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Abstract: Distributed groupware systems provide computer support for manipulating shared objects by dis-
persed users. Data replication is used in such systems in order to improve the availability of data. This
potentially leads to divergent (or different) replicas. In this respect, the Operational Transformation (OT)
approach is employed to maintain convergence of all replicas, i.e. all users view the same object. Using this
approach, users can exchange their updates in any order since the convergence should be ensured in all cases.
However, designing correct OT algorithms is still an open issue. In this paper, we demonstrate that recent OT
algorithms are incorrect. We analyse the source of this problem and we propose a generic solution with its
formal correctness.
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Assurer la Convergence des Collecticiels Distribués par I’Approche
Transformationnelle

Résumé : Les collecticiels distribués fournissent un support informatique pour la manipulation d’objets par-
tagés par des utilisateurs distants. La réplication de données est utilisée dans de tels systémes afin d’améliorer
la disponibilité des données. Ceci peut potientiellement mener vers des copies divergentes (ou différentes). A
cet effet, ’approche transformationnelle est employée pour maintenir la convergence de toutes les copies, i.e.
tous les utilisateurs observent le méme objet. En utilisant cette approche, les utilisateurs peuvent échanger
leurs modifications dans n’importe quel ordre puisque la convergence devrait étre assurée dans tous les cas.
Cependant, la conception d’algorithmes transformationnels corrects reste toujours un probléme ouvert. Dans ce
rapport, nous montrons d’une part que des algorithmes transformationnels publiés récemment sont incorrects.
D’autre part, nous analysons ’origine de ce probléme et nous proposons une solution formelle et générique.

Mots-clés : Systémes distribués, Réplication optimiste, Convergence, Approche Transformationnelle



Achieving Convergence with OT in Groupware Systems 3

1 Introduction

Distributed groupware systems allow a group of users to simultaneously manipulate the same object (i.e. a
text, an image, a graphic, etc.) from physically dispersed sites (or users) that are interconnected by a supposed
reliable network [2]. There are two kinds of groupwares: synchronous and asynchronous systems. In synchronous
groupware, people interact with each other at the same time and the response time must be short. Group editors
are example of people editing a shared document at the same time [1, 9, 13]. In asynchronous ones, users usually
collaborate accessing and modifying shared information without immediate knowledge about the actions of other
users (either because users work at different times or simply because they do not have access to each other’s
actions). Version control systems [11] and data synchronizers [8] are example where users modify a copy of the
shared document at different times and have to merge later their modifications in order to obtain the same
document.

Data replication is used in distributed groupware systems to improve performance and availability of data [1,
10]. In order to support mobility, offline updates, optimistic replication systems allows replica to diverge.
The challenge is then to reconciliate divergent replicas. Originating from real-time groupware research [1], the
Operational Transformation (OT) approach provides an interesting solution. Compared to optimistic replication
systems [10] that only exploit commutativity of operations, OT in some way, allows to transform operations
that cannot commute into new equivalent operations that commute. The OT approach consists of two main
components:

1. The integration algorithm which is responsible of receiving, broadcasting and executing operations. It is
independent of the type of replica.

2. The transformation function is responsible for merging two concurrent operations.

The integration algorithm calls the transformation function when needed. Correctness of OT approach relies
on:

a correct integration algorithm. A lot of integration algorithms [9, 15, 12] have been delivered to the com-
munity with their correctness proofs [12, 7].

a correct transformation function. A transformation function is correct if it allows to achieve convergence.
Unfortunately, all known transformation functions are incorrect. Without a correct transformation func-
tions, OT approach is useless.

In [4], we have provided couter-examples to OT algorithms that have been there since fifteen years [1, 9, 15]
and we have proposed a new OT algorithm for strings conjecturing that it is correct. Recently, Du et al. [6]
propose a new solution and claim that it succeeds to achieve convergence. In this paper, we show that our
previous solution [4] and the ones of [12, 6] are incorrect by exhibiting tricky counter-examples. We also analyse
thoroughly the source of the failures in [4, 12, 6] and we propose an OT algorithm that is radically simplier
that all previous ones. Consequently, our new solution avoids the previous pitfalls and (unlike previous works)
we have been able to give completely formal proof of its correctness.

The remainder of this paper is organized as follows. We present the operational transformation model in
Section 2. Section 3 analyzes convergence problems that still remain and sketches an abstract solution. Section
4 presents our contributions giving proofs of correctness and examples. Section 5 discusses related work, and
section 6 summarizes conclusions.

2 Operational Transformation

OT considers n sites, where each site has a copy of the shared document. The shared document model we take
is a text document modeled by a sequence of characters, indexed from 0 up to the number of characters in the
document. It is assumed that the document state (the text) can only be modified by executing the following two
primitive editing operations: (i) Ins(p,c) which inserts the character ¢ at position p; (ii) Del(p) which deletes
the character at position p.

It should be pointed out that the above text document model is only an abstract view of many document
models based on a linear structure. For instance the character parameter may be regarded as a string of
characters, a line, a block of lines, an ordered XML node, etc.

We denote st @ op = st' when an editing operation op is executed on the document state st and produces
document state st’. Notation [op;;ops;...;0p,] represents an sequence of operations. Applying an operation
sequence to a document state st is recursively defined as follows:
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4 Imine & al.

1. st e [] = st, where [] is the empty sequence and;
2. ste[opi;op2;...;0pn] = (((st e op1) e ops)...) ® opy.

Definition 2.1 (Equivalence sequence.) Two operation sequences seqi and seqs are equivalent, denoted by
seq) = seqo, if st ® seq; = st ® seqs for all document states st.

Any operation will go through the process of generation, local execution, propagation and remote execution.
Each site generates editing operations sequentially and stores these operations in a data structure called log
which gives the execution order of operations [1]. We assume that timestamp vector are used to preserve
causality between operations [5].

In distributed groupware systems editing operations can be generated and executed in arbitrary orders.
Local operations are always executed without being delayed but the execution of some remote operations may
be delayed until they are causally ready [1, 15]. Thus, there are the following operation relationships [1]:

e causal ordering (op; — op; stands for op; is executed before op;);

o concurrent (op; || op; iff neither op; — op; nor op; — op;).

2.1 Transformation Principle

The operational transformation is an approach for building distributed groupware systems. This approach is
aiming at transforming the remote operation ( i.e. adjusting its parameters) according to the concurrent ones
[1]. As an example, consider the following group text editor scenario (see Figure 1(a)): there are two sites
working on a shared document represented by a string of characters. Initially, all the copies hold the string
“efect”. The document is modified with the operation Ins(p,c) for inserting a character ¢ at position p. Users
1 and 2 generate two concurrent operations: op; = Ins(2, f) and op» = Ins(5,s) respectively. When op; is
received and executed on site 2, it produces the expected string “effects”. But, when ops is received on site 1, it
does not take into account that op; has been executed before it. Consequently, we obtain a divergence between
sites 1 and 2.

Site 1 : user 1 Site 2 : user 2 Site 1 : user 1 Site 2 : user 2

efect [ efect ] I clect ]
op, op, CF; Op,
Ins(2.1) Ins(5,8) Ins(2.1) Ins(5.8)

Ins(3,8) Ins(2.1) Ins(6,8)

@f@ [ efects ] [ effect ] T(Ins(5,5),Ins(2,0)= efects
Ins(6,5)
Op’,
Ins(2.1)
effeots|

cffeost [effects] [effects] effects

(a) Incorrect integration (b) Correct integration
Figure 1: Integration of two concurrent operations.

As a solution to divergence problems the OT approach uses an algorithm, T'(op1,0ps), which takes two
concurrent operations op; and ops defined on the same document state and returns op] which is equivalent to
op1 but defined on a document state where ops has been applied. In Figure 1(b), we illustrate the effect of 7.
When op, is received on site 1, op» needs to be transformed according to op; as follows: T'(Ins(5, s),Ins(2, f)) =
Ins(6,s). The insertion position of op, is incremented because op; has inserted a character at position 2, which
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Achieving Convergence with OT in Groupware Systems D

is before the character inserted by op,. Next, op), is executed on site 1. In the same way, when op; is received
on site 2, it is transformed as follows:

T(Ins(2, f), Ins(5,s)) = Ins(2, f)

Operation op; remains the same because “f” is inserted before “s”.

T(Ins(pr,c1),Ins(pa,c2)) =

if (pi<p2)
or (pi =p2 and C(c1)<C(c2)) then
return Ins(pi,ci)

elseif (pi>p2)
or (p1 =p2 and C(c1)>C(cz)) then
return Ins(p; +1,¢1)

else return nop

endif;

Figure 2: OT for two insert operations.

In [15], the authors have introduced the notion of operation contezt in order to capture the required relation-
ship between operations for correct transformation. Assume all that sites start with the same initial document
state.

Definition 2.2 (Contextual relations).
Given any operation op then:

1. A context is an sequence of operations which is executed on the initial document state and leads to the
current document state.

2. The definition context DC(op,i,t) is the context in which op is generated at site i and time t.
3. The execution context EC(op,i,t) is the context in which op is to be executed at site i and time t.

For readability, we omit the site and time parameters in the functions DC' and EC.

Any operation will go through the process of generation, local execution, propagation, and remote execution.
Consequently, due to concurrent execution of operations, EC(op) at a remote site may not match DC(op) at
local site. Therefore, op needs to be transformed in op’ such that it is defined on a new context different from
its generation context, i.e. DC(op') = EC(op) at the remote site. Two concurrent operations op; and ops can
be transformed and executed consecutively if and only if they have the same definition context. In other words,
T (op1,0p2) transforms op;, against op, at given site such that DC(op1) = DC(ops).

Figure 2 gives the transformation rule for two insert operations. As in [12] we use the character code C' to
resolve the conflict caused by two Ins operations with the same insertion position and different characters. It
enables to serialize them. When both Ins operations are identical — the same position and the same character
—, their transformation results in the null operation denoted by nop and which does not affect the document
state.

Let seq be an sequence of operations. Transforming any editing operation op along to seq, denoted by
T*(op, seq) is recursively defined as follows:

T*(op,[]) = op
T*(op, [op1; 0p2; - - -5 0pn]) = T*(T(op, op1), [0p2; - - - ; 0pn))

2.2 Convergence Properties

Using an OT algorithm requires to satisfy two conditions called convergence properties [9, 12]:

e The condition C; defines a state identity. The document state generated by the execution op; followed
by T'(op2,0op1) must be the same than the document state generated by ops followed by T'(opy,op2). In
other words, C is defined as follows:

[op1; T (0p2, 0p1)] = [op2; T'(0p1, op2)]

RR n° 5188




6 Imine & al.

This condition is necessary but not sufficient when the number of concurrent operations is greater than
two.

e The condition Cs ensures that the transformation of an operation according to a sequence of concurrent
operations does not depend on the order in which operations of the sequence are transformed:

T (ops, [op1; T (op2, 0p1)]) = T*(ops, [op2; T (op1, 0p2)))

In [9, 7], the authors have proved that conditions C; and C5 are sufficient to ensure the convergence property
for any number of concurrent operations. It should be pointed out that verifying that a given OT algorithm
verifies Cs is a computationally expensive problem even for a simple document text. Using a theorem prover
to automate the verification process is needed and would be a crucial step for building correct distributed
groupware systems [4, 3|.

3 Convergence Problems

To the best of our knowledge none of the existing OT schemes satisfies the convergence condition Cy. This
condition is considered as particularly difficult to meet. For this reason some OT algorithms only require
condition C; and replace Cy by some other hypothesis (like global order or locking about operations [17, 16]).
In this section we present scenarios in Figures 3 and 5 showing that the condition C5 is not met by all existing
OT algorithms [1, 9, 12, 4, 6].

3.1 Scenarios violating convergence

We consider the OT function illustrated in Figure 2. To illustrate scenarios in which Cy condition fails, suppose
that three users see the word “core” and they want to modify it to “coffe”

1. the first user adds “f” after “r” by generating op1 = Ins(3, f);
2. the operation generated by the second user, op2 = Del(2), is intended to delete the “r”;
3. the third user generates opz = Ins(2, f) to add “f” after “o”.

These concurrent operations are broadcast to all sites, then received and finally executed after transformation
as illustrated in Figure 3.

user 1 user 2 user3
Opy Op, 9p.
Ins(3,f) ~ Del(2) Ins(2,f)

cofe

opy
~ 1o Ins(3,x
P

Figure 3: The C puzzle P;.
On site 3, the local operation ops is executed, then ops is received. It is transformed against ops and becomes

opy = Del(3). After op}, is executed, the resulting word is “cofe”. Arriving at this site, op is integrated according
to the sequence [ops; opy] whose transformation result is op} = Ins(3, f). Executing op{ gives the word “coffe”.

INRIA
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At site 2, ops is integrated by transforming it against ops producing the same operation opf = Ins(2, f).
After op} is executed, the word becomes “cofe”. When op; arrives, it is integrated according to the sequence
[op2; ops]. Firstly, it is transformed against ops resulting in op] = Ins(2, f). Lastly, it is transformed against
opy. As op)] and op} are identical, their transformation returns the null operation op} = nop. The final word
is “cofe” which is different to that of site 3. Consequently, there is a divergence problem, i.e. two users see
different words. This scenario is termed as the puzzle. Note OT algorithms proposed in [1], [9] and [15] fail in
the scenario of Figure 3.

T(Ins(p1,01,c1),Ins(p2,02,¢2)) =
if (pi<p2)
or (p; =p2 and 01<02)
or (p1 =py and 0y =0y and C(cl)<C(c2))
then return Ins(pi,o01,¢1)
elseif (pi>p2)
or (p1 =p2 and 01>07)
or (p1=p; and o =02 and C(cl)>C(c2))
then return Ins(ps +1,01,¢1)
else return nop
endif;

Figure 4: OT for two insert operations with additional information.

Some works have noticed and addressed the puzzle P; by trying to propose correct OT algorithms [12, 4, 6].
To avoid the puzzle scenario these works extend the conventional transformation by using additional parameters.
For instance, in [4], the insert operation becomes Ins(p, o, ¢) where p is the actual position and o is the original
position defined at the generation of this operation (see Figure 4).

Using this additional information is not sufficient to solve the puzzle problem since, unfortunately, there
are scenarios where Cy condition is still violated. In presence of additional information in OT algorithms, such
scenarios are very difficult to guess. Consider for example in Figure 5, five sites that start from the same state
“abcd”. At site 1, user 1 executes op; = Del(1) followed by opy = Ins(3,3,z). Operations ops = Ins(3,3, )
and opy = Del(3) are concurrently executed in sites 4 and 5, respectively. Users in sites 2 and 3 do not generate
any operation, but receive and execute all remote operations in different orders. As shown in Figure 5, the four
operations in this scenario are broadcasted in the following orders: (i) op1, ops, ops and ops at site 2; (ii) op1,

op4, opz and opy at site 3.
user 1 user 2 uger 3 user 4 user 5
op, Op; Op,

Del(1y — Del(1) Del(1) s Ing(3,3.x) Del(3)

acd acd acd

Op, op’s op’y
ns(3.3,%) Ins(2,3.%) Del(2)

op”y, Op*s
Del(3) Ing(2,3.x)

Op*y op*,
Ins(3,3.x) nop

Figure 5: The C5 puzzle Ps.
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Dite 1 Bite 2 Bite 3 Site 1 Site 2 Site 3
4 4 = )4 X )4
=1 1,cl opg = Ingpl,c opa = Ingp2,cd
op1 = Ins(p ,cg_\ ik 12 = Ingpl, e ?_p =(p2,c2)
) K 7
i i Fd
L] I I
i ! L L1 i
1 I T
1 1 1
H L } !
i ] 1
H 1 I
1} 1 -, :
5 H op1 = Instpd,ela] s, i
1 . ’
. 4 5 La ;
5 ; 5 g
., S . -
LT Sy A AUy R SRR .
op’1 = Inglp,cl) op’y = Inglp,c2) op’1 = Ing(pcl) op’z= Ins(p,cd)
¥ Y ¥

(a) Same definition contexts (b) Different definition contexts

Figure 6: Conflict situations.

Now consider what will happen at sites 2 and 3. At site 2, when op; is received it is executed without
transformation. When ops arrives, it is transformed against op; resulting in op} = Ins(2,3,z). Then ops arrives
and is transformed according to the sequence [op;; op}]: transformation against op; results in op) = Del(2), then
op} against to opj gives op] = Del(3). As opy has already seen the execution of op; (op1 — op2), then it will be
only transformed according to the sequence [op}, op}f]. Transforming op, against op} produces op) = Ins(4,3, ),
and op) against to op] results in opy = Ins(3,3,z). Execution of op} leads to state “acxx”.

At site 3, the integration of op; is made without transformation. When receiving opy, it is transformed
against op; resulting in op}y = Del(2). Next, ops arrives and is integrated according to [op1;op}]: transforming
against op; gives oph = Ins(2,3,z) and op} against op} results in op} = Ins(2,3,z). In the same way, ops will
be only transformed according to the sequence [opy;opy]. The first transformation with respect to opj gives
opy = Ins(2,3,z) which is next transformed against to op§ and becomes nop since oph and op} are identical.
At the end, the state obtained is “acx”.

Thus transforming op, according to two equivalent sequences, [op};op)] and [op); oph], results in different
operations and leads to different states. Consequently, C} is still violated even by using an additional information
like the original position. Note that even OT algorithms proposed in [12] and [6] fail to achieve convergence in

the scenario of Figure 5.

3.2 Analyzing the problem

3.2.1 Conflict Situations

As seen in the above examples the conflict occurs only when two concurrent insert operations are involved. In
Figure 6, we give two conflict situations where there are three sites starting with the same initial document state
X. In both situations, there are two concurrent insert operations op; and ops that are generated at different
sites and may have or not the same original insertion positions. In the first one (see Figure 6(a)), op; and
op2 have the same generation context, i.e. DC(opy) at site 1 is the same than DC(op2) at site 3. In site 2,
a sequence of operations has been executed and operations are stored in a log denoted by L. The operations
of L are concurrent to op; and op,. At site 2, op; and ops may arrive in different orders after L. As their
execution context at site 2 is different from their definition context, they must be transformed against L. Unlike
the first situation, op; and ops do not have the same generation context in the second one (see Figure 6(b)).
In site 1, op; has already seen a subsequence L; of operations executed in site 2. Consider L the log executed
in site 2 and which consists of L; followed by L,. After L the arrival order of op; and op, is arbitrary: op;
and ops must be transformed against Ly and L respectively. In both situations, this transformation results in
two insert operations op} and op), having the same position p, and two possible sequences of operations can be
executed after L: [op]; T(opy, op})] and [oph; T'(op}, oph)]. Note that op] and op} are in conflict whereas maybe
the original operations op; and ops are not.

The transformation process may lead two concurrent insert operations (with different original insertion
positions) to get into conflict. Unfortunately, the original relation between the positions of these operations
is lost because of their transformations with other operations. Therefore, we need to know how the insert

operations were generated in order to avoid divergence problems.
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3.2.2 Using Extra Information

Many OT algorithms [1, 9, 12, 4] use extra informations to resolve the conflict between two insert operations,
such that: identifiers of sites [1, 9], character code [12] and original positions [4]. Now we try to fix and analyse
this problem. Let 7 be the extra information used for every insert operation. Given two equivalent sequences
s1 = [Ins(1,c1); Del(2)] and s = [Del(1); Ins(1,c1)], and an insert operation op = Ins(2, cz) where ¢; and ¢y
are any characters. Transforming op according to s; does not create conflict since the position of op is only
shifted when it is transformed against Ins(1,c¢;) (see Figure 4). Note that in this case no extra information is
used. When transforming op according to s, it generates conflict between two insert operations. The resolution
of this conflict is not deterministic and may lead to many results (nop, Ins(1,z) or Ins(2,z)) depending on the
extra information Z that was employed. For instance, if 7 is the character code C then we have to compare ¢;
and ¢y (see Figure 4).

In the first example (see Figure 3), that corresponds to the first conflict situation, the puzzle P is due to
two original insertion operations, which are generated on the same document state and not in conflict because
they have not the same insertion positions. Z, i.e. the character code, fails to avoid the puzzle problem because
two insert operations are considered as identical and consequently the position of op is not shifted unlike the
sequence s1. If 7 is the original position then op is transformed against sy in the same way than in s; (the
position of op is also shifted).

In the second example (see Figure 5), that corresponds to the second situation of conflict, the puzzle P
is due to two original insert operations that are concurrent and not defined on the same document state.
Unfortunately, Z (original position) fails to shift op position because two insert operations are still considered
as identical.

In this paper, we propose a new approach to solve the divergence problem. Intuitively, we notice that storing
previous insertion positions for every transformation step is sufficient to recover the original position relation
between two insert operations.

4 Our Solution

In this section, we present our approach to achieving convergence. Firstly, we will introduce the key concept of
position word for keeping track of insertion positions. Next, we will give our new OT function and show how
this function resolves the divergence problem. Finally, we will show the correctness of our approach.

4.1 Position Words

For any set X of symbols called an alphabet, ¥* denotes the set of all words of symbols over 3. The empty word
is e. For w € ¥*, then |w| denotes the length of w. If w = uw, for some u, v € *, then u is a prefiz of w and v is
a suffiz of w. A word w € ¥* can be considered as a function w: {0,..., |w| — 1} = X; the value of w(¢), where
0 < i < |w|—1, is the symbol in the ith position of w. For every w € £*, such that |w| > 0, we denote Origin(w)
(resp. Current(w)) the last (resp. first) symbol of w. Thus, Current(abede) = a and Origin(abede) = e.
Assume ¥ has an alphabetic (linear) order. If wy, wy € X*, then wy < wo is the lezicographic ordering of X* if:
(i) wy is a prefix of wa, or (ii) wy = pu and wy = pv, where p € X* is the longest prefix common to wy and ws,
and Current(u) precedes Current(v) in the alphabetic order.

Definition 4.1 (p-word)

Let ¥ = N be an alphabet over natural numbers. The set P C N* of words, called p_words, is defined as
follows: (i) € € P; (ii) if n € N then n € P; (iii) if w is a nonempty p-word and n € N then nw € P iff either
n = Current(w) or n = Current(w) £ 1.

Theorem 1 Let w;, and ws be two nonempty p-words. The concatenation of wy and ws, written wy -ws or simply
wiwa, is a p-word iff either Origin(w;) = Current(ws) or Origin(w,) = Current(wy) £ 1.

Proof. 1 We proceed by induction on the length of w1 :
e Basis step: |wi| =1 and w1 consists of a natural number n. Then nwy is a p-word by Definition 4.1.
e Induction hypothesis: if |w1| <1 then wiws is a p-word.

e Induction step: Let |wi| = 1+ 1. Then w1 = mp is a p-word for some m € N and p € P such that
lpl = 1. We have: wiws = (mp)ws = m(pwsy) since concatenation is associative. By Definition 4.1 and the
induction hypothesis we conclude wiws is a p-word.

RR n° 5188



10 Imine & al.

T(Ins(l’laclawl),Ins(pz,cz,wz)) =
let a;=PW(Ins(p1,c1,w1)) and
ao=PW (Ins(pa, c2,w2))

if (a1 <a2 or (an =as and C(c1)<C(c2)))
then return Ins(pi,ci,w)
elseif (a; = as or (a1 =as and C(c1)>Clcr)))
then return Ins(ps +1,c1,prwr)
else return nop(Ins(py,ci,w;y))
endif;

T(Ins(p1,c1,w1),Del(p2)) =

if p;>ps then return Ins(pr —1,c1,prwr)

elseif pi<p, then return Ins(pi,ci,wr)
else return Ins(pi,ci,prwr)

endif;

T(Del(p1), Del(pz)) =

if pi<ps then return Del(p;)

elseif pi>py then return Del(p; —1)
else return nop(Del(py))

endif;

T(Del(pl)ﬂlns(p25027w2)) -

if pi<ps then return Del(p;)
else return Del(p; +1)
endif;

Figure 7: New OT function.

O
For example, w; = 00, wy = 1232 and wiws = 001232 are p-word but wz = 3476 is not.

Definition 4.2 (Equivalence of p-words)
The equivalence relation on the set of p_words P is defined by:
w1 =p wa & Current(wy) = Current(wz) and Origin(w;) = Origin(ws), for w1, ws € P.

Proposition 1 (Right congruence)
The equivalence relation =p is a right congruence, that is, for all p € P:

W1 =p W2 <& W1p =p Wap

The proof of this proposition is based on Definitions 4.1 and 4.2.

4.2 OT Function

We extend the insert operation with a new parameter that contains a p-word giving the positions occupied before
every transformation step. Thus an insert operation becomes: Ins(p,c, w) where p is the insertion position, ¢
the character to be added and w a p-word. Let Char be the set of characters. We define the set of editing

operations as follows:
O = {Ins(p,c,w)|p€ N and c € Char and w € P}

U{Del(p) |p € N}

We use an undefined function nop : O — O to represent null operation, i.e. the operation that has no effect
on a document state. We also define a function PW which enables to construct p-words from editing operations.
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It is defined as follows:

PW : O-—=7P

p ifw=c¢
pw if w # € and
PW(Ins(p,c,w)) = (p = Current(w)

or p = Current(w) £ 1)
€ otherwise

and PW(Del(p)) = p. By convention, we pose PW (nop(op)) = PW (op) for every operation op € O. Initially
when an insert operation is generated locally it has an empty p-word parameter; hence such an operation is of
type Ins(p,c,e).

Definition 4.3 (Insertion equivalence).
Given two insert operations op1 = Ins(pi,c1,w1) and ops = Ins(pa,ca,ws). We say that opy and ops are
equivalent iff:

1. ¢1 = ¢o; and,

2. PW(op1) =p PW(op2).

>From this definition we can deduce that op; and ops have the same insertion position since their p-words
are equivalent.

Based on divergence problems illustrated in Section 3, we redefine OT function by using the p-word concept.
In Figure 7, we give all possible transformations regarding Ins and Del. Note the use of PW function is
only used to handle insert operations. Given an insert operation op, PW (op) gives a p-word which restores
all positions occupied by the insert operation op since it was generation. We first compare the PW values
of Ims(py,c1,w;) and Ins(py,cz,wy) 1. If their p-words are equal, then we compare their character codes.
When we have the same character to be inserted in the same position then the OT function gives the null
operation nop, i.e. one insert operation must be executed and the other one must be ignored [12]. Moreover,
the transformation of nop is not mentioned in Figure 7, but this case is very simple. Indeed, for every editing
operations p,p’ € O we complete the definition of T by:

nop(T (op, op'))

!

T (nop(op), op')
T(op',nop(op)) = op

Definition 4.4 (Conflict relation).

Given op1 and ops two concurrent insert operations defined on the same context (DC(op1) = DC(op2)). Then
op1 and ops are in conflict, denoted op; ® opy iff PW(op1) = PW (op2). We denote by op1 © opa the fact that
they do not conflict.

In other words, according to Definition 4.4, two concurrent insert operations op; and ops are not in conflict
iff their p-words are different, i.e. either PW (op1) < PW (op2) or PW (op1) = PW (op2).

4.3 Examples

In this section we apply our proposed algorithm on the puzzles previously presented in section 3.

Figure 8 illustrates the replay of Cy puzzle. When op; is received on site 2, it is transformed according to
ops, producing the same operation opj with an updated value of p-word parameter equals to [2]. At site 3,
op- is integrated by being transformed according to ops. Its deletion position is increased. Thus, the resulting
operations is opy = Del(3).

When op; is received on site 2, it must be transformed according to the sequence [op2, op}] as follows :

op1 op2 opy
T(Ins(3, f,€), Del(2)) = Ins(2, f,[3])

Resulting from the transformation, the insert position decreases and the p-words value is equals to the insert
position of op; .

L Current(PW (op)) gives the current position of the insert operation op.
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user 1 user 3

user 2
core core core
Op, Op, Op;
Del(2)

Ins(3.f, ) Ins(2.f, &)

corfe

op*
Del(3)

cofe
Op™y

Ins(3,x,[2.3]) Ins(3.x,[4.3])

Figure 8: Correct execution of Cy puzzle P;.

’ 7 11
opy 01)3 opy

T(Tns@ 1,130, Tns 2. £, [2]) = Tns(3.2,[2.3])

As the insert position are equals, p-words values are compared: p-word of op} is greater than p-word of opj, so
the insert position must be increased.

It is important to note, using p-words that the transformation function has been able to detect that the two
operations were different at their originating sites. Thus, the resulting transformation is not a null operation
nop contrary to the execution in subsection section 3.1.

In the same way, at site 3, op; is integrated by computing the following transformations according to the
sequence [ops; oph]:

/
op1 op3 opy
A A

T(Tns(3, 1,0), Tns(2, f,0)) = Tns(4, 1, 13])

The transformation increases the insert position and updates the p-word value to the old insert position.

op} opy opY
T(Ins(4, f,[3]), Del(3)) = Ins(3, z,[4.3])

The insert position is decreased, and the old insertion position is prepended to the p-word value.

Finally, we obtain the same operations on site 2 and site 3; p-words are equals according to Definition 4.2.

Figure 9 shows replay of another more complex puzzle, that has never been solved by other algorithms
before. According to subsection 3.1, the mistake appeared on site 3, from the transformation T (op2, [op}; op}])
which was evaluated to nop. Now, with our solution, this transformation is computed as follows:

ops o opy
——— N ——
T(Ins(3,z,¢€),[Del(2); Ins(2,z,[2.3])])
opg opy

= T(Ins(2,z,[3)), Ins(2, z,[2.3))) = Ins(3,,[2.3]))

Execution of resulting op) gives the correct state "acxx" on site 3, which converge with the state obtained
in site 2.

INRIA



Achieving Convergence with OT in Groupware Systems

user 1 user 2 uger 3 user 4 user 5
Op, Op; Op,

Del(1y — Del(1) Del(l) Ing(3.%, ) Del(3)

Op, op’s Op’,

Ins(3.%, 2) Ins(2 x,[3]) Del(?.)

Op 4 op*,
Del(3) Ing(2,%,[2.3])

Ins(3 S H Rl ol

@

Figure 9: Correct execution of Cy puzzle Ps.

4.4 Correctness

In the following, we give the correctness of our approach by proving that:
1. our OT function does not lose track of insertion positions;
2. original relation between two insert operations is preserved by transformation;

3. conditions C; and Cy are satisfied.

4.4.1 Conservation of p-words

In the following, we show that our OT function does not lose any information about position words.

Lemma 1 Given an insert operation opy = Ins(p1,c1,w1) such that PW (op1) # €. For every editing operation
op € O, PW(op1) is a suffix of PW (T (op1,0p)).

Proof. 2 Let opy = T(op1,0p) and PW (op;) = prwi. Then, we consider two cases:
1. op = Ins(p,c,w): Let oy = PW(op1) and as = PW (op).

o if (an < @z or (a1 = as and C(c1) < C(c))) then opy = op:;

o if (ay > ay or (an = ay and C(cy) > C(c))) then opy = Ins(py + 1,¢1,w1) and pyw; is a suffiz of
PW (op1);

e if C(c1) = C(c) then op| = nop(op1) and PW (op;) = PW (nop(op1)).
2. op = Del(p)
e if p1 > p then op| = Ins(pr — 1,c1,prws) then prw; is a suffiz of PW (op));

e if p1 < p then op| = ops;
e if p1 = p then op} = Ins(p1,c1,prw1) and prw; s a suffiz of op}.

O
The following theorem stipulates that the extension of our OT function to sequence, i.e. T*, does not lose
any informations about position words.

Theorem 2 Given an insert operation opr = Ins(pi,c1,w1) such that PW(op1) # €. For every operation
sequence seq, PW (op1) is a suffizx of PW(T*(op1, seq)).
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Proof. 3 Assume n is the length of seq. We proceed by induction on n.
e Basis step: n = 0. Then seq is empty and we have T*(op1,[]) = op1.
e Induction hypothesis: for n >0, PW(op1) is a suffix of PW (T*(op1, seq)).

e Induction step: Let n + 1 the length of seq. Then seq = [seq';op] is sequence formed by a sequence seq’
whose the length is n and some editing operation op € O. We have T*(op1,[seq’;0p]) = T (T*(op1, seq'), op).
By using Lemma 1, PW (T*(op1, seq')) is a suffix of PW (T*(op1,[seq'; op])) = PW (T(T*(op1,seq"), op)).
By induction hypothesis and the transitivity of suffix relation, we conclude that PW (op1) is a suffix of
PW (T*(op1, seq)) for every sequence of operations seq.

O

4.4.2 Position Relations

We can use the position relations between insert operations as an invariance property which must be preserved
when these operations are transformed and executed in all remote sites. We define this property as follows:

Definition 4.5 (Invariance property). Given two concurrent insert operations opr and ops, and let opj and
opY be their transformation forms respectively at given remote site:

e if PW(op1) = PW (op2) then PW (op}) = PW (op));
e if PW(op1) < PW (op2) then PW (op}) < PW (op}).

According to Definition 4.4, we can deduce that two insert operations do not conflict if their position words
are different. In the following, we show the correctness of our OT function (Figure 7) with respect to the
invariance property.

Lemma 2 Given two concurrent insert operations op1 and ops. For every editing operation op € O:
op1 ® ops = T(op1,0p) © T (ops,0p)
This lemma shows that our OT function preserves the invariance property.

Proof. 4 We have to consider two cases: op = Ins(p,c,w) and op = Del(p). For instance, consider the
following case : opy = Ins(py,c1, w1) and opa = Ins(p2,ca2, w3) such that op = op; and PW (op1) < PW (op2).
We have the following transformations:

1. op} = T(op1,0p) = nop(op1);
2. oph = T (opa,0p) = Ins(pa +1,¢1,pows)

We can conclude that PW (op}) < PW (op}). Since the p-word order between op; and opy is arbitrary and p is
any editing operation, we have to consider all possible cases. The complete proof is verified by a theorem prover.
([l

The following theorem shows that the extension of our OT function to sequence, i.e. T*, preserves also the
invariance property.

Theorem 3 Given two concurrent insert operations opy and ops. For every sequence of operations seq:
op1 © opy = T"(op1,seq) ® T*(op2,seq)

Proof. 5 Suppose n is the length of the sequence of operations seq. It is sufficient to show this theorem by
induction on n.

e Basis step: for n =0 we have T*(op1,[]) = op1 and T*(ops,[]) = op2.
e Induction hypothesis: if n > 0 then opy ® opy = T*(op1, seq) © T*(ops, seq).

e Induction step: Let n + 1 be the length of seq. Then seq = seq'; op is sequence formed by a sequence seq'
whose the length is n and some editing operation op € O. We have:

T*(op1,[seq; op]) = T(T*(op1, seq'), 0p) and
T*(opa, [seq'; op]) = T(T™* (opa, seq'), op)

After this rewriting, we can use induction hypothesis and Lemma 2 for this proof.
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4.4.3 Convergence Properties

In [9, 12] the authors define convergence conditions and have shown that an OT technique can achieve conver-
gence for arbitrary operation execution order if the OT function satisfies the convergence conditions C; and Cs.
In the following, we sketch the proof that Cy and C5 are verified by our transformations and we can therefore
conclude that it achieves convergence.

Based on p-word concept and our OT function, we define a total order on editing operations.

Definition 4.6 (Total order). We define the strict part of a total order on the set of operations with the
same contexts as follows: Given two concurrent editing operations opy and opy such that DC(op1) = DC(op2).
op1 C op2 iff one of the following conditions holds:

1. Current(PW (op1)) < Current(PW (op2));

2. opr = Ins(p1,c1,wr), ops = Ins(pa, c2, w2) and PW (op1) < PW (op2);

3. op1 = Ins(p1,c1,w1), op2 = Ins(pa, ca,wa), PW(op1) = PW(op2) and C(c1) < C(Cy);

4. opr = Ins(p1,c1,w1), opa = Del(p2) and p1 = po.

Based on the total order C, we define the function T PW (op1, op2) which gives the p-word of T'(op;, ops):

TPW : Ox0O-—>7P
( PW (op1) if op1 C ops

w1 - PW(op1) if ops C op1 and

op1 = Ins(p1,c1,w1) and

opy = Ins(ps, ¢, ws)
we - PW(opy) if ops C op; and

op1 = Ins(p1,c1,w)
TPW(p1,p2) = A« and opz = Del(p2)
w1 if ops C op; and

op1 = Del(p;) and

op2 = Ins(pa, ca, w)
wa if ops C op1

and op; = Del(p1)

and op2 = Del(p2)

where:

w1 = Current(PW(op)) + 1
we = Current(PW (op2)) — 1

The following theorem shows that our OT function satisfies Cj.

Theorem 4 (Condition C,).
Given any editing operations op1,op2 € O and for every document state st:

st  [op1; T (op2, 0p1)] = st ® [opa; T(0p1, 0p2)].

Proof. 6 Consider the following case: op1 = Ins(pi,c1,w1), opa = Ins(pz,ca,w2) and opy T ops. According
to this order, c1 is inserted before co. If opr has been erecuted thenm when ops arrives it is shifted (ophy =
T (op2,0p2) = Ins(pa + 1, c1,p2w2)) and opl, inserts ca to the right of c1. Now, if opy arrives after the execution
of op2, then opy is not shifted, i.e. op} = T(op1,0p2) = op1. The character ¢y is inserted as it is to the left of
ca. Thus executing [op1, oph] and [op2,op]] on the same document state gives also the same document state. (]

Transforming an insert operation along two equivalent sequences produces two insert operations that are
equivalent.

Theorem 5 Given an insert operation op = Ins(p,c,w). For every editing operations opy,ops € O, T*(op, [op1; oph)
and T*(op, [op2; op}]) are identical where op) = T(op1, op2) and ophy = T (opa,op1).
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Proof. 7 Consider the case of opy = Ins(p1,c1,w1), ops = Del(p2), p1 = ps and p > py + 1. Using our
OT function (see Figure 7), we have op| = T(op1,0p2) = Ins(p1,c1,prw1) and opy, = T(op2,0p1) = Del(p2 +
1). When transforming op against [Ins(p1,c1,wz); Del(p2 + 1)] we get op' = Ins(p,c,(p + 1)pw) and when
transforming op against [Del(p2); Ins(p1,c1,prwi)] we obtain op” = Ins(p,c,(p — 1)pw). Operations op’' and
op” have the same insertion position and the same character. It remains to show that PW (op') =p PW (op").
Asp(p—1)p =p p(p+ 1)p and the equivalence relation =p is a right congruence by Proposition 1 then op’ and
op" are identical. O
Theorem 6 shows that our OT function also satisfies Cs

Theorem 6 (Condition C,).
If the OT function T satisfies Cy then for every concurrent editing operations opy, ops, ops € O:

T*(op1, [op2; T (ops, op2)]) = T*(op1, [ops; T (op2, ops)])

This theorem means that if T satisfies conditions C; then when transforming op; against two equivalent
sequences [opz2; T (ops, op2)] and [ops; T (op2, ops)] it will produce the same operation.

Proof. 8 To prove Theorem 6, we use the total order C and the function TPW defined above. Let op1, opa
and ops be three concurrent editing operations. Assume that op; T ops and opy T ops. Let oph, = T(ops,0ps),
opy = T(ops,0p2), op}' = T (op1,0p2) and op?' = T(op1,0ps). Using Lemma 2, we can show that op;’ T oph and
op?' T oply. With this order we can determine p-word of opi' and op?', as follows: PW (opl') = PW (op,) and
PW (op?") = PW (op1). Due to opi' C oph, when computing opi” = T (op}', oph) we have PW (op}") = PW (op1).
Then when computing op?" = T (op?',oph), due to op?' C oply, we have PW (op3") = PW (op;). Consequently,
this case satisfies condition Cs since opi" = op?'". O

The complete proofs of Theorems 4, 5 and 6 are automatically checked by a theorem prover.

5 Related Work

Since Cy puzzle [9] was discovered, a lot of propositions has been proposed to address this problem. Proposed
solutions can be categorized in two categories.

The first approach try to avoid Cs puzzle scenario. This is achieved by constraining the communication
among replicas in order to restrict the space of possible execution order. For example, SOCT4 algorithm [17]
uses a sequencer, associated with a deferred broadcast and a sequential reception, to enforce a continuous global
order on updates. This global order can also be obtained by using an undo/do/redo scheme like in GOTO [14].

The second approach deals with resolution of the Cy puzzle. In this case, concurrent operations can be
executed in any order, but transformation functions require to satisfied the Cy condition. This approach has
been developed in aDOPTed [9], SOCT?2 [12], GOT [15]. Unfortunately, we have proved in [4] that all previously
proposed transformation functions fails to satisfy this condition.

Recently, Li and al. [6] have tried to analyze the root of the problem behind Cs puzzle. We have found that
there is still a flaw in their solution. Consider three concurrent operations op; = Ins(3,x), ops = Del(2) and
ops = Ins(2,y) generated on sites 1, 2 and 3 respectively. They use a function 8 that compute for every editing
operation the original position according to the initial document state. Initially, S(op1) = 3, B(op2) = 2 and
B(ops) = 2. We obtain the following transformation:

1. op} = T(op1,0p2) = Ins(2,z) and,
2. opi = T(ops,op2) = Ins(2,z).

The mistake is due to the definition of their § function. Indeed, their definition relies on the exclusion
transformation function, which is the reversed function of the “basic” transformation one, i.e. T. As this reverse
function is not always defined [14], due to the non-inversibility of T', op} and op} are regarded as two insert
operations in conflict. Indeed, we lose the original relation between op; and opy since S(op}) can be equal to 2
or 3 when it is computed according to ops. Consequently, the convergence property cannot be achieved in all
cases.
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6 Conclusion

OT has a great potential for generating non-trivial state of convergence. However, without a correct set of
transformation functions, OT is useless. In this paper we have pointed out correctness problems of the existing
transformation functions and proposed a formal and generic solution to solve them.

We can now use our generic solution to write transformation functions for more complex object types such
as XML trees. We also apply our formal results in the development of a file synchronizer [8]. This tool is able
to safely synchronize files and their contents (text, XML, ...), ensuring convergence in all cases.

In future work, we plan:

¢ to deal with the semantic convergence by using OT approach [16];

e to explore the impact of our approach when undoing operations [9].
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