d”, “e” is in opposition with itself while “p” and “q” are in opposition with
each other.

We can also observe that elements “b”, “c”, “d”, “g”, “h”, “p”, and “q” cannot appear
more than once in an XML document. Only element “a” is mandatory. �

1To better understand this definition, note that (a) is equivalent to (a|a) and (a?) is equivalent to (a|a|ǫ).

RR n 5891



10 Chand & Felber

3.2 Extracting Distribution from History

The frequency distribution of elements is useful to increase the accuracy of our similarity
metric, as it allows to estimate the probability that a given element will appear in a fu-
ture XML document. DTDs do not include frequency information and, without additional
information, we assume that every valid element appears equally often in a given context
(uniformity assumption).

Remember that we are interested in computing the similarity between tree patterns
for routing XML documents. We can therefore presuppose that we have access to some
historical data about documents that we have seen in the past. Assuming that historical
documents are representative of the complete collection of XML documents, we can use this
information to accurately estimate the distribution of future documents. It is, obviously,
infeasible to maintain the complete history H of XML documents. Therefore, we maintain
a concise document synopsis of H on-line, as documents are streaming by, and we use this
synopsis as an approximation of the distribution.
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Skeleton of T1 Skeleton of T3 Document synopsis of T1, . . . , T6

Figure 3: Example XML documents (top) and the corresponding skeleton trees and docu-
ment synopsis (bottom).

Our synopsis is similar to the document tree synopsis proposed in [7], but includes
additional information for deriving constraints (cardinality and correlations). The synopsis
for H, denoted by HS , captures path statistics for documents in H and is built incrementally.
The document synopsis has essentially the same structure as an XML tree, except for two
differences. First, the root node of HS has the special label “/.”. Second, each non-root node
t in HS has a additional information associated with it: a frequency, denoted by freq(t); a
cardinality, denoted by card(t); and a list of conflict groups, denoted by Conf(t).
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Evaluating Tree Pattern Similarity for Content-based Routing Systems 11

Intuitively, if “l1/l2/ · · · /ln” is the sequence of labels on nodes along the path from the
root to t (excluding the label for the root), then freq(t) represents the number of documents
in H that contain a path “l1/l2/ · · · /ln” originating at the root. The frequency for the root
node of HS is set to |H|, the number of documents in H. Note that the frequency of a
node is always smaller or equal to that of its parent. The cardinality card(t) represents the
number of instances of t that have been observed under its parent element in the documents
of H: we have always seen zero or one occurrence if card(t) = “?”; zero or more occurrences
if card(t) = “*”; one or more occurrences if card(t) = “+”; exactly one occurrence if
card(t) = ǫ (no cardinality). Finally, conflict groups Conf(t) specify sets of children, if any,
that have never been observed together under the same parent element.

HS is incrementally maintained as XML documents stream by. For each document T , we
first construct a skeleton tree Ts in which each node has at most one child with a given label.
Ts is built from T by traversing nodes in a top-down fashion and coalescing a set of children
of a node in T if they have the same label. The nodes in Ts also have an optional cardinality
defined as follows: when children of a non-coalesced node are coalesced, the resulting node
has cardinality “+”; children of a coalesced node have cardinality “?” if they appear once
under some of the original nodes and not under the others, “*” if they appear more than
once under some of the original nodes and not under some of the others, “+” if they appear
more than once under some of the original nodes and at least once under the others, and no
cardinality if they appear once under each of the original nodes. Clearly, we can construct
Ts in a single pass over document T .

Next, we use Ts to update our document synopsis HS . For each path in Ts ending with
node t, let t′ be the last node on the corresponding unique path in HS (we add missing
nodes if the path does not yet exist in HS). We first increment freq(t′) by 1. We then
update card(t′) as follows (x and y correspond to either combinations of t and t′):

card(t′) =







card(t) if t′ has just been added to HS

or card(t) = card(t′)
+ if card(x) = + and card(y) = ǫ,
? if card(x) = ? and card(y) = ǫ,
∗ otherwise

Finally, we update conflict groups Conf(t′) using the following rules: for any child c of t
that does not appear under t′, and for any child c′ of t′ that does not appear under t, we
add (c, c′) to Conf(t′); for any two children c and c′ of t, we remove (c, c′) from Conf(t′) if
it exists. Note that, in practice, most of the conflict groups are empty or small, and their
size tends to decrease as H grows.

We shall mention that it is possible to further compress HS as proposed in [13, 7] by
merging nodes with the lowest frequencies and storing, with each merged node, the average
of the original frequencies.

Example 3.2 Figure 3 shows several XML documents T1, . . . , T6 compliant with the DTD
of Figure 2, the skeleton trees of T1 and T3, and the resulting document synopsis. We can
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12 Chand & Felber

observe how the cardinality constraints (represented by an optional cardinality symbol next
to the labels) appear when coalescing nodes in the skeleton trees: for instance, element “e”
appears multiple times under “b” and element m is optional under “e” in T1; element “n”
appears zero or more times under “o” in T3. Obviously, cardinality information is just an
approximation based on observation and may differ from the actual constraints expressed in
the DTD.

The document synopsis contains information about cardinality, frequencies, and conflicts
(respectively represented by an optional cardinality symbol, a number prefixed by “#”, and
an optional list of sets of conflicting children). The frequency of a path from the root to
node t is given by freq(t), and the probability that such a path is encountered in an XML

document is given by freq(t)
|H| . For instance, the probability of an occurrence of path “/a/b/h”

is 1
6 (it only appears in one of the 6 documents); we can also observe that elements “b” and

“d” are more frequent than “c”. The probability that an XML document matches a tree
pattern with more than one branch, or with “*” and “//” nodes, will be discussed later.

The cardinality and conflict information associated with the nodes of HS are an approx-
imation of the constraints expressed in the DTD and are expected to become more accurate
when the size of H grows. For instance, the synopsis fails to identify the cardinality of the
children of element “q” (only T4 contains “q”) and incorrectly reports a conflict between
element “b” and “d” (they never appear together in the original documents). �

3.3 Constructing Tree Pattern Expansions

Using the information derived from DTDs and/or document histories, we can now construct
the so-called expansion of a tree pattern. Informally, a tree pattern expansion is a data
structure that represents the constraints on the documents that match the tree pattern.
This structure allows us to model the class of documents that a tree pattern specifies and to
accurately determine the similarity with other tree patterns (recall that, by definition, two
patterns are similar if the same documents match both).

The expansion Ep of a tree pattern p is a tree where each node n has the following
attributes:

a label label(n), which is a valid element name, i.e., not “*” or “//”;

a probability 0 < prob(n) ≤ 1;

a class class(n) ∈ N;

a set of predicates Pred(n) on the value associated with n, if any;

a list Conf(n) of conflict groups composed of nodes among the children of n.

Ep has an artificial root node root(Ep) with label “/.”. Roughly speaking, Ep is a
compact representation of (some of) the possible documents that match tree pattern p. The
label of a node n in Ep refers to the name of an element in a document that matches p.

INRIA



Evaluating Tree Pattern Similarity for Content-based Routing Systems 13

Its probability refers to the likeliness that an element with name label(n) that verifies the
predicates of n occurs, given that all ancestor nodes have occurred. Its class identifies the
node in p that it refers to: two nodes in Ep with the same parent and the same class do not
occur at the same time (at least, this is not explicitly specified by p). The list of conflict
groups determine the children of n that are in opposition according to the DTD or HS . Each
conflict group contains a set of children that are in opposition with each other. Finally, the
predicates describe constraints on the element’s values or attributes.

The computation of the node probabilities is based on HS , if available; otherwise, we
assume a uniform distribution of element types among those allowed by the DTD.

n
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Figure 4: Sample tree pattern subscription (left) and its expansion with respect to DTD of
Figure 2 (right).

Example 3.3 Figure 4 shows a tree pattern subscription p, compliant with the DTD of
Figure 2, and its expansion Ep. The expansion was built without the help of a synopsis HS

and probabilities are thus uniform.
Elements “b” and “d” are the two possible occurrences under “a” of the first “*” in p

(element “c” is not a valid occurrence because it does not have a descendant labeled “k”
in the DTD). Under our uniformity assumption, both nodes have an equal probability of
occurring (0.5). They refer to the same node in p and thus have the same class. In contrast,
element “c” in Ep has a different class as it refers to a different node in p.

Elements “f” and “g” are the two possible occurrences under “b” of the second “*” in p,
with probability 0.5, while elements “e” and “h” are the two possible occurrences of node “//”
in p, also with probability 0.5. Hence, path “/a/b/e” has probability 0.25 (= 1 × 0.5 × 0.5)
of occurring in a document that matches p. Conflict groups at node “b” in Ep specify that
children “g” and “h” cannot appear simultaneously in the same document. Finally, element
“p” is the only possible occurrence (probability 1) under “d” of the second “*” in p. As
elements “p” and “q” are in opposition under “d”, element “e” becomes the only possible
occurrence under “d” of node “//” in p. �
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14 Chand & Felber

We can now describe formally the expand function, shown in Algorithm 1, which builds
the expansion Ep of a subscription p. The expand function works recursively on the nodes
of p. It takes as input a node u of p and a node n of Ep, such that the path with element
names root(Ep) → n is a possible occurrence of root(p) → parent(u). A call to expand(u, n)
determines the possible trees that start with root(Ep) → n and are possible occurrences of
the pattern {root(p) → u} ∪ Subtree(u, p).

Algorithm 1 Recursive expand function: expand(u, n)
1: if depth(n) ≥ ∆ or prob(root(Ep)→ n) ≤ τ then

2: return true {Avoid infinite recursion}
3: end if

4: matches = 0 {Number of branches matching u}
5: class-id = #classes(n) {New class number (> any child of n)}
6: if u 6= // and u 6= ∗ then

7: if u is a valid child of n then

8: create child node nc of n
9: label(nc)← label(u)

10: Pred(nc)← Pred(u)
11: prob(nc)← 1 {Node must match}
12: class(nc)← class-id
13: if u is leaf or

V

ui∈Children(u) expand(ui, nc) = true then

14: matches← 1 {Branch matches tree pattern}
15: else

16: delete Subtree(nc, Ep) {No match: delete new subtree}
17: end if

18: end if

19: else if u = ∗ then

20: for all valid child ni of n do

21: create child node nc of n
22: label(nc)← label(ni)
23: Pred(nc)← Pred(u)
24: class(nc)← class-id
25: adjust prob(nc) {Node matches with some probability}
26: if u is leaf or

V

ui∈Children(u) expand(ui, nc) = true then

27: matches← matches + 1 {Branch matches tree pattern}
28: else

29: delete Subtree(nc, Ep) {No match: delete new subtree}
30: end if

31: end for

32: else if u = // then

33: if expand(child(u), n) = true then {Node u has exactly one child}
34: matches← 1 {// matches empty path}
35: end if

36: for all valid child ni of n do

37: create child node nc of n
38: label(nc)← label(ni)
39: class(nc)← class-id
40: adjust prob(nc) {Node matches with some probability}
41: if expand(u, nc) = true then

42: matches← matches + 1 {// matches path of length ≥ 1}
43: else

44: delete Subtree(nc, Ep) {No match: delete new subtree}
45: end if

46: end for

47: end if

48: return matches > 0 {true ⇔ branch matches tree pattern}
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The function returns true if it has managed to find a valid expansion of u rooted at n,
and false otherwise. One can note that, if a tree pattern p contains one or more ancestor
operator (“//”) and the DTD is recursive, then Ep can be infinite; in that case, we truncate
the expansion to a predefined depth ∆ or to a minimum leaf probability2 τ (lines 1–3).

Now, we have to find all children nc of n such that root(Ep) → nc is a possible occurrence
of root(p) → u. It follows from the definition of Ep that, if label(u) 6= “*” and label(u) 6=
“//”, then a single node nc is built in Ep and appended as child of n (lines 6–18). It has label
label(u), the same predicates as u, and probability 1: indeed, node nc is the only possible
occurrence of node u. Its class is such that no other child of n has the same class.3 We then
proceed recursively with each child ui of u to find the possible occurrences of root(p) → ui.
If some ui could not be expanded, then there exists no valid document that starts with
root(Ep) → nc and match the pattern {root(p) → u} ∪ Subtree(u, p); therefore, we delete
the newly inserted node.

If label(u) = “*”, then a set of nodes N = {ni ∈ children(n)} of the same class is
appended as n’s children (lines 19–31). Each node ni corresponds to a possible occurrence
of node u that can be recursively expanded (as before, ni is deleted if expansion does not
succeed). The set of valid children is determined using the DTD, if available, or the synopsis
HS otherwise. The probability associated to ni is computed as follows: if we have a synopsis,
then the probabilities are adjusted to match the distribution of HS ; otherwise, each ni has
equal probability 1

|N | . Probabilities are always adjusted so that the sum of the probabilities

of siblings of the same class is equal to 1.
Finally, if label(u) = “//”, then we first try to map u with an empty path by recursively

calling expand on the child of u (by definition, element “//” must have exactly one child)
and n. Then, we try to map u with a non-empty path by recursively calling expand on
u and the children of n; this allows us to map u to arbitrarily long paths (lines 32–47).
Probabilities and classes are set as in the previous case.

Conflict groups have been omitted from the algorithm for clarity. They are added to a
node n after all the children of n have been expanded (post-order traversal). Information
about children of n that are in opposition is copied from the DTD, if available, or from
synopsis HS otherwise, to Conf(n). Note that the construction of conflict groups may
result in some subtrees being deleted: if node ni ∈ Children(n) with prob(ni) = 1 and
belongs to a conflict group, then the subtrees rooted at the other nodes nj of the same
conflict group must be deleted (ni must occur and, hence, nj cannot occur). If two nodes ni

and nj with probability 1 appear in the same conflict group, then the whole subtree rooted
at the lowest common ancestor of ni and nj that has a probability smaller than 1 is invalid
and must be deleted.

2The function prob(r → n) returns the probability of path r → n to occur in an XML document,
computed as the product of the probabilities of all the nodes on the path from r to n.

3The function #classes(n) returns the number of distinct classes among the children of n. As classes are
numbered from 0, we can use #classes(n) as the next class identifier to associate with new children of n.
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4 Computing Tree Pattern Similarity
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Figure 5: Example tree pattern subscriptions.

4.1 General Principle

The similarity function p ∼ q works recursively on the nodes of q and the nodes of p’s
expansion, Ep. Recall that p ∼ q returns the probability that a document matching p also
matches q, and is not symmetric.

Consider a document T that matches p: we want to evaluate the probability that it also
matches q. The idea is to use p’s expansion instead of p. Indeed, Ep represents all the
possible structures and content predicates that a document matching p is expected to have,
together with their associated probabilities. Hence, the principle is to find paths in Ep that
are equivalent to, or contained in, paths of q (we say that the paths in Ep match those in
q).

If the whole tree pattern q has matching paths in Ep, then p ⊑ q and p ∼ q = 1.
When there are several possible paths in Ep to chose from, we choose the one with the
highest probability. The conjunction of different paths in q is computed as the product of
the probabilities of their respective occurrences in Ep.

We first look for the longest paths in q that have a matching path in Ep. If Ep matches
only the initial portion of a path in q, the remaining part may still occur in an XML
document and we estimate the probability of the missing portion using heuristics.

We then compute the probability of the conjunction of individual paths. To distinct paths
of q must correspond distinct paths in Ep. By construction of the subscription expansion,
this implies that the nodes of two matching paths in Ep that have the same parent must
belong to different classes. If that is not the case, we say that there is a collision (a single
path of Ep matches two distinct paths of q). Intuitively, collisions decrease the similarity
between p and q, although they do not prevent a document from matching both p and q.
Therefore, we associate a penalty γ ≪ 1 with each collision when computing similarity.

INRIA



Evaluating Tree Pattern Similarity for Content-based Routing Systems 17

Example 4.1 Consider tree patterns p1, . . . , p9 in Figure 5 and p in Figure 4. The simi-
larity between every pair of tree patterns p ∼ pi is computed as follows:

p ∼ p1 = 0.25 (= 1 × 0.5 × 0.5 × 1 × 1). Indeed, “/a/b/e/k” is the only path in Ep that
matches p1 (note that string predicate “z” matches “z*”). Hence, the similarity between p1

and p is computed as the probability of path “/a/b/e/k” in Ep.

p ∼ p2 = 0 (= 1× 0.5× 0.5× 1× 0). Although path “/a/b/e/k” in Ep matches p2, the string
predicate associated with “k” does not match.

p ∼ p3 = 0.5 (= 1 × (1 × 0.5)). Paths “/a/c” and “/a/d” in p3 have matching paths in
Ep. As elements “c” and “d” belong to different classes, they can occur independently in
an XML document. The similarity is computed as the probability that both paths occur, i.e.,
the product of their respective probabilities.

p ∼ p4 = 0.75 (= 1× (0.5× 1 + 0.5× 0.5)). Path “/a/*/e” in p4 has two matching paths in
Ep: “/a/d/e” and “/a/b/e”. The similarity is computed as the sum of the probabilities of
each path.

p ∼ p5 = 0.25γ (= 1 × (0.5 × 0.5 × γ)), with 0 < γ ≪ 1. Paths “/a/b” and “/a/d” in p5

have matching paths in Ep, but they share the same “*” element in p (“b” and “d” belong
to the same class in Ep). Hence, we have a collision and the similarity is computed as the
product of the probabilities of each path combined with a penalty γ.

p ∼ p6 = 0.125 (= 1 × 0.5 × (0.5 × 0.5)). Path “/a/b” occurs with probability 0.5 in Ep.
Elements “f” and “h” belong to different classes and can occur independently. Hence, the
similarity is computed as the product of individual probabilities.

p ∼ p7 = 0 (= 1 × 0.5 × 0). Path “/a/b” occurs with probability 0.5 in Ep, but elements
“g” and “h” cannot occur simultaneously, as indicated by the conflict groups of node “b” in
Ep. Therefore, similarity is null (note that p7 is not a valid expression with respect to the
DTD).

p ∼ p8 = 0.25 (= 1 × 0.5 × (0.5 × (0.5 × 1 + 0.5 × 1))). Path “/a/b” occurs with probability
0.5 in Ep, and element “f” with probability 0.5. Path “*/k” in p has two matching paths
in Ep (“e/k” and “h/k”, with “e” and “h” belonging to the same class); thus, we add their
probabilities.

p ∼ p9 = 0.125 (= 1 × 0.5 × (0.5 × 0.5)). This case is similar to p ∼ p8, except that nodes
“g” and “h” are in opposition. Consequently, only element “e” in Ep can match the “*”
in p9. This example illustrate the importance of conflict groups for improving accuracy: we
would have otherwise computed the same similarity as for p ∼ p8.

�
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Figure 6: Illustration of the computation of q ∼ p on subtrees of the tree pattern expansion
Ep (left) and the tree pattern q (right). We have indicated between each node nj the set of
matching nodes ui (for instance, n3 matches u1 and u2).

4.2 Similarity Function

We can now describe formally the similarity function. We compute p ∼ q using the recursive
function sim(n, U), where n is a node of Ep and U = {u1, . . . , un} is a set of node in q.
Although the number of situations that we have to deal with is rather large (combinations
of classes, conflict, collisions, etc.), in practice very few apply at a time when comparing two
tree patterns and the similarity function can be implemented very efficiently.

The principle of the computation is simple, but it requires to introduce some additional
notation. Let N = {n1, . . . , nm} be the children of n and C = {c1, . . . , cl} be the set of classes
among N . We define Nodes�ui

cj
as the set of nodes in class cj that match ui; Classes�ui as

the set of classes containing at least one node matching ui; a match combination Pk as an
n-tuple of non-empty Nodes�ui

cj
, where cj is the matching class for node ui corresponding

to combination Pk (the set of all such cj is denoted by ClassesPk); and P is the set of all
valid match combinations.

Nodes�ui
cj

= {nk | class(nk) = cj ∧ nk � ui}

Classes�ui = {cj | Nodes�ui
cj

6= ∅}

Pk = (Nodes�ui
cj

)i=1,...,n

P = {Pk}

Example 4.2 Consider the example of Figure 6. We have, for instance:
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Nodes�u1
c1

= {n3, n4, n5}

Nodes�u3
c2

= {n6, n7, n8}

Classes�u1 = {c1}

Classes�u3 = {c1, c2}

P1 = ({n3, n4, n5}
︸ ︷︷ ︸

�u1

, {n2, n3, n4}
︸ ︷︷ ︸

�u2

, {n1, n2}
︸ ︷︷ ︸

�u3

)

P2 = ({n3, n4, n5}, {n2, n3, n4}, {n6, n7, n8})

P = {P1, P2}

�

Intuitively, each match combination corresponds to a mapping where each node in q
has some matching nodes in a given class in p. Note that each ui must have at least one
class with some matching nodes; if that is not the case, we estimate the probability of the
occurrence of Subtree(ui, q) using heuristics. Also, each match combination is redundant
with the others, in the sense that the occurrence of one combination does not change the
likelihood of the others.

We now formalize the collisions that occur between the nodes of a class. Let AP
cj

=
{Ak} be a partition of U , of minimal cardinality, where Ak is a set of nodes {ui} with a
matching node in class cj and such that the intersections Nodes∩Ak

cj
= ∩ui∈Ak

Nodes�ui
cj

of the matching nodes for each set Ak ∈ AP
cj

are non-empty, disjoint sets. The reasoning
behind the partitioning is that collisions happen when the matching nodes for some ui do not
intersect with the matching nodes for another uj . Hence, |A| has to be as small as possible
in order to minimize the number of collisions. When several nodes ni are in opposition
with each other, we compute the similarity using each of the nodes in turn and keep the
maximum value.

Example 4.3 Consider again Figure 6. One partition for P1 of Example 4.2 is AP1
c1

=
{{u1, u2}, {u3}}. Indeed, Nodes�u1

c1
∩ Nodes�u2

c1
= {n3, n4, n5} ∩ {n2, n3, n4} = {n3, n4}

and Nodes�u3
c1

= {n1, n2} are non-empty disjoint sets. Another possible partition is A′P1

c1
=

{{u1}, {u2, u3}}. For combination P2, we have only one valid partition AP2
c1

= {{u1, u2}}.
�

The similarity function sim(n, U) can then be defined as:
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sim(n, U) = max
P∈P
︸︷︷︸

redundant
combinations

(
∏

cj∈ClassesP

︸ ︷︷ ︸
conjunctions of
patterns in q

γ|A|−1
∏

Ak∈A
︸ ︷︷ ︸

conflicts

∑

ni∈Nodes
∩Ak
cj

︸ ︷︷ ︸
disjunctions of
patterns in p

prob(ni) · f(ni, Ak)

)

The function f(n, A) returns the probability that a document matching Subtree(n, p)
also matches n →

⋃

ui∈A

⋃

vj∈Children(ui)
Subtree(vj , p). It is defined recursively as follows:

f(n, A) =

{
1 , if ∀ui ∈ A,Children(ui) = ∅
sim(n,

⋃

ui∈A

⋃

vj∈Children(ui)
vj) , otherwise

When A contains some node(s) ui with label “//”, we try to map it to an empty path and
to a node with any label, and we keep the maximum value.

The similarity between tree patterns p and q is computed as sim(root(Ep), {root(q)}).

Example 4.4 We can now compute sim(n, u1, u2, u3) for the example of Figure 6. We have
two valid match combinations P1 and P2. Considering partitions AP1

c1
and AP2

c1
, we have:

sim(n, u1, u2, u3) = max(simP1
, simP2

)
simP1

= γ ·
(
prob(n3) · f(n3, {u1, u2}) + prob(n4) · f(n4, {u1, u2}

)
·

(
prob(n1) · f(n3, {u3}) + prob(n2) · f(n2, {u3}

)

simP2
=

(
prob(n3) · f(n3, {u1, u2}) + prob(n4) · f(n4, {u1, u2}

)
·

(
prob(n6) · f(n6, {u3}) + prob(n7) · f(n7, {u3}) + prob(n8) · f(n8, {u3}

)

�

The worst case complexity of the similarity function is rather high and directly depends
on the number of classes in Ep, the branching factor in q, and the number of “//” and “*”
nodes in p and q. In most cases, however, the computation is simply a product of sums and
can be performed very efficiently (typically less than 1 ms, as will be discussed shortly).

5 Evaluation

We now present the simulations that we conducted to test the behavior and the efficiency
of our similarity metric for XML documents and XPath expressions.
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5.1 Parameters of the Experiments

The tree patterns considered in this paper can be expressed using a subset of the standard
XPath language. We have generated realistic subscription workloads using a custom XPath
generator that takes a Document Type Descriptor (DTD) as input and creates a set of valid
XPath expressions based on several parameters that control: the maximum height h of the
tree patterns; the probabilities p∗ and p// of having a wildcard (*) and descendant (//)
operators at a node of a tree pattern; the probability pλ of having more than one child at
a given node; and the skew θ of the Zipf distribution used for selecting element tag names.
For our experiments, we have generated sets of distinct tree patterns of various sizes, with
h = 10, p∗ = 0.1, p// = 0.1, pλ = 0.1, and θ = 1.

We have experimented with two different DTDs: NITF (News Industry Text Format) and
xCBL (Common Business Library) Order, which contain 123 and 569 elements, respectively.
For each DTD, we have generated sets of random XPath expressions of various sizes n =
1, 000 → 10, 000, which we call search set and denote by S = {p1, · · · , pn}.

We have generated our data set of XML documents with IBM’s XML Generator [14]
tool, using a uniform distribution for selecting element tag names. The data set, which we
denote by D, consists of 1, 000 random documents with 108 tag pairs on average and up to 10
levels. We have a generated a distinct set of 1, 000 documents with the same characteristics
to construct the synopsis HS .

We have experimented with four different variants of our proximity metric:

DTD: we use the DTD, but do not exploit conflicts between elements; we do not use
a synopsis of past documents.

Synopsis: we do not use the DTD and do not exploit conflicts; we use a synopsis of
past documents.

DTD+CG: we use the DTD and exploit conflicts between elements; we do not use a
synopsis of past documents.

DTD+CG+Synopsis: we use the DTD and exploit conflicts between elements; we
use a synopsis of past documents.

5.2 Experimental Setup

Given a tree pattern p and a set of tree pattern subscriptions S, we denote by p’s first
substitute the tree pattern q ∈ S such that:

∀q′ ∈ S, q′ 6= q : (p ≈ q) ≥ (p ≈ q′)

By extension, p’s kth substitute is the tree pattern ranked at position k from p in terms
of proximity.

For each XML document T , we determine the tree patterns in S that it matches. For
each tree pattern p ∈ S, we define Matches(p) = {T ∈ D | T matches p}. We can now

RR n 5891



22 Chand & Felber

define the false positive and false negative ratios resulting from the substitution of p by q
as:

FP (p → q) =
|Matches(q) \ Matches(p)|

|Matches(p)|

FN(p → q) =
|Matches(p) \ Matches(q)|

|Matches(p)|

where Matches(p) = D \ Matches(p) is the set of documents in D that do not match
p. In other words, FP (p → q) is the portion of documents that match q and not p, out of
the set of documents that do not match p. FN(p → q) is the portion of documents that
match p and not q out of the set of documents that match p. Intuitively, suppose that
we substitute p by q to filter the documents in D. Then, FP (p → q) is the percentage
of irrelevant documents that would be wrongly identified as matches, while FN(p → q) is
the percentage of relevant documents that would fail to be identified as matches. These
concepts are graphically illustrated in Figure 7. Note that, if q ⊑ p, then FP (p → q) = 0
and FN(q → p) = 0.

matches(p)

FNs

FPs

m
at

ch
es

(q
)

Figure 7: Quantifying false positives and false negatives.

Finally, we define the filtering error, i.e., the precision loss resulting from filtering docu-
ments against q instead of q, as:

FE(p → q) =
FP (p → q) + FN(p → q)

2

5.3 Results

For each DTD, each size of search set, and each variant of the proximity metric, we have
computed the average filtering error of the kth substitute as previously explained. Figure 8
shows the average filtering error of the first substitute as a function of the size of the search
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Figure 8: Average filtering error of first substitute for the NITF (top) and xCBL Order
(bottom) DTDs.

set. One can notice that, on average, the best substitute found by the proximity metric for
a tree pattern is very accurate. The average filtering error decreases with the size of the
search set because we have more candidates to choose from. In particular, the xCBL Order
DTD produces unsatisfactory results for small search sets because it includes a large number
of elements; hence, many tree patterns are required to find good first substitutes.

Unsurprisingly, the accuracy of our proximity metric improves significantly when we use
more information for computing subscription expansions and evaluating similarity. The best
accuracy is achieved by combining the DTD, conflict groups, and the synopsis. When the
DTD is not known, the average filtering error remains high. Indeed, the synopsis does not
contain all the possible structures of XML documents (we would need a far larger set of
XML documents to build an accurate synopsis). This phenomenon is more acute with the
xCBL Order DTD due to its higher diversity.

Figure 9 shows the average filtering error of the kth substitute as a function of its rank
k for a search set of 10, 000 tree patterns when using the DTD, correlation groups, and
the synopsis. We observe that the average filtering error of the kth substitute increases
consistently with k, which means that our proximity metric is indeed able to find the best
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Figure 9: Average filtering error of kth substitute for the NITF (top) and xCBL Order
(bottom) DTDs.

substitutes, in the correct order. The only singularity appears for the xCBL Order DTD
with the 13th substitute, which has a slightly lower filtering error than the 12th substitute.
Again, this is probably due to the large number of elements in the DTD that decrease
accuracy, but the difference between the filtering errors of both substitutes is so small that
this imprecision remains insignificant.

An evaluation of the routing accuracy of our peer-to-peer publish/subscribe system,
configured to use the (symmetric) proximity metric described in this paper for creating
semantic communities, is given in [15]. Results demonstrate that the proximity metric
based on tree pattern similarity enables us to build a well balanced and robust network
topology that succeeds in delivering documents to almost all interested consumers with only
a relatively small fraction of false positives.

In term of processing efficiency, we measured an average time of approximately 700 ms
for finding the best substitute among 1, 000 tree patterns using the most complex variant
of our proximity metric (DTD+CG+Synopsis), i.e., 0.7 ms per tree pattern. We observed
a linear slowdown for larger populations. The algorithms were implemented in C++ and
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compiled using GNU C++ version 2.96. Experiments were conducted on a 1.5 GHz Intel
Pentium IV machine with 512 MB of main memory running Linux 2.4.18.

6 Related Work

The similarity between data trees has been extensively studied as a technique for linking
data items in different databases that correspond to the same real world objects. The
most widely approach consists in computing the “edit distance” between two trees, i.e., the
minimum cost sequence of edit operations (node insertion, node deletion, and label change)
that transform one tree into the other (e.g., [16, 17, 18]). In contrast, we study the similarity
of XML query trees, where similarity is not defined in terms of structural resemblance, but
according to the set of document that match these queries. To the best of our knowledge,
our work is the first to study this problem.

Query transformations have been proposed in the context of approximate matching.
The idea is to rewrite queries for faster evaluation or to take into account the variability
among XML data conforming to the same schema (e.g., [19, 20, 21, 22]). Some forms of tree
patterns have also been studied as queries for XML data [9, 23]. In particular, minimization
algorithms for these patterns have been developed in order to optimize pattern queries.
These problems differ significantly from ours and the techniques proposed to address them
have little relevance here.

Our work builds upon some of the results of earlier research on tree pattern aggrega-
tion [7], where the objective is to combine several patterns into one smaller, but less precise,
aggregate pattern. A document synopsis is used to compute the selectivity of tree patterns
and choose the aggregate pattern that results in the minimal loss in selectivity. This work
does not specifically address the problem of tree pattern similarity and does not take into
account document types, as we did extensively here.

7 Conclusion

We have studied the problem of tree pattern similarity, an important concept for building
scalable XML distribution networks. We have proposed algorithms for accurately evaluat-
ing the similarity between tree patterns by taking into account information derived from
document types and histories, such as cardinalities, conflicts, and frequency distributions.
The principle of similarity computation is based on the notion of tree pattern expansion, a
data structure that faithfully represents the class of XML documents that match a given
tree pattern. Using the expansion, we can precisely determine whether the same XML docu-
ments match another tree pattern, and hence quantify the similarity between both patterns.
Results from experimental evaluation demonstrate that our similarity metric is very accu-
rate and consistent. Although the algorithms presented in this paper have been designed
for creating semantic communities in peer-to-peer content-based routing systems, they are
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of interest in their own right and can prove useful in other domains, such as approximate
XML queries.
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Unité de recherche INRIA Rĥone-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)
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