
HAL Id: inria-00071384
https://hal.inria.fr/inria-00071384

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Load balancing and CFD Simulations on the
MecaGRID and GRID5000

Stephen Wornom

To cite this version:
Stephen Wornom. Dynamic Load balancing and CFD Simulations on the MecaGRID and GRID5000.
[Research Report] RR-5884, INRIA. 2006. �inria-00071384�

https://hal.inria.fr/inria-00071384
https://hal.archives-ouvertes.fr

IS
S

N
 0

2
4
9
-6

3
9
9

app or t

de r e cher c he

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Dynamic Load balancing and CFD Simulations
on the MecaGRID and GRID5000

Stephen Wornom

N° 5884

April 10, 2006

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Dynamic Load balancing and CFD Simulations

on the MecaGRID and GRID5000

Stephen Wornom∗

Thème NUM — Systèmes numériques
Projet SMASH

Rapport de recherche n° 5884 — April 10, 2006 — 27 pages

Abstract: CFD simulations on Clusters and GRIDS having mixed processor speeds
present several challenges to achieve efficient load balancing. If both the fast and slow
processors are given the same amount of work, the faster processors will finish their compu-
tations first and wait for the slower processors to finish. To achieve load balancing more work
must be given to the faster processors so that all the processors finish their computations at
the same time (work is proportional to the processor mesh size). Another complication is
that for current Clusters and GRIDS in the near future, the user will not know in advance
the mixture of fast and slow processors that will be assigned to their computation, thus the
user cannot partition the mesh in advance of the CFD simulation. This difficulty is doubly
complicated as the mesh partitioning step is usually performed on a workstation thus not
directly linked to the parallel CFD code. For mesh partitioners executing on parallel com-
puters, the complication arises in that the mesh partitioning code and the CFD code are
separate MPI codes designed to be run independently of each other. As a result the two
codes cannot simply be run back-to-back as each code may be assigned different mixtures
of fast and slow processors resulting in a partitioned mesh not optimal for the CFD run.

In this study, in order to overcome the problems related to computing with arbitrary
mixtures of fast and slow processors, the mesh generator has been integrated into the CFD
code. Thus optimal size partitions are automatically created for different mixtures of fast and
slow processors. The efficiency of this approach is demonstrated for Clusters, the MecaGRID
and the GRID5000. Validation tests using the GRID5000, the MecaGRID, and the INRIA
nina-pf cluster produced speedups on the order of 1.32 to 1.52 relative to the same run using
the homogeneous partitioning which compares well with the theoretical speedup of 1.5.

Finally, we use the dynamic computing capability of the new CFD code to compute a
20 million vertices mesh using 256 processors at five different GRID5000 sites.

∗ INRIA, 2004 Route des Lucioles, BP. 93, 06902 Sophia-Antipolis, France

2 Wornom

Key-words: Computational fluid dynamics, GRID Computing, MecaGRID, GRID5000,
F90, MPI, dynamic mesh creation and partitioning

INRIA

Equilibrage de charge sur Clusters et GRILLES de

calcul avec différents vitesse de processeurs

Résumé : On s’intéresse à l’équilibrage de charge des simulations numériques
en Mécanique des Fluides Numérique sur Clusters et Grilles de calcul com-
portant des processeurs de vitesses différentes. Pour réaliser cet équilibrage,
il est nécessaire d’attribuer entre deux synchronisations/communications plus
de calculs aux processeurs plus rapides qu’aux processeurs les plus lents, de
manière à ne pas perdre de temps en attentes. Une difficulté supplémentaire
réside dans l’impossibilité en pratique de savoir quel nombre de chaque type
de processeur sera attribué à la tâche au moment de son démarrage, inform-
ation dépendant de la charge instantanée du système. L’utilisateur est dans
ce cas dans l’impossibilité de préparer une partition adéquate avant le lance-
ment du calcul. Or en général les logiciels disponibles pour les deux étapes,
partitionnement, simulation proprement dite, sont distincts et à lancer sur le
système séparément. Dans ce cas ils ne tournent pas sur le même assortiment
de processeurs. Dans cette étude, générateur de maillage et partitionneurs
sont intégrés au solveur et seront donc lancés en une seule requète soumise
au Cluster. Un partitionnement adapté au jeu de processeurs attibué peut
donc être réalisé juste au moment du calcul. L’efficacité de cettte approche
est démontrée pour différentes configurations de grilles de calcul et de Clusters
fortement hétérogènes.

Mots-clés : Mécanique des fluides numérique, Grille de calcul, F90, MecaG-
RID, GRID5000

4 Wornom

1 Introduction

CFD simulations on Clusters and GRIDS using processors with different speeds
present several major challenges in order to achieve efficient load balancing.
We use the term cluster to denote a computer comprised of a collection of ho-
mogeneous processors and Cluster to refer to a computer comprised of several
clusters at the same institution administered by the same system adminis-
trator. For example, the INRIA Cluster in Sophia Antipolis is comprised of
two separate on-site clusters nina and pf. The term GRID refers to a Com-
putational Grid composed of clusters belonging to different institutions, each
having a different administator. An example is the MecaGRID Project Funded
by the French Ministry of Research1 comprised of clusters belonging to INRIA2

in Sophia Antipolis, the IUSTI3 in Marseille and the CEMEF4 in Sophia An-
tipolis. The GRID5000 is a Project funded by the French Ministry of INRIA,
and the CNRS5. The goal of the GRID5000 is to create a GRID containing
5000 processors. The GRID is currently comprised of clusters in Sophia An-
tipolis, Toulouse, Orsay, Rennes, Bordeaux, Grenoble, Lyon, Nancy and Lille
and involves 17 French research labs. The clusters forming a GRID are usually
separated by large physical distances thus communication times between the
different clusters of the GRID may be larger than those for Clusters.

The challenges that arise when simulations are assigned different types of
processors relate to the different processor hardware characteristics (speeds,
RAMs, and caches, ...etc). For example some processors may have 2 Ghz
speed6 with 1 GB of RAM and 512K cache while others have 1 Ghz with 1/2
GB of RAM with 256K cach with 256K cache. To achieve load balancing twice
as much work must be given to the faster processors so that both the fast and
slow processors finish their computations in approximately the same time. If
both the fast and slower processors are given the same amount of work, the
faster processors will finish their computations first and wait for the slower
processors to finish.

The goal of this study is to achieve efficient simulations using the MPI CFD
software, AERO3D, developed through a collaboration between the University

1http://www.recherche.gouv.fr/recherche/aci/grid.htm
2http://www.inria.fr
3Institut Universitaire des Systèmes Thermiques et Industriels
4Ecole des Mines de Paris à Sophia-Antipolis
5http://www.cnrs.fr
62 Ghz is an approximation to the actual value of 2.2 Ghz.

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 5

of Colorado at Boulder, the University of Montpellier, and INRIA Sophia
Antipolis - see Fezoui et al [6], Farhat and Lanteri [5], and Lanteri [8]. The
AERO3D software is intensively used, in particular by the universities of Mont-
pellier, Pisa and Pau in several CFD research studies (see for example Camarri
et al [3], El Omari et al [4], and Koobus and Farhat [7]).

The parallelization strategy in AERO3D uses mesh partitioning to subdi-
vide a global mesh into smaller partitions7; each partition being computed
by a different processor. The message-passing programming model of Fezoui
et al [6], Farhat and Lanteri [5], and Lanteri[8] using the Message Passing
Interface (MPI) communication library ensures software portability from one
parallel system to another. The mesh partitioning algorithms and the gener-
ation of the corresponding communication data structures are computed in a
PREPROCESSING step.

Mesh partitioners are often non-parallel codes executed on desktop comput-
ers. For the AERO3D code, the preferred mesh partitioners are METIS8 and
TopDomDec9, both non-parallel codes. Other mesh partitioners that execute
on parallel machines using MPI will be discuss later. The usual procedure is
to run the mesh partitioner first (PREPROCESSING) to create the partitions
to be used by the CFD run. This is followed by the execution of the CFD
software.

In general, when running on a Cluster (or future GRIDS), the user will not
know in advance the mixture of processors that will be assigned to the compu-
tation. This is currently true for the INRIA nina-pf cluster which has both 2
Ghz and 1 Ghz processors; the user requests the total number or processors to
be used and the job manager assigns the processors according to availability.
Thus, if a user requests 32 processors on the INRIA Cluster10, 32-nina and
0-pf, 24-nina and 8-pf, 8-nina and 24-pf, 0-nina and 32-pf ... etc. are various
possible allocations the user could receive. Note that for runs on the INRIA
Cluster, all the requested processors must be available before any processors
are assigned to the job. This is very efficient and the INRIA Cluster is an
excellent example of how the future generation of GRIDs will function.

7Also called subdomains or blocks
8http://www-users.cs.umn.edu/k̃arypis/metis/
9University of Colorado at Boulder

10The INRIA Cluster as of Janurary 13, 2006 has 64 processors, 32-nina and 32-pf

RR n° 5884

6 Wornom

As of the date of this report, this is not true neither for the MecaGRID or
the GRID500011 where the user specifies which clusters of the GRID are to be
used and the number of processors on each cluster.

In contrast to the INRIA Cluster, the MecaGRID assign processors on the
individual clusters as soon as they become available at any site requested.
Thus if the user requests 128 processors and 120 are immediately available,
the 120 are assigned to the simulation and will start execution. However, the
job will wait at the first MPI barrier until the remaining eight processors are
assigned and reach the same barrier. This may be hours or days away effec-
tively blocking the 120 processors that remain assigned but inactive from being
used by other users. This is extremely inefficient as the cluster(s) on which
the processors were requested may be totally saturated while other clusters on
the GRID have immediate processors available. Future GRIDS will function
like the INRIA nina-pf Cluster, that is, the user requests the total number of
processors and the GRID job manager will assign the processors according to
availability on all the clusters of the GRID.

What are the consequences of not knowing, in advance, the mixture of
fast and slow processors that will be assigned to a computation? The major
consequence is that the user cannot partition a mesh as a PREPROCESSING
step. If we assume that the mesh partitioner is also an MPI code, this difficulty
is doubly complicated as the mesh partitioner code and the CFD code are
separate MPI codes designed to be run independently of each other. However
this is not possible as different mixtures of fast and slow processors may be
assigned to the two runs thus, the partitioned mesh will not be optimal for the
CFD run.

In this study, to overcome the difficulties related to simulations involving
fast and slow processors, the mesh generator has been integrated into the
CFD software. This approach assures that the mesh partitions will be optimal
for different combinations of fast and slow processors assigned to the CFD
execution.

2 Dynamic memory allocation

In order to achieve load balancing on Clusters and GRIDS with mixed proces-
sor speeds, two conditions must be met. First, the CFD software must have

11Both first generation GRIDS

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 7

dynamic memory allocation. To achieve this, an F90 version of the AERO3D

software was created - see Wornom [10], the original code was programmed in
F77. As a consequence the size of the F77 executable is determined at compile
time based on the mesh data of the largest partition and the same executable is
used on all the processors. This leads to situations where the RAM for slower
processors is too small to run the executable. F90 permits dynamic memory
allocation thus the executable size for each processor is proportional to the
local processor mesh size.

The second condition is dynamic mesh partitioning. This is achieved in this
study by integrating the mesh generator into the CFD software.

3 Mesh generators and mesh partitioners

3.1 Standard procedure

In the standard procedure there are three independent software involved in a
CFD simulation: a mesh generator, a mesh partitioner, and the CFD software.

The first step is to generate a mesh for the simulation. There are several
commercial software available. An example is GSH3D developed at INRIA.
In this study we prefer the simplier free open source software MeshCanale
developed at the University of Pisa by Dr. Simone Camarri. Mesh generators
may be non-parallel codes or parallel codes. GSH3D12 and MeshCanale are
both non parallel codes executed on desktop workstations.

The second step is to partition the mesh created by the mesh generator. If
none exists, the user must write an interface so that the global mesh file created
by the mesh generator can be read by the mesh partitioner. For the mesh
partitioners used with AERO3D, the global mesh file is named fluid.sinus - see
Appendix A for details. This interface already existed MeshCanale and was
written for GSH3D by the author. The user specifies the number of partitions
and the mesh partitioner partitions the global mesh file.

Next, if none exists, the AERO3D user must write an interface so that the
partitioned data created by the mesh partitioner is written in a format read-
able by the AERO3D software. These files are named flu-00001, flu-00002,
where 1 and 2 refer to partitions 1 and 2, ..., and the flu.glob file that contains
the mesh global parameters - see Appendix B for additional details. Writing

12The 1999 sequential version of GSH3D is installed at INRIA Sophia Antipolis.

RR n° 5884

8 Wornom

this interface is not a trivial step and is a major reason why the PARmetis13

mesh partitioner is not presently used at INRIA to partition meshes for the
AERO3D software. At the present time, the partitions created with the mesh
partitioners developed at the CEMEF14, TopDomDec15, METIS Stanford16,
and MeshCanaleMP (see section 3.2) are directly readable by the AERO3D

software. The CEMEF, PARmetis and MeshCanaleMP are mesh partitioning
codes that execute on parallel computers. TopDomDec and METIS Stanford
are non-parallel codes executed on workstations. The third step is the execu-
tion of the CFD software that reads the partition data created by the mesh
partitioner.

In summary, the standard procedure consists of executing three independent
codes, the mesh generator, the mesh partitioner andthe CFD software.

3.2 Integrated parallel procedure

The meshes used in the MecaGRID study of Wornom [11] were generated using
the F77 non-parallel mesh generator MeshCanale run on a workstation. For
this reason and the availability of the source code, MeshCanale was selected as
the first mesh generator to be transformed into a F90 parallel MPI code and
integrated into the AERO3D software.

We started by creating an F90 version of the MeshCanale code in order to
have dynamic memory allocation. Next the adaptation to running in parallel
using MPI was accomplished. The major effort was in writing subroutines
to identify the different processors assigned to the simulation and a load bal-
ancing algorithm to define the partitions. The complication arises due to the
English-Flag design (see section 4 used in MeshCanale. The English-Flag de-
sign involves eight hexagonal and the partitioning must result in a correct
English-Flag design.

In MeshCanaleMP the mesh is generated simultaneously for all partitions.
Therefore the notion of partitioning a global mesh created by a mesh generation
code is no longer valid. Generating the mesh directly on each partition has
several advantages over the standard approach17, in particular for large meshes.

13http://www-users.cs.umn.edu/k̃arypis/metis/
14Centre de mise en forme des matériaux de l’Ecole des Mines de Paris-Sophia Antipolis
15University of Colorado at Boulder
16AERO3D interface written by Professor Farhat, University of Stanford, Palo Alto, CA
17Generating the global mesh with a grid generator and partitioning the global mesh using a mesh parti-

tioning code

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 9

Figure 1: MeshCanale English-Flag design

Executing the mesh partitioner separately requires additional memory to store
the global mesh. This additional memory is in addition to the memory needed
to create the partitions. By integrating the mesh generator into the CFD
software, this additional memory is avoided here as there is no global mesh
file. The memory saved permits much larger mesh partitions to be created than
would be otherwise possible. This effectively allows us to create partitions for
very large meshes would not be possible using the standard approach.

4 Mesh generator - MeshCanale

MeshCanale is composed of three parts. First, MeshCanale creates a struc-
tured hexahedra mesh and then divides each hexahedra into six tetrahedra
using the English-Flag design shown in Figure 1 for a plane. The third part
writes the fluid.sinus file containing the number of vertices, tetrahedra, and
external faces, the Cartesian coordinates, the tetrahedra connectivity, and the
connectivity for the external faces and the type of boundary conditions to be
applied.

4.1 Partitioning options

The MeshCanaleMP code was developed to study blast waves interacting with
a high density fluid of spherical shape in a rectangular channel - see Figure 3
(from Wornom et al [9]) shows the solution after the blast wave has passed
through the bubble. The blast wave is moving from the lower left to the upper

RR n° 5884

10 Wornom

Figure 2: Partitioning by slicing

right of the figure. For this example a simple rectangular mesh, i = 1,...Imax,
... with Imax, Jmax, and Kmax equal to 51, 51, 97 (51x51x97) was used.

Two obvious partitioning options exists: 1) Slicing and 2) Dicing. Figure 2
illustrates slicing using 8 processors, 4-nina and 4-pf; the 4-nina partitions are
two times larger than the 4-pf partitions reflecting the faster speed of the nina

processors. Message passing occurs between the partition interfaces. Note the
only messages passed between the fast cluster (nina) and the slow cluster (pf)
occur between processor 4 of nina and processor 1 of pf.

Using the slicing option, one can easily show that the minimum message
passing occurs if the mesh is sliced in the counter direction opposite to the

min(Imax × Jmax, Imax × Kmax, Jmax × Kmax). (1)

Therefore the 51x51x97 mesh was sliced in the k-direction.
The partitions created by slicing should be optimal for VPN (Virtual Pri-

vate Network) GRIDS like the MecaGRID. For VPN GRIDS the processors
have private IPAs and only one processor is used to exchange information be-
tween processors on different clusters of the GRID using tunneling between
the frontend machines of the clusters comprising the GRID. Using the slicing
method, only one nina processor exchanges information with one pf processor.
If many processors are trying to pass data at the same time as will occur if
100 or more processors are involved, the VPN will experience greater trans-
fer slowdowns when non-slicing partitioning methods are used. For GRIDS
with public IPAs, such as GRID5000, the partitioning method will be less
important.

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 11

Figure 3: Blast wave pressure contours after 720 time steps

Figure 4: Partitioning by dicing

RR n° 5884

12 Wornom

A alternative to slicing would be ”dicing” where the mesh is divided into
blocks. Figure 4 illustrates dicing with 8 processors, 4-nina and 4-pf. As can
be seen, the message passing between the different processors is more compli-
cated than that shown in Figure 2 where the slicing option is used. With 8
processors one can see that each nina CPU exchanges messages with a pf pro-
cessor in addition to its nina neighbors. Thus there are four messages passed
between the nina cluster and the pf cluster, likewise for the pf processors. The
complexity increases as the total number of processors increases.

5 Heterogeneous partitioning

Consider the blast wave problem with a rectangular global mesh of 51x51x97
(Imax, Jmax, Kmax) with Imin = Jmin = Kmin = 1. Application of equation
1 shows that the minimum message passing occurs when the slicing method is
applied in the k-direction.

Suppose we have two clusters with different processors speeds, one with 2.2
Ghz and the other with 0.999 Ghz. For illustration purposes we take the ratio
of the fast processors to the slow processors equal to 2. For the heterogeneous
partitioning we want the fast processors to compute twice as many tetrahedra
as the slower processors.

The mesh is generated in two steps. First, we determine how many tetra-
hedra will be computed on the fast cluster and how many on the slow cluster.

The general expressions to be used when defining the hexagonal input (i,j,k
values for each partition) to the MeshCanaleMP code are given by

∆kfast =
Kmax − 1

1 + Nslow

2×Nfast

(2)

∆kslow = (Kmax − 1) − ∆kfast (3)

Equations 2-3 returns an integer value only for equal number of fast and
processors or only nina or pf processors are used - see Table 1 which shows an
example for 32 total processors for Kmax = 97 with different mixtures of fast
and slow processors.

When the number of fast processors is not an integer, and extra k-plane is
given to the faster cluster (column Code).

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 13

Mixture Theoretical Code
N fast N slow ∆kfast ∆kslow ∆kfast ∆kslow

32 0 96.000 0.000 96 0
28 4 74.667 21.333 75 21
24 8 57.600 38.400 58 38
20 12 43.636 52.364 44 52
16 16 32.000 64.000 32 64
12 20 22.154 73.846 23 73
8 24 13.714 82.286 14 82
4 28 6.400 89.600 7 89
0 32 0.000 96.000 0 96

Table 1: Computation of intervals

The next step is defining the size of the partitions. These are given by the
relation

δkfast = ∆kfast/N fast (4)

δkslow = ∆kslow/N slow (5)

For most mixtures, δkfast and δkslow will not be integers and adjustments
are made similar to that for ∆kfast and ∆kslow.

5.1 Executing MeshCanaleMP separately of AERO3D

In this section we discuss features related to running MeshCanaleMP as a stand
alone program. MeshCanaleMP reads its data from the file CanaleMP.data.
Table 2 shows the differents entries in the file CanaleMP.data

The LargeMesh flag was added for cases where very large meshes are used.
The LargeMesh flag is independent of the MeshCanaleMP option - see sec-
tion 5.3.

The flags nWRTflu and nWRTsinus control writing of the flu-00001, flu-

00002, ..., flu.glob files and the fluid.sinus file. The flags are set to 1 to activate.
The number of mesh points in i, j, k are given by Imax, Jmax, and Kmax.

The max/min values of x are given by xmax/xmin, similar for the y and z
coordinates. The boundary condition types are set by the bcImax, bcImin,
bcJmax, bcJmin, bcKmax, and bcKmin.

RR n° 5884

14 Wornom

read (myunit,*) LargeMesh
read (myunit,*) nWRTsinus, nWRTflu
read (myunit,*) Imax,Jmax,Kmax
read (myunit,*) xmin,xmax
read (myunit,*) ymin,ymax
read (myunit,*) zmin,zmax
read (myunit,*) bcImax, bcImin
read (myunit,*) bcJmax, bcJmin
read (myunit,*) bcKmax, bcKmin

Table 2: CanaleMP.data file

Vertices CPUs fluid.sinus flu-xxxx Total WRTsinus WRTflu
252K 16 30 MB 3 MB 3.7 sec 1.4 sec 2 sec

2M 48 233 MB 9 MB 28.8 sec 10 sec 19 sec
16M 48 1.86 GB 69 MB 233 sec 90 sec 142 sec

117M 48 14.9 GB 505 MB 45 sec - -
117M 64 14.9 GB 378 MB 7 sec - -

Table 3: MeshCanaleMP examples

Table 3 gives examples of different runs using MeshCanaleMP for meshes
up to 117 million vertices and 64 processors on the INRIA nef cluster18. The
first four runs show the total time, the time to write the fluid.sinus file19, and
and the partition files flu-00001, flu-00002, ... etc and the flu.glob file. Note
that the majority of the time is in writing these files. For a mesh with 16
million mesh vertices the fluid.sinus file is 1.86 GB and the 48-processor flu-

xxxxx files 69 MB, these files were written unformatted. The formatted files
are approximately four times larger. It is obvious that for large simultations
one must avoid writing these files.

5.2 Executing MeshCanaleMP from within AERO3D

The basic parameters and control flags for the AERO3D software are found
in the flu.data file. These include the number of time steps, whether the run

18The nef cluster has 64 processors at 2.2 Ghz speed and was used for the development of the Mesh-
CanaleMP code.

19fluid.sinus file is input to the mesh partitioner. It is also needed for graphics.

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 15

uses the explicit or implicit algorithm, whether the time scheme is 1st or 2nd
order, ... etc.

To execute the MeshCanaleMP mesh partitioner within the AERO3D exe-
cution, four additional flags have been added; these flags are given for seven
different examples in Table 4 (1=activate).

Run LargeMesh nMeshCanaleMP nWRTflu nWRTsinus
1 0 0 0 0
2 0 0 0 1
3 0 1 1 1
4 0 1 0 1
5 0 1 0 0
6 1 1 0 0
7 1 0 0 0

Table 4: Flags related to accessing MeshCanaleMP within AERO3D software

After the processors have been allocated for the AERO3D run, the Mesh-
CanaleMP program is executed, if the parameter nMeshCanaleMP = 1 to
create the mesh and the partitions.

If nMeshCanaleMP = 0, the MeshCanaleMP is not used and the files with
the data for each partition must already exist. Run 1 corresponds to the case
where the user has existing partition data files20, flu-00001, flu-00002, ... etc
and the flu.glob file. This is the standard procedure for the AERO3D code.

Several subroutines that have been written for the MeshCanaleMP are use-
ful for runs where the MeshCanaleMP is not used. For example, the graphical
program needs the fluid.sinus file containing the global mesh data in addition
to the solution files. Normally the fluid.sinus is the input to the mesh parti-
tioner and is available. Should it not be available, as sometimes occurs, the
AERO3D code will write the fluid.sinus file if nWRTsinus = 1. Run 2 asks
AERO3D to write the fluid.sinus file for the existing flu-00001, flu-00002, ...
etc and the flu.glob file used.

Run 3 runs the MeshCanaleMP from within the AERO3D code and writes
the flu-00001, flu-00002, ... etc and the flu.glob file and the fluid.sinus file.

Runs 4-5 are for very large meshes (> 2 million vertices). For large meshes
writing the flu-00001, flu-00002, ... etc and the fluid.sinus file should be

20See APPENDIX B for description

RR n° 5884

16 Wornom

avoided as these files can be extremely disk space consuming21. Since the
flu-00001, flu-00002, ... etc files are created doing the run there is no real
reason to save them. Run 5 does not save the fluid.sinus thus assumes that
the graphical files have been created within the AERO3D run.

5.3 LargeMesh = 1

For meshes on the order of 16 million vertices and larger, the fluid.sinus and
the files containing the solutions at different time steps are too large to be
viewed with ParaView22 on a workstation with 4 GB of RAM. The solution
files are named solf.000100.data where 000100 is the solution at the 100th time
step.

When LargeMesh = 1, the fluid.sinus and the solution file solf.000100.data

are written separately for each processor. The files are written as fluid.sinus-

00001, fluid.sinus-00002, .. etc and solf-00001.000100.data, solf-00002.000100.data,
... etc. These smaller files are much smaller files than if all the processor solu-
tions were written on a single file. As a consequence, they can be viewed using
ParaView run sequentually or the MPI version of ParaView23.

Runs 6 and 7 show examples where the LargeMesh option is used with and
without the MeshCanaleMP code.

5.4 LargeMesh = 2

When the option LargeMesh = 2 is used, no 3D solution files are written.

6 Subroutines added to the AERO3D software

During this study six useful subroutines were added to the AERO3D code.

6.1 Subroutines used by MeshCanaleMP

The following subroutines have been added to the AERO3D software for the
MeshCanaleMP option.

21The sysops is very appreciative when these extremely large files are not written
22http://www.kitware.com
23Work in progress.

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 17

CanaleMP.f

GetHostNames.f

MeshCanaleMP_F90.f

6.2 Useful subroutines with/without the MeshCanaleMP option

WRTflu.f

WRTsinus.f

WRTsinusPart.f

WRTsolPart.f

7 Results

7.1 Load balancing using mixed speed processors

In this section, the benefit of using heterogeneous mesh partitioning on Clusters
and GRIDS mixed processor speeds is illustrated. The nina-pf Cluster, the
MecaGRID, and the GRID5000 were chosen for these tests. Table 5 shows the
processor speeds used in this analysis.

cluster(Location) Processor speed (Ghz)
Cluster/GRID Fast cluster Slow cluster Fast cluster Slow cluster
INRIA Cluster Sophia Sophia 2.2 1.0
MecaGRID Marseilles Sophia 2.0 1.0
GRID5000 Sophia Grenoble 2.0 0.9

Table 5: Processor speed for tests

The test case computed flow in a nozzle. Two meshes were studied; the
first mesh contains 252K vertices with 1.44 million tetrahedra and the second
502K vertices with 2.88 million tetrahedra.

For the homogeneous mesh partitioning the partitions were of equal size.
For the heterogeneous mesh partitioning the mesh was partitioned so that the
fast-cluster partitions were twice as large as the slow-cluster partitions.

Table 6 shows the wall times for a simulation of 150 time steps for different
size meshes and different mixtures of fast and slow processors for the different
mesh sizes. From these tables, an important reduction in simulation time is

RR n° 5884

18 Wornom

wall time (sec)
Cluster/GRID Mesh CPUs homo hetero speedup
INRIA Cluster 252K 8-nina 8-pf 738 477 1.55
MecaGRID 252K 8-iusti 8-pf 780 588 1.33
GRID5000 252K 8-sophia 8-icluster2 1422 994 1.46
GRID5000 252K 16-sophia 16-icluster2 1050 794 1.32
INRIA Cluster 502K 16-nina 16-pf 843 553 1.52
INRIA Cluster 502K 24-nina 8-pf 738 529 1.39
GRID5000 502K 16-sophia 16-icluster2 1815 1319 1.38

Table 6: Homogeneous vs heterogenous partitioning

noted using the heterogeneous partitioning, 1.5524 for the 252K vertices mesh
and 1.52 for the 502 vertices meshl the theoretical speedup for these cases is
1.5. For the case where 24 fast and 8 slow processors were used, the reduction
in simulation time was 1.39 (the theoretical value is 1.25)25. These reductions
in simulation times indicate that good load balancing is achieved when het-
erogeneous partitions are used. Figure 5 shows the computational times for
16 processors to compute the fluxes in AERO3D for both the homogeneous
and heterogeneous partitions using 8-nina and 8-pf processors for each pro-
cessor. Note that the work/processor (time) for the heterogeneous partitions
are approximaly equivalent whereas for the homoogeneous partitions the faster
processors (P0-P7) spend 1/2 their time waiting for the slower processors (P8-
P16) to finish.

7.2 Experiences using the MecaGRID and the GRID5000

Table 6 shows smaller computational times for the MecaGRID compared to the
GRID5000. Considering that the MecaGRID communicates over the internet
with a measured network bandwith of approximately 5 Mbps (see Basset[1]-[2])
compared to the GRID5000 that uses a 1 Gbps bandwidth dedicated network,
one would expect the opposite result.

There are several reasons why this may have occured. The most likely ex-
planation is that the goal of the tests was to compare computational speedups
with the theoretical speedup values, therefore no intermediate solutions were

24speedup = homogeneous time/ heterogeneous time
25The theoretical value of 1.25 was based on a speed ratio of 2 whereas the hardware speed ratio is

approximately 2.2. This may explain why the real speedup was greater than the quoted theoretical value

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 19

Figure 5: CPU time for each processor

safeguarded26 As this was avoided, the superior bandwidth of the GRID5000
was not fully used. If safeguarding of the solution had been included in the
simulation, the performance of the GRID5000 would have been superior to
that of the MecaGRID. Unfortunately the GRID5000 calculations were made
after the MecaGRID was retired from service. Therefore it was not possible
to make new tests using the MecaGRID to verify this hypothese.

A second factor may be the larger physical distances between the two
GRID5000 clusters (404 km) compared to the MecaGRID clusters (237 km).
GRID distances are not measured in km but in latency times27 but the physical
distance and the latency distances are related. Network latency can be esti-
mated using a ping test. 100 ping tests between the pf cluster and a processor
of the iusti cluster (MecaGRID) returns the following:
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max = 4.3/9.5/14.4 ms

26 Typically a production simulation may require many thousands of time steps and the user will safeguard
the solution every 500 or 1000 times steps. Safeguarding the solutions requires passing the 3D data from
each processor to processor ”0” and the network bandwidth becomes an important factor in the efficiency
of the transfer.

27There are two important characteristics of GRIDs, network bandwidth and network latency.

RR n° 5884

20 Wornom

The variability in the min/avg/max times is high because the MecaGRID clus-
ters communicate over the internet which is non-dedicated.

A single ping test from the Sophia GRID5000 cluster frontend to the iclus-

ter2 cluster in Grenoble returns: ping frontale.grenoble
rtt min/avg/max = 12.362/12.385/12.455
The low variability in the min/avg/max times between the GRID5000 sites is
because the GRID5000 network is dedicated.

Recall that the slicing partitioning option was used here (section 4.1).
Therefore only one processor from the fast-cluster passes messages to one pro-
cessor of the slow-cluster and the size of the data being passed is very small
compared to that required to safeguard the intermediate solutions; thus one
could assume that latency plays the most important role in the test case.

Based on latency arguments alone, assuming that bandwidth plays a minor
role, the transfer between the MecaGRID clusters should be 1.3 times faster
than between the GRID5000 clusters. The computed ratios are 1.8 for the
homogeneous case and 1.7 for the heterogeneous case, thus this argument seems
to be invalid.

Another reason may be that the MecaGRID computations were made using
the Globus 2.2.4 software28. Wornom [11] noted that runs on the nina-pf cluster
using the Globus software were faster than the same computation using the
ch p4; both are part of MPICH29. We have no way to evaluate this hypothese.

Table 7 shows the characteristics for the different processors involved. We
can only note the better performance of the MecaGRID relative to the GRID5000
but we cannot explain it.

MecaGRID GRID5000
Property Fast cluster Slow cluster Fast cluster Slow cluster
Processor Pentium IV Pentium III AMD Opteron Itanium 2
speed 2.0 Ghz 0.937 Ghz 2.0 Ghz 0.900 Ghz
RAM 0.900 GB 0.512 GB 1.0 GB 1.5 GB
cache 512 KB 256 KB 1024 KB 256 KB

Table 7: GRID Processor Characteristics

28http://www.globus.org
29http://www-unix.mcs.anl.gov/mpi/mpich/

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 21

7.3 Large mesh simulations using the GRID5000

This section uses the large mesh options available in MeshCanaleMP30 to per-
form large mesh simulation made possible with the large number of proces-
sors of the GRID5000. These simulations were made using clusters having all
Opteron processors thus the load balancing feature discussed previously was
not needed.

Recall that the standard CFD procedure is to partition the mesh in advance
of the CFD execution. Thus is inefficient and avoided here. In fact the largest
CFD runs presented here cannot be made using the standard procedure using
the AERO3D. Here, the mesh is not partitioned in advance of the CFD exe-
cution but is created and partitioned during the CFD run; We refer to this as
dynamic computing.

The GRID5000 is an experimental and performance evaluation GRID at
this time thus the simulations are not full scale. There 13 clusters currently
comprising the GRID5000 involving 17 labs. The goal is to have 5000 pro-
cessors on the GRID but as of date of this report there are less than 1000
processors active with 200 users competing for these resources. The user can
see the status of the different clusters on the GRID5000 using the web site
https://frontal38.imag.fr/cgi-bin/oargridmonika.cgi. The status is constantly
changing. The user can reserve processors at a future time or seeing what pro-
cessors are available, try to quickly reserved some processors before another
user reserves them for s short period of time. Dynamic computing is well
adapted to to the latter approach. Some results are shown in Table 8. The
largest case involves 20 million vertices using 256 processors at five different
GRID5000 sites.

GRID Mesh CPUs Distribution CPU time
GRID5000 1/4 M 16 16-sophia 0.10 hrs
GRID5000 1 M 32 16-sophia 16-bordeaux 0.34 hrs
GRID5000 2 M 64 32-sophia 32-bordeaux 1.09 hrs
GRID5000 8 M 128 96-sophia 32-bordeaux 1.52 hrs
GRID5000 16 M 128 96-sophia 32-bordeaux 4.77 hrs
GRID5000 20 M 256 96-sophia 80-orsay 16-bordeaux 2.11 hrs

32-rennes 32-nancy

Table 8: Dynamic mesh results

30LargeMesh = 2, nWRTflu = 0, and nWRTsinus = 0

RR n° 5884

22 Wornom

8 Conclusions

In this study, in order to overcome the problems related to computing with
arbitrary mixtures of fast and slow processors occuring on clusters and GRIDS
with different speed processors, the mesh generator and the mesh partitioner
(called MeshCanaleMP) have been integrated into the CFD code. Thus op-
timal load balancing partitions based on processor speed are automatically
created for different mixtures of fast and slow processors.

Validation tests using the GRID5000, the MecaGRID, and the the INRIA
nina-pf cluster produced speedups on the order of 1.32 to 1.52 relative to the
same run using the homogeneous partitioning which compares well with the
theoretical speedup of 1.5.

Finially we presented CFD tests for meshes involving up to 20 Million ver-
tices made possible with the large mesh options in the code and the processors
available with the GRID5000.

9 Acknowledgements

The MecaGRID research was made possible by the ACI-GRID 2002 Project
of the French Ministry of Research31. The GRID500032 research is part of a
research effort developping a large scale nation wide infrastructure for Grid
research. This project is an initiative of the French ACI Grid Incentive and
is funded by the French Ministry of Research, CNRS and INRIA. The author
would like to thank Hervé Guillard and Alain Dervieux for their support of
this work.

The MecaGRID was retired from service in October 2005. The author
would like to thank Professor Jacques Massoni at the IUSTI for accepting
to keep the IUSTI cluster online so that the MecaGRID computation could
be included in this study. Special thanks also to Nicolas Niclausse, system
operator at INRIA Sophia Antipolis for accepting to extend the closure date
for the MecaGRID so that these performance evaluations could be included
in this report and for fruitful discussions concerning GRID communications.
Thanks also to Patrick Nivet of the INRIA SMASH project for his work in
reconnecting the MecaGRID INRIA and IUSTI sites.

31http://www.recherche.gouv.fr/recherche/aci/grid.htm
32http://www.grid5000.org/

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 23

References

[1] O. Basset. Analysis of the mecagrid hardware using the performance
utility. Technical report, 2004, Internal Report.

[2] O. Basset. Simulation numerique d’ecoulement de fluides heterogenes sur

grille de calcul. PhD thesis, Ecole des Mines de Paris at Sophia Antipolis,
2006.

[3] S. Camarri, M.V. Salvetti, B. Koobus, and A. Dervieux. Large-eddy
simulation of a bluff-body flow on unstructured grids. Int. J. Num. Meth.

Fluids, 40:1431–1460, 2002.

[4] K. El Omari, E. Schall, B. Koobus, and A. Dervieux. Turbulence modeling
challenge in airship CFD studies. Proceedings of the eigth Zaragoza-Pau

conference of applied mathematics and statistics., Jaca, 15-17 sept. 2003.

[5] C. Farhat and S. Lanteri. Simulation of Compressible Flows on a Variety
of MPPs: Computational Algorithms for Unstructured Dynamic Meshes
and Performance Results. Comp. Meth. Appl. Mech. and Eng., 119:35–60,
1994.

[6] L. Fezoui, F. Loriot, M. Loriot, and J. Regere. A 2D Finite Volume
/Finite Element Euler Solver on M.I.M.D. parallel machine. Proceedings

of the High Performance Computing II Conference , M. Duran and F. El

Dabaghi Eds., Montpellier, 1991.

[7] B. Koobus and C. Farhat. A Variational Multiscale Method for the
Large Eddy Simulation of Compressible Turbulent Flows on Unstructured
Meshes - Application to Vortex Shedding. Comp. Meth. Appl. Mech. and

Eng., 193:1367–1383, 2004.

[8] S. Lanteri. Parallel Solutions of Three-dimensional Compressible Flows.
Technical Report RR-2594, INRIA - Sophia Antipolis, June 1995.

[9] S. Wornom, B. Koobus, H. Guillard, A. Murrone, and A. Dervieux. Seven-
equation, two-phase flow three-dimensional calculations using a mixed-
element-volume method. Technical Report RR-5560, INRIA - Sophia An-
tipolis, April 2005.

RR n° 5884

24 Wornom

[10] Stephen Wornom. Optimizing a CFD fortran code for GRID Computing.
Technical Report RT-303, INRIA - Sophia Antipolis, April 2005.

[11] Stephen Wornom. Mecagrid: Rapport d’avancement pour la période du
01/02/03 au 30/07/03. Technical report, INRIA Sophia Antipolis, July
30, 2003.

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 25

APPENDIX A

fluid.sinus Formats

Table 9 shows various formats for the fluid.sinus mesh file where ns, nt, nfac

are the number of vertices, tetrahedra, and external faces, coor, the Cartesian
coordinates, nu the tetrahedra connectivity, logfac the boundary conditions to
be applied at the external faces, and nsfac, the connectivity for the triangular
external faces.

write(myunit,*) ns, nt, nfac
write(myunit,*) (coor(1,i), coor(2,i), coor(3,i), i=1,ns)
write(myunit,*) (nu(1,i), nu(2,i), nu(3,i), nu(4,i), i=1,nt)
write(myunit,*) (logfac(i), i=1,nfac)
write(myunit,*) (nsfac(1,i), nsfac(2,i), nsfac(3,i), i=1,nfac)
—————————————————————
Formatted
—————————————————————

write(myunit) ns, nt, nfac
write(myunit) (coor(1,i), coor(2,i), coor(3,i), i=1,ns)
write(myunit) (nu(1,i), nu(2,i), nu(3,i), nu(4,i), i=1,nt)
write(myunit) (logfac(i), i=1,nfac)
write(myunit) (nsfac(1,i), nsfac(2,i), nsfac(3,i), i=1,nfac)
—————————————————————
UnFormatted
—————————————————————

Table 9: fluid.sinus formats: Top) formatted Bottom) unformatted

RR n° 5884

26 Wornom

APPENDIX B

Description of the flu-0000n files.

In the flu-0000n we find successively:

ipd = subdomain number (involved by this file flu-xxxxx)
ns, nt, nfac = local number of nodes, tetrahedra and boundary facets
(local means associated with the considered subdomain)
nghd = number of neighboring subdomains

For i=1,nghd we read:

ishd(i) = identification (number) of the ith neighboring subdomain
insghd(ishd(i)) = number of nodes located on the common interface between
the considered subdomain and its ith neighboring subdomain
For ii=1,insghd(ishd(i)) we read:
isghd(ii,ishd(i)) = local number of these common nodes
EndFor ii

EndFor i

For is=1,ns we read:
coor(1,is), coor(2,is), coor(3,is) = x-,y- and z-coordinate of node is
EndFor is

For jt=1,nt we read:
nu(1,jt), nu(2,jt), nu(3,jt), nu(4,jt) = local number of the 4 vertices
of tetrahedron jt
EndFor jt

For ifac=1,nfac we read
logfac(ifac) = boundary identification for each boundary facet ifac
nsfac(1,ifac), nsfac(2,ifac), nsfac(3,ifac) = local number of the 3 vertices
of boundary facet ifac

INRIA

Load balancing on Clusters and GRIDS with mixed processor speeds 27

EndFor ifac

For is=1,ns
irefd(is) = 1 if node ”is” is an internal node for the considered subdomain,
0 else
(by internal node, we mean a node which does not belong to the common
interfaces shared with neighboring subdomains)
EndFor is

For is=1,ns
igrefd(is) = global number (i.e. number in the global mesh) of node is
EndFor is

REMARK = all the previous variables are integer except coor(,) which is
real.

RR n° 5884

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rĥone-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

