-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Hierarchical token based mutual exclusion algorithms

Marin Bertier, Luciana Arantes, Pierre Sens

» To cite this version:

Marin Bertier, Luciana Arantes, Pierre Sens. Hierarchical token based mutual exclusion algorithms.
[Research Report] RR-5177, INRIA. 2004. inria-00071411

HAL 1d: inria-00071411
https://hal.inria.fr /inria-00071411
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50453347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00071411
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5177--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Hierarchical token based mutual exclusion
algorithms

Marin Bertier — Luciana Arantes, Pierre Sens

N°® 5177
Avril 2004

THEME 1

apport
derecherche

Zd I N RIA

ROCQUENCOURT

Hierarchical token based mutual exclusion algorithms

Marin Bertier*' | Luciana Arantes, *' Pierre Sens *'

Théme 1 — Réseaux et systémes
Projet REGAL

Rapport de recherche n® 5177 — Avril 2004 — 20 pages

Abstract: Mutual exclusion is a basic block of distributed synchronization algorithms.
One of the challenge in highly distributed environments (like peer-to-peer or Grid configu-
rations) is to provide scalable synchronizations taking into account the hierarchical network
topology. This paper proposes hierarchical mutual exclusion algorithms. These algorithms
are extensions of the Naimi-Trehel’s token algorithm, reducing the cost of latency and the
number of messages exchanges between far hosts. We propose three main extensions : (1)
hierarchical proxy-based approach, (2) aggregation of requests, and (3) token preemption
by closer hosts.

We compared the performance of these algorithms on an emulated Grid testbed. We
study the impact of each of the extensions, showing that the combination of them can
greatly improve performances of the original algorithm.

Key-words: experiement, mutual exclusion, token, hierarchical, grid

* Laboratoire d’Informatique de Paris 6, CNRS
T INRIA

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

algorithme hiérarchique d’exclusion mutuelle & jeton

Résumé : L’exclusion mutuelle est un bloc de base de ’algorithmique de synchronisation
distribué. Un des défis dans les environnements fortement distribués (comme le pair-a-pair
ou les configurations de grille) est de fournir des synchronisations scalable tenant compte de
la topologie hiérarchique du réseau. Ce rapport propose des algorithmes d’exclusion mutuelle
hiérarchiques. Ces algorithmes sont des extensions de ’algorithme & jeton de Naimi-Trehel,
réduisant le colt de la latence et du nombre de messages échangés entre les sites distant.
Nous proposons trois extensions principales: (1) approche basée sur des proxys hiérarchique,
(2) Vagrégation des demandes, et (3) la préemption par des sites locaux.

Nous avons comparé ’exécution de ces algorithmes sur un banc d’essai émulé de grille.
Nous étudions 'impact de chacune des extensions, montrant que leur combinaison améliore
considérablement les performances de ’algorithme original.

Mots-clés : expériementation, exclusion mutuelle, jeton, hierarchique, grille

Hierarchical token based algorithms 3

1 Introduction

Basic classical algorithms are commonly used by distributed applications. However, with
the emergence of peer-to-peer and Grid computing, these applications spread over a larger
number of nodes. Furthermore, in such environments latency gaps between hosts intercon-
nects are very important. Therefore, distributed algorithms should be adapted to take into
account those characteristics. A well-known example of such algorithms is mutual exclusion
algorithm, which ensures exclusive access to a shared resource.

Many algorithms have been proposed to solve the problem of mutual exclusion in dis-
tributed systems. They can basically be divided into two groups: permission-based (Lam-
port [1], Ricart-Agrawala [2], Carvalho-Roucairol [3], Maekawa [4]) and token-based (Suzuki-
Kazami [5], Raymond [6], Naimi-Trehel [7], Neilsen-Mizuno [8]|, Chang, Singhal and Liu
[9]). The first group of algorithms are based on the principle of consensus between hosts,
i.e., a host gets into a critical section only after having received permission from all other
hosts. In the secong group of algorithms, a system-wide unique token is shared among
hosts and the possession of it gives a host the exclusive right to enter into the critical
section. Permission-based algorithms generally suffer from limited scalability. In contrast,
token-based algorithms have an average low message cost and usually result in logarithmic
message complexity O(log(N)) with regard to the number of hosts.

The majority of O(log(N)) token-based algorithms are tree-based, i.e., a logical tree
structure expresses the different token requests and token propagation paths at a given
time. Raymond’algorithm [6] organizes the hosts in a static logical tree structure. This
tree remains unchanged, but the direction of its edges can change dynamically as the token
propagates. Consequently, the directions of the edges always point to the possible token
holder. Neilsen and Mizuno [8] extended this algorithm by passing the token directly to
the requesting host instead of through intermediate hosts. Naimi-Trehel’s algorithm [7]
maintains a dynamic logical tree, such that the root of the tree is always the last host that
will get the token among the current requesting ones. Chang Singhal and Liu [9] improved
this algorithm, aiming at reducing the number of messages to find the last requesting host
in the logical tree. Mueller [10] also proposed an extension to Naimi-Trehel’s algorithm,
introducing the concept of priority in it. A token request is associated with a priority and
the algorithm first satisfies the requests with higher priority.

Although all those O(log(N)) token-based algorithms achieve better performance with
respect to the average number of messages exchanged per critical section entry when com-
pared to other mutual exclusion algorithms, they do not consider latency differences in hosts
interconnects. We propose distributed token-based mutual exclusion algorithms, based on
Naimi-Trehel’s algorithm, which takes into account network topology, specially the latency
gap between local and remote clusters of machines. Our algorithms reduce the numbers of
inter-cluster messages and give a higher priority to local mutual exclusion requests. We have
chosen to adapt Naimi-Trehel’s algorithm because it uses a changeable logical tree structure
to control mutual exclusion requests. This dynamic property of the tree is strongly exploited
in our solution in order to tolerate higher latencies.

RR n° 5177

4 Bertier € Arantes € Sens

It is worth reminding that some authors [11] [12] have proposed mutual exclusion al-
gorithms where nodes are, for some reason, gathered into groups. They basically propose
hybrid approaches where the algorithm for intra-group requests is different from the inter-
group one. However, they do not consider difference in network latency between hosts as a
factor for grouping hosts. In [13], the authors propose to adapt the mutual exclusion mecha-
nism of a DSM system to the latency hierarchy of an interconnection of clusters. Contrary to
our proposal, their solution is based on a centralized token-based mutual exclusion protocol.

In the rest of the paper, we consider a general model where each host has a local memory
and can send messages to any other. Communication between hosts is assumed to be perfect.
Hosts are divided into clusters.

We distinguish local hosts belonging to the same cluster from remote hosts belonging to
remote clusters. Furthermore, the words hosts and nodes are interchangeable.

Section 2 describes Naimi-Trehel’s algorithm. In section 3, we present our hierarchical
versions of Naimi-Trehel’s algorithm, which limit the propagation of requests between clus-
ters. The three extensions to Naimi-Trehel’s algorithm that we propose, per cluster proxy,
aggregation and token preemption, are also described in this section. Section 4 presents
comparative performance evaluation of these algorithms, while the last section concludes
our work.

2 Naimi-Trehel’s algorithm

Naimi-Trehel’s algorithm is a token-based algorithm, which maintains a logical dynamic tree
structure such that the root of the tree is always the last node that will get the token among
the current requesting nodes.

Each node i stores the following variables:

e The owner variable, which represents the probable owner of the token.

e The next variable, which represents the node that will receive the token when the
critical section is released by i.

e The boolean token variable, whose value is true if the process owns the token, or false
otherwise.

e The boolean requesting variable, whose value is true if the process requests the token,
or false otherwise.

The identifier of i is represented by the variable self, while Elected node identifies a
unique node, among all nodes, that initially holds the token.

Figure 1 summarizes Naimi-Trehel’s algorithm.

An example of Naimi-Trehel’s algorithm execution with 4 nodes is shown in figure 2.
Solid lines represent owner links, while dashed ones represent nezt links. The dark node
keeps the token. Initially (a), A is the Elected Node which holds the token. The owner of

INRIA

Hierarchical token based algorithms

RR n° 5177

FEvery node i:

Initialization
resquesting < false
next < 0
owner < Elected _mnode
if owner = self then

token < true

owner < 0
else

token < false

Request__ CS
requesting < true
if owner # () then
{The process hasn’t the token, request for it:}
Send (Resquest, S;) to owner
owner <
Wait for receiving message (T'oken)

Release_CS
requesting < false
if next # () then
Send (Token) to next
token < false
next + 0

Receive_Request_ CS(S;)
{S;j is the requesting process}
if owner = () then
{ Terminal node}
if resquesting = true then
{The node asked for CS}
owner « S;
if next = 0 then
next < Sj
else
{First request to the token since the last CS,}
{directly send the token to the requesting process}
token < false
Send (T'oken) to S;
else
{Non-ternimal node, following the resquest}
Send (Request,S;) to owner
owner < S;

Receive__Token
{Receive the token from node k}
token < true

Figure 1: Naimi-Trehel’s algorithm

6 Bertier € Arantes € Sens

all nodes points to A. In (b), B asks for the token, sending a request to its owner (A4), and
becomes the new root (ownerp = (). Then, A updates its next and owner to point to B.
In (c), C asks A for the token, then the request is forwarded to B which updates its next
to C. Both A and B update their owner to C, since the latter is the last requester of the
token (C' becomes the root of the tree). When A will release the critical section, the token

will be sent to B (next).
(A
&—0

O—0——0 O0—0—~0

o

@ (b) ©

Figure 2: Sample execution of Naimi-Trehel’s algorithm

3 Hierarchical algorithms

Since inter-cluster latencies are higher than intra-cluster ones, the three extensions we pro-
posed to Naimi Trehel’s algorithm is based on the idea of limiting the propagation of requests
between nodes of different clusters. To this end, we apply the following three extensions to
Naimi-Trehel’s algorithm:

e First, we introduce on each cluster, excepting the one that initially holds the token,
a dedicated process, called proxy, which is in charge of storing the last request to
remote clusters. Before asking for a token which it believes belong to a node of a
remote cluster, a node ¢ first sends a request to its corresponding proxy. If another
node j of the same cluster has recently asked for the token and the proxy is aware of
it, the proxy redirects the request to j avoiding transmission to the remote cluster. In
fact, the proxy operates like a cache of remote requests. This hierarchical algorithm
is presented in section 3.1.

e The second extension aims at reducing the number of inter-cluster messages by ag-
gregating remote requests. When a request has to be redirected to a probable owner,
belonging to a remote cluster, the request is not sent to it but stored in a queue.
This queue accumulates therefore requests for remote clusters. It is stored in the last
node which will enter the critical section within the cluster. We name this node the
local _root. We must remind that queuing of requests has been used by other Naimi-
Trehel’s-based algorithms as in [10]. However, in our case, it is applied only for remote
cluster requests.

¢ Finally, we perform a local preemption of the token giving a higher priority to requests
originating from the local cluster in order to exploit cluster locality. We define a

INRIA

Hierarchical token based algorithms 7

threshold that defines the degree of locality and avoids starvation. When the number
of local request is below this threshold, the requesting path is modified in order to
serve local requests first. These last two extensions are presented in section 3.2.

3.1 Proxy-based algorithm

We modify Naimi-Trehel’s algorithm presented in section 2 as follows:

The LocalCluster variable, added on each node 4, identifies the cluster to which node
belongs.

On each cluster C'i, excepting the one that has the Elected node, a node is elected
among C'’s nodes to have a specific initialization role. This node is called the Prozy;.

Initially, the owner variable of Prozy; points to the Elected Node as well as the owner
variable of the nodes that belong to Elected mnode’s cluster. On the other hand, the owner
variable of the other nodes points to the Proxy; of their respective cluster.

Figure 3 summarizes our hierarchical proxy-based version of Naimi-Trehel’s algorithm.

Figure 4(a) presents an example of an initial configuration with two clusters, C0 and C1,
where nodes A, B, and C belong to cluster C0, and nodes D, E and P1 belong to C1. P1
is the Proxy of C1. Initially, A has been elected to have the token (the Elected Node).
We consider that A is in the critical section (CS).

In 4(b), B asks A for the token. A and B belong to the same cluster. Since A is in the
CS, A sets both its owner and next variable to B.

In 4(c), D, which does not belong to the same cluster of the token holder, asks for the
token. It sends then a request to its proxy P1, which redirects the request to A. P1 sets
its owner to D. When arriving at A, the request is forwarded to the root (B) which simply
updates its next and owner variables to D. E asks then for the token. The proxy P1 locally
redirects the request to D which updates its next and owner variables to E. At the end
of each critical section execution, the token will follow the path pointed by next variables.
This scenario shows the advantage of the algorithm since E request was not forwarded to
the remote cluster Cpy, as it would be the case in the original Naimi-Trehel’s algorithm.

3.2 Aggregation and preemption algorithms

We have modified the proxy-based algorithm of the previous section 3.1 to reduce even more
the number of inter-cluster messages. This improvement is based on aggregation of messages
and preemption of the token by local nodes.

On each node i, we added the following variables:

e The R Queue variable, which is a queue of requests issued from remote clusters.

o The nb_preempt variable, which represents the number of local requests that have
preempted requests issued from remote clusters.

Figures 5 and 6 describe the algorithm.

RR n° 5177

Bertier € Arantes € Sens

Every prozy Prozy;:

Initialization
owner < Elected node

Every node i:

Initialization
resquesting < false
next «
if Elected node € LocalCluster then
owner < Elected mnode
if owner = self then
token < true
owner <
else
token < false
else
owner < Proxy;
token < false

Request _CS
{Unchanged }

Release_CS
{Unchanged }

Receive__Request__ CS(S;)
{Unchanged }

Receive__Token
{Unchanged }

Figure 3: Proxy-based algorithm

INRIA

Hierarchical token based algorithms

Co C1

@ @&

(@) Initial configuration A holds the Token

(60} C1

(b) B asksfor CS
Co C1

(c)D and E ask for CS

Figure 4: Hierarchical proxy-based algorithm execution scenarios

RR n° 5177

10

Bertier € Arantes € Sens

FEvery prozy Prozy;:

Initialization
owner < Elected node

FEvery node @:

Initialization
requesting < false
next < 0
R_Queue <+ 0
if Elected node € LocalCluster then
owner < Elected_node
if owner = self then
token < true
owner <
else
token < false
else
owner < Proxy;
token < false

Request _CS

requesting < true

if owner # 0 then
{The process hasn’t the token, request for it:}
Send (Request, S;) to owner
owner < 0
R_Queue «+ 0
Wait for receiving message (T'oken)

Release_CS
requesting < false
if next # 0 then
if next ¢ LocalCluster then
{The token will be sent to a remote}
nb_preempt < 0
if R_Queue #) then
owner < Queue(R_Queue)
else
owner < nexrt
Send (Token, R_Queue,nb_preempt) to next
token < false
next < 0

Figure 5: Aggregation and preemption algorithm: request and release critical section

INRIA

Hierarchical token based algorithms

11

FEvery node i:

Receive__Request__CS(S;) {S; is the requesting process}
if owner = () then {Terminal node}
if resquesting = true then {The node asked for CS}
if next = 0 then
next < S;
if S; € LocalCluster then
owner < S;
else
if S; € LocalCluster and nb_preempt < Threshold then
nb_preempt < nb_ preempt 41 {Local preemption of the token by the sender}
R Queue <+ next + R Queue
next < S;
owner < S;
Send (Queue, R_Queue,nb_preempt) to owner
R_Queue <+ 0
else {Add the sender to the end of R _Queue}
R_Queue < R_Queue + S;
owner < S,
else {First request to the token since the last CS,}
token < false {directly send the token to the requesting process}
Send (Token, R_Queue,nb_preempt) to Sj;
else {Non-ternimal node, following the resquest}
Send (Request, S;) to owner
if S; € LocalCluster then
owner < S;

Receive__Token(R_ Queuey,nb_preempty) {Receive the token from node k}
token <« true
R_Queue < R_Queuer + R_Queue
if k € LocalCluster then
nb_preempt < nb_preempt;,
if next =) then
next «+ Head(Q)
R _Queue < R_Queue — Head(Q)
else
if next € LocalCluster then
Send (Queue, R_Queue,nb_preempt) to owner
R_Queue + 0

Receive_Queue(Q,nb)
nb_preempt < nb
if next = () then
next < Head(Q)
R Queue < R_Queue — Head(Q)
else
if next € LocalCluster then
Send (Queue, R _Queue,nb_preempt) to owner
R_Queue < 0

Figure 6: Aggregation and preemption algorithm: message handlers

RR n° 5177

12 Bertier € Arantes € Sens

Similar to the original Naimi-Trehel’s algorithm, a request for entering a critical section
(CS8) follows the owner’s path until it reaches its local root (the node of the same cluster
whose owner variable is set to), i.e., the last node of the cluster to have requested the
critical section).

When a node receives a request, if it is not a local _root node (owner # (), it forwards
the request and updates its owner (only if the request is issued from the local cluster in order
to avoid redirection to remote clusters). If the receiver is a local root node (owner = ()
which waits for the token (requesting = true), we distinguish two cases: (1) The received
request is the first one since the node waits for the token (i.e. next = (). Then, the next
is set to the requester because after the node obtains and releases the critical section, it
will have to send the token to the requester. The owner is also updated only if the request
came from the local cluster. (2) The next is already set. Since the receiver is a local _root,
the next inevitably points to a remote node. In this case, if the requester is local, and the
number of preemptions is below the threshold, we perform a local preemption of the token
by setting next to the requester and memorizing the old next in the beginning of R Queue.
Each time a node becomes the new local root, the R_Queue is sent to it. The R_Queue
is also included in the token message.

Figures 7 and 8 show some samples of the algorithm’s execution. We consider the same
configuration presented in figure 4(b) where B asks A for the token. A third cluster C2,
with nodes F, G and P2 (Prozxi,) is included in the figure. Threshold of preemption is
equal to 2.

In figure 7(a), the node D asked for the token. It sends a request to its proxy P1,
which redirects it to A, setting its own owner to A. On A the request is propagated to the
local _root (B), which simply updates its next (the owner of A and B are not updated since
the requester is a remote node). Then, F' belonging to cluster Cs asks A for the token. The
request is forwarded to the local _root (B). Since B’s next is already set (next = D), the
requester (F') is inserted in the R_ Queue.

In figure 7 (b), node E of C1 asks for the token. The proxy P1 locally redirects the
request to D (the local root of C1) which updates its next and owner to E. At the same
time, C' reclaims the token. The request is redirected to B. Since B’s next points to a
node of a remote cluster and the number of local preemption is below the threshold, the
next and owner paths are changed: the next and owner of B are updated to designated the
local node C. The old value of B’s next (D) is added at the beginning of R Queue (it is
not shown in the figure). C' is the new local root, receiving then the R Queue. When C
receives the R Queue, it removes the head value of it (= D) and sets its next to this value.

In figure 8(a), A releases the token. It sends it to its next node (B). B releases then the
CS and sends the token to C. A and B set their next to (. In (b), C ends the execution of
the C'S and sends the token with the R _Queue to the remote node D. It also sets it owner
to F. At the end of its section, D will send the token to E according to its next. In (c),
when D ends executing the CS, it sends the token to E and the R Queue. When receiving
the message, E updates its next variable to F'.

INRIA

Hierarchical token based algorithms

13

| e o o e /

(b)E and C ask for CS

Figure 7: Aggregation and preemption algorithm execution: Inter-clusters requests

RR n° 5177

14 Bertier € Arantes € Sens

(a)A thenB end CS

((=O)| "

C1l
e

@ "
(b) C endsCS

OGO

Co C1

E—©)
of

(ccDand Eend CS

of

Figure 8: Aggregation and preemption algorithm execution: Token transmission

INRIA

Hierarchical token based algorithms 15

4 Performance evaluation

This section presents the performance evaluation of several experiments which compare the
efficiency of mutual exclusion algorithms. We compare the six following algorithms:

e Centralized token-based algorithm. In this classical algorithm, a unique host, the
lock _manager, manages all token requests and granting messages. When a host
wants to enter into the C'S, it sends a request to the lock _manager; when a host ends
the CS it gives back the token to the lock manager, which forwards it to the next
requesting host.

e Broadcast algorithm, which implements the permission-based Ricart-Agrawala algo-
rithm [2]. A node wishing to enter into the C'S sends a request to every other node
and waits for their permission. When a node receives a request, it sends its permission
to the requesting node if either it is not requesting itself the token or another node’s
request precedes its own.

o NaimiTrehel algorithm, which implements the Naimi-Trehel’s token-based algorithm
presented in section 2.

e Proxy algorithm, which implements the algorithm presented in section 3.1.

o PreemptAggregation algorithm, which implements the algorithm presented in section
3.2, which provides token preemption and message aggregation approaches.

e Preempt algorithm, which just disables the aggregation mechanism of PreemptAggregation

algorithm.

To emulate a Grid environment with multilevel network latencies, we have used a spe-
cific distributed test platform, that allows injection of network delays. We establish a virtual
router by using DUMMYNET [14] and IPNAT. We use IPNAT, an IP masquering appli-
cation, to divide our network into virtual LANs. DUMMYNET is a flexible tool originally
designed for testing network protocols. It simulates bandwidth limitations, delays, packet
losses. In practice, it intercepts packets, selected by address and port of destination and
source, and passes them through one or more objects called queues and pipes which simulate
the network effects. In our experiment, each message exchanged between two different LANs
passes through this specific host.

4.1 Evaluation experiment configuration

The experiment described in this section was performed on a non dedicated cluster of nine
PCs. We consider a heterogeneous network composed of two Pentium IIT 600 MHz and six
Pentium IV 2 GHz linked by a 100 Mbits/s Ethernet. The algorithms were implemented in
Java (Sun’s JDK 1.4) on top of a Linux 2.4 kernel.

RR n° 5177

16 Bertier € Arantes € Sens

PCs are spread in 3 clusters of 3 hosts. The topology is preliminary known by every
system member as well as the initial owner of the token.

For these experiments, we introduce a delay of 300 ms for inter-cluster communication.
Every involved site produces 20 mutual exclusion requests.

These requests are characterized by :

e « is the time taken by a node to execute the critical section,

e [specifies the mean time between releasing the critical section and requesting it again,
e ¢ is the preemption threshold only for Preempt and PreemptAggregation algorithms.
The performance measures include :

¢ the number of exchanged messages, divided in two categories : messages ex-
changed between two hosts in the same cluster (local messages) and messages between
two hosts of different clusters (global messages).

e obtaining time is the time for an host between the moment when it requests the
critical section and the moment when it get into it.

4.2 Results and Discussion

The aim of these experiments is to observe evolution of the behavior of each algorithm when
the relation between a and f varies and e increases. Figures 9 and 10 show the obtaining
time as a function of a, § and e. Figure 9 compares our PreemptAggregation algorithm
with classical algorithms : NaimiTrehel, Centralized and Broadcast algorithms. While
figure 10 compares the same algorithm PreemptAggregation with our other algorithms :
Proxy and Preempt. The figure 11 compares the number of messages exchanged between
hosts during an experiment where @ = f = 500 ms and table 1 summarizes the same
experiment. To represent in the same figure the number of messages exchanged in the
broadcast experiment, this number of messages is represent by a scale four times greater
than the scale of the other algorithms.

For all algorithms when the ratio a/3 decreases the obtaining time decreases too, simply
because statistically when an host requests the token, there are less requesting hosts and
they stay less time in the C'S. The first remark about these experiments is that for each
algorithm which uses the preemption, the obtaining time decreases when the preemption
threshold increases. We can easily explain this result by the fact that local communication
is cheaper than global communication. As shown in figure 11, the number of local messages
increases when the number of preemption increases while the number of global message
decreases. This also explains why all the algorithms presented in figure 10 are more efficient
than the classical algorithms presented in figure 9.

The PreemptAggregation algorithm is the most efficient algorithm presented here. The
Aggregation mechanism reduces the number of messages exchanged in the Preempt algo-
rithm. In the Prozy algorithm, the fact that initial inter-Lan requests are intercepted by
the local cluster leader allows to decrease the number of global messages.

INRIA

Hierarchical token based algorithms

19

17

15

13

11

Time (s)

—-+- NaimiTrehel []
—&— PreemptAgg

--®-- Centralized ||
-+ -Broadcast

e

+.

- _

A R

01‘2‘3 0‘1 2‘3 0‘1‘2
1500 1000 500
500 500 500

1 ‘ 2 ‘ 3
500
1000

500
1500

Figure 9: Comparison algorithm : obtaining time

-- Proxy
PreemptAgg
- Preempt

a (ms)

B (ms)

RR n° 5177

0 ‘ 1123

1500
500

0 ‘ 1 ‘ 2 ‘ 3|0
1000
500

[1]2]s
500
1000

1500

Figure 10: Comparison algorithm : obtaining time

18

Bertier € Arantes € Sens

Figure 11: Comparison algorithm : Number of messages exchanged

800

700

N 600
b

a
Q
<

voaQ@evoo3

IS
S
<

@
Q
<

N
=1
<

H
1)
<

o

OGlobal
W Local

2159

720

™

o |

Proxy

laimi-Trehel

[2 | s

PreemptAggregation

o [1]

2‘3

Preempt

BroadcasJ
Centralized

Type e | Obtaning time (s) | Average | Total Nb of messages

average | standard path path | local | global | %
deviation | length | length

Naimi-Trehel 7.157 1.351 2.37 419 148 393 | 0.39
| Proxy | | 5858 | 1.016 [235 | 414 [237 [299 |0.84]
0| 6.037 1.186 4.14 731 261 185 | 1.53

PreemptAgg | 1| 4.704 1.757 4.56 806 359 140 | 2.56
2| 4.287 2.269 4.53 804 395 120 | 3.34

3| 3.992 2.573 4.68 840 395 120 | 3.34

0| 5.858 0.999 2.75 486 402 196 | 2.11

Preempt 1| 4.897 2.053 2.69 473 466 124 | 3.76
2 4.640 2.517 2.66 470 477 109 4.37

3 4.540 2.884 2.62 463 482 79 6.12
| Centralized | [10.161 | 1.981 | | | 119 | 353 [0.34]
| Broadcast [| 8.007 | 1.010 | | | 720 [2159 [0.33]

Table 1: Summary of experiement with @ and 8 equals to 500 ms

INRIA

Hierarchical token based algorithms 19

One avantage of the PreemptAggregation algorithm is that global requests are not
transmited to the host which has requested the critical section. Therefore, as long as the
token has not arrived in a cluster, no hosts in the cluster know that a remote host has
requested the token. Consequently, the number of preemption is not limited by e but by
n+¢€ where n is the number of hosts in the cluster. The locality mechanism is more exploited
but the absence of starvation is preserved.

5 Conclusion

We have presented in this paper a new approach to optimize mutual exclusion algorithms
in a GRID environmement. The main idea is to adapt the algorithm according to network
topology in order to confine most communications to intra-cluster. This improvement allows
to optimize the obtaining time of the token at the expense of fairness.

This behavior is particulary shown with the PreemptAggregation algorithm presented
in section 3.2. As we have seen in the performance evaluations, this algorithm allows to
decrease significally the obtaining time with respect to the other algorithms presented but
specially with NaimiTrehel or Centralized algorithms.

References

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com-
munications of the ACM, vol. 21, no. 7, pp. 558564, July 1978.

[2] G. Ricart and A. Agrawala, “An optimal algorithm for mutual exclusion in computer
networks,” CACM: Communications of the ACM, vol. 24, 1981.

[3] O. S. F. Carvalho and G. Roucairol, “On mutual exclusion in computer networks,”
Communications of the ACM, vol. 26, no. 2, pp. 146-147, 1983.

[4] M. Maekawa, “A v/N algorithm for mutual exclusion in decentralized systems,” ACM
Transactions on Computer Systems, vol. 3, no. 2, pp. 145-159, May 1985.

[5] I. Suzuki and T. Kasami, “A distributed mutual exclusion algorithm,” ACM Transac-
tions on Computer Systems (TOCS), vol. 3, no. 4, pp. 344-349, 1985.

[6] K. Raymond, “A tree-based algorithm for distributed mutual exclusion,” ACM Trans-
actions on Computer Systems (TOCS), vol. 7, no. 1, pp. 61-77, 1989.

[7] M. Naimi, M. Trehel, and A. Arnold, “A log (N) distributed mutual exclusion algorithm
based on path reversal,” Journal of Parallel and Distributed Computing, vol. 34, no. 1,
pp- 1-13, 10 Apr. 1996.

[8] M. L. Neilsen and M. Mizuno, “A dag-based algorithm for distributed mutual exclusion,”
in Proceedings of the 11th International Conference on Distributed Computing Systems
(ICDCS), Washington, DC, 1991, pp. 354-360, IEEE Computer Society.

RR n° 5177

20 Bertier & Arantes € Sens

[9] I. Chang, M. Singhal, and M. T. Liu, “An improved log (N) mutual exclusion algorithm

for distributed systems,” in Proceedings of the 1990 International Conference on Parallel
Processing, Aug. 1990, pp. 295-302.

[10] F. Mueller, “Prioritized token-based mutual exclusion for distributed systems,” in
Proceedings of 12th Intern. Parallel Proc. Symposium € 9th Symp. on Parallel and
Distr. Processing, Mar. 1998, pp. 791-795.

[11] I. Chang, M. Singhal, and M. T. Liu, “A hybrid approach to mutual exclusion for
distributed system,” in Proceedings of the 14th IEEE Annual International Computer
Software and Applications Conference, 1990, pp. 289-294.

[12] A. Housni and M. Trehel, “Distributed mutual exclusion by groups based on token and
permission,” in Proceedings of the ACS/IEEE International Conference on Computer
Systems and Applications, June 2001, pp. 26—29.

[13] L. Bouge G. Antoniu and S. Lacour, “Making a DSM consistency protocol hierarchy-
aware: an efficient synchronization scheme,” in Proceedings of the Workshop on Dis-
tributed Shared Memory on Clusters, 2003, pp. 516-521.

[14] L. Rizzo, “Dummynet: a simple approach to the evaluation of network protocols,” ACM
Computer Communication Review, vol. 27, no. 1, pp. 31-41, 1997.

Contents

1 Introduction 3

2 Naimi-Trehel’s algorithm 4

3 Hierarchical algorithms 6

3.1 Proxy-based algorithm o 7
3.2 Aggregation and preemption algorithms, 7
4 Performance evaluation 15
4.1 Evaluation experiment configuration L. 15
4.2 Results and Discussion L. 16
5 Conclusion 19

INRIA

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

