
HAL Id: inria-00071422
https://hal.inria.fr/inria-00071422

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shadow Computations using Robust Epsilon Visibility
Florent Duguet

To cite this version:
Florent Duguet. Shadow Computations using Robust Epsilon Visibility. RR-5167, INRIA. 2004.
�inria-00071422�

https://hal.inria.fr/inria-00071422
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

ap p o r t

d e r echerche

THÈME 3

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Shadow Computations using Robust Epsilon
Visibility

Florent Duguet

N° 5167

April 2004

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Shadow Computations using Robust Epsilon Visibility

Florent Duguet∗

Thème 3 — Interaction homme-machine,
images, données, connaissances

Projets TSI and REVES

Rapport de recherche n° 5167— April 2004 — 109 pages

Abstract: Analytic visibility algorithms, for example methods which compute a subdivided mesh to
represent shadows, are notoriously unrobust and hard to use in practice. We present a new method
based on a generalized definition of extremal stabbing lines, which are the extremities of shadow
boundaries. We treat scenes containing multiple edges or vertices in degenerate configurations,
(e.g., collinear or coplanar). We introduce a robust ε method to determine whether each general-
ized extremal stabbing line is blocked, or is touched by these scene elements, and thus added to
the line’s generators. We develop robust blocker predicates for polygons which are smaller than
ε. For larger values, small shadow features merge and eventually disappear. We can thus robustly
connect generalized extremal stabbing lines in degenerate scenes to form shadow boundaries. We
show that our approach is consistent, and that shadow boundary connectivity is preserved when fea-
tures merge. We have implemented our algorithm, and show that we can robustly compute analytic
shadow boundaries to the precision of our chosen ε threshold for non-trivial models, containing
numerous degeneracies.

Key-words: Computer Graphics, Computational Geometry, Visibility, Lighting, Shadows

∗ INRIA Sophia-Antipolis and Ecole Nationale Supérieure des Télécommunications,Paris

Calculs d’ombres en utilisant l’ ε-visibilité robuste

Résumé : Les algorithmes de visibilité analytique, par exemple les méthodes calculant une subdi-
vision de maillage pour représenter des ombres, sont notoirement fragile, et difficiles à utiliser en
pratique. Nous présentons une nouvelle méthode basée sur une définition généralisée des droites
poignardantes extrêmes, supportées par les extrémités des ombres. Nous traitons des scènes conte-
nant de multiples arêtes ou sommets en configurations dégénérées (par exemple colinéaires ou copla-
naires). Nous introduisons une méthode robuste pour déterminer si chacune des droites poignardante
extrême est bloquée, ou est touchée par les éléments de la scène, et ainsi ajoutés à l’ensemble des
générateurs de la droite. Nous développons des prédicats de blocage robustes pour les polygones
plus petits qu’ε. Pour des valeurs d’ε plus grandes, les détails des ombres fusionnent et finissent
par disparaître. Nous pouvons donc connecter de façon robuste des droites poignardantes extrêmes
généralisées dabs des scènes dégénérées pour former des des contours d’ombres. Nous prouvons
que notrtre approche est cohérente et que la continuité des contours d’ombres est préservée quand
les détails fusionnent. Nous avons implémenté notre algorithme et nous montrons que nous pou-
vons calculer de façon robuste les contours d’ombres à la précision de la valeur d’ε choisie pour des
modèles non triviaux, contenant de nombreuses dégénérescences.

Mots-clés : géométrie algorithmique, graphique 3D, visibilité, éclairage, ombres

Robust Epsilon Visibility 3

Contents

1 Introduction 7

2 Previous Work 9
2.1 Visibility . 10
2.2 Shadows . 18
2.3 Interval Techniques . 21

3 Framework 23
3.1 Visibility predicates . 24
3.2 Extremal Stabbing Line . 26
3.3 Swath . 33
3.4 Graph . 34

4 Epsilon Visibility - Epsilon Predicates 35
4.1 Epsilon Criteria . 35
4.2 Epsilon Predicates . 38
4.3 The Multiface . 48
4.4 Epsilon Visibility Complex . 53

5 Algorithms 55
5.1 ESL Casting . 55
5.2 Swath Validation . 61

6 Lighting 67
6.1 Shadows and Visibility Events . 68
6.2 Intersections and Contacts . 71
6.3 Sharp Shadows . 75
6.4 Soft Shadows . 78
6.5 Meshing . 81

7 Implementation 83
7.1 Acceleration Structure . 83

RR n° 5167

4 Duguet

8 Conclusion 97

A Line Space and Plücker Coordinates 99

INRIA

Robust Epsilon Visibility 5

Acknowledgements

This work has been done at Ecole Nationale Supérieure des Télécommunications in Paris under
supervision of Francis Schmitt. It is however the translation of the french masters thesis internship
performed at INRIA Sophia-Antipolis under supervision of George Drettakis, to which have been
added implementation details and other contributions.

This thesis, written for the obtention of a "Brique Projet" is the compilation of all the algorithmic
and implementation techniques, and explanations on the theoretical framework of Robust Epsilon
Visibility [DD02].

RR n° 5167

6 Duguet

INRIA

Robust Epsilon Visibility 7

Chapter 1

Introduction

In this thesis we present several algorithms and techniques related to visibility, shadow computa-
tions and computational geometry. The main focus of our work has been to compute shadows for
polyhedral scenes using robust epsilon visibility.

The spectrum of shadow algorithms in the literature is wide. From the most hardware oriented
to analytic techniques, each has its benefits and drawbacks. We develop here techniques for analytic
visibility computations, and shadow computations as an application.

In this work, we focus on robustness issues and problems related to precision. Indeed, com-
puters are not capable of infinite precision computations which are needed for stable and consistent
geometric algorithms. Our choice in front of this problem has been to handle degeneracies, and to
consider things degenerate when the computer calculations could not be trusted. This choice resulted
in a new framework on analytic visibility we called epsilon visibility.

Each computation we do each result and we expect and return is to be considered correct up
to an epsilon error threshold. Beyond this epsilon value, results are not fair and even topology
consistency is not guaranteed. In some applications, this could be a severe problem, but for shadow
computations, a well chosen epsilon leads to fair results with robust algorithms.

This thesis can be seen as an extension, both in terms of techniques, and presentation of the 2002
Siggraph paper Robust Epsilon Visibility, by Florent Duguet and George Drettakis.

RR n° 5167

8 Duguet

INRIA

Robust Epsilon Visibility 9

Chapter 2

Previous Work

In this chapter, we briefly present previous work in terms of visibility and shadows, with a very short
presentation of interval techniques in computer graphics.

The section is structured as follows:

• we first discuss visibility, in particular analytic, approximate visibility and occlusion culling.
This part deals with visibility only.

• we next discuss shadows, subdivided in sharp shadows, soft shadows using discrete tech-
niques, and soft shadows using analytic techniques.

• finally a small part on interval techniques in computer graphics.

RR n° 5167

10 Duguet

2.1 Visibility

Visibility is a central problem in computer science. It has been addressed extensively in the literature,
in different ways, for specific applications. An extensive study of visibility problems and previous
work has been done by Durand in his PhD [Dur99]. We described here three kind of visibility
problems : analytic visibility, approximative (discrete) visibility, and occlusion culling.

Analytic Visibility

(b) (c)(a)

1

2
3

1

2
3

4

2 3

1

2
6

4

26

1

2
31

2

2

2 3

4

2

1
6

26

4

2 36 2

2

4

(d) (e)

1

2
6

4

2 3

4

53

1

5
3

1

5
6

4

5 6

4

26

1

2
3

1

2
3

1

2

2 3

4

2 3

2

4

26

4

6 2

2

1
6

2

Figure 2.1: Illustration of the aspect graph : (a) Object, (b) partitioning, (c) orthographic projection
partitioning, (d) aspect graph, (e) aspect graph for orthographic projection - figure from [Dur99]

Aspect Graph Model oriented pattern recognition needs a viewpoint oriented representation of
objects; that is a structure which can code all the possible views of an object. Koenderink and Van
Doorn [KvD79] have developed the visual potential of an object, known as the aspect graph. This
technique consists in partitioning viewpoint space into cells. From any two viewpoints of a given
cell, the object looks the same in a qualitative point of view (see figure 2.1). We call this invariant
the aspect. The set of cells is then represented by a graph structure as follows : each node is an
aspect of the object; and each arc is associated to a visibility event, that is a transition between two
aspects.

INRIA

Robust Epsilon Visibility 11

Shaft Culling Visibility between surfaces is the
most expensive part of radiosity computations.
One approach is to compute visibility using a
discrete technique such as ray casting methods.
Haines and Wallace [Hai93] presented an algo-
rithm which takes advantage of object space co-
herence. The method is based on the use of shafts
which overlap the volume between the emitter and
the receiver of an energy transfer. Then a candi-
date list of elements partially or fully within this
volume is generated. This list is thus used for
visibility test (ray casting), avoiding unnecessary
computations with irrelevant elements. This shaft
technique is widely used in lighting simulation al-
gorithms and hierarchy-oriented applications.

1

2

3

4

5

6

A

B

Shaft illustration - from [Hai93]

Portals illustration - from [TH94]

Anti-penumbra - from [Tel92a]

Occlusion Culling - Portals and Anti-penumbra
Teller and Hanrahan [TH94] proposed an algorithm to
compute visibility for architectural scenes, that is in-
door buildings. The idea is to first partition the scene
into convex polyhedral cells. Within these cells, the
visibility computations are trivial. Once the cells are
computed, they are linked by portals. For example, a
building with rectangular rooms has rectangular cells
(the rooms themselves), and the doors define the por-
tals. In order to compute visibility, we compute the
set of portals between two cells, and we clip the set of
lines between these cells by the portals. We thus ob-
tain a visibility shaft. Each line within this visibility
shaft is free. We can compute the partial/complete/non
- visibility of any pair of polygons with this structure.
In order to compute the visibility shaft, through a se-
quence of portals, it is necessary to compute the anti-
penumbra and anti-umbra. Teller [Tel92a] proposed an
algorithm to build the shaft. To achieve these compu-
tations, Teller uses extremal stabbing lines and critical
line sets. He gives fundamental definitions later used in
analytic visibility.

RR n° 5167

12 Duguet

The Visibility Complex The Visibility Complex is a formal approach of 2D visibility problems
addressed by Pocchiola and Vegter [PV96]. This technique is the study of maximal free segments,
which are segments of the 2D space, in intersection with no object and with extremities on the
limit of objects. See fig 2.2 for an illustration. The authors give an optimal output construction
algorithm for such a structure, for smooth objects. Riviere [Riv95], [Riv97] proposed an algorithm
for polygonal scenes.

Le Complexe de Visibilité 2D - Visibility Complex Pocchiola et Vegter [PV96] ont
développé le complexe de visibilité dans le cas de scènes 2D. Le complexe étudie les
segments libres maximaux, c’est à dire les segments du plan (dans l’espace objet) de
longueur maximale n’entrant pas en intersection avec l’intérieur des objets de la scène.
Il en découle que les extrémités de tels segments sont sur les bords des objets.

A

B

C

E

D

A

B C

D

E

f
f

r

θ

(a) (b)

FIG. 3 – Illustration du complexe de visibilité 2D : face du complexe, (a) dans la scène ;
(b) dans l’espace des droites.

Pocchiola et Vegter ont proposé un algorithme de construction du complexe optimal
en sortie, pour des scènes d’objets lisses.

Le Complexe de Visibilité 3D - 3D Visibility Complex Durand et al. [DDP96] ont
proposé une généralisation du complexe de visibilité au cas de scènes 3D composées
d’objets lisses et polygonaux. L’ensemble des segments maximaux est un sur-ensemble
d’une variété de dimension 4 (portée à 5 à cause des branchements). Les faces du com-
plexe sont délimitées par des segments tangents (dimension 3), des segments bitangents
(dimension 2), tritangents (dimension 1), et finalement les sommets sont des segments
quadritangents.

v

uθ

ϕ

ϕ=π/2

ϕ=0

ϕ=π/2

ϕ=0

ϕ1

ϕ2

ϕ1

ϕ2

Fφ1

F0

θ=0

θ1

θ2

θ=0

θ2

θ1

θ=0

θ2

θ1

View 2

View 0

R B
G

R
G

B

R
G

B

R
G

B

R
G

B

FIG. 4 – Illustration du complexe de visibilité. (image tirée de l’article [DDP96])

14

Figure 2.2: Illustration of the 2D visibility complex

3D Visibility Complex The 3D Visibility Complex is an extension of the visibility complex to 3D
space. Durand et al [DDP96] extended the visibility complex to 3D scenes for smooth and polygo-
nal objects. The set of maximal free segments of a 3D scene is a super set of a dimension 4 variety
(because of the possible multiplicity of segments on a line). Faces of the complex are bounded by
tangent segments (critical set of dimension 3), bitangent segments (dimension 2), tritangent seg-
ments (dimension 1), and quadritangents, which are the vertices of the complex. It is difficult to
describe such a structure since it lies in a 4D space which is hard to draw. For further details on
the 3D visibility complex and a clever way to explain it, see [Dur99] and [DDP02]. See fig 2.3 for
illustration.

The Visibility Skeleton In lighting simulation algorithms such as radiosity, some visibility infor-
mation is useful and can be retrieved from the visibility complex. Durand et al [DDP97] presented a
data structure storing this data for polygonal scenes : the Visibility Skeleton. The visibility skeleton
can be seen as a graph, with nodes being extremal stabbing lines (vertices of the complex, i.e. quadri-
tangents), and arcs being critical line sets of dimension one. Such elements are visibility events of
dimension one for nodes and two for arcs. The authors provided a construction algorithm based on
a catalogue of extremal stabbing lines, giving adjacencies for the nodes. The visibility skeleton has
been used in a global illumination algorithm based on radiosity for which analytic extended source
- point form factor computations were achieved. Umbra and penumbra limits are deduces from this
data structure. Such visibility computations are analytic and thus exact up to the machine precision.

INRIA

Robust Epsilon Visibility 13

10 · F. Durand, G. Drettakis and C. Puech

v

uθ

ϕ

ϕ=π/2

ϕ=0

ϕ=π/2

ϕ=0

ϕ1

ϕ2

ϕ1

ϕ2

Fφ1

F0

θ=0

θ1

θ2

θ=0

θ2

θ1

θ=0

θ2

θ1

View 2

View 0

R B
G

R
G

B

R
G

B

R
G

B

R
G

B

Fig. 9. Visibility Complex of a scene of three spheres.

D

B0

T'0

D

B'0

B''0

T0

T'0

T0

Fig. 10. Zoomed view of the ϕ-slice ϕ = 0.

Tritangents induce visual events or visibility events, e.g. [Rieger 1987; Rieger 1990; Pe-
titjean 1992; Petitjean et al. 1992]. Visual events describe the qualitative (or topological)
changes in visibility. Consider the example in Fig. 11. As the viewpoint moves down-
wards, sphere A becomes hidden by the conjunction of B and C. This occurs when the
viewpoint lies on a tritangent. In what follows, we will interchangeably refer to a visual
events or to the set of lines inducing it.

Figure 2.3: Illustration of the 3D visibility complex. A φ-slice. Image taken from - [Dur99]

(a) (b) (c)

e1

v

e2

ve1ve2

ve1'

ve1e2

v

e2

e1

e3

ve1ve1

ve1'

e3e1e2

ve1e2

e4

e2

e
4
e

1

v

e2

e1

e3

ve1ve2

ve1'

e3e1e2

ve1e2

ve1e2
ve1

ve2

ve1'
e3e1e2

e4e1e2

ve1e2
ve1

ve2

ve1'
e3e1e2

ve1e2
ve1

ve2

ve1'

Figure 3: (a) An additional EV line swath is adjacent to the extremal stabbing line, (b) (c) and twoEEE line swaths

e e3

e2

e1

v

f

e

f
v

(a) (b) (c) (d)

Figure 4: (a) Same as Fig. 1(a). (b) In front of the EEE line swath the edge e2 is visible, on the swath the edges meet at a point and behind
e2 is hidden. (c) In front of the FV we see the front side of F , on the swath we see a line and behind we see the other side of F . (d) The FE
swath is similar to the FV case.

resent the Visibility Skeleton graph structure, as well as the algo-
rithm to construct it.

Preliminaries: Our scene model provides the adjacencies be-
tween vertices, edges and faces. Before processing the scene, we
traverse all vertices, edges and faces, and assign a unique number
to each. This allows us to index these elements easily. In addition,
we consider all edges to be uniquely oriented. This operation is ar-
bitrary (i.e., the orientation does not depend on the normal of one of
the two faces attached to the edge), and facilitates consistency in the
calculations we will be performing.

3.1 Data Structure

The simplest element of the structure is the node. TheNode struc-
ture contains a list of arcs, and pointers to the polygonal faces Fup
and Fdown (possibly void) which block the corresponding extremal
stabbing line at its endpoints Pup and Pdown.

The structure for anArc is visualized in the Fig.7(a). The arc rep-
resented here (swath shown in blue) is anEV line set. There are two
adjacent nodes Nstart, Nend , represented as red lines. All the ad-
jacency information is stored with the arc. Details of the structures
Node and Arc are given in Fig. 7(b).

To access the arc and node information, we maintain arrays of

balanced binary search trees corresponding to the different type of
swaths considered. For example, we maintain an array ev of trees
of EV arcs (see Fig.7(b)). These arrays are indexed by the unique
identifiers of the endpoints of the arcs. These can be faces, vertices
or edges (if the swath is interior, that is if the lines traverse the poly-
hedron).

This array structure allows us to efficiently query the arc infor-
mation when inserting new nodes and when performing visibility
queries. The balanced binary search tree used to implement the
query structure is ordered by the identifiers of the generators and by
the value of tstart.

3.2 Finding Nodes

Before presenting the actual construction of each type of node, we
briefly discuss the issue of “local visibility”. As has been presented
in other work (e.g., [10]), for any edge adjacent to two faces of a
polyhedron, the negative half-space of a polygonal face is locally
invisible. Thus when considering interactions of an edge e, we do
not need to process any other edge e′ which is “behind” the faces ad-
jacent to e. This results in the culling of a large number of potential
events.

Figure 2.4: Illustration of a visibility skeleton node and arc adjacencies. Image taken from - [DDP97]

RR n° 5167

14 Duguet

Approximate Visibility

Depth Buffer Hidden surface removal has been
an active research topic for several years. In order
to display a scene on an image, we have to project
the visible part of the objects of the scene on the
screen. A first algorithm has been presented to
draw such objects: the painters algorithm. This al-
gorithm consists in drawing objects on the screen
in order of decreasing depth (distance from the
screen). Such an algorithm fails for overlapping
elements or in the case of unorderable elements
(imagine a mikado game with three sticks, each
being above another and below the last one). Sev-
eral algorithms which cut polygonal scene objects
have been presented, but the problem remains for
curved objects.
Catmul [Cat74] proposed an algorithm which kept
in memory a map of distance of pixels drawn, so
that a further point did not erase a nearer point
and vice versa. This map is known as the depth
- or Z buffer and is widely used today. This tech-
nique is implemented in OpenGL and available on
most graphics cards nowadays. Other techniques
are inspired from this one, such as the shadow map
(described below).

Wire-frame drawn object

Its depth buffer

Result

image taken from [SK98]

Approximative Visibility Map Stewart and Karkanis
[SK98] proposed an hybrid visibility technique, between an-
alytic and sampled visibility. This method computes the ap-
proximate visibility from a point, which is the part of the
scene visible from the given point. The algorithm first ren-
ders the scene in a buffer in the same way as the depth buffer,
giving each pixel a colour corresponding to a polygon it rep-
resents. Once this buffer is computed, a graph is extracted
from this buffer via a re-computation of vertices positions
towards an exact value. The nodes of this graph are the vis-
ible intrinsic or apparent vertices, and the arcs are the part
of edges visible from the viewpoint. This technique uses the
hardware acceleration for expensive visibility computations
and for example gives a fair approximation of a form factor.

INRIA

Robust Epsilon Visibility 15

Occlusion Culling

Walkthroughs are typical applications using large virtual environments. In this application, the user
is located in the virtual world as an observer, and does not see the whole scene. Most of the scene
elements are hidden by near objects. To optimize rendering, a set of objects is computed, which
corresponds to a super set of actualy visible objects. This set is know as the Potential Visible Set,
it is often computed on the fly with clustering precomputations, depending on the position of the
viewer.

Architectural Geometry Scenes Teller et al [TS91] proposed a technique for hidden object re-
moval for architectural geometry scenes. The technique uses the problem characteristics to trans-
form it into a 2D problem.The input scenes represent buildings with axis aligned walls. The key idea
is to subdivide the scene into cells, and to place portals between neighbour cells. Then, two cells
may see each-other if a line of sight through portals exists. Visibility is computed progressively from
a cell through a stab tree. This tree gives the set of visible cells from a given cell. For visibility from
a viewpoint, the stab tree has to be searched with lines through the visibility cone. This approach
has been extended to less restrictive scene models [Tel92b].

Hierarchical Z-Buffer illustration - from [GKM93]

RR n° 5167

16 Duguet

Hierarchical Z-Buffer Green et al [GKM93] presented a hidden surface removal technique based
on Catmull’s depth-buffer [Cat74]. This technique gives a hierarchical algorithm of the problem.
Instead of using a fixed resolution depth buffer for each object of the scene, the idea is to use a
hierarchy of depth buffers, and to test objects with their bounding boxes. This technique has several
benefits since it takes advantage of spatial, object-space and time coherence. For spatial coherence:
near objects are grouped in hierarchies of bounding boxes. Time and object space coherence are
used to define and update a list of visible objects.

INRIA

Robust Epsilon Visibility 17

Hierarchical Occlusion Maps Zhang et al [ZMHI97] proposed a conservative hidden surface
removal algorithm. This technique removes occluded objects at different levels of a hierarchy. Oc-
clusion maps are built from preselected occluders using hardware acceleration: the occluders are
rendered, and a conservative algorithm is used to build the hierarchy of occluders. Occluder selec-
tion follow a strict list of criteria upon distance, size, shape... Once established, maps are applied on
the hierarchy of the scene to solve visibility. The occluder list is updated during the walk-through.

Viewer

C

D

A B

E

F

Occluder selection - from [ZMHI97]

Submarine image - from [ZMHI97]

RR n° 5167

18 Duguet

2.2 Shadows

The literature on shadow algorithms is vast, and we do not intend to address it exhaustively. Woo
et al [WPF90] presented a survey on shadow algorithms, which is an excellent reference for earlier
shadow algorithms.

Sharp Shadows

Shadow Map Williams [Wil78] proposed an algorithm to compute sharp shadows from directional
sources, from curved objects to curved surfaces. This technique is based on the depth buffer tech-
nique: the scene is rendered from the viewpoint of the source (point or directional), and the depth
buffer is stored as the shadow map. We associate the transformation matrix to the map. Then, we
render the scene from the viewpoint of the camera. Finally, for each pixel of the resulting image, we
restore its 3D coordinates, and compute its depth with respect to the viewpoint of the source. The
resulting depth is then compared to the one given in the shadow map, and if above the stored value,
the point is in the shadow. SGI Origin 2000 and nVidia GeForce 3 cards implement this algorithm in
hardware. The main benefit of this technique is that every element which can be rendered with the
ZBuffer can thus be shaded. However, precision problem appear, and resolution of the shadow map
quickly become critical.

Perspective Shadow Maps Stamminger and Drettakis [SD02] improved the shadow map tech-
nique to overcome the main shadow map drawback: aliasing. The shadow map technique is based
on a global shadow map for the whole scene whatever the viewer position is, the resolution of the
map is thus insufficient when the scene is closely examined. For large scenes, the problem quickly
result in imprecise and aliased shadows. The idea of the method is to adapt the shadow map to the
current viewpoint, by computing the map after perspective projection.

standard shadow map
courtesy of M. Stamminger

perspective shadow map
courtesy of M. Stamminger

INRIA

Robust Epsilon Visibility 19

Illustration of shadow volumes
from [EK]

Shadow Volumes Crow [Cro77] introduced the shadow
volumes. lgorithmfor a given point or directional light
source, polygonal elements defined by the source and the
scene edges are cast into the scene to define shadow bound-
aries. The polygonal elements are given by the source posi-
tion/direction and the silhouette of objects. This technique is
used for interactive display of sharp shadows. The computa-
tions of shadows can be performed using the stencil buffer,
avoiding numerical failures, and most recently, Everitt et al
[EK] gave a robust version of this technique.

Soft Shadows

Soft Shadow Textures Soler et al [SS98] proposed
a technique to compute soft shadows based on tex-
tures. For a given source-receiver pair, each in-between
blocker is approximated by a flat blocker parallel to the
source or the receiver, at a given distance. With this
given set of flat blockers, a convolution of the source
and the blocker images is done, giving a shadow im-
age. The resulting image is applied as a texture to the
receiver.

example of soft shadow textures
from [SS98]

images from [ARHM00]

Image-Based Methods Agrawala et al [ARHM00]
presented a couple of techniques for rendering soft
shadows. The first one produces soft shadows at an
interactive rate, the second produces high quality im-
ages including soft shadows. The first is Layered At-
tenuation Maps, is based on the use of Layered Depth
Images [SGHS98], built from sampling points on the
light source. The maps are computed from the LDI and
modulate the illumination of the image. The second
technique is a hierarchical ray tracing technique which
is achieved through the shadow maps instead of scene
geometry. The source is sampled at uncorrelated posi-
tions, avoiding artifacts from the previous method.

RR n° 5167

20 Duguet

Discontinuity Meshing Heckbert [Hec92] and Lischniski et al [LTG92] studied the discontinu-
ities of the radiance function due to the presence of objects between light sources and receivers;
for example in a typical radiosity light transfer. These discontinuities are of several kinds and or-
ders. Order 0 discontinuities are generated by contact or intersection of objects. Order 1 and 2
are generated by occluders between source and receiver. These discontinuities appear along visual
events, which are changes in the visibility of the source from the receiver. Algorithms related to
visual events were already presented by Teller in [Tel92a]. These discontinuities are projected on
the receiver and a constrained triangulation is thus computed, so that no visibility event is present
on subdivided polygons. This technique has been used in a radiosity algorithm addressing one of its
main drawback.

v

e

emitter

occluder

receiver

penumbra

umbra

D discontinuity curves
2
 D discontinuity curve
1

discontinuities in radiance function
from Heckbert [Hec92] image using improved radiosity algorithm

from Lischinski et al [LTG92]

Backprojection Drettakis and Fiume [DF94] and Stewart and Ghali [SG94] presented techniques
to accurately compute lighting from extended sources. These techniques are based on the concept
of back projection. A backprojection instance at a point P, with respect to a source is the set of
polygons forming the visible parts of the source at P. The backprojection in a region is a data-
structure containing all bp-elements (intrinsic and apparent vertices), such that from any point P
in the region, these elements projected onto the source define the backprojection instance. The
backprojection is constant in each full discontinuity mesh cell. Then, the irradiance from a constant
area source can be computed analytically for each point in such region, with this information. Once
the discontinuity mesh and the backprojection are computed, several images can be computed with
little additional computational expense.

INRIA

Robust Epsilon Visibility 21

References
[1] A. T. Campbell III and Donald Fussell. Adaptive mesh gen-

eration for global diffuse illumination. Computer Graphics
(SIGGRAPH ’90 Proceedings), 24(4):155–164, August 1990.

[2] A. T. Campbell III and Donald Fussell. An analytic approach to
illumination with area light sources. Department of Computer
Sciences, University of Texas at Austin, technical report TR-
91-25, August 1991.

[3] Bernard Chazelle, Herbert Edelsbrunner, Leonidas Guibas,
Micha Sharir, and Jorge Stolfi. Lines in space: Combinatorics
and algorithms. New York University, Courant Inst. of Math.
Sc. Technical Report No. 491, (also in STOC 1989, pp. 382-
393), February 1990.

[4] Norman Chin and Steven Feiner. Near real-time shadow gen-
eration using bsp trees. Computer Graphics (SIGGRAPH ’89
Proceedings), 23(3):99–106, July 1989.

[5] Michael Cohen, Shenchang Eric Chen, John R. Wallace, and
Donald P. Greenberg. A progressive refinement approach to
fast radiosity image generation. Computer Graphics (SIG-
GRAPH ’88 Proceedings), 22(4):75–84, August 1988.

[6] Michael Cohen and Donald P. Greenberg. The hemi-cube:
A radiosity solution for complex environments. Computer
Graphics (SIGGRAPH ’85 Proceedings), 19(3):31–40, Au-
gust 1985.

[7] Franklin C. Crow. Shadow algorithms for computer graph-
ics. Computer Graphics (SIGGRAPH ’77 Proceedings),
11(2):242–248, July 1977.

[8] George Drettakis. Structured Sampling and Reconstruction of
Illumination for Image Synthesis. PhD thesis, University of
Toronto, January 1994.

[9] George Drettakis and Eugene Fiume. A fast shadow algo-
rithm for area light sources using backprojections. COM-
PUTER GRAPHICS Proceedings, Annual Conference Series
1994, August 1994.

[10] Herbert Edelsbrunner. Algorithms in Computational Geome-
try. Springer-Verlag, 1987.

[11] Ziv Gigus, John Canny, and Raimund Seidel. Efficiently com-
puting and representing aspect graphs for polyhedral objects.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13(6):542–551, June 1991.

[12] Ziv Gigus and Jitendra Malik. Computing the aspect graphs
for line drawings of polyhedral objects. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(2):113–122,
February 1990.

[13] Pat Hanrahan, David Salzman, and Larry Auperle. A rapid
hierarchical radiosity algorithm. Computer Graphics (SIG-
GRAPH ’91 Proceedings), 25(4):197–206, July 1991.

[14] Paul Heckbert. Discontinuity meshing for radiosity. Third
Eurographics Workshop on Rendering, pages 203–215, May
1992.

[15] Dani Lischinski, Filippo Tampieri, and Donald Greenberg.
Discontinuity meshing for accurate radiosity. IEEE Computer
Graphics & Applications, pages 25–39, November 1992.

[16] Dani Lischinski, Filippo Tampieri, and Donald Greenberg.
Combining hierarchical radiosity and discontinuity meshing.
COMPUTER GRAPHICS Proceedings, Annual Conference
Series 1993, pages 199–208, August 1993.

[17] M. McKenna. Worst-case optimal hidden-surface removal.
ACM Trans. Graph., 6:19–28, 1987.

[18] Tomoyuki Nishita and Eihachiro Nakamae. Half-tone repre-
sentation of 3-d objects illuminated by area sources or polyhe-
dron sources. COMPSAC’83, Proc. IEEE 7th Intl. Conf. Soft.
and Appl. Conf., pages 237–242, November 1983.

[19] George Salmon. A treatise on the Analytical Geometry of
Three Dimensions. Longmans, Green and Co., 1912.

[20] Arthur Scherk. personal communications.

[21] Duncan M. Y. Sommerville. Analytical Geometry in three
dimensions. Cambridge University Press, 1934.

[22] A. James Stewart and Sherif Ghali. An output sensitive algo-
rithm for the computation of shadow boundaries. In Canadian
Conference on Computational Geometry, pages 291–296, Au-
gust 1993.

[23] Jorge Stolfi. Oriented Projective Geometry. PhD thesis, Stan-
ford University, 1988.

[24] Seth Teller. Computing the antipenumbra of polyhedral holes.
Computer Graphics (SIGGRAPH Procedings), August 1992.

[25] Seth Jared Teller. Visibility Computations in Densely Oc-
cluded Polyhedral Environments. PhD thesis, University of
California at Berkeley, 1993.

[26] Oswald Veblen and Wesley Young. Projective Geometry.
Blaisdell Publishing Co., 1938.

Figure 8: Spiral Staircase and its Discontinuity Mesh

Figure 9: Curved EEE Discontinuities from Table Scene

discontinuity meshing
from [SG94]

image using backprojection, and superimposed
discontinuity meshing

from [DF94]

(a) (b)

(c) (d)

(e) (f)

Fig. 7. 512 512 single-sample ray-traced images rendered using the algorithm. (a) Evenly
arranged occluding objects (32s) producing interference patterns. (b) A particularly difficult
scene (shadow image only) of 1000 thin triangles under a large crescent-shaped source (280s).
Notice the shape of the source creeping in. (c) a multi-polygon source (98 seconds) and a more
pronounced “pinhole” effect. (d) Direct lighting of a self-shadowing object (21s). (e) A coarse
one-bounce approximation (321 patches, 1s), and (f) the indirect lighting reconstruction (48m).
Image (f) was rendered ignoring conjunctive vertices, yet there are only a few erroneous pixels.

image using vertex tracing
from [SR00]

Vertex Tracing One of the main drawback in radiosity is
the lack of precision in shadow boundaries. A final gather
step has been introduced to compute accurate soft shadow
boundaries for radiosity solutions. In order to achieve this
final step, Stark et al [SR00] introduced vertex tracing. The
idea of this technique is to compute, for each pixel of the
final image, the contribution of each source (each surface
in radiosity). This final computation is done with analytic
computations using a modified version of the Lambert for-
mula, expressed at vertices. Two kinds of vertices are con-
sidered in this formula : intrinsic vertices which are vertices
of the initial mesh visible from the point, and apparent ver-
tices which are intersection of edges. Then, each visible part
of source define a lighting slice, which contributes to the il-
lumination of the pixel.

2.3 Interval Techniques

Epsilon Geometry One of the main drawbacks of using floating point units (FPU) is the lack of
precision of such computations. The IEEE-745 norm on FP computations is indeed satisfactory for
range of applications, but the precision obtained is often insufficient for geometrical computations.
Salesin et al [SGS89] presented a general framework for geometrical predicates from imprecise
computations. Each geometrical element is thus flattened of a user-defined epsilon and predicates
are allowed to return a result as unknown. The authors presented an extensive study of typical 2D
geometrical problems.

RR n° 5167

22 Duguet

Interval Analysis Snyder [Sny92] presents a formal framework on interval analysis, especially
for problems arising in computer graphics applications. Two algorithms SOLVE and MINIMISE
are presented in an interval arithmetic computational approach. He describes several applications of
these algorithms for computer graphics, mainly in the implicit curves / surfaces field. The key idea
is to use inclusion functions which are functions with suitable properties over intervals. Problems
defined with such functions can be solved by an iterative approach in the spirit of divide and conquer
algorithms.

INRIA

Robust Epsilon Visibility 23

Chapter 3

Framework

As explained in the previous work, analytic visibility is a general geometric framework for several
applications including shadow computations, occlusion culling, etc. Elements of interest for such
applications are visibility events. We will describe in this chapter tools used for visibility com-
putations, and a general framework on the topic, regardless of precision problems or degenerated
configurations; these topics are detailed in following chapters.

This chapter is an introduction to analytic visibility, to the underlying concepts and tools. For an
extensive detailed presentation of analytic visibility, the reader should refer to Durand’s PhD Thesis
[Dur99].

For the rest of the discussion, a scene is a set of polyhedra, given in a 3D space. These polyhedra
are made of vertices (points with given 3D coordinates), edges (finite segments between two points),
and faces (2D surfaces between points and edges, restricted to planar convex polygons).

The visibility complex [DDP96] is a good theoretical framework on visibility, which uses con-
cepts like tangency. These concepts seem obvious in the mathematical field, but need proper defini-
tion to understand problems which eventually appear in computer graphics.

In the first section, we will describe the set of predicates we need for visibility computations,
then we define the extremal stabbing lines, which are visibility events of dimension 0; then we
define swaths, which are visibility events of dimension 1; and finally we give a brief description of
the visibility skeleton introduced by Durand et al [DDP97].

RR n° 5167

24 Duguet

3.1 Visibility predicates

As stated, we only consider scenes made of convex planar polygons. More complex geometry
is not addressed in this thesis. By the way, we are confident in the assumption claiming that all
graphical objects can be approximated by a polyhedron, and thus triangulated to fulfill the previous
requirements.

Also, we consider, for the simplicity of the discussion, that we have infinite precision computa-
tion tools at our disposal. This simplification assumption will be overridden in the next chapter.

Visibility studies light rays, which are considered infinitely thin, as lines in geometry, and di-
rected from an origin to a destination. Thus, a ray has an origin (point in the 3D affine space), and
a direction vector (in the 3D underlying vector space). A ray goes along a line which is called its
supporting line.

We call object a scene element, whether it be a vertex, an edge, a face, or any composition of
objects. Note that an edge contains its boundary vertices and is thus a composition element, as for
the face containing its boundary edges.

Hit Criterion

The hit criterion defines whether a ray hits an object or not. Every kind of object may be hit by a ray.
A ray hits an object if and only if at least a point of the ray lies on the object. Note that in this

definition, objects may be defined by single points, edges, faces, opened polyhedrons, etc.
This criterion can be extended to paths, which can be seen as curved rays.

Blocking Criterion

The blocking criterion defines whether a ray is stopped by an object or not. Note that this criterion
applies on the neighbourhood of the object. For example, a vertex might be a blocker, even if its
spatial extend is null, since it may have neighbouring faces.

Intuitive definition: a ray is blocked by an object at P if and only if the ray crosses the surface
of the object. That is for example, for a solid shape, if the ray steps inside the object at point P .

Formal definition: Let P be the intersection point of the object and the ray. Let ε be a strictly
positive value, let Sε be a sphere around P of radius ε, let P � and P+ be the intersection points of
the ray supporting line and Sε, P� before P in the ray’s direction. A path (continuous set of points)
between P � and P+ is said to be free if and only if there is no point which both lie on the path and
on the object except for P+ or P� . A ray is blocked by an object at point P if and only if all the
following conditions are satisfied:

1. The ray hits the object at P .

2. There is an ε for which there is no free path between P+ and P�

INRIA

Robust Epsilon Visibility 25

Tangency Criterion

The tangency criterion is complementary to the blocking criterion. If a ray hits a surface, it is either
a blocked or tangent to the object.

Intuitive definition: a ray is tangent to an object if it grazes the object.
Formal definition: a ray is tangent to an object at point P if it hits the object at point P , and is

not blocked by it there.

Blocker

Generator

ray

object A

object B

graze hit

block hit

Figure 3.1: Ray classification illustration

Ray Classification

A ray is said to have no interaction with the object if it does not hit the object.
As a direct consequence of the previous definitions, for a given object, an interacting ray is either

(at each interaction point), blocked, or tangent. Thus, we now call objects blockers with respect to
rays if the ray is blocked by an object, or generators if the ray is tangent to an object.

RR n° 5167

26 Duguet

3.2 Extremal Stabbing Line

Teller [Tel92a] first introduced the concept of extremal stabbing lines (ESL). The concept has been
more formally defined by Durand et al in [DDP96], as quadritangents. A tangency criterion indeed
sets one degree of freedom, out of the four available in the line space. Degenerate configurations,
with tangency multiplicity greater than four are not addressed in this chapter, by the way, they are
the main motivation of our work, and are extensively studied later on.

In [DDP97], Durand et al claimed that for non degenerate configurations, extremal stabbing
lines can be classified into a catalogue. The main types of extremal stabbing lines are VV, VEE and
E4, other including faces correspond to handling some degenerate configurations with the catalogue
tool. Besides, degeneracies are most frequent since lots of objects and structures such as buildings
contain degeneracies (aligned vertices, collinear or coplanar edges). By the way, for the clarity of
the discussion, we only present here hints for extremal stabbing lines, and study VV,VEE and E4
generic ESLs.

Catalogue Approach

An extremal stabbing line is a line defined by generators which constrain its degrees of freedom.
Constraining a line to pass through a point (vertex) decreases by two its degrees of freedom, and by
one for a line (edge). See figure 3.2 for illustration.

• Two distinct vertices define in a unique manner a line, which is a VV extremal stabbing line.

• A vertex and two edges may define and extremal stabbing line, if the edges, seen from the
vertex, appear to intersect on a single point, different from the vertex, which is called apparent
vertex. This configuration defines the VEE extremal stabbing line.

• Four edges, supported by four lines may define one or two ESLs. Indeed, if the two lines
hitting the four lines actually hit the four edges, the four edges may define two extremal
stabbing lines.

Besides this degree of freedom concern, an extremal stabbing line shall also be a maximal free
segment.

Algebraic Approach

Before reading this part, please refer to Appendix A for an introduction to Plücker coordinates, and
line space.

The generators of the scene (vertices and edges) may be seen as linear maps in the line space
(of dimension 6), and the lines through these generators as the real part of the kernel of these linear
maps. Indeed, a real line (~u, ~v) runs through a vertex V , if and only if ~V × ~u � ~v = 0. This vector
equation can be rewritten so that the line appears as an element of the kernel of a linear map. For an
edge, the linear map is the Plücker form with the supporting line.

INRIA

Robust Epsilon Visibility 27

<E4><E4>

V

V

<VV><VV>

V

E

E

<VEE><VEE>

E

E
E

E

Figure 3.2: Three generic kinds of extremal stabbing lines : VV, VEE and E4

Thus, if the intersection of kernels associated to scene elements contains a finite set of real nor-
malised elements, this set of elements may define an extremal stabbing line. Note that this approach
automatically handles degenerate configurations. The algorithm proposed to compute the E4 ESL is
inspired from this approach.

For a given set of linear maps, the computation of the dimension of the intersection between
the kernels and the normalised variety and real variety is possible and detailed in appendix A. This
algorithm is not straightforward and not necessary here, thus not detailed.

Algorithm

We present here algorithms to compute the extremal stabbing lines in the Plücker space (see Ap-
pendix A). These algorithms take as input a set of generators, and as output one or two lines gener-
ated.

VV

The algorithm to compute a VV ESL is trivial since the line is uniquely defined, we know at least
one point on the line, and the line direction is given by the vector ~u = V2 � V1, V2 and V1 being the
two input vertices.

RR n° 5167

28 Duguet

VEE

The algorithm to compute a VEE ESL is divided into three steps. The first for the direction of the
line, the second step for the position of the line (trivial since we know a vertex of the line), and the
third step to check if the line passes through the two edges.

Let V be the vertex of the input set of generators, E1 = [A1, B1], and E2 = [A2, B2] be the two
edges, see 3.3 for illustration.

E

E

p

p

1

1

2

2

Figure 3.3: VEE ESL computation technique

We first compute the two planes containing an edge and the vertex : π1 = (A1, B1, V) and
π2 = (A2, B2, V), with normals ~n1 and ~n2. Then, the direction of the line is given by the vector
~u = ~n1 × ~n2. We know a vertex of the line, given in the set of generators, making the second step
trivial.

Finally, to check whether the line actually runs through the two edges, we test the positions of
the vertices of the edges with respect to the plane formed by the other edge. That is, the line runs
through E1 if B1 is on one side of π2 and A1 is on the other side.

E4

The algorithm to compute E4 ESLs is a bit more complicated. It is based on the one of Teller
[Tel92b]. As for the previous algorithm, we first compute the line, and then check whether the line
runs through the four edges.

For a better understanding of the following algorithm, the reader should take a look at appendix
A, which deals with Plücker parametrisation of lines, used here.

INRIA

Robust Epsilon Visibility 29

The four edges supporting lines are expressed in Plücker coordinates (as detailed in appendix A),
and a 4x6 matrix is thus computed. We look forward to extract the kernel of this linear map, made
of two vectors, in the generic case, which we suppose here.

Teller proposes an algorithm which uses a singular value decomposition, but since all com-
puted elements are not necessary here, we have a different, less expensive approach. We com-
pute a Gauss reduction of the matrix which saves the singular values (operations of the kind :
Li := Li +

∑

j<i Lj). We allow columns permutations, if stored, and thus obtain a partially upper
triangular matrix. We then rise the pivots to obtain a partially diagonal matrix. We then deduce the
kernel elements with the two last columns.

Once the kernel is computed, we have two vectors, say l1 and l2. Note that the Plücker space
is a projective space, which represents real and imaginary lines. Given these two vectors, a finite
number of lines shall represent real lines, with a unit direction vector. We use an algorithm proposed
by Teller in [Tel92b] to compute the resulting line. Several configurations are possible :

• The two lines are real

• One line is real, say l1 and the other is imaginary

• The two lines are imaginary

The first case is impossible for the following reason : all linear combination of the two real
lines is a real line, which would mean that the kernel is of dimension one in the normalised real
lines variety. A whole swath would run through (or be coplanar to) the four edges which means
that the edges are in a degenerate configuration. This case is not studied here, and we avoid such
configurations a priori.

In the second case, all linear combination of the two lines, with a non null weight for l2 leads to
an imaginary line, which is not an expected result here, the second weight of the linear combination
is thus null. Our solution is l1, and is unique (save for its orientation).

In the third case, both weights shall be non null. Since we are in a projective space, we consider a
linear combination with a weight set to one (1), and the other noted as λ. we then compute the value
of λ so that the resulting linear combination is the parametrisation of a real line. We have to solve
a second degree polynomial equation, which leads to one or two solutions (since the discriminant is
always positive).

Finally, to check whether the line(s) actually run(s) through the four edges, we do for each edge
the following test. We compute the ~vM = ~u× ~M � ~v vector, M a point on the edge, ~u the direction
vector of the line, and ~v its other vector. Note that if a point M of the edge is on the line, its ~vM

vector is null. We then compute the sign of the dot product ~vA · ~vB . If the sign is negative or null,
it means that there is a point on the line and on the edge (in-between A and B), otherwise, it means
that the intersection point between the line and the edges supporting line is not on the edge.

RR n° 5167

30 Duguet

E

B

A

M
1

M
2

v

v

v

v

Figure 3.4: The on-edge test

INRIA

Robust Epsilon Visibility 31

Note on the degenerate configurations In the previous computations, we supposed we had a non
degenerate configuration to be handled, but we need to test its degeneracy beforehand. A degeneracy
is defined by a kernel dimension greater than 2. We first note that if two lines are at a distance below
ε, then their side operator is below ε as well. When reducing the matrix using a Gauss pivot approach,
we allowed column switching for getting a better pivot. If a pivot is below ε, it means that the side
operator with the line in the image of the linear map is below ε. We thus exclude pivots smaller than
epsilon and consider them as zeros for the reduction. The configuration with kernels dimensions
greater than two is thus encouraged.

RR n° 5167

32 Duguet

Occlusion Concerns

V

V

Occluder

<><> <><>

V

E

E

Occluder

V

E

E

Occluder

<VEE><VEE>

Figure 3.5: Illustration of the occlusion concern.

The main issues of visibility are to compute occlusions. The previous definitions of extremal
stabbing lines and algorithms to compute them did not take occlusion into account.

A complete algorithm on occlusion for extremal stabbing lines validation is detailed in section
5.1. The main idea of the algorithm is to go forth onto the ESL, and to test if all the elements of
the input set of generators for the ESL computation algorithm are hit before hitting the first blocking
element. If not, then the ESL is said to be not validated, and is not taken into account.

INRIA

Robust Epsilon Visibility 33

3.3 Swath

Associated to the concept of ESL is the concept of swath. A swath is a continuous set of lines,
which defines a critical line set regarding visibility. For example, for a given viewpoint, the set of
rays from the viewpoint hitting an apparent boundary edge (which is called a silhouette edge) is a
swath. It defines the visible boundary of an object and thus the limits of space it occludes.

Swaths are critical line sets of dimension one, and can be defined the same way as ESLs, either
with the catalogue approach, since the catalogue implicitly defined swaths as connections between
ESLs, either with an algebraic approach as a critical line set of dimension 1.

V

<VE>

V

V

E

E

E
<EEE>

Figure 3.6: Illustration of a planar swath, and a non planar swath

Swaths and Shadows

As seen in the previous work, shadows casted by point light sources can be computed using the
shadow volumes algorithm. Such a technique is a good example to illustrate swaths. The boundaries
of shadow volumes are infinite polygons with ESLs originating at the point source, and a silhouette
edge. A swath with generators the point source and the silhouette edge supports this infinite polygon.
The shadow boundaries casted on receiver surfaces are the intersection between the infinite polygon
and the surface, which is also the intersection between the swath and the receiver.

RR n° 5167

34 Duguet

Swaths and Algebra

In the previous section, we presented ESLs in an algebraic approach. ESLs were defined as inter-
sections between linear maps kernels and real and normalisation variety. Swaths may be defined the
same way, but with a dimension restriction of one (instead of zero for ESLs).

In that definition, we can see that if two ESLs have linear maps in common so that the intersection
of their kernels and real and normalisation variety is of dimension one, then the set of linear maps in
common defines the swath (which is a set of generators). A direct consequence of this remark is that
the two ESLs sharing enough generators (or linear maps by extend), are the boundaries of a swath.

3.4 Graph

Let us consider the following example : we want to study the set of ESLs and Swath originating at
a viewpoint. This visibility query on the scene has many applications, such as the computations of
shadows casted by a point light source.

In this example, ESLs are of kind VV and VEE, with first V being the viewpoint. Swaths are of
kind VE.

All swath boundaries are ESLs of kind VEE for apparent vertices or VV for intrinsic vertices.
Note that, in our approach, a swath is partitioned into sub-swathes if ESLs lie between its boundaries.
Computing all these discontinuities in visibility results in a set of ESLs and swaths, in which swaths
have ESLs as boundaries, are planar and ESLs are surrounded by swaths.

This structure can naturally be seen as a graph with ESLs being the nodes and swathes being the
arcs.

This graph approach can be extended to other visibility queries, and is not restrictive to planar
swaths. It has first been presented by Durand et al in [DDP97].

INRIA

Robust Epsilon Visibility 35

Chapter 4

Epsilon Visibility - Epsilon Predicates

In the epsilon context, every predicate described previously has to be exmained or redefined. Indeed,
what is true with infinite precision arithmetic is not necesseraly true with a floating point arithmetic,
and especially for 3D geometrical computations. For example, the alignment of three points in 3D
space is not always well defined. Whether it be because of the points coordinates which are given
in floatting point arithmetic and thus are not exact anymore, or the computations are done using a
regular FPU which has finite precision.

4.1 Epsilon Criteria

Epsilon Contact

In section 3, we presented the hit criterion. An objet is hit by a ray if they share a point. In our
epsilon approach, we want to keep this hit criterion even if the ray and the object do not exactly
share a point. Also, some definitions required a vertex to be hit by a ray which is very difficult to
insure using floating point arithmetic.

Our epsilon hit criterion is the following: A ray ε-hits an object if the distance between the object
and the ray is bellow the predefined ε.

This definition is consistent with the previous for a null value for ε. Also, we use the term
ε-contact for a configuration satisfying the ε-hit criterion.

By the way, as showed through figure 4.1, an object may be ε-hit by a ray for some value of ε,
but not for another smaller value.

For the rest of the discussion, we suppose that a fixed value of ε has been given as input.

Epsilon Block

The redefinition of the hit criterion implies the redefinition of the generate / block interaction. The
formal definitions are not exactly the same, but the key idea is similar. See figure 4.2 for illustration.

RR n° 5167

36 Duguet

ray

object A

object B

contact

e�

e

contact

e�

e

Figure 4.1: Illustration of the ε-contact concept

Let Cε be a cylinder of radius ε around the ray. An object is said to ε-block a ray if there is no
path around the object bound into the cylinder.

In the same way as before is defined the tangency criterion, getting a consistent binary ray clas-
sification.

INRIA

Robust Epsilon Visibility 37

rayblocke

e� generate

e�

e

object

Figure 4.2: Illustration of the ε-block concept

RR n° 5167

38 Duguet

4.2 Epsilon Predicates

As stated in chapter 3, we consider scenes made of polyhedra, with vertex, edge and face primitives.
We present in this section the visibility predicates for such primitives.

Hit Criterion

e

e

VV

EE

EE
d>e

nearest point on ray

vertex position

nearest point on edge
VV

d>e

Figure 4.3: Illustration of the ε-hit criterion for vertex and edge

Vertex A vertex is ε-hit by a ray if the distance between the ray and the vertex is bellow ε. The
distance function used is the usual Euclidean distance, which is computed in this case between the
vertex itself and the nearest point on the line. The nearest point on the lined is obtained by orthogonal
projection of the vertex on line.

See figure 4.3 for illustration.
This distance may also be obtained another way using Plücker coordinates, see Appendix A for

details.

Edge The distance between an edge and a ray is computed between the two nearest points. These
points are obtained by orthogonal projection of lines (ray and edge support) into the planes orthog-
onal to the line directions. This technique is only valid for Euclidean distance, which is the main
motivation of our choice for this distance.

By the way, if the nearest point on the edge supporting line from the ray is not on the edge
(segment between the vertices), then the distance is given by the distance to the nearer vertex.

Once the distance computed, the test is performed for ε-contact.
See figure 4.3 for illustration.

INRIA

Robust Epsilon Visibility 39

It is interesting to note that the edge is in fact a composition object, made of its segment and its
boundaries, which are vertices. If a ray is in contact with either of this element, then it is in contact
with the edge. This remark leads us to the ε-hit criterion for the face, which is also a composition
object.

RR n° 5167

40 Duguet

Face The interaction between a ray and a face can be of different kinds. These types of interactions
are separated into the regular and special face hit configurations.

e

VV

EEEE

e

nearest point on ray

vertex position

nearest point on edge

intersection point on face

no hit edge hit
vertex hitfull hit

regular face hit configurationsregular face hit configurations

Figure 4.4: Illustration of the ε-hit criterion for a face - regular interaction

The regular face hit configurations are the one present without ε concern, that is (see figure 4.4
for illustration):

• no hit : the ray does not hit any part of the face

• full hit : the ray hits the face in its main frame, without hitting any boundary element

• edge hit : the ray hits an edge of the face (and no vertex)

• vertex hit : the ray hits a vertex of the edge

These configurations are well known and do not require further details. The hit criterion is
straightforward and further predicates are described afterwards.

The special face hit configurations are the one introduced by our ε approach. They are the
following (see figure 4.5 for illustration):

• non planar double edge : due to the fatness of the edges (cylinders) a ray may hit two edges
which are connected by a vertex without neither being coplanar to the face (even almost), nor
hitting the shared vertex.

• planar hit : this configuration could have appeared in the exact arithmetic approach. By the
way, we still consider it special since there is no consistent way to distinguish between this
configuration with two edges hit and the previous one.

INRIA

Robust Epsilon Visibility 41

e

VV

EEEE

e

special face hit configurationsspecial face hit configurations

non planar
double edge

nearest point on ray

vertex position

nearest point on edge

intersection point on face

planar hit
(edge and vertex)

Figure 4.5: Illustration of the ε-hit criterion for a face - special interaction

Both these special configurations are handled the same way, using the multiface tool, described
bellow in section 4.3. Besides, the hit criterion is still straightforward, block and generate predicates
are detailed in the Multiface section 4.3.

In order to compute the interaction between a ray and a face, we apply the following algorithm:

RR n° 5167

42 Duguet

face-hit algorithm

V = ∅
E = ∅
for each vertex of the face
if hit, insert into V

for each edge of the face
if connected to a vertex of V do nothing
else if hit, insert into E

if #V = 0 AND #E = 0 then
if hit main frame of the face
return FULL-HIT

else
return NO-HIT

else if #V = 1 AND #E = 0 then
return VERTEX-HIT

else if #V = 0 AND #E = 1 then
return EDGE-HIT

else
return SPECIAL-HIT

Figure 4.6: face-hit pseudocode

INRIA

Robust Epsilon Visibility 43

Vertex Block / Generate

Now the hit criterion has been established for scene elements, we have to define the Block / Generate
test. Remember that these scene elements represent polyhedra and thus shall not be considered
individually but as a whole; still local computations are sufficient. Besides, we make the assumption
that we have connectivity information at our disposal. If not, please refer to section 5.1 for such
configurations.

A vertex is a spatially localised point of a polyhedron, but is just another point for the underlying
object. The neighbourhood of the vertex has to be considered for proper treatment of this Blocker /
Generator test.

The idea of the Blocker / Generator test is to check if the ray grazes the object, that is if at this
particular position, and from the viewpoint of the ray, the object is hit at a silhouette1 point or not.

Figure 4.7: Illustration of the vertex block predicate. Left : 3D scene, right : projection on π plane.
Up : the vertex is a Blocker, down : the vertex is a Generator

1The silhouette is the apparent boundary of an object from a given viewpoint.

RR n° 5167

44 Duguet

To achieve this test, we orthogonally project the neighbourhood of the vertex (faces), on the π

plane which is orthogonal to the ray. Then, in this plane, we compute the angular part around the
vertex covered by surrounding faces. If this angular part covers the whole angular sector, then the
vertex is a blocker, otherwise, it is a generator. See figure 4.7 for illustration. The red disc represents
the whole angular sector. In the top example, the whole disc is covered, the vertex is a Blocker, in
the bottom example, a part is uncovered, and the vertex is thus a Generator.

INRIA

Robust Epsilon Visibility 45

Figure 4.8: Illustration of the special hit for a face connected to a vertex for vertex Block / Generate
test. The special-hit face is not taken into account for angular section covering

Besides, robustness issues may appear. For example, if a face is almost orthogonal to π, the
result is unpredictable: on which side will the face be projected ? The angular portion covered by
such a face is not the result of robust computations See figure 4.8 for details.

To avoid arbitrary results and ensure the robustness of our predicate, we apply the following
filter on the faces: A face projects on π if no edge nor vertex of this face, other than the two edges
connected to V, and V, is hit by the line, that is if the face is vertex-hit by the ray (and no special hit).

Note that this filter is consistent with the original definition of the Block / Generate test since if
the face is special-hit by the ray, it means that there are free paths in the ray’s ε-cylinder around the
face.

RR n° 5167

46 Duguet

Edge Block / Generate

The concept of this criterion is quite similar to the one for the vertex, but the algorithms differ.
An illustration is given with the 3D scene and the projection on the same π plane, figure 4.9. The
following algorithm only applies for any edge-hit and has only the direction of the line as input. The
predicate is also a silhouette predicate.

a

b

a

negative

null

positive

dot product

c

d e f

Figure 4.9: a, inconsistent normal orientation; b, flat edge; c, silhouette - flat; d, flat-silhouette; e,
silhouette; f, block

The algorithm is as follows: Let ~r be the direction vector of the ray, let ~f be the normal to a face
and ~g to the other. The normals must be consistently oriented, that is the normal continuously goes
from ~f to ~g around the edge. Then, we compute the dot products: sf = ~f · ~r, sg = ~g · ~r. Then we
have the following configurations:

• sf = sg = 0, the edge is flat and thus not silhouette.

• sf = 0 or sg = 0, the edge is flagged as silhouette, with a planar face.

• sf · sg < 0, the edge is silhouette.

• sf · sg > 0, the edge is not silhouette.

See figure 4.9 for illustration.

INRIA

Robust Epsilon Visibility 47

Note that this predicate does not take ε into account. In fact, the geometrical extend of the face
connected to the edge would lead to inconsistencies for any ε-based silhouette predicate, since for
the same angles, an edge connected to small faces would be silhouette whereas with a bigger face, it
would not be silhouette. This kind of inconsistencies is not permitted in our approach.

RR n° 5167

48 Duguet

4.3 The Multiface

As stated in the previous section, our ε model has introduced special hit configurations leading to
the necessity of a specific treatment. Thus, for a special-hit face, a whole group of faces has to be
studded in order to get consistent predicates. For example, sliver triangles or small (bellow ε spatial
extend) triangles cannot be considered alone, and their neighbourhood has to be taken into account.
This is the main motivation of the multiface tool.

small face

sliver face

planar hit

Figure 4.10: Example of configurations needing the multiface tool

The multiface is a technique related to our ε approach. The tool is only necessary for degen-
eracies or special configurations which arise from our ε predicates and criteria. Examples of such
configurations are given in figure 4.10.

As hinted by its name, the multiface idea is to consider a set of face as a whole group, and run
consistent predicates on the group instead of individual faces. The first part of this section is the
construction algorithm followed by the Generate / Block predicate. Note that as far as the multiface
is only used when a special face-hit is encountered, the hit criterion is not needed here.

It also should be noted that the multiface is a volatile object, which is valid for only a given ray,
and the results of the predicates are given without returning the multiface structure. We thus suppose
that the ray is fixed, and we have as input a special-hit face.

INRIA

Robust Epsilon Visibility 49

Construction

The construction algorithm needs connectivity. If connectivity is not available, then the results
should not be what expected: the multiface will not work properly and set of faces (unconnected) will
not block a ray they should block. For unconnected face treatment, please refer to the Blockerfan.
Besides connectivity, the algorithm also need the silhouette predicate for edges.

hit

silhouette

not hit

e
ray

multiface construction
multiface construction

Figure 4.11: Construction of the multiface

The construction of the multiface is made from the special-hit face and around the ray, getting
away from the first face. We start with the input special-hit face, and we add a connected face if the
following conditions are fulfilled:

• the face is hit by the ray

• the connection between the face and the multiface is done by a non silhouette edge

We proceed all the connected faces this way, recursively. The algorithm stops when no connected
(by non-silhouette edges) faces are touched by the ray. See figure 4.11 for illustration.

Figure 4.12, is given a complete pseudo code of the construction algorithm, in this pseudocode,
the f∗ set is the set of faces connected to f with a non-silhouette edge.

RR n° 5167

50 Duguet

multiface construction
MF = {f}
C = f∗

D = {f}

while C 6= ∅
pop g from C

D = D ∪ {g}
if g hit by ray

MF = MF ∪ {g}

C = C ∪ (g∗ � D)
end while
return MF

Figure 4.12: multiface construction pseudocode

INRIA

Robust Epsilon Visibility 51

Predicate

The Generate / Block predicate is quite similar to the one of the vertex. The same slice approach is
used, but in a slightly different way.

not hit

e ray

virtual vertex

virtual edge

Figure 4.13: Block configuration

We project all elements of the multiface in the plane π orthogonal to the ray. The intersection
point between π and the ray is Ω. We then get the boundary of the multiface which are edges either
silhouette, or not hit by the ray. For each non hit boundary edge (can be silhouette or not), we build
a virtual face (which will be a triangle) which is defined by the virtual vertex Ω, and the boundary
edge. Additional virtual edges are drawn between Ω and the boundary edges bounds. We then
consider this local virtual mesh as a vertex surrounded by faces, and we then apply the previous
predicate. Note that elements hit by the ray do not contribute to the predicate as detailed as a special
configuration in the vertex case. Two examples are given: figure 4.13 for block and figure 4.14 for
generate.

RR n° 5167

52 Duguet

silhouette

not hit

e ray

virtual vertex

virtual edge

Figure 4.14: Generate configuration

INRIA

Robust Epsilon Visibility 53

4.4 Epsilon Visibility Complex

The visibility complex has first been introduced by Durand et al. [DDP02] for generic configurations.
It can be extended to an epsilon visibility complex in the same way the visibility skeleton has been
extended. However, on a topological point of view, the dimensionality of the events is not respected
since the epsilon hit “fuzzy” criteria make the set of lines of a nD event go 4D. For example the set
of lines through a point is 2D, but the set of lines through a ball of radius ε is a 4D algebraic variety.

Let us consider the set of oriented lines in space. If we consider the representation of lines
presented in appendix A, this set of lines is an algebraic variety of dimension 4 embedded in a 6D
space. This variety is the set of zeros of the ideal defined by the normalization quadric and the reality
quadric. Studying subsets of oriented lines in space is equivalent to studying subsets of the variety.

The visibility complex is a graph in the algebraic variety of lines. For example in the very simple
scene containing two disjoint spheres (see Figure 4.15, the set of free lines (stabbing no sphere) is a
cell, the set of lines stabbing one sphere only is another cell (A and B), and the set of lines stabbing
two spheres is another cell (A&B). Each cell is a variety of dimension 4. The boundaries of these
varieties are sets of lines tangent to a sphere or two. The set of lines tangent to the two spheres is
of dimension 2 (the two small magenta spheres on illustration). If we consider ε-events, the graph
is no longer a graph but a set of cells. Each cell represents an event of dimension from 0 to 4. On
Figure 4.15, is illustrated the set of cells for two different values of epsilon. On top, all the events
of the complex (without the concept of ε-events) are present in the ε-complex. In the bottom, with a
greater value of ε (greater than the spheres radius), some events have vanished. Higher dimensional
events have been swallowed by smaller dimensional events. For examples every line stabbing a
sphere is considered tangent to it.

We can thus make a remark on the size of the ε-complex compared to the regular complex: it is
smaller !

RR n° 5167

54 Duguet

AA BBA&BA&B

S T S T

T
TT TA

A A

A
B

B

B B

A=TA=Taa B=TbB=Tb

TTaTbaTb

A&BA&B

==

small epsilon

large epsilon

Figure 4.15: Illustration of the epsilon visibility complex

INRIA

Robust Epsilon Visibility 55

Chapter 5

Algorithms

Topics presented here :

• ESL casting

• Swath validation

5.1 ESL Casting

Basic ESL Casting

In the framework (chapter 3), we presented a way to compute generic ESLs, without taking occlusion
into account. Since only a part of these lines will indeed be ESLs, the results of these algorithms
are called ESL candidates. These candidates are validated or not through the ESL casting process
which tests the occlusion of the candidates ESLs.

The ESL casting process takes as input the ESL candidate and the list of its native generators,
that is the scene elements (vertices and edges), which were used to actually compute the ESL; also
is given as input a starting point - or source point - for the ESL (the light source for example). This
algorithm is similar to ray casting: the scene is traversed along the ESL from its source point to the
first blocker encountered.

The ESL casting algorithm is provided in pseudocode 5.1.

RR n° 5167

56 Duguet

ESL casting

N = native generators
S = ∅
begin at source point
while no blocker found
go to next item hit
if is blocker then
blocker found

else
add item to S

end while
if N ⊂ S
return valid

else
return not valid

Figure 5.1: ESL casting pseudocode

INRIA

Robust Epsilon Visibility 57

BlockerFan

Introduction Some special configurations, especially objects in contact or special-hit faces, do not
lead to a well-defined, or even any blocker. To prevent this inconsistency in the ESL casting process,
another tool has been provided: the BlockerFan. This tool is used to gather blocking information
along the ESL casting process to provide a well-defined blocker.

For example, let us consider the configuration drawn in figure 5.2. The first face encountered
along the ray lead to a regular edge-hit, the edge being silhouette does not block the ray. The second
face encountered is a special-hit since two of its edges are hit. This leads to the multiface but which
does not extend since the edges are boundary edges, so the face does not block the ray. Finally, the
last face is hit with a regular edge-hit, and thus does not block the ray either. A cut is provided on
the right of the figure.

By the way, the underlying object should block the ray, and so should do the polyhedron. The
BlockerFan tool is then used.

Figure 5.2: Configuration using the blocker fan.

Gathering The BlockerFan is a tool which gathers blocking information along the ray through
the ESL casting process. As its name stands, it works as a fan of partial blocker. Each element
encountered (whether is be a vertex, an edge or a face) has a contribution to the fan with a slice, or
with depth. The angular sector around the ray, in the π plane is partially covered by partial blockers,
and if enough slices are gathered to fill the whole pie, then the ray is blocked by the last element
providing a slice.

For a better representation, imagine the ray as a cylinder on which you cut fat slices. If the
cylinder is cut into two separate parts, then you found a blocker.

RR n° 5167

58 Duguet

Figure 5.3: Computation of slices for vertex and edge

Slices are generated by edge of vertex hits. See figure 5.3 for illustration.

For each encountered element, a slice is added to the BlockerFan with a fatness set to 2ε, that is
a spatial extend along the ray from the hit position minus ε, to the hit position plus ε.

Faces which are regular hit do not contribute the the blocker fan since either they are blockers
themselves (which is the most frequent case hopefully), or they make a contribution through a vertex
or an edge. Special hit faces behave differently: as illustrated in figure 5.4, the spatial extend along
the ray is computed. An interval of positions along the ray are (which is fattened of ε, at each bound).
Besides, slices may also be computed: if an edge of the face is not hit by the ray, it generates a slice
of fatness, the spatial extend of the face on the ray. This slice is computed the same way slices are
computed for the multiface.

OO

WW

ll
ll

minmin
maxmax

SliceSlice

Figure 5.4: Computation of interval for face

INRIA

Robust Epsilon Visibility 59

This special contribution (the interval) will extend the previously encountered slices fatness, if
they hit the face. That is for example, in figure 5.2, the first face, which is edge-hit will have a thin
slice of size π (half the full pie), and the second face, planar-hit will contribute with a very small
slice (planar hit), and a thick interval. This interval is in contact with the first face’s slice, which is
thus extended. Finally, the first slice will be in contact with the last one, and they will merge in a
whole pie, blocking the ray at this last position.

To summarise, each scene element contributes to the BlockerFan with a thick slice. Faces will
have thick slices, but with a reduced angular sector extend (slice of the pie in 2D - which can be
null). Vertices and edges will have a thin slice, but with a certain angular sector extend.

A naive version of the algorithm would be to compute all slices and intervals and to extend the
intervals in intersection. A progressive version of the algorithm is provided bellow.

The gathering algorithm is as follows: a pool of slices is build and updated at each object en-
counter. If at any update, the pool merges into a full slice, then the last object inserted is the blocker.

blocker

generator

VV

step 1

blocker

generator

VV EE11

step 2
blocker

generator

VV EE11

EE22

step 3

blocker

generator

VV EE11

EE22

EE33

step 4

Figure 5.5: BlockerFan steps

If we reconsider the example given figure 5.2, detailed step by step in figure 5.5.

• Step 1, The first element encountered is a vertex, with a thin (2ε) slice. The pool is update
with this element.

• Then, step 2, the second object encountered is at a further position, so the pool is updated by
removing the slice of the vertex (too far), and inserting a new slice provided by the edge.

• Step 3, the third object encountered is an edge, the pool is updated by removing the inserted
slice and inserting another one for the same reasons as before.

• Step 4, a face is special-hit, the interval is in intersection with the previous slice, and the slice
of the pool is thus extended.

RR n° 5167

60 Duguet

• Then finally a last edge is encountered at a position into the slices ray extend, and as the slices
merge into a whole pie, this last element is a blocker.

As hinted by the algorithm, a progressive traversal along the ray of the scene is necessary for such
an algorithm to work well. Also, the intersection positions of the elements on the ray in intrinsic
coordinates is needed. These late algorithms are either detailed in appendix, or usual enough not to
be detailed here.

It is important to note that even if the multiface is a good predicate for blocking for a face, it does
not necessarily provide in a unique manner a blocker. It is often necessary to use the blocker fan
to get such information. Even if the BlockerFan does not provide exact information for the blocker
(especially for small or sliver faces), the result provided is at most at a distance ε of the exact result,
which we considered satisfactory in our context - definition of ε.

Note that the BlockerFan provides a unique blocker whether it be a vertex or an edge (the face
case being trivial since it does not need the blocker fan). And this will lead us to both consistent and
easy to use results for the potential triangulation of the receiver.

INRIA

Robust Epsilon Visibility 61

5.2 Swath Validation

Swaths are built the same way as are ESLs. First, a swath candidate is proposed, and then validated,
depending on occlusion computations. As introduced in section 3.3, a swath is a continuous set of
lines between ESLs. This set may be defined by generators, in the same manner ESLs are.

Generic swaths are the following : V E and EEE in the same notations as ESLs. They are
also subdivided into two types : planar and quadric. Planar states for a set of lines contained in a
plane. Quadric states for the other configuration : the set of lines is a ruled surface. V E swathes are
necessarily planar whereas EEE swathes my be planar or quadric.

A swath is proposed as a set of generators (V E or EEE), then the validation process is started
resulting in one or several sub-swaths. Indeed, several ESLs may lie on the same combinatorial (in
terms of generators) swath, that is for instance, let V be a vertex and E1, E2, E3 be three edges, and
E1 is bounded by A and B and finally E1 and E2 appear to intersect from V as for E1 and E3. In
this configuration, shown figure 5.6, the following ESLs might be build : V E1E2, V E1E3, V A, and
V B. These ESLs lie on the same swath: V E1. This swath will be cut into three sub-swathes, one
between V A and V E1E2, the other between V E1E2 and V E1E3 and the last one between V E1E3

and V B.

EE11

E1E2
E3

EE33
EE22

Figure 5.6: Swath validation illustration : left, three sub-swathes, all validated; right, three sub-
swathes, the midline in the centre is blocked before reaching its generators, and thus eliminated

Once this partitioning is made, the occlusion tests are taken, and swathes are eventually validated
or rejected. These steps are detailed in the following sections. First, generic swaths are studied, and

RR n° 5167

62 Duguet

algorithm provided, then some degenerated swath, and finally the extension of swaths to 2D planar
critical sets.

Swath partitioning

The swath partitioning algorithm is the following : for each swath proposed, all ESLs in the swath,
that is a combinatorial approach : all ESLs hitting the generators of the swath, are listed. This set is
then ordered as position of intersection along an edge of the swath (the reference edge). As planar
swath may have an apex on an edge, and not necessarily on a vertex, the extend along all edges is
computed, and the edge which is hit on the greatest extend by the swath is taken as reference edge.

Then, each intersection point between the ESL and the reference edge is computed, and ESLs
are ordered by position of this point on the edge. Finally, ESLs are taken pairwise, with the nearest
further one, and the swath is partitioned, exactly the same way the segment of intersection between
the edge and the swath would be (see figure 5.7 for illustration).

AA

BB

00
11 22

33
00 11

22

33

44

Figure 5.7: Swath partitioning illustration

Sub-swath Validation

It is important to note that as far as all ESLs are supposed to be computed and validated, all dis-
continuities in visibility along the swath are known and stored as the ESLs. This hypothesis is
fundamental to insure the consistency of our algorithm.

The result of the previous remark is that visibility is continuous along each sub-swath, so that
it can be sampled at any position of the swath, and the sampled value is constant all over the sub-
swath. That is if all generators of the swath are hit by a line of the sub-swath which is not blocked

INRIA

Robust Epsilon Visibility 63

in-between, and has a blocker B, then all lines of the sub-swath hit all generators of the swath, and
have the same down blocker B.

The validation process is thus straightforward : we sample visibility in the middle of the sub-
swath (along a line we call the midline), applying the ESL-casting algorithm to the computed ray,
with the set of native generators provided by the generators of the swath. Additionally hit generators
are also stored and if the boundary ESLs of the sub-swath also hit these generators, then the set of
generators is enriched by this last element. Such a swath is degenerated.

Midline Computation The midline has to be robustly computed in any configuration. We assume
that each sub-swath, whether generic, or degenerated (as will be seen further on), has at least two
distinct generators. This assumption is currently satisfied, and will not be overridden in the following
section for degenerate configurations.

The computation technique for the midline is the following: we compute the best two points
we know of the midline and get the line running through them. The best two points are given by
the furthest midpoints on the generators. The midpoints are the barycentres of the two intersection
points on the generators. Through these midpoints runs one and only one line. The alignment of
these midpoints if proved bellow.

Midpoints Alignment Proof Let :

• δa = (~ua, ~va) and δb = (~ub, ~vb) be the two ESLs bounding the sub-swath to be validated.

• G = g1, g2, . . . , gn be the set of generators for the sub-swath, that is the intersection of the
connexion generators of the two bounding ESLs.

• πa be a plane orthogonal to ~ua, and πb to ~ub.

• δ∗b the projection of δb on πa, and δ∗a the projection of δa on πb

The set of generators, projected on πa (and πb resp.) have an apex at the intersection of πa and
δa (resp. πb and δb). The midpoints on the generators are aligned in each plane thanks to Thales
theorem, and so in space if ~ua × ~ub 6= 0, otherwise, the two lines being parallel, the midline is also
parallel and runs through all generators, which are on the common plane.

The midpoints on each generator are thus aligned and can help computing the midline.

RR n° 5167

64 Duguet

Extension to 2D Planar Critical Line Sets

Some configurations of edges may lead to special swaths: either overlapping or made of two planes.
These configurations appear when two edges are coplanar, and have to be studied specifically.

We will study each possible configuration of coplanar edges configuration specifically, and pro-
pose a unified algorithm to treat them.

1

2 3

4

Figure 5.8: Overlapping swaths illustration - example of ordering

Overlapping Swaths As stated in [Hec92] and in [LTG92], if an occluder silhouette edge is copla-
nar to a source edge, then it generates a C1 lighting discontinuity. In fact, in this configuration,
several swaths overlap, see figure 5.8. Every critical line is indeed listed in this configuration, but
the main problem is that on the receiver, for a given point on the shadow limit, two critical lines in-
tersect the receiver at this point. This double information leads to robustness issues for triangulation
of the receiver mesh. We thus want to describe these discontinuities in a proper manner to avoid
such robustness issues.

Two-planes Swaths On the other hand, two edges of the same face are also coplanar. If the faces
supporting plane intersects a source edge, this configuration will generate C2 lighting discontinu-
ities. In this case, as illustrated in figure 5.9, some swaths are made of two parts, on two different
planes, but no extremal stabbing line between them. We thus create what we call a pseudo-ESL at

INRIA

Robust Epsilon Visibility 65

Edge

ESL

Pseudo-ESL

Discontinuity

Figure 5.9: Illustration of pseudo-ESLs

the intersection of the two planes, in order to give bounds to the underlying planar sub-swaths of this
two part swath. This pseudo-ESL will be treated exactly the same way as a regular ESL, in terms of
validation, but enumerated specifically.

2D Planar Critical Line-Sets Partitioning In these configurations, the swath partitioning will not
be made the same way as for the generic configuration.

In the Two-planes swath configuration, the partitioning is almost the same, since the only differ-
ence is that the sub-swaths are bounded by non-ESLs, but the approach is identical.

In the other case, the result depends on the receiver. In fact, to avoid robustness issues during
triangulation, we give for constraints a polyline on the receiver which is the intersection of the
swaths and the receiver. The vertices of the polyline are intersections of ESLs with the receiver, and
the segments connect nearest vertices pairwise. Note that this is a 1D problem.

To achieve this polyline creation, we compute the intersections positions of the ESLs on the
receiver, and we sort the ESLs in order of increasing position along the intersection line of the
swaths plane and the receiver, see figure 5.8. Then, we get the ESLs pairwise, which gives the
swath partition. The swath generators set is the intersection between the ESLs generators sets of the
boundary ESLs, these sets being extended by edges connected to vertices of the original set. In the
configuration of figure 5.8, swaths (1, 2) and (3, 4) are EV kind, and swath (2, 3) is EE, which is

RR n° 5167

66 Duguet

not enough to specify a 1D critical set. The latest swath is bounded by two coplanar ESLs which
can define an apex for the swath, at their intersection point.

INRIA

Robust Epsilon Visibility 67

Chapter 6

Lighting

In the previous sections and chapters, we presented algorithms to compute and validate ESLs and
swaths. These discontinuities have to be identified from the set of scene elements. We need to
enumerate combinations of scene elements, which can give ESL candidates or swath candidates,
and maybe ESLs and swathes.

This section is divided into several subsections: the first one states the relationship between
shadow boundaries and visibility events, the second one describes shadow discontinuities generated
by contact and intersections of objects (which are D0 discontinuities). The third part describes an
application to compute sharp shadows (point or directional light sources), and finally the last one for
soft shadows (from area light sources).

For each application subsection, a naive algorithm is given, followed by optimisations. Besides,
Algorithms given here only concern enumeration of candidate ESLs and swath, no other scene
traversal or clustering optimisation technique is provided here. For such optimisation techniques,
the reader should refer to ray-tracing related optimisation techniques, since the scene traversal and
related algorithm are only needed for fat ray casting.

As in [DDP97], the ESLs, and swath are gathered and stored into a graph structure: ESLs are
stored as nodes, and sub-swath as arcs.

RR n° 5167

68 Duguet

6.1 Shadows and Visibility Events

This section describes the link between the radiance function describing lighting and shadows, and
the visibility events described in the previous chapters. These paragraphs are inspired from [Hec92]
and [LTG92].

The Radiance function

Global illumination problem is often formulated using radiance functions. These functions repre-
sent the energy flux leaving a surface, originating from the surface itself or re-emitted from other
surfaces. An example of formulae for a radiance function (for surface i, at position x, with lamber-
tian surfaces) is given by:

Li(x) = Le
i (x) + ρi

∑

sj∈S

∫

x′∈sj

Lj(x
′)

cos θi cos θj

r2
v(x, x′)dA(x′)

Where

• Le
i is the emitted flux

• ρi is the Bidirectional Reflectance Distribution Function constant in lambertian context

• v(x, x′) is the visibility function between x and x′: 1 if visible, and 0 if not

• dA(x′) is the differential area element centred at x′, on sj

• r is the distance between x and x′

• θi and θj are the angles between the surface normals and the line connecting x and x′

In the expression of the radiance function, we can find the visibility function: v(x, x′). We note
V (x, sj) the part of sj visible from x. The integrand in the radiance function can thus be split into
two parts, one being equal to zero (since for x′ out of V (x, sj), the visibility function equal to zero.
The radiance function can thus be rewritten:

Li(x) = Le
i (x) + ρi

∑

sj∈S

∫

x′∈V (x,sj)

Lj(x
′)

cos θi cos θj

r2
dA(x′)

If we assume that the radiance function is smooth over light sources, and that x is not on the
light source, then the integrand is also smooth. Discontinuities in the radiance function originate
from discontinuities in the visibility, that is along boundaries of the V (x, sj) function.

We will study discontinuities in the visibility function, which apply discontinuities in the radi-
ance functions. A similar discussion first appeared in Heckbert’s PhD thesis [Hec91], we therefore
use the same terminology. If the radiance over the sources is smooth, the radiance function may have
D0, D1 and D2 discontinuities; a Dk discontinuity is where the function is Ck � 1, but not Ck.

INRIA

Robust Epsilon Visibility 69

D
0 Discontinuities

These are discontinuities in the function itself. They either originate from sharp shadows, that is from
point sources; or they originate from occluders lying on the receiver, that is contacts or intersections
between occluders and receivers.

In the first case (point sources), critical swaths studied in the previous chapters define the limits
in space of visibility or occlusion of the source. The D0 discontinuities in the radiance function thus
lie on these surfaces. Locating such discontinuities can be made by intersecting the swaths with the
receiver (as is made by the graphics hardware with the shadow volumes technique).

This application is studied in section 6.3.

The second case is different, since such discontinuities appear whatever the source shape is.
These discontinuities are due to the presence of geometrical special configurations (contact or inter-
section), and can thus be identified as a preprocess, independently from the lighting of the scene.

Intersection and contact elements are studied in section 6.2.

x y

(a) (b)

R

yx
B

A

(c) (d)

from x

source is not visible

occluder

Figure 4: An example of a D0 discontinuity. (a) Edge AB of the occluder lies on the receiver R. (b) The radiance
function over R. (d) The radiance function along the line through x and y.
Points on R immediately to the left of AB cannot see the source and the radiance there is zero. However, immediately
to the right of AB, the entire source is visible, and the radiance there is nonzero. Thus, the radiance function is
discontinuous along AB. The points A and B are points of singularity in the radiance function.

6

Illustration of D0 discontinuities
- taken from [LTG92]

yx

(a)

(c) (d)

C D

A B

A B

C D

E F

y

x

(b)

visible portion of the source

R

occluder

Figure 5: A D1 discontinuity caused by edge-vertex (EV) events. (a) Edge AB of the light source is coplanar to edge
CD of the occluding polygon. The plane in which the two edges lie intersects the receiving plane along EF . (b) The
radiance function over R. (c) The occluder and the light source as seen from x. (d) The radiance function along the
line through x and y.
From point y on R, none of the source is visible, hence the radiance there is zero. As we move from y towards x, part
of the source adjacent to AB becomes revealed. The visible area grows linearly in the displacement fromEF towards x.
Thus, along EF the radiance function has a D1 discontinuity. In this example there are in fact two partially overlapping
VE events, one involving vertex A and the other involving vertex B.

7

Illustration of D1 discontinuities
- taken from [LTG92]

D
1 Discontinuities

These discontinuities come from degenerate configurations. In section 5.2, we saw through a pair
of coplanar edges runs a two dimension set of lines, which are all contained in a plane. this plane
is the locations of D1 Discontinuities in the radiance function, since, on one side, the source is not
visible, and going to the other side, the visible area of the source will grow linearly, leading to a D1

discontinuity.

These discontinuities are identified by edges coplanar to source edges. They are studied in
section 6.4.

RR n° 5167

70 Duguet

D
2 Discontinuities

These discontinuities are the most common discontinuities. They run along the swaths described in
the previous chapters, when generators are in generic configuration (that is except for the D1 case
just above). Note that for two coplanar edges, discontinuity in the radiance function is of order 1
only if one edge is a source edge !

D2 discontinuities may be umbra or penumbra boundaries as well as inner penumbral disconti-
nuities. They lie along swaths either planar or quadratic.

These discontinuities are studied in section 6.4.

x y

(a) (b)

(c) (d)

B C

occluder
A

B

C

D

E

R

A

visible portion of the source

y

x

Figure 6: A D2 discontinuity caused by an edge-vertex (EV) event. (a) The critical surface defined by vertex A and
edge BC intersects the receiving plane along DE . (b) The radiance function over R. (c) The occluder and the light
source as seen from x. (d) The radiance function along the line through x and y.
From point y on R none of the source is visible, hence the radiance there is zero. As we move from y towards x, part of
the source adjacent to vertex A becomes revealed. The visible area grows quadratically in the displacement from DE
towards x. Thus, along DE the radiance function has a D2 discontinuity.

8

Illustration of D2 discontinuities, planar
- taken from [LTG92]

E

C

D

F

x y

(a)

(c) (d)

B
E

F

(b)

R

y

x

C

A
D

of the source
visible portion

Figure 7: An edge-edge-edge (EEE) event. (a) The quadric critical surface defined by the three edges AB, CD, and
EF intersects the receiver, resulting in a conic critical curve (shown dotted). (b) The radiance function over R. (c) The
occluder and the light source as seen from x. (d) The radiance function along the line through x and y.
As we move from y towards x, part of the source becomes revealed. A displacement from the critical curve towards
x results in quadratic growth in the visible source area, hence the discontinuity along that curve is D2. This example
illustrates that when several occluding obstacles are involved, the boundaries between umbra and penumbra regions
on a receiver may be curved.

9

Illustration of D2 discontinuities, quadratic
- taken from [LTG92]

INRIA

Robust Epsilon Visibility 71

6.2 Intersections and Contacts

Introduction

As stated in section 6.1, D0 discontinuities in the radiance function originate in contact of objects
and intersections. Such features can be identified independently from the source shape and position.

In order to get consistent and robust identification of such elements, the same way we did for
visibility events, we compute contacts and intersections, with the same ε threshold. The definitions
of contact must be consistent with the ones given for ESL-casting. More precisely, an object at a
distance bellow epsilon of another is said to hit it.

Besides, most intersection computations techniques need re-meshing. The aimed application is
not to compute the intersected meshes for a further use, it is to compute visibility events on such
meshes. We thus do not need to re-mesh the input geometry, but only to store locations of such
discontinuities.

Note that intersections and contact elements are vertices (edge and face intersection, or vertex
and face contact, in generic configurations), and edges (edge and face contact, or face and face
intersection, in generic configuration); faces in contact do not imply any computations, since they
do not imply any visibility discontinuity.

We compute a virtual mesh, we call the i-mesh. Such a mesh is made of i-vertices and i-edges,
which are described bellow. These elements are computed and stored in a separate structure and do
not imply any change in the input mesh. The visibility requests on the mesh are filtered to take this
additional structure into account avoiding imprecise and unrobust computations due to re-meshing.

Each i-element as a structure, which holds references to elements in interaction (contact or in-
tersection). For each i-element, depending on its origin, is given a structure, and an algorithm to
identify its instances in the scene.

RR n° 5167

72 Duguet

i-vertices

vertex on edge

vertex on vertex

vertex on face

edge and edge

edge and face

Figure 6.1: i-vertices from contact (left) and intersections (right)

contact i-vertices from contact, that is a vertices which lies on another face, edge or vertex (see
figure 6.1), have the following structure:

• vertex

• face / edge / vertex

The precise location of such an element is given by the vertex coordinates for face and edge
configuration, and at the middle point of the two vertices in the other case.

An algorithm to identify them is to compute the distance between vertices and other scene el-
ements, using an acceleration structure (such as an octree), to only test elements which can be at
distance bellow ε.

intersection i-vertices from intersection originate from edges in intersection with faces or edges,
see figure 6.1. They have the following structure:

• edge

• face / edge

• point of intersection

The location of the vertex is explicitly given by the coordinates of the intersection point.
An algorithm to identify them is to cast a ray on the edges supporting line from a vertex bound

of the edge, stopping at the other. All encountered elements whether it be edges or faces, generate
such a structure. The intersection point is computed on the edge for the face-edge case (generic),
and in the middle of the two edges nearest points in the edge-edge configuration (degenerated).

INRIA

Robust Epsilon Visibility 73

i-edges

face and face

edge on edge

edge on face

Figure 6.2: i-edges from contact (left) and intersections (right)

i-edges are segments lying at the intersection or contact of scene elements, but behave exactly
as regular edges with respect to i-vertices, that is: an edge is a line segment between two vertices.
i-edges are thus computed from the data given by i-vertices, which are considered computed at this
point.

contact i-edges from contact originate at contact of edges on faces or edges, see figure 6.2. They
are bounded by contact i-vertices which either lie on the face or on one of the faces edges. The
structure is the following:

• edge

• face / edge

• i-vertices bounds

An algorithm to identify them is to combinatorially identify the i-vertices generators for vertices
on a given face, and its boundaries. The main benefit of such an algorithm is that it is local.

intersection i-edges from intersection originate at the intersection of two faces, see figure 6.2.
They are bounded by intersection i-vertices or contact i-vertices. The structure is the following:

• face

• face

RR n° 5167

74 Duguet

• i-vertices bounds

The same algorithm as above is still valid to identify such elements.

INRIA

Robust Epsilon Visibility 75

6.3 Sharp Shadows

This application computes sharp shadow limits from point or directional light sources. All computed
visibility discontinuities are light discontinuities and define sharp shadow limits. This application
can be seen as an optimised (in terms of acuity of elements) version of the shadow volumes.

The input of the algorithm is a light source (point or direction), and a polygonal scene made of
connected (or not) elements.

The output is the complete list of shadow discontinuities represented by swaths with the apex at
the source, and blocker as shadow boundary receiver.

The source, whether it be a point light source or a directional light source, is considered as
a native generator for the ESL candidates. Any other visibility discontinuity of the scene is not
computed. Hence, ESLs originate at the source position, and swath are planar and their apex is at
source position.

For this application, the graph built is topologically equivalent to the apparent boundaries of the
scene objects viewed from the light source.

Naive The construction of the graph is divided into four steps:

1. ESLs enumeration

2. ESLs validation

3. swaths enumeration

4. swaths validation

The first step is purely combinatorial. All potential ESLs (generic) are computed and stored for
further validation. The second step is straightforward: for each enumerated ESL, take the validation
test, and if success, store the ESL as a node.

The third step is also purely combinatorial: potential (generic) swaths are computed and stored
for further validation. The fourth step is also straightforward: for each enumerated swath, take the
validation test, and if success, store each sub-swath as an arc, and connect the arc to the nodes
corresponding to the ESLs, boundary of the sub-swath.

First step: generic ESLs enumerated here have to hit the source, which is considered as the first
generator. This element behaves the same way as a vertex: for point light source, it is trivial; for
direction light source, the light source constrains the direction of the line, which is two degrees of
freedom our of the four available.

Generic ESLs are then SV and SEE for source-vertex and source-edge-edge. The enumeration
algorithm is the simple enumeration of vertices and pairs of edges.

Third step: same remark, generic swaths are SE, necessarily planar, and enumeration is the
enumeration of the edges of the scene.

The combinatorial complexity of the enumeration is O(n2), which has to be multiplied by the
complexity of the ESL-casting process which is, in a naive approach or in bad configurations, linear;
resulting in a complexity of O(n3).

RR n° 5167

76 Duguet

Besides, we do not address the problem of ESL-casting here, but as far as it is only defendant
on the intrinsic complexity or the scene and the configuration; it is an independent parameter for
enumeration. These two aspects of the whole algorithm are completely separated. And we only
work on the O(n2) complexity algorithm which is the pure enumeration, without any validation or
casting concern.

Nested Calls The first remark is that the second and fourth steps do not need to be separated from
the first and third one. As far as each ESL enumerated will be validated, the ESL casting process
can be called into the enumeration process, storage being saved since number of candidates are not
validated for occlusion matters.

This remark is valid for any other enumeration, and the implied optimisation is considered as
always used.

Silhouette Elements This optimisation will not change the formal and theoretical result of our
algorithm. Besides, in most cases, this optimisation reduces drastically time consumption.

The idea of this optimisation is very simple, from the light source, edge which are not silhouette
edges do not cast shadow in the scene. Indeed, silhouette edges are the apparent boundaries of the
objects of the scene, and thus are the only element casting shadows on other elements (may be on
the same object if not convex). So, in the above enumerations, for swaths, only silhouette edges are
taken into account. Thus, as a direct consequence, vertices which are not connected to a silhouette
edge cannot be boundaries of swath and thus cannot generate ESLs. The number of vertices in
enumerations is also reduced.

By the way, V EE ESLs are made of a silhouette edge, necessarily, and also another edge, which
can be non silhouette. The enumeration of such ESLs is thus made of one silhouette edge, and
another edge, which reduces drastically the amount of edge pairs (in nice configurations).

Swath Casting Once we chose a first edge, a silhouette edge, for the computation of the V EE

ESL candidate, only edges which intersect the line set made by the source, and the silhouette edge,
can contribute for an ESL candidate.

Another optimisation is thus possible using an acceleration structure. Suppose that edges of the
scene have been stored in an octree structure by their position in space. An edge is referenced in an
octree cell if it hits such a cell.

For a given silhouette edge, we compute three planes: one given by the source and the edge
(noted π), and two others perpendicular to π and containing the source and a vertex of the silhouette
edge (noted πa and πb). Then an edge may contribute for an ESL candidate only if it hits the plan π

on a point I which is on the good side of both πa and πb.
To enumerate such edges in an optimised manner, we apply the following recursive function on

the octree nodes (see figure 6.3).
This enumeration technique also reduces the number of tested elements drastically. Indeed, all

elements listed with the algorithm lead to an ESL candidate, which are ESLs besides occlusion.

Final Algorithm The final algorithm is given figure 6.4.

INRIA

Robust Epsilon Visibility 77

octree enumeration
potential (N)

E = ∅
for each C child of the node

B is the box of the child cell
if B ∩ π = ∅ stop
if B on bad side of πa stop
if B on bad side of πb stop
E = E∪ potential (C)

end for each
return E

Figure 6.3: octree traversal algorithm for V EE ESL candidate enumeration

Final Algorithm
Let

S the source
E the set of silhouette edges, in an octree
V the set of vertices connected to S

ESL
for each V ∈ V

ESL-cast (SV)
end for each
for each E1 ∈ E

build π, πa and πb

for each E2 in octree traversal
build SE1E2

ESL-cast (SE1E2)
end for each

end for each
swath
for each E ∈ E

build H, set of ESLs in SE
sort H along E
η� = first in H

for η+ ∈ H, ordered
λ = midline (η � , η+)
ESL-cast (λ)
store (η� , η+) if success

η� = η+

end for, ordered
end for each

Figure 6.4: Final graph construction algorithm

RR n° 5167

78 Duguet

6.4 Soft Shadows

In this section, we describe an algorithm to compute shadows casted by area light sources, that is
with non null spacial extend. This section is subdivided into 4 parts:

1. Visibility events and shadow boundaries

2. ESLs enumeration

3. pseudo-ESLs enumeration

4. Swath enumeration

Visibility Events and Shadow Boundaries

We presented in section 6.1 the link between visibility events and shadow discontinuities. We proved
that each discontinuity in the radiance function lies on a visibility event, that is on a swath. Besides,
some discontinuities of the radiance function, e.g. inner order two discontinuities, do not contribute
to a visual change. Also, it is important to note that for display, the lighting is sampled, and then lin-
early interpolated between samples. The sampling has to be fine enough to represent visual changes
of strong energy, but not too fine. In [CF90] is described

We make the following choices:

• only boundary shadow discontinuities are computed

• the shadow area is sampled depending on the irradiance gradient

Note that with these assumptions, we do not get the exact soft shadow boundaries, but we get
an approximate result at a reasonable cost. Still every discontinuity in the radiance function can be
computed using a naive algorithm enumerating every possible ESL and swath. of the scene, from the
light source. But this approach is far too expensive (for average complexity scenes) to be detailed
here.

The configuration here is similar to the case of sharp shadows. That is the elements of interest are
boundaries in the radiance function discontinuities. These boundaries are given by lines which run
through silhouette elements of the scene. But in this case, the silhouette criterion is not necessarily
satisfied from each element of the source. There are two kinds of boundary elements: between
the umbra region and the penumbra region which we call the umbra boundary; and between the
penumbra region and the lit region, which we call the penumbra boundary.

Durand and al [DDP97], presented the Visibility Skeleton; a structure storing visibility infor-
mation, and especially extremal stabbing lines and critical line sets (swaths). We present here an
algorithm building parts of the skeleton on demand. It can be seen as a lazy approach of the Visi-
bility Skeleton. To compute such a structure we need to enumerate and validate extremal stabbing
lines and swaths. Once computed, these elements are used for meshing and lighting the scene.

INRIA

Robust Epsilon Visibility 79

ESLs enumeration

In [DDP97], a complete enumeration of the ESLs was performed; in our case, we only focus on ESLs
which lie on a source boundary. Inner ESLs do not contribute to relevant irradiance discontinuities,
and are thus not computed. We compute ESLs which have a generator on the source, that is:

• VsV , VsEE

• EsV E, EsEEE

The enumeration of VsV and VsEE ESLs is the same as for point light source, with silhouette
optimization.

EsV E are enumerated in the following way: we consider an edge of the source, say Es. Then,
we get a vertex of the scene, say V . We build a V Es structure exactly the same way we did for VsE,
but the polygon is now made of two parts and the apex is not on the source. We still use this structure
to identify edges which can help generate en ESL. These are the edges hitting this polygon. We thus
have an ESL candidate, and perform the usual validation.

EsEEE are more complicated to enumerate. In order to do that, we first select the source edge
Es and another edge which can be silhouette for Es, noted E1. We use a special structure called
the hourglass, first introduced by Durand et al in [DDP97]. But we use this structure differently: the
hourglass is computed, and then, we use an octree traversal algorithm bounded to this volume. This
algorithm is based on divide and conquer: we explore a child node only if it is hit by the volume
bounded by the hourglass. Note that this algorithm can be applied to arbitrary volumes, if they can
give a hit-cube predicate. We thus traverse the octree of edges to get pairs of edges.

We then apply the algorithm detailed in 3.2 to compute the actual ESL(s) candidate(s) through
the four edges. We then perform validation.

pseudo-ESLs enumeration

As stated in 5.2, some pseudo-ESLs have to be computed to give a consistent connectivity and
structure to sub-swaths. These lines originate from configurations illustrated in figure 5.9. They
contribute to inner discontinuities, but might still be computed if wanted. They are enumerated the
following way: for each vertex of the scene, let π1 . . . πn the planes supporting its surrounding faces.
For each πi hitting an edge of the source, build a pseudo-ESL from the intersection point of πi and
the source edge, to the vertex.

Validation is made the same way as regular ESLs, the only difference is that the generators of
such a pseudo-ESL are not enough.

It is important to note that These pseudo-ESL were presented by Durands PhD thesis in [Dur99],
as ESLs with face generators (more precisely:Fv).

Swath enumeration

In [DDP97], swath were not enumerated since the catalog provided connectivity. In our approach,
we have to compute them separately, since they are not easily defined for degenerated ESLs.

The computed swaths are of the following kind:

RR n° 5167

80 Duguet

• VsE EsV

• EsEE

VsE and EsV swaths are computed exactly the same way as for point light source. That is, the
swath is planar, has an apex at a vertex (on the source or not).

For EsEE, we use the hourglass to identify potential swath, and then apply the swath validation
algorithm. Indeed each edge hitting the hourglass might give a swath, since a set of lines run through
the part of the edge which is inside the hourglass.

INRIA

Robust Epsilon Visibility 81

6.5 Meshing

We presented in the previous sections algorithms to compute shadow boundaries, and other dis-
continuities of the radiance function. In this section, we present techniques to subdivide the input
geometry into elements on which the radiance function is smooth, up to a certain degree (say C2

for example). In order to achieve this, we have to subdivide mesh elements along the discontinuities
computed by the previous algorithms, that is along visibility events.

The input of the algorithm is:

• the input mesh

• the set of radiance discontinuities

The output of the algorithm is a subdivided mesh.

Constrained Delaunay Triangulation Approach

We suppose that blockers are faces (not clusters as proposed for optimisation).
Shadow boundaries, and by extend radiance function discontinuities, are given by the intersection

of swaths and blockers (faces). These intersections are segments on the faces, which can be seen as
constraints. We thus compute such intersections and use a constrained Delaunay triangulation (CDT)
algorithm to subdivide the mesh. The constraint edges will define radiance function discontinuities,
and on each sub-face, the radiance function will be smooth (up to a certain degree). The algorithm
is thus made of two steps:

1. compute swath-face intersections

2. call a CDT algorithm

The second step is not detailed in this section. The reader should refer to triangulation literature
for further information.

The first step is made in the same idea as intersection pre-computations.
Remember that along a given sub-swath, the visibility is constant, and especially, the receiver is

the same. Boundaries of the sub-swath, given by ESLs, will intersect the receiver on boundaries of
the constraint. We thus need to compute, for each sub-swath, the intersection of its boundary ESLs
and the blocker of the sub-swath. The result gives the boundaries of the constraint on the receiver,
and thus the constraint itself.

Note that the previous technique is only valid for planar swath, since the intersection of a planar
swath with a face is a line segment. For quadric swaths, the intersection is a part of a conic. We
approximate such a curved segment by sampling. Sampling of this curve can be done before pro-
jection, that is, the sub-swath is sampled along its reference edge (we take a point on the reference
edge, and compute the line running through this point and the two edges), and the resulting line is
intersected with the receiver. We thus approximate quadric constraints by a chain of line segment
constraints.

RR n° 5167

82 Duguet

The main drawback of this technique is robustness issues. Indeed, such algorithms suffer from
robustness issues especially when constraints intersect, leading to computation of additional vertices
which need proper placement in the structure which is sometimes difficult to handle.

INRIA

Robust Epsilon Visibility 83

Chapter 7

Implementation

7.1 Acceleration Structure

The algorithms presented here are oriented around lines. We compute the intersections of lines with
objects such as spheres (for fat vertices), cylinders (for fat edges), and faces. These intersection
predicates and computations are well known in graphics. A very popular algorithm has motivated
research in this direction: ray-tracing.

Since our queries on the scene are very similar to the ones of ray-tracing, we will use the same
data structures and acceleration techniques to improve our performances.

This section is separated into four parts: an introduction to the problem of casting a ray in a
scene, a brief presentation on some data structures available (mainly the three fundamental types),
our choice and their implementation.

Casting a ray

The problem of casting a ray in a scene is easily stated: given a scene of geometric objects, which
one is the first hit by a ray, and where.

The first naive technique was to test for intersection against all the objects of the scene, and to
get the closest (which is a linear complexity algorithm - in terms of input size). This complexity
leads to a drastic loss of performances, as the scene complexity increases.

Glassner [Gla84] presented a technique to put objects into an octree: a tree of spacial cells, which
at each node splits the node into eight sub-nodes if necessary. The tree is stored in a smart manner
with a number related to its position in the space, avoiding confusion between a cell and its children.

RR n° 5167

84 Duguet

The main benefit of the octree is that it has few empty cells, since a cell is split only if it holds
too many objects. The main drawback is that some objects may appear twice in the traversal of the
structure.

Goldsmith et al. [GS87] presented a heuristic for the optimal hierarchy of bounding box compu-
tations. This approach consists in putting together objects close to each-other considering them as a
single bigger object.

Fujimoto et al. [AF86] presented a complete ray-tracing system with two types of acceleration
structures: one with octrees, as for [Gla84], and the other with a grid (uniform space partitionning).
They proposed a very efficient algorithm to traverse these data structures which was inspired from
the line drawing algorithm. Amanatides and Woo [AW87] improved this algorithm to avoid divi-
sions and other costy operations.

More complex and elaborated structures have been presented later, such as HUG, the Hierarchy
of Uniform Grids by Cazals et al. [CDP95]. The work on the best structure still goes on, and the
discussions on this topic are veray animated on ray-tracing news...

Existing Structures

We present here briefly the main structures used in ray-tracing and other space-subdivision oriented
algorithms.

Octree The first structure we present here is the octree. The idea is very simple: given a box
(axis-aligned), if it contains too many objects, we split it into eight non-overlapping boxes of half
length. This splitting algorithm is recursive as well as the insertion algorithm and naive traversal
with rays. The main benefit of this structure is its dynamic aspect. Indeed, as a hierarchic object, the
structure can be localy modified easily. Its implementation is also easy in its naive approach.

Grid The second structure we present is the grid, or more precisely, the uniform grid. This struc-
ture is also simple: we subdivide the axis aligned bounding box of the scene along each axis. This
subdivision depends on the number of objects in the grid. The main benefit of the grid is that a very
fast traversal algorithm is known. The main drawback is that most cells are empty, and storage space
is thus lost.

Hierarchy of Bounding Boxes This structure is an arbitrary hierarchy of potentially overlapping
bounding boxes. This structure is relatively free in terms of implementation details and construction
result, but the optimal hierarchy is not trivial to obtain. Its hierarchical aspect makes it dynamic in
the same way the octree is.

INRIA

Robust Epsilon Visibility 85

Amongst the whole set of possible combination of structures, hybrids of grids, octrees, and
hierarchies, we chose two types: the grid, with a particular implementation, and the tri-grid, which
is impired by the octree and has 27 sub-cells.

Grids

In this section, we present the two structures we used: one is flat and the other is hierarchical. The
first one is a simple grid, that is, given the bounding box of the scene (axis-aligned), we subdivide
it in cubic-shaped cells with a fixed number of cells along each axis. The second one is a recursive
grid with a fixed number of cells for each node split of the underlying hierarchy, which is 27 subcells
(27 = 33, reason why we call it the tri-grid). We chose to use a fixed number mainly for performance
issues, but we still wanted a finer refinement at each step than the case of the octree.

We present in this section the structures and the algorithms. For each of them, we consider the
concept of a bounder: the bounder is a tool which can return the bounding box of an object, and test
intersection between a given axis-aligned box and an object. The possibility to give the structure
queries on the objects only through this bounder makes our approach general to any kind of geome-
try.

Simple Grid

The simple grid is static in our case, that is we do not add any cell (or insert elements in an empty
cell). For a dynamic structure, we preferably use the trigrid. We give as input of the simple grid
construction the set of objects, as well as a bounder. We then get the number of elements of the
input, which interact with the grid. Given this number, we choose a number of cells.

The choice of number of cells has to be reasonably high so that the acceleration structure is effec-
tive, but not too high for memory consumption concerns. We classify the objects into 3 subclasses:
BIG (more than a million elements), MEDIUM (between a thousand and a million), TINY (less than
a thousant elements). Let n be the number of objects, we compute the number of significant bits k

for our grid in the following way:

• BIG : k = 2.17 ∗ (ln(n) � sqrt(ln(n)))

• SMALL : k = 2.17 ∗ (ln(n) � ln(ln(n)))

• TINY : k = 2.17 ∗ ln(n)

This empirical approach gives us a sufficient number of cells, keeping a reasonable grid size with
respect to the available central memory.

The subdivision of the grid is done as follows : the number of cells along each axis is a power
of two. The sum of these powers of two for each axis is k. We thus allocate k bits with a specific

RR n° 5167

86 Duguet

distribution along axes. In order to have cubic-shaped cells, we allocate bits this way: let lx, ly and lz
the size of the bounding box of the grid along each axis. As long as we have bits left, we increment
the number of bits allocated to a direction for the axis which has the greatest value of l and divide
this size value by two. We finally slice the bounding box of the grid along each axis for the given
number of cells by axis.

We then insert the elements into each cell which hits the element (we use the bounding box of
the elements for faster insertion).

The Tri-Grid

The tri-grid is our dynamic structure. It is constructed progressively during insertion or deletion of
objects from the structure. The refinement criterion is simple: if we reach a given number of ele-
ments in a cell (parameter of the tri-grid), we split the cell into 27 subcells.

The tri-grid contains the root of the hierarchy, which is a cell of the size of the grid. Each cell
has a list of elements, or a list of children.

Implementation

Elements

Acceleration structures work with rays and elements: a ray is cast in the structure and returns the
elements it successively hit. For generality reasons, elements derive from an abstract empty class,
and is simply a typed pointer. The queries of the acceleration structure to the elements are done via
a bounder. The bounder has two functions: returning the bounding box of an object and answering
the boolean query of intersection between an object and an axis-aligned box. Rays are given as an
origin and a direction in the world space.

Simple Grid

The simple grid has many empty cells. It would be a waste to store them all with the flag empty. We
thus use a hollow-array for cell storage. A hollow array is a structure which only stores non-empty
cells, a quick query is achieved to test if a cell (index in the hollow array), is stored (ie non empty).

A cell is completely identified by a pointer to an axis-aligned box (of the grid), and a 32 bit
number. Indeed, we do not allow grids of more than 4G cells, so the number of the cell is a 32 bits
number. As we split the grid along the axis by powers of two, the quantized position of a cell has a
coordinate value from 0 to 2k � 1, where k is the number of bits allocated for this coordinate. We
can naturally encode a cell number with the value of its quantized positions.

For the traversal algorithm, we used the algorithm defined by [AW87] for a grid traversal with
few operations. Going from one cell to another is simply an increment or decrement of the cell’s

INRIA

Robust Epsilon Visibility 87

quantized coordinate, and more efficiently, an addition or substraction on the cell index. Overflow
and underflow can be tested with a mask on the index number.

The structure has not been benchmarked, only a result has been established: for a given model
(bunny 69k polygons), we cast an average of 350,000 rays per second in the scene.

Tri-Grid

The tri-grid, on the other hand has fewer cells, and at most 26 empty cells per node. We did not use
any particular way to store cells, or allocate new cells when a split occurs. This part could clearly be
optimized.

For each cell, we associate an index: we quantize uniformly by 729 (36) each coordinate of the
minimal corner of its bounding box. We then encode each position in ternary representation. The
terns of each coordinates are then concatenated to form a value between 0 and 27d. This value is
encoded on 5 bits. The position of the cell holds in 30 bits, with highest weight five bits for highest
tern of the coordinates, and so on. We use tables to avoid multiplications and divisions. In order
to differenciate the root cell from a child cell at minimal position (0, 0, 0), we use the following
technique: for a given level of the hierarchy, all bits are not significant, only the 3 ∗ nth first are (n
being the depth of the tree, 0 for root). We thus end our cell number with ones. We are not confused
with a subcell since 11111b is not between 0 and 27 and is thus not a cell number. (The same kind
of technique has been used by Glassner in [Gla84] for octree cells numbered from 1 to 8 instead
of 0 to 7.) For example, the root node is 0xFFFFFFFF , and the children are numbered from
0x07FFFFFF to 0xDFFFFFFF . The children of cell 0x07FFFFFF are numbered from
0x003FFFFF to 0x077FFFFF .

Any position for a query is uniformly quantized by 729 possible positions for each coordinate
(which would result in a grid of size 387 million cells, which is enough for our needs). The position
is then encoded the same way cell minima are (without any ones filling). To access the node, we get
the highest 5 bits of the encoded position - noted index -, and start from the root node. We shift the
encoded position of 5 bits, and step to the child (if exists) of index. We recursively traverse the cell
tree until we are in a leaf node, which is our result.

The traversal algorithm is based on this idea: we compute the quantized position of the entry
point in the next cell, and get the cell from the previous algorithm.

The structure has not been benchmarked, only a result has been established: for a given model
(bunny 69k polygons), we casted an average of 175,000 rays per second in the scene.

RR n° 5167

88 Duguet

Mesh Data Structures

Along all this description of algorithms, we made the assumption that we had immediate access to
edge description and connectivity. We describe here briefly the main types of mesh data structures,
as well as ours. Each structure has its benefit and its drawbacks.

We will present the half-edge, the quad-edge, the split-edge and the corner data-structures. We
then describe our choice on the data structure which has multi-layer information.

Well-Known structures

We present in this section the existing mesh data-structures. This is an exhaustive list to the extend
of our knowledge.

Half-Edge

The half-edge data structure is, as its name states, a structure oriented around edges. Each edge is
split into two oriented half-edges, one in each direction. For each of these half-edge, we store the
following information:

• the vertex it points to

• the sibling half-edge

• the next edge in a face loop

Figure 7.1 illustrates this structure.
A vertex is represented as its coordinates in a table.
A face is represented by one of its half-edge.
Lets consider an example mesh: the Stanford bunny. The number of faces is 69, 473, the number

of vertices is 34, 835, and the number of half-edges is 208, 620. The memory cost of this structure is
thus: 208, 620∗3+34, 835∗3+69, 473 = 799, 838, in terms of pointers, which is 3, 199, 352 bytes.

The complexity of various access and loop algorithms is constant for the neighboring connectiv-
ity information, except for the face access given an edge. This access is either logarithmic in terms
of the mesh size (find an edge of the face-half-edge loop which is actually the entry for a face), or
we have to change the structure and add a face pointer in it (making the structure reach 4Mb).

This structure would be very efficient in terms of access time (with the extension), and its im-
plementation could fulfill most of our needs. But since we want to be able to access all kinds of
geometry, whether it be solid or not, badly linked (three faces on the same edge), we preferred to use
another kind of data-structure for our meshes.

INRIA

Robust Epsilon Visibility 89

Figure 7.1: The Half-Edge data structure from http://www.graphics.lcs.mid.edu/ legakis/6838/598/VIII.SplitEdge.and.Corner.html

Quad-Edge

The quad-edge data structure is oriented around edges, but in a different manner. Each quad-edge
has the following information: two references to vertices, and two references to faces (connected).
As illustrated in 7.2, we can see the structure in action. For example, the edge named g connects
vertices 6 and 2 (drawn as circles on the top-right). It is also a boundary for the face F . A face can
thus be represented by one of its edge and a side, and the vertex in an array of coordinate values.

For the same bunny example, the cost is: 208, 620 ∗ 4 + 34, 835 ∗ 3 + 69, 473 = 1, 008, 458, in
terms of pointers, which is about 4Mb. The same remark for faces apply in this case, which would
lead us to 4.8Mb.

Split-Edge

The split-edge is sometimes presented as the dual of the half-edge. Each edge is also split into
two half-edges, but in a different manner. The difference is in the next edge, which also points to
the same vertex, making vertices loop algorithm as face loops of the half-edge and vice-versa. An
illustration is given in figure 7.3.

The storage cost is exactly the same as the half-edge.

RR n° 5167

90 Duguet

Figure 7.2: The Quad-Edge data structure from http://www.stanford.edu/ rakbas/solid/quadedge.hml

Figure 7.3: The Split-Edge data structure from http://www.graphics.lcs.mid.edu/ legakis/6838/598/VIII.SplitEdge.and.Corner.html

Corner

The corner data structure is oriented around corners of each face. Each corner has a pointer to the
vertex it refers, and two pointers to neighboring edges. The structure is illustrated figure 7.4.

INRIA

Robust Epsilon Visibility 91

For example, given a corner, you can iterate to the next corner of the face, or switch to a con-
nected face. The capabilities are the same as the half-edge structure.

Figure 7.4: The Corner data structure http://www.graphics.lcs.mid.edu/ legakis/6838/598/VIII.SplitEdge.and.Corner.html

The main drawback of this approach is that the edge information is not directly available, but can
still be encoded easily (the corner for which the next corner pointer connects to the connected edge).
The same concept of half-edge is also present here. The same drawback for faces is also present.

The memory cost of this structure for the example of the bunny is: 3.2Mb

RR n° 5167

92 Duguet

Our Structure : Multi layer connectivity information

We designed a structure with multi-layer connectivity information giving the ability to only store
"permanently" minimal, but sufficient information, and to restore acceleration structures (for con-
nectivity access) when needed. This structure is made of three layers:

1. The first layer is the fundamental layer. It stores all the vertices in an array of coordinates and
the faces with a double entry table. (Exactly the same way VRML or IV does for indexed face
sets). This first layer construction is cost-less since the meshes are stored this way in most 3d
Graphics file formats.

2. The second layer creates edges. With this layer, we have access to the connectivity between
vertices through the same concepts as half edges. Besides, the half edges are stored implicitly
(the vertex which is pointer to by the edge).

3. The third layer creates an additional acceleration structure to grant access to the face connec-
tivity. With this structure, vertices can have access to neighboring faces, and edges also.

The structure of the first layer is the following: given the number of vertices and the number of
faces, we create two tables: one of floating point values for the coordinates (three times the number
of vertices - meshes in 3D), and another for face indices, given entry-points for faces in another table
(vertices of the faces). This structure is the regular way to store indexed face sets in modeling files.

The structure of the second layer is the following: we create a double-entry array for vertices
connectivity (the same way we did for faces). The sub-array of elements for each vertex is the set
of connected vertices. Each entry of the big table corresponds to an actual half edge, but the infor-
mation is not immediately available. Besides, given this second table, we do not have access to face
connectivity information. The main benefit of this approach is that we have a unique id for each
half-edge: its index in the table.

The final layer is the face connectivity for vertices. It is stored exactly the same way edges are.
Each entry in the first table gives access to the set of faces connected to each vertex. To get the
faces connected to an edge, we need to get the face connected to the one vertex of the edge, which is
also connected to the other. There are two faces, with different indices in the table, which helps us
differentiate them. Note that besides this apparent complexity to retrieve the faces connected to an
edge, it is still a local computation and is bound by the valency of the vertices.

The cost of this structure for the example of the bunny is (by layers):

1. vertices: 418, 020 bytes, faces : 1, 111, 572 bytes.

2. index-table: 139, 344 bytes, data-table: 834, 480 bytes.

3. index-table: 139, 344 bytes, data-table: 833, 676 bytes.

INRIA

Robust Epsilon Visibility 93

The overall cost is 1, 529, 592 + 973, 834 + 973, 020 = 3, 476, 446 bytes. This result is better
than all the previous one if we consider the local-time access for face connectivity. The main benefit
of this structure is of course its multi-layer aspect. Once computations are done, face connectivity
might not be needed and the structure with edge connectivity would be less costly than previous
ones.

RR n° 5167

94 Duguet

Basic Geometric Algorithms

We present here two basic algorithms we extensively use: the intersection between a ray and a
sphere, and the intersection between a ray and a cylinder. Amongst all tutorials web pages and other
publications, we viewed a lot of various algorithms with for each of them benefits and drawbacks.
We present here two algorithms which satisfy our needs: robustness and precision.

A ray is defined by an origin O, and a direction ~u. The points of the ray are given by M(λ) =
O + λ~u, with λ ≥ 0.

A sphere is defined by its center C and its radius r.
A cylinder is defined by its two extremal points (centers of extremal discs) A, B, and its radius r.

We need the precisions to be much greater (so error much smaller) than the epsilon we mean to
use. A precision of 10 � 5 will certainly be not satisfactory !!

Intersection of a ray and a sphere

The intersection points are given by the points on the ray with parameters, the solutions of the
equation ~CM · ~CM = r2, that is with substitution of the M point by its expression on the ray:

~u · ~u + 2~u ~CO + ~CO · ~CO � r2 = 0

This second degree equation is easy to solve. Besides, the discriminant of this polynomial is not
robustly computed, especially when O is far from C. We thus use the following technique illustrated
figure 7.5.

We compute the closest points in homogeneous coordinates to avoid divisions:

I = O +
~OC · ~u

~u · ~u
~u

Then we compute the distance between this point and the center of the sphere:

d2 = ·CI · ~CI

in an homogeneous manner (that is we multiply C by ~u · ~u, and obtain d2 ∗ ~u · ~u). We compare to
the square radius to do our hit test (yet, only multiplies and additions, which are almost free on the
ix86 family). Finally, we get the two intersection parameters by increasing and decreasing this value
by the square root of this square distance (once-again in an homogeneous manner). We thus avoid
divisions.

The performances are the following: on a PIV Xeon 2GHz, an intersection requires on average
96 νs.

The precision is of order 10 � 9 on the distance between the sphere and the ray (for computations
using double precision arithmetic).

INRIA

Robust Epsilon Visibility 95

C

I

I

C

ray = O,u

Figure 7.5: The ray intersect sphere algorithm

Intersection of a ray and a cylinder

This algorithm is subdivided into two parts: the intersection between a ray and an infinite cylinder,
and the clamp of the result between the two planes. The clamp is defined by the intersection between
the ray and the planes orthogonal to the axis of the cylinder, et the vertices positions. This clamp can
be made in homogeneous coordinates without any divisions.

A

B

J I

ray = A,u

Figure 7.6: The ray intersect cylinder algorithm

RR n° 5167

96 Duguet

The intersection is illustrated figure 7.6. In order to compute the distance between the ray and
the infinite cylinder, we compute the distance between a point on the ray (say V = O +µ~u), and the
nearest point on the cylinder:

I = A +
(~OA + µ~u) · ~AB

~AB · ~AB
~AB

The square distance between the two points is given by: ~V I · ~V I , with

~V I = { ~OA �
~OA · ~AB

~AB · ~AB
~AB} + µ{~u �

~u · ~AB

~AB · ~AB
~AB}

Which we can rewrite using the double cross product expression:

~V I = ~o_ + µ~u_~o_ = ~AB × ~OA ×
~AB

AB2
~u_ = ~AB × ~u ×

~AB

AB2

The square distance d2 is finally given by:

AB2d2 = µ2(~u × ~AB)2 + 2µ(~u × ~AB) · (~OA × ~AB) + (~OA × ~AB)2

We can then use a trinomial resolution to extract the two roots and return the values of µ for which
the distance is equal to the radius. These operations do not imply any subdivisions and clamping the
results can be done with homogeneous values.

The performances are the following: on a PIV Xeon 2GHz, an intersection requires on average
256 νs.

The precision is of order 10 � 7 on the distance between the cylinder and the ray (for computations
using double precision arithmetic).

INRIA

Robust Epsilon Visibility 97

Chapter 8

Conclusion

In this thesis, we have presented a novel framework for analytic visibility based on epsilons. This
epsilon visibility provides algorithms, techniques and other tools to perform robust visibility com-
putations in large 3D environments. We provided several custom solutions to problems specific to
our needs such as robust and efficient intersection of rays and cylinders, or static and very fast ac-
celeration structures for ray tracing.

This project is not fully finished, and we expect new results soon. The main algorithms related
to strict visibility computations will soon be used in a global illumination algorithm to bridge the
gap between geometry and lighting. Extensions of this work are also expected in other fields such
as occlusion culling.

The most promising part of this work is its potential regarding hierarchical visibility. Indeed,
since visibility algorithms are of complexity at least quadratic, increasing geometric complexity is
not yet possible. An extension to our epsilon approach using a very large value compared to the size
of the objects could be a first approach to hierarchical visibility.

RR n° 5167

98 Duguet

INRIA

Robust Epsilon Visibility 99

Appendix A

Line Space and Plücker Coordinates

This section is a short introduction to line space and Pl"ucker coordinates [Plü65].
We present here geometrical tools useful for lines handling, especially in an Euclidean 3D space

(world space, within which the scene is described). These tools mainly originate from Euclidean
geometry, and linear algebra. By the way, for Plücker coordinates, some notions on varieties might
be useful even though not needed.

In this part, we make the assumption that between two points lies one and only one unoriented
line, or two oriented lines.

We introduce line space issues with 2D lines representation problems, then we introduce Plücker
coordinates with some algorithms.

Introduction

In 2D space, lines can be represented in different manners (this list is not exhaustive):

• by its intersection with the Oy axis and its angle with the Ox axis: (y0, θ)

• by an equation of the kind: ax + by + c = 0 (no orientation)

• by a point and a direction vector: M0, ~u

Note that each representation has a different number of parameters: two for the first one, three
for the second one and four for the last one.

The first representation has a continuity problem since if the line is parallel to the Oy axis, such
parametrisation is not possible. In order to avoid specific treatment, we leave this line representation
for another.

In the two following representations, we can note redundancy. In the second one, the parametri-
sation is done in a projective space, that is if we multiply each parameter by a non null constant, the
line represented is the same. In the last one, the point may be chosen anywhere on the line, and the

RR n° 5167

100 Duguet

direction vector can be scaled. Besides, The second parametrisation does not allow orientation of
lines, since it is a set definition (points on the line have coordinates which satisfy the given equation).

The other benefits of the last representation is that its definition is also valid in 3D, whereas the
second needs two equations to be described, raising the number of parameters to 8.

Plücker coordinates are a parametrisation of 3D lines close to the last one. We will present in the
following section, the Plücker coordinates, and some tools to use them.

Plücker Coordinates

Parametrisation

Let P and Q be two points in the 3D space, with coordinates (xp, yp, zp) for P and (xq, yq, zq)
for Q. The six Plücker coordinates are the six determinants computed from two columns of the
following matrix:

(

xp yp zp 1
xq yq zq 1

)

That is:

(PQ) =

















πl0
πl1
πl2
πl3
πl4
πl5

















=

















xpyq � ypxq

xpzq � zpxq

xp � xq

ypzq � zqyp

zp � zq

yq � yp

















This parametrisation is strictly equivalent to the following one (permutations and sign change):

(PQ) = (~u, ~v) =
(� � →
PQ,

� � →
OP ×

� � →
OQ

)

From now one, we will keep the last representation of the line which is more intuitive, and easy
to write / handle. Note that the ~u vector is in fact the direction vector of the line. Also note that with
this construction ~u · ~v = 0. See figure A.1 for illustration.

Redundancies

This six parameters representation is redundant in two ways: the first is that this representation is
invariant with a strictly positive scaling. We are in a projective space. We call the unit cylinder,
the five dimension algebraic variety defined by ~u · ~u = 1, that is the set of lines with unit direction
vector. We call this cylinder the normalisation variety (or cylinder), despite the non unit value of
the six dimension vector’s norm. The second one has been raised in the construction step. Indeed
all sextuple of parameters do not represent lines through this parametrisation since we shall always
have ~u · ~v = 0. Any line which does not satisfy this equation is said to be unreal or imaginary, in

INRIA

Robust Epsilon Visibility 101

O

v

u

(u,v)

Figure A.1: The Plücker line

contrast with real lines which satisfy this equation. The algebraic variety associated with the last
equation is called the reality variety (or cone).

The intersection of the two varieties define a four dimension variety, which we consider to be our
line space. From now on, we will only consider lines as parametrisations of this space. Any other
element of the 6D space will be temporary, in the context of computations.

The Plücker Bilinear Form

Let δ1 = (~u1, ~v1) and δ2 = (~u2, ~v2) be two lines. The Plücker bilinear form, noted �, of these two
lines is given by:

δ1 � δ2 = ~u1 · ~v2 + ~u2 · ~v1

Note that for any (real) line δ, δ � δ = 0.
This bilinear form is symmetric and gives the orientation of a line with respect to the other, see

figure A.2 for illustration. Note that this bilinear form is not a dot product since its eigen values are
1 and � 1, triple times.

Two lines have a null Plücker form if they are parallel or they intersect. Indeed, in these cases
the orientation cannot be defined.

Intrinsic Line Parametrisation

One of the main benefits of such a representation is that it has an intrinsic line parametrisation, that
is given these coordinates, a point of the line is uniquely defined by a single real value. The origin
of this intrinsic parametrisation is given by the following equation (we suppose once again the line
to have a unit vector):

RR n° 5167

102 Duguet

> 0 < 0

Figure A.2: Illustration of the Plücker form

Ω = ~u × ~v

The points on the line are then given by the following equation, for λ an arbitrary real value:

Mλ = Ω + λ~u

Also, an immediate projection algorithm is available: the parameter of the nearest point on the
line from point P is given by:

λ =
� � →
OP · ~u

Some Algorithms using Plücker coordinates

Intersection With a Plane

Let π be a plane of normal ~n and distance to the origin d. The intrinsic parameter of the point is
given by:

λ = d � [~u,~v,~n]
~u·~n

[~u,~v, ~n] = (~u × ~v) · ~n

Line From Two Planes

Let π be a plane of normal ~e and distance to the origin e, and ρ with ~f , and f . The Plücker parametri-
sation of the line intersection of the two planes is given by:

INRIA

Robust Epsilon Visibility 103

~u = ~e × ~f

~v = f~e� e~f

1� (~f·~e)2

Proof: Is Ω on the planes ?

Ω = ~u × ~v

Ω = (~e × ~f) × f~e � e~f

1� (~f ·~e)2
[

1 � (~f · ~e)2
]

Ω = f
[

~f � (~f · ~e)~e
]

� e
[

(~e · ~f)~f � ~e
]

[

1 � (~f · ~e)2
]

Ω · ~e = f(~f · ~e � ~f · ~e) � e
[

(~e · ~f)2 � 1
]

[

1 � (~f · ~e)2
]

Ω · ~f = f
[

1 � (~f · ~e)2
]

� e(~e · ~f � ~e · ~f)

Parameters of Nearest Points

Let δ1 = (~u1, ~v1) and δ2 = (~u2, ~v2) be two lines. The aim of this algorithm is to compute the
parameters of the nearest point on a line of the other. That is the parameter of I1, point of δ1 nearest
from δ2, (and vice versa).

We first compute the following elements:

s = ~u1 · ~u2

m1 = [~u1, ~v1, ~u2]
m2 = [~u2, ~v2, ~u1]

The nearest points are so that
� � →
I1I2 is orthogonal to both ~u1 and ~u2. We note I1 = Ω1 + λ~u1 and

I2 = Ω2 + µ~u2. And we right the vector equation, giving:

λ � µs = m2

� λs + µ = m1

We then invert the matrix, and obtain the result:

λ = m2+sm1

1+s2

µ = m1+sm2

1+s2

Note that this algorithm is very useful to find the nearest point on an edge on a given ray.

RR n° 5167

104 Duguet

INRIA

Robust Epsilon Visibility 105

Bibliography

[AF86] Kansei Iwata Akira Fujimoto, Takayuki Tanaka, Arts : Accelerated ray-tracing system,
IEEE Computer Graphics and Applications (1986), 16–26.

[ARHM00] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll, Efficient image-based methods
for rendering soft shadows, ACM SIGGRAPH 2000, Annual Conference Series, July
2000, pp. 375–384.

[Arv94] J. Arvo, The irradiance Jacobian for partially occluded polyhedral sources, ACM SIG-
GRAPH ’94, 1994, pp. 343–350.

[AW87] John Amanatides and Andrew Woo, A fast voxel traversal algorithm for ray tracing, Eu-
rographics ’87, Elsevier Science Publishers, Amsterdam, North-Holland, 1987, pp. 3–
10.

[BDT99] K. Bala, J. Dorsey, and S. Teller, Radiance interpolants for accelerated bounded-error
ray tracing, ACM Transactions on Graphics 18 (1999), no. 3, 213–256.

[Cat74] Edwin E. Catmull, A subdivision algorithm for computer display of curved surfaces,
Ph.D. thesis, Dept. of CS, U. of Utah, December 1974.

[CDP95] Frédéric Cazals, George Drettakis, and Claude Puech, Filtering, clustering and hier-
archy construction: a new solution for ray tracing very complex environments, Euro-
graphics ’95, 1995.

[CF90] A. T. Campbell, III and D. S. Fussell, Adaptive mesh generation for global diffuse
illumination, Computer Graphics (Proc. SIGGRAPH ’90) 24 (1990), 155–164.

[CF92] N. Chin and S. Feiner, Fast object-precision shadow generation for areal light sources
using BSP trees, Computer Graphics (1992 Symposium on Interactive 3D Graphics),
vol. 25, March 1992, pp. 21–30.

[CLO98] David A. Cox, John B. Little, and Donal O’Shea, Ideals, varieties, and algorithms,
Springer, 1998.

[Cro77] F. C. Crow, Shadow algorithms for computer graphics, Computer Graphics (Proc. SIG-
GRAPH 77) 11 (1977), no. 2, 242–248.

RR n° 5167

106 Duguet

[DD02] Florent Duguet and George Drettakis, Robust epsilon visibility, Proceedings of the 29th
annual conference on Computer graphics and interactive techniques, ACM Press, 2002,
pp. 567–575.

[DDP96] Frédo Durand, George Drettakis, and Claude Puech, The 3d visibility complex, a new
approach to the problems of accurate visibility, Proceedings of 7th Eurographics Work-
shop on Rendering in Porto, Portugal (Rendering Techniques ’96) (Xavier Pueyo and
Peter Schröder, eds.), Springer Verlag, June 1996, pp. 245–256.

[DDP97] , The visibility skeleton: A powerful and multi-purpose
global visibility tool, ACM SIGGRAPH 97, August 1997,
http://w3imagis.imag.fr/Membres/Fredo.Durand/PUBLI/siggraph97/index.htm.

[DDP02] Frédo Durand, George Drettakis, and Claude Puech, The 3d visibility complex, ACM
Transactions on Graphics 21,2 (2002).

[DF94] George Drettakis and Eugene Fiume, A fast shadow algorithm for area light sources us-
ing backprojection, Proceedings of SIGGRAPH ’94 (Andrew Glassner, ed.), Computer
Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, ACM Press,
1994, pp. 223–230.

[DHH01] Olivier Devillers and Olaf Hall-Holt, Predicates and constructions for visibility prob-
lems, manuscrit, 2001.

[Duf92] T. Duff, Interval arithmetic and recursive subdivision for implicit functions and con-
structive solid geometry, Computer Graphics (Proc. SIGGRAPH’92) 26 (1992), no. 2,
131–138.

[Dur99] Frédo Durand, 3d visibility: analytical study and applications, Ph.D. thesis, Université
Joseph Fourier, Grenoble I, July 1999, http://www-imagis.imag.fr.

[EK] Cass Everitt and Mark J. Kilgard, Practiral and robust stenciled shadow volumes for
hardware accelerated rendering, http://developer.nvidia.com.

[GKM93] Ned Greene, Michael Kass, and Gavin Miller, Hierarchical z-buffer visibility, ACM
SIGGRAPH ’93, 1993.

[Gla84] Andrew S. Glassner, Space subdivision for fast ray-tracing, IEEE Computer Graphics
and Applications (1984), 15–22.

[GM90] Z. Gigus and J. Malik, Computing the aspect graph for the line drawings of polyhedral
objects, IEEE Trans. Pattern Analysis and Machine Intelligence 12 (1990), no. 2.

[GS87] Jeffrey Goldsmith and John Salmon, Automatic creation of object hierarchies for ray-
tracing, IEEE Computer Graphics and Applications (1987), 14–20.

INRIA

Robust Epsilon Visibility 107

[Hai93] E. A. Haines, Shaft culling for efficient ray-traced radiosity, Photorealistic Render-
ing in Comp. Graphics, Springer Verlag, 1993, Proc. 2nd EG Workshop on Rendering
(Barcelona, 1991), pp. 122–138.

[Hec91] Paul S. Heckbert, Simulating global illumination using adaptive meshing, Ph.D. thesis,
CS Division, UC Berkeley, June 1991, Tech. Report UCB/CSD 91/636.

[Hec92] , Discontinuity meshing for radiosity, Eurographics Rendering Workshop 1992,
Eurographics, May 1992, pp. 203–216.

[JW89] David Jevans and Brian Wyvill, Adaptive voxel subdivision for ray tracing, Proceedings
Graphic’s Interface ’89, Canadian Information Processing Society, 1989, pp. 164–172.

[Kaj86] James T. Kajiya, The rendering equation, Computer Graphics (SIGGRAPH ’86 Pro-
ceedings) (David C. Evans and Russell J. Athay, eds.), Computer Graphics Proceed-
ings, Annual Conference Series, vol. 20,4, ACM SIGGRAPH, ACM Press, Août 1986,
pp. 143–150.

[KvD79] Jan J. Koenderink and Andrea J. van Doorn, The internal representation of solid shape
with respect to vision, BioCyber 32 (1979), 211–216.

[LP00] L. Leblanc and P. Poulin, Guaranteed occlusion and visibility in cluster hierarchical
radiosity, Proc. Eurographics Workshop on Rendering 2000, June 2000, pp. 89–100.

[LTG92] D. Lischinski, F. Tampieri, and D. P. Greenberg, Discontinuity meshing for accurate
radiosity, IEEE CGA 12 (1992), no. 6, 25–39.

[nvi] nvidia, webpage, http://developer.nvidia.com/
view.asp?IO=cedec_stencil.

[Plü65] Plücker, On a new geometry of space, Phil. Trans. Royal Soc. London, 1865.

[PV96] Michel Pocchiola and Gert Vegter, The visibility complex, International Journal of Com-
putational Geometry and Applications 6 (1996), no. 3, 279–308.

[RDO79] Ramis, Deschamps, and Odoux, Cours de mathématiques spéciales, vol. 2, Masson,
1979.

[Riv95] Stéphane Rivière, Topologically sweeping the visibility complex of polygonal scenes,
Proceedings of the eleventh annual symposium on Computational geometry, ACM
Press, 1995, pp. 436–437.

[Riv97] , Dynamic visibility in polygonal scenes with the visibility complex, Proceedings
of the thirteenth annual symposium on Computational geometry, ACM Press, 1997,
pp. 421–423.

RR n° 5167

108 Duguet

[SD02] Marc Stamminger and George Drettakis, Perspective shadow maps, Proceedings of
ACM SIGGRAPH 2002 (John Hughes, ed.), Annual Conference Series, ACM Press/
ACM SIGGRAPH, July 2002.

[SG94] A. James Stewart and Sherif Ghali, Fast computation of shadow boundaries using spa-
tial coherence and backprojections, Proceedings of SIGGRAPH ’94 (Andrew Glassner,
ed.), Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,
ACM Press, 1994, pp. 231–238.

[SGHS98] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski, Layered depth images, Computer
Graphics Proceedings, Jul 1998, Annual Conference Series, SIGGRAPH’98, pp. 231–
242.

[SGS89] D. Salesin, L. Guibas, and J. Stolfi, Epsilon geometry: Building robust algorithms from
imprecise computations, Annual Symposium on Computational Geometry, 1989, Saar-
brucken, West Germany.

[SK98] A. James Stewart and Tasso Karkanis, Computing the approximative visibility map,
with applications to form factor and discontinuity meshing, Eurographics Rendering
Workshop 1998, Eurographics, 1998.

[Sny92] J. M. Snyder, Interval analysis for computer graphics, Computer Graphics (Proc. SIG-
GRAPH’92) 26 (1992), no. 2, 121–130.

[SR00] Michael M. Stark and Richard F. Riesenfeld, Exact radiosity reconstruction and shadow
computation using vertex tracing, Proceedings of 11th Eurographics Workshop on Ren-
dering, 2000.

[SR01] , Reflected and transmitted irradiance from area sources using vertex tracing,
Proceedings of 12th Eurographics Workshop on Rendering, 2001.

[SS98] Cyril Soler and François Sillion, Fast calculation of soft shadow textures using con-
volution, Computer Graphics Proceedings, Jul 1998, Annual Conference Series, SIG-
GRAPH’98, pp. 321–332.

[Tel92a] Seth J. Teller, Computing the antipenumbra of an area light source, Proceedings of
SIGGRAPH ’92, Computer Graphics Proceedings, Annual Conference Series, ACM
SIGGRAPH, ACM Press, 1992, pp. 139–148.

[Tel92b] , Visibility computation in densely occluded polyhedral environments, Ph.D.
thesis, University of California, Berkeley, 1992.

[TH94] Seth Teller and Pat Hanrahan, Global visibility for illumination computations, Proceed-
ings of SIGGRAPH ’94, Computer Graphics Proceedings, Annual Conference Series,
ACM SIGGRAPH, ACM Press, 1994, pp. 443–450.

INRIA

Robust Epsilon Visibility 109

[TS91] Seth J. Teller and Carlo H. Séquin, Visibility preprocessing for interactive walkthrough,
ACM SIGGRAPH ’91, july 1991, pp. 61–69.

[VG97] Eric Veach and Leonidas J. Guibas, Metropolis light transport, SIGGRAPH 1997 Pro-
ceedings, Annual Conference Series, Addison-Wesley, August 1997, pp. 65–76.

[WA77] K. Weiler and K. Atherton, Hidden surface removal using polygon area sorting, Com-
puter Graphics (Proc. SIGGRAPH 77) 11 (1977), no. 2, 214–222.

[Wil78] Lance Williams, Casting curved shadows on curved surfaces, Proceedings of SIG-
GRAPH ’78, ACM SIGGRAPH, August 1978, pp. 270–274.

[WPF90] Andrew Woo, Pierre Poulin, and Alain Fournier, A survey of shadow algorithms, IEEE
Computer Graphics and Applications 10 (1990), no. 6, 13–32.

[ZMHI97] Hanson Zhang, Dinesh Manocha, Tom Hudson, and Kenneth E. Hoff III, Visibility
culling using hierarchical occlusion maps, ACM SIGGRAPH ’97, 1997.

RR n° 5167

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

