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Abstract: The understanding of surfaces embedded in R
3 requires local and global concepts, which

are respectively evocative of differential geometry and differential topology. While the local theory
has been classical for decades, global objects such as the foliations defined by the lines of curvature,
or the medial axis still pose challenging mathematical problems. This duality is also tangible from
a practical perspective, since algorithms manipulating sampled smooth surfaces (meshes or point
clouds) are more developed in the local than the global category. As an example and assuming this
makes sense for the applications encompassed, we are not aware as of today of any algorithm able
to report —under reasonable assumptions— a topologically correct medial axis or foliation from a
sampled surface.

As a prerequisite for those interested in the development of algorithms for the manipulation
of surfaces, we propose a concise overview of global objects related to curvature properties of a
smooth generic surface. Gathering from differential topology and singularity theory sources, our
presentation focuses on the geometric intuition rather than the technicalities. We first recall the
classification of umbilics, of curvature lines, and describe the corresponding stable foliations. Next,
fundamentals of contact and singularity theory are recalled, together with the classification of points
induced by the contact of the surface with a sphere. This classification is further used to define ridges
and their properties, and to recall the stratification properties of the medial axis.

From a theoretical perspective, we expect this survey to ease the access to intricate notions
scattered over several sources. From a practical standpoint, we hope it will be helpful for those
interested in the manipulation of surfaces without using global parametrizations, and also for those
aiming at producing globally coherent approximations of surfaces.

Key-words: Smooth surfaces, Differential Geometry, Umbilics, Lines of Curvatures, Foliations,
Ridges, Medial Axis.



Surfaces lisses, ombilics, lignes de courbure, feuilletages,
extrêmes de courbure et axe médian: un panorama concis

Résumé : La compréhension des surfaces plongées dans R
3 nécessite des concepts locaux et glo-

baux, ceux-ci évoquant respectivement la géométrie différentielle et la topologie différentielle. Alors
que la théorie locale est classique depuis des décennies, les aspects globaux tels que les feuilletages
définis par les lignes de courbure, ou l’axe médian posent toujours des problèmes mathématiques
difficiles. Cette dualité est aussi perceptible d’un point de vue pratique, puisque les algorithmes
manipulant des surfaces lisses échantillonnées (maillages ou nuages de points) sont plus dévelop-
pés pour les aspects locaux que globaux. Par exemple, en supposant que cela ait un sens pour les
applications considérées et sous des hypothèses raisonnables, il n’existe pas à notre connaissance
d’algorithme capable de calculer l’axe médian ou un feuilletage d’une surface échantillonnée avec
des garanties topologiques.

À l’intention de ceux qui s’intéressent au développement d’algorithmes pour la manipulation de
surfaces, nous proposons un panorama concis des objets globaux relatifs aux propriétés de cour-
bure d’une surface lisse générique. À partir d’éléments de topologie différentielle et de théorie
des singularités, notre présentation met l’accent sur l’intuition géométrique plus que sur les aspects
techniques. En premier lieu, nous rappelons la classification des ombilics, des lignes de courbure,
et décrivons les feuilletages stables correspondants. Ensuite, nous introduisons les bases de la théo-
rie du contact et des singularités, ainsi que la classification des points induite par le contact de la
surface avec un sphère. Cette classification est utilisée pour définir les extrêmes de courbure et leur
propriétés, et pour décrire la stratification de l’axe médian.

Sur le plan théorique, nous espérons ainsi faciliter l’accès à des notions disséminées dans des
sources variées. Sur le plan pratique, ce panorama sera certainement utile à ceux qui s’intéressent
à la manipulation de surfaces sans paramétrage global, ainsi qu’à ceux qui cherchent à obtenir des
approximations globalement cohérentes de surfaces.

Mots-clés : Surfaces Lisses, Géométrie différentielle, Ombilics, Lignes de Courbure, Feuilletages,
Extrêmes de courbure, Axe Médian.
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1 Introduction

1.1 Global differential patterns

Sampled surfaces represented either by point clouds or meshes are ubiquitous in computer graphics,
computer aided design, medical imaging, computational geometry, finite element methods or geol-
ogy. Aside from the situations where a sample surface is of self-interest —e.g. in computer graphics,
sampled surfaces approximating (piecewise-)smooth surfaces are essentially found in two contexts
which are surface reconstruction and surface discretization. In the first category, one is given a set of
sample points acquired from a scanner (medical or laser) and wishes to reconstruct (by interpolation
or approximation) the continuous or (piecewise-)smooth surface which has been sampled. In the
second one, a surface is given implicitly or parametrically, and one wishes to discretize it for visu-
alization or calculation purposes. In any case, three types of properties are usually of interest when
comparing a (piecewise-)smooth surface and its discretization: topological and geometric properties,
local differential properties, and global differential properties.

From a topological standpoint, one expects the surfaces to be homeomorphic or even better iso-
topic. Example algorithms with such a guarantee are [AB99, ACDL00] in the surface reconstruction
area, and [BCSV04, BO03] in the surface meshing context. (The claims made for the surface re-
construction algorithms is about homeomorphy, although isotopy actually holds.) Apart from these
algorithms, the interested reader should consult [PS03, CCs04] where sufficient conditions on iso-
topy can be found. It should also be pointed out that the hypothesis under which one achieves these
properties usually also yield a bound on the Hausdorff distance between the surfaces, a property of
geometric nature.

Local differential properties are of two types, namely intrinsic and extrinsic. For extrinsic quan-
tities, one wishes to guarantee that the tangent plane (at the first order), the principal directions
and curvatures (at the second order), or higher order coefficients (e.g. extremality coefficients) are
close. The development of algorithms providing such guarantees has been subject to intense re-
search [Pet01], and recent advances provide guarantees either point-wise [BCM03, CP03] or in the
geometric measure theory sense [CSM03]. Although extrinsic properties are usually the properties
sought, some applications care for intrinsic faithfulness. These applications are usually concerned
with the question of flattening / parameterizing a surface, and the reader is referred to [MT01] for an
example related to geology, together with the ensuing conditions.

At last, global differential properties usually refer to guarantees on loci of points having a pre-
scribed differential property. Example such loci are lines of curvature, ridges, or the medial axis.
Applications involving such patterns are surface remeshing [ACSD+03], scientific visualization
[DH94], feature extraction [PAT00, WB01, HGY+99], or surface reconstruction [AB99, BC01] and
related topics [DZ02, Lie03]. Providing such guarantees cumulates the difficulties afore-mentioned.
Not only point-wise estimates must be reliable, but they must also be connected correctly at the
surface level. This difficulties are tangible from a practical perspective, and to the best of our knowl-
edge, no algorithm as of today is able to report any global differential pattern with some guarantee.

This is partly due to the fact that global differential patterns have an involved structure described
in differential topology and singularity theory sources. Easing the access to these notions is the
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4 Cazals & Pouget

incentive of this concise survey, whose presentation focuses on the geometric intuition rather than
the technicalities. From a practical standpoint, we hope it will be helpful for those interested in
the manipulation of surfaces without using charts, and also for those aiming at producing globally
coherent approximations of surfaces.

1.2 An example: the ellipsoid

With some anticipation and as an appetizer, we illustrate the global structure theorems we are aiming
at on the famous example of an ellipsoid with three different axes. Figures 1 and 2 are produced by
the algorithm described in [CP04]. Principal curvatures are sorted, that is k1 ≥ k2, and objects
related to the larger (smaller) principal curvature are painted in blue or green (red or yellow). As
an example on Fig. 1, the blue principal direction field is drawn —from which one infers that the
normal is pointing outward so that the two principal curvatures are negative.

Blue elliptic ridges are blue, blue hyperbolic are green. Red elliptic ridges are red, red hyperbolic
are yellow. Intersections between ridges are the purple points. The two elliptic ridges are closed
curves without turning point. The four Lemon umbilics are the black dots, and they are linked by
four separatrices —the yellow and green curves. The separatrices, which are curvature lines, are also
ridges in that case. More generally, any line of symmetry is a line of curvature and a ridge ([Por01,
p.162]). Notice also that the lines of curvatures which are not separatrices are all cycles. For each
color, they are packed into a cylinder. But this is a non stable configuration since separatrices are
umbilical connections, the cycles are not hyperbolic. The medial axis of the ellipsoid is a region
homeomorphic to a disk, and is located in the symmetry plane of the two largest axes. This region
looks like an ellipsis but is not so [Deg97]. The boundary of the medial axis projects onto the red
ridge curve, and reciprocally on this example, every elliptic red ridge point corresponds to a point
on the boundary of the medial axis.

Figure 1: Umbilics, ridges, and principal
blue foliation on the ellipsoid

Figure 2: Schematic view of the umbilics and
the ridges. Max of k1: blue; Min of k1: green;
Min of k2; Max of k2: yellow

INRIA
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1.3 Paper overview

In section 2, the Monge form of a surface is recalled. Second order properties —umbilics and lines
of curvature— are presented in section 3. The classification of contact points between the surface
and spheres is presented in section 4. This classification is used in section 5 to recall the stratification
properties of the medial axis.

2 The Monge form of a surface

2.1 Generic surfaces

Our focus is on generic phenomena on surfaces, and the statements presented are valid for generic
surfaces only. Formally if one considers the set of all smooth surfaces M in R

3 as an infinite dimen-
sional space, a property is generic if the surfaces exhibiting this property form an open dense subset.
Informally this notion means that only generic properties are stable if one allows small random
perturbations.

In the particular description of surfaces as Monge patches, we have a familly of Monge patches
with 2 degrees of freedom. A property requiring 1 (resp. 2) condition(s) on this familly is expected
to appear on a lines (resp. isolated points) of the surface. A property requiring at least 3 conditions
is not generic.

2.2 The Monge form of a surface

We consider a surface S embedded in the Euclidean space E3 equipped with the orientation of its
world coordinate system —referred to as the direct orientation in the sequel. At any point of the
surface which is not an umbilic, principal directions are well defined, and the (non oriented) principal
directions dmax, dmin together with the normal vector n define two direct orthonormal frames. If v1
is a vector of direction dmax then there exists a unique v2 so that (v1,v2,n) is direct; and the other
possible frame is (−v1,−v2,n). In one of these, and as long as our study is a local differential one,
the surface is assumed to be given as a Monge patch at the origin [HGY+99] —with h.o.t standing
for higher order terms:

z =
1
2
(k1x2 + k2y2)+

1
6
(b0x3 +3b1x2y+3b2xy2 +b3y3)

+
1
24

(c0x4 +4c1x3y+6c2x2y2 +4c3xy3 + c4y4)+h.o.t

Occasionally, we shall refer to the cubic part CM(x,y) as the Monge cubic, that is:

CM(x,y) = b0x3 +b1x2y+b2xy2 +b3y3. (1)

If the origin is not an umbilic, the principal direction associated to k1 (resp. k2) is the x (resp. y)
axis. We shall always assume that k1 ≥ k2 and we consider ’blue’ (resp. ’red’) something special
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6 Cazals & Pouget

happening with k1 (resp. k2). For example the blue focal surface is the set of centers of curvature
associated to the blue curvature k1. Note that a change of the normal surface orientation swaps the
colors.

Away from umbilics, local analysis of the principal curvatures can be done for the Monge coor-
dinate system and along the curvature lines. The Taylor expansion of the principal curvature k1 in
the Monge coordinate system is

k1(x,y) = k1 +b0x+b1y+(
c0−3k2

1

2
+

b2
1

k1 − k2
)x2 (2)

+(c1 +
2b1b2

k1 − k2
)xy+(

c2− k1k2
2

2
+

b2
2

k1 − k2
)y2 +h.o.t (3)

The Taylor expansion of k1 (resp. k2) along the blue (resp. red) curvature line going through the
origin and parameterized by x (resp. y) are:

k1(x) = k1 +b0x+
P1

2(k1 − k2)
x2 +h.o.t P1 = 3b2

1 +(k1 − k2)(c0 −3k3
1). (4)

k2(y) = k2 +b3y+
P2

2(k2− k1)
y2 +h.o.t P2 = 3b2

2 +(k2− k1)(c4 −3k3
2). (5)

Notice also that switching from one of the two coordinate systems mentioned in introduction to the
other reverts the sign of all the odd coefficients on the Monge form of the surface.

Some notions about cubics will be usefull in the sequel.

Definition. 1 A real cubic C(x,y) is a bivariate homogeneous polynomial of degree three, that is
C(x,y) = b0x3 + 3b1x2y + 3b2xy2 + b3y3. Its discriminant is defined by δ (C) = 4(b2

1 − b0b2)(b
2
2 −

b1b3)− (b0b3 −b1b2)
2.

A cubic factorizes as a product of three polynomials of degree one with complex coefficients,
called its factor lines. In the (x,y) plane, a real factor line defines a direction along which C vaniches.
The number of real factor lines depends on the discriminant of the cubic and we have —notice that
δ = 0 is not discussed since we care for generic events:

Proposition. 1 Let C be a real cubic and δ its discriminant. If δ > 0 then there are 3 distinct real
factors, else δ < 0 and there is only one real factor.

3 Umbilics and lines of curvature, principal foliations

This section is devoted to second order properties on a surface, and more precisely to umbilics and
lines of curvature. General references are [Mor90, Por01, GS91, HGY+99].

INRIA



Smooth surfaces, umbilics, lines of curvatures... 7

3.1 Classification of umbilics

To present the classification of umbilics, let us first recall some facts about lines of curvature. On
each point of the set S′ defined as the surface S except its umbilics, the two principal directions
are well defined and orthogonal. They define two line or direction fields on S′, one everywhere
orthogonal to the other, so it is sufficient to study only one of these. Each principal direction field
defines lines of curvature. The set of all these lines, called the principal foliation, will be studied in
the next section.

Definition. 2 A line of curvature is an integral curve of the principal field, that is a regular curve on
S′ which is everywhere tangent to the principal direction and is maximal for inclusion (it contains
any regular curve with this property which intersects it).

The index of an umbilic describes the way the lines of curvature turn around the umbilic. The in-
dex of a direction field at a point is (1/2π)

∫ 2π
0 θ (r)dr, where θ (r) is the angle between the direction

of the field and some fixed direction, and the integral is taken over a small counterclockwise circuit
around the point. For generic umbilics this index is ±1/2, this implies that the direction field is not
orientable on a neighborhood of such points. As illustrated on Fig. 3.1, if one fixes an orientation of
the field at a point on a circuit around an umbilic, propagating this orientation by continuity along
the circuit gives the reverse orientation after one turn. In other words, there is no non vanishing con-
tinuous vector field inducing the direction field around the umbilic. The index can also be computed
with the Monge cubic, this computation is point wise as opposed to the previous one, but need third
order coefficients (hence it is likely to be less stable in practice). Let S = (b0 −b2)b2 −b1(b1 −b3),

• if S < 0 then the index is −1/2 and the umbilic is called a star,

• if S > 0 then the index is +1/2 and we have to do more calculations to distinguish between
the so called lemon and monstar.

A finer classification is required to distinguish between the two umbilics of index +1/2. We
shall need the following:

Definition. 3 Consider an umbilic p and denote TpS the tangent plane of the surface at p. A limiting
principal direction is a direction of TpS which is tangent to a line of curvature which end at the
umbilic.

Limiting principal directions are related to the Jacobian cubic of the umbilic (cf. [HGY+99]):

JC = B0x3 +3B1x2y+3B2xy2 +B3y3 = b1x3 +(2b2−b0)x
2y− (2b1−b3)xy2 −b2y3. (6)

The real factor lines of this form are the limiting principal directions at the umbilic. As recalled by
proposition 1, the number of such directions depends on the discriminant U of JC:

• If U < 0 then there is one limiting principal direction, necessarily S > 0 and the umbilic is
called a lemon.

RR n° 5138



8 Cazals & Pouget

• If U > 0 then there are three limiting principal directions, furthermore if S < 0 the umbilic is
a star else S > 0 and it is called a monstar. For a monstar, the three directions are contained
within a right angle and all the curvature lines in this angle end at the umbilic and form the
parabolic sector of the monstar. Note that all these lines have the same tangent at the umbilic:
the limiting principal direction inside the parabolic sector. For a star, only three lines of
curvature end at the umbilic and the limiting directions are not contained in a right angle.

We summarize the previous discussion as follow:

Theorem. 1 There are three classes of generic umbilics, namely Lemons, Monstar and Stars. They
are distinguished by their index and the number of limiting principal directions.

A generic umbilic is a non flat point: its Gaussian curvature does not vanish —since it is a
third condition on the Monge patch for a single point. Moreover, Generic umbilics are isolated (cf.
[Por01, p.184]).

Figure 3: Umbilics: Lemon and Monstar of index +1/2, Star of index -1/2. Figure from [Por01]

Figure 4: Impossibility of a global orientation around an umbilic

INRIA



Smooth surfaces, umbilics, lines of curvatures... 9

3.2 Principal foliations

Having classified umbilics, let us get back to the principal foliations. Recall that the blue (resp. red)
principal foliation is the set of all blue (resp. red) curvature lines defined on S′. The umbilics can be
regarded as singular points for these foliations if one wishes to consider them on S. The first element
required concerns the topology of a curvature line. A line of curvature γ is either homeomorphic to:

• the real line R, then it can be oriented and parameterized by arc length on its maximal interval
I = (ω−,ω+). Its α(γ) (resp. ω(γ)) limit set is the collection of limit points of sequences
γ(sn), convergent in S, with sn tending to ω− (resp. ω+). The limit set of γ is the union
α(γ)∪ω(γ).

• or to a circle, then it is called a cycle. It is hyperbolic if its Poincaré return map π is so
that π ′ 6= 1. In other words, if one orients an hyperbolic cycle, the lines of curvature can be
oriented on a neighborhood of this cycle by continuity and they are all attracted or repelled on
both sides of the cycle (cf. Fig. 3.2).

Figure 5: A hyperbolic cycle and two non hyperbolic ones

Special lines divide the set of all curvature lines in the vicinity of an umbilic into sectors, they
are separatrices.

Definition. 4 A separatrix is a line of curvature with an umbilic in its limit set and so that there
exists arbitrarily close to that line, another line without this umbilic in its limit set.

A sector defined by two consecutive separatrices is

• hyperbolic if none of the lines in the sector have the umbilic in their limit set;

• parabolic if all curvature lines in the sector have the umbilic in their α or exclusive ω limit
set;

The alternative case of an elliptic sector, if all curvature lines in the sector have the umbilic in
their α and ω limit set, is not generic —cf. Nikolaev [Nik01, p.360]. Note that a separatrix is
a line of curvature which ends at an umbilic, hence its tangent at this point is a limiting principal
direction. But the limiting principal direction inside the parabolic sector of a monstar is not tangent to

RR n° 5138



10 Cazals & Pouget

a separatrix of this umbilic —because all lines in a neighborhood have the monstar in their limit set.
This explains another classification of umbilics from Darboux based on the number of separatrices.
This classification rephrases the previous one: a lemon or D1 has one separatrix, a monstar or D2
has two and a star or D3 has three.

The next result [GS91, p.27] describes stable configuration of the principal foliations for a
smooth compact oriented surface given by an immersion.

Theorem. 2 Let Σ be the subset of smooth compact oriented surfaces which satisfies the following
four conditions:

• all the umbilic points are of type Di,i=1,...,3;

• all the cycles are hyperbolic;

• the limit sets of every line of curvature are umbilics or cycles;

• all the separatrices are separatrices of a single umbilic (they cannot connect two umbilics or
twice the same one being separatrices at both ends).

Then Σ is open and each of its elements is structurally stable in the C3-sense, Σ is dense in the
C2-sense.

This theorem implies that stable principal foliations on generic surfaces are described with the set
of umbilics, cycles and the way the separatrices connect these elements. The complement of these
features on the surface S then decomposes on canonical regions of two types parallel and cylindrical.
On each region, the limit sets of all lines are the same: a cycle or a D2 umbilical point (through
its parabolic sector). A region is parallel if there are separatrices in its boundary. If the boundary
consists only of cycles then the region is cylindrical.

If we study a compact surface S, the topology implies a constraint on the number and the type
of umbilics. More precisely, the sum of indices of umbilics must be the Euler characteristic χ(S)
—[Spi99, p.223]. Moreover, the principal foliation defines a bipartite graph G(V1,V2,E) with V1 the
set of umbilics, V2 the set of cycles and parabolic sectors and E the set of separatrices. The edges
connect elements of V1 to elements of V2 with the following constraints.

• A Di umbilic has i incident edges,

• Since there is no elliptic sector, a separatrix of a D2 umbilic cannot be connected to its
parabolic sector,

• The graph is embedded on the surface without intersecting the separatrices.

INRIA



Smooth surfaces, umbilics, lines of curvatures... 11

4 Contacts of the surface with spheres, Ridges

To classify points of a smooth surface regarding curvature properties, we first recall fundamentals
from contact and singularity theory. Following [Por71, Por83, Mor90], we probe a point of the
surface with a sphere centered along the normal at that point. Working out the dominant terms of the
Taylor expansion of the probe function yields the classification of points desired. General references
for this section are [BG92], [Por01] or [Arn92].

4.1 Distance function and contact function

A standard way to classify points on a smooth surface consists of using contact theory. Consider
a portion of surface locally parameterized in a chart (U, p(x,y)) with U ⊂ R

2, (x0,y0) ∈ U and a
sphere C of center c. The contact function at the point p(x0,y0) ∈ S is the function defined by:

g : U ×R
3 7→ R, g((x,y),c) =< p(x,y)c, p(x,y)c > − < p(x0,y0)c, p(x0,y0)c > .

This function is just the square distance from the surface to the center of the sphere minus the
square of its radius r2 =< p(x0,y0)c, p(x0,y0)c >. The intersection points between S and C have
coordinates (x,y, p(x,y)) satisfying g(x,y) = 0. The philosophy of contact theory is the following.
Once the center of the sphere have been chosen, the contact function is a bivariate function. Then,
we wish to report the possible normal forms of g as a bivariate function.

Before illustrating this process, let us observe that if the center of the sphere C is not contained
in the affine space defined by the contact point and the normal at the surface S there, then the
intersection between S and C is transverse, which does not reveal much about S at p. Studying the
nature of the contact really starts with a center aligned with the normal, and we shall see that the
cases encountered actually yield a decomposition of the normal bundle 1 of the surface.

Rmk 1 Note that if one of the principal curvature vanishes, one can assume the center of the prin-
cipal sphere is at infinity. This means that the relevant contact to be considered is that of a plane
with the surface at such a point. One can find a precise description of these parabolic points in
[HGY+99].

4.2 Generic contacts between a sphere and a surface

Before presenting the generic contacts, let us illustrate the process of finding the first normal form
using the Morse lemma. To ease the calculations, assume that the contact point is the origin, that the
surface is given in Monge form, and that the center of the sphere has coordinates c(0,0,r). Then,
the contact function simplifies to:

g(x,y) = x2 + y2 +(z− r)2− r2 =< pc, pc > −r2. (7)

1The normal bundle of the surface is the three-dimensional manifold obtained by adding to each point of the surface a
one-dimensional affine space defined by the pair (point, normal).

RR n° 5138



12 Cazals & Pouget

Using the Monge form of f , one gets the following expansion:

g(x,y) = x2(1− rk1)+ y2(1− rk2)−
r
3

CM(x,y)+h.o.t (8)

The expansion does not contain linear terms and the origin is therefore a critical point. Moreover,
if r 6= 1/k1 and r 6= 1/k2, the critical point is non-degenerate. By the Morse lemma, the contact
function rewrites as g = ±x2 ± y2 up to a diffeomorphism. If the coefficients of both variables have
the same sign, then the intersection between S and C reduces to point. Otherwise, the intersection
consists of two curves.

The previous discussion is typical from singularity theory. Assuming r 6= 1/k1 and r 6= k2, we
worked out the the normal form of a multivariate function, thus highlighting its dominant terms.
In the sequel, we shall just state and use the classification of generic singularities of the contact
function. As illustrated by Morse’s lemma, it is important to observe that the normal form is exact,
i.e. does not hide any higher order term. We shall need the following:

Definition. 5 Let f (x,y) be a smooth bivariate function. Function f has an Ak or Dk singularity if,
up to a diffeomorphism, it can be written as:

{

Ak : f = ±x2 ± yk+1, k ≥ 0,

Dk : f = ±yx2 ± yk−1, k ≥ 4.
(9)

The singularity is further denoted A±
k or D±

k if the product of the coefficients of the monomials is ±1.

As subsumed by this definition, an Ak singularity precludes an Ak+1 singularity, and similarly
for Dk. An important characteristic of these normal forms is their zero level set. Those of the Ak

sequence are illustrated on Fig. 6, where the (branches of) curves are defined from x = ±y(k+1)/2.
More precisely:

Observation. 1 The zero level set of an A0 singularity consists of a smooth curve, and that of an
A2p singularity for p ≥ 1 consists of one curve having a cusp at the origin. The zero level set of an
A2p−1 singularity consists consists of two tangential curves or an isolated point depending on the
product of the signs of the monomials.

For a Dk singularity, since f = y(±x2 ± yk−2), the line y = 0 is always solution. For the other
solutions, the discussion is identical to the Ak case.

Observation. 2 The zero level set of an D+
2p (D−

2p) singularity consists of one (three) curve(s). The

zero level set of an D+
2p+1 or D−

2p+1 singularity consists of two curves.

The classification of generic contact points is the following [Por71, Por83]:

Theorem. 3 The generic singularities of the contact function between a sphere and a surface are of
type A0, A1, A2, A3, A4, D4.

INRIA



Smooth surfaces, umbilics, lines of curvatures... 13

The A0 contact is just the transverse intersection mentioned at the beginning of this section, and
we shall not discuss it further. The others types of contacts —respectively Ak and Dk— encode
properties of the surface away from umbilics and at umbilics.
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Figure 6: Zero level sets of the Ak : f = x2 ±

yk+1 singularities
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Figure 7: Variation of the b0 coefficient and
turning point of a ridge

4.3 Contact points away from umbilics

We proceed with the discussion of the contacts away from umbilics.

A1 contact. [r = 1/k1,r 6= 1/k2] The origin is a non degenerate critical point. The intersection
reduces to one point or consists of two curves depending on the value of r wrt 1/k2 and 1/k2.

A2 contact. [r = 1/k1,b0 6= 0 (or r = 1/k2,b3 6= 0)] The sphere is a sphere of principal curvature,
and the curvature is not an extremum by Eq. (4) since b0 6= 0 . Due to the presence of terms of odd
degree in the normal form, the intersection between the sphere and the surface is not reduced to a
point (cf. Fig. 8 and 9).

A3 contact. [r = 1/k1,b0 = 0,P1 6= 0 (or r = 1/k2,b3 = 0, P2 6= 0)] The sphere is a sphere of
principal curvature, and the principal curvature has a local extremum since b0 = 0 and P1 6= 0 —
or b0 = 3 and P2 6= 0. An A3 contact defines a ridge point, but not all ridge points are A3 points.
Distinguishing further between A−

3 and A+
3 yields the distinction between elliptic and hyperbolic

ridge points 2:

2Elliptic and hyperbolic ridge points are called sterile and fertile by Porteous. This refers to the possibility for umbilics to
appear near such ridges.
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14 Cazals & Pouget

• Elliptic. If P1 < 0, the contact function has A+
3 singularity and its normal form is g = y2 +

x4. Equivalently, the blue curvature is maximal along its curvature line. The blue sphere of
curvature has a local intersection with M reduced to p (cf. Fig. 10).

• Hyperbolic. If P1 > 0, the contact function has an A−
3 singularity and its normal form is

g = y2 − x4. Equivalently, the blue curvature is minimal along its line. The local intersection
of the blue sphere of curvature with M is two tangential curves (cf. Fig. 11).

For a red ridge point (b3 = 0), we have to consider the quantity P2 defined by Eq. (5). A red
ridge is elliptic if k2 is minimal (P2 < 0) along its curve and hyperbolic if k2 is maximal (P2 > 0).
(Notice that in Eq. (5) the sign of P2 is in accordance with the negative sign of k2 − k1.)

Notice that the type, elliptic or hyperbolic, is independent of the surface orientation. Ridge points
are on smooth curves on the surface called ridge lines and can be colored according to the color of
the points. Away from umbilics, a blue ridge can cross a red ridge at a ridge point colored blue and
red that we call a purple point. A crossing of ridges of the same color is not generic.

A4 contact. [r = 1/k1,b0 = 0,P1 = 0 (or r = 1/k2,b3 = 0, P2 = 0)] The blue curvature has a
infection along its line (k′1 = k′′1 = 0 but k′′′1 6= 0, derivatives shall be understood as along the curvature
line, cf Eq. (4). As an A4 singularity, the local intersection of the blue sphere of curvature with M is
a curve with a cusp at the contact point. Such a point is called a ridge turning point. At such a point,
the ridge is tangent to the line of curvature of the same color, and the ridge changes from elliptic to
hyperbolic —from a maximum to a minimum of the principal curvature.

The variation of the b0 coefficient in the neighborhood of a blue ridge and a turning point of such
a ridge are illustrated on Fig. 7. Summarizing the previous observations, we have:

Definition. 6 Let p ∈ M be a non-umbilical point, then p is a blue ridge point if one of the following
equivalent conditions is satisfied:

(i) the blue principal curvature has an extremum along the corresponding blue line of curvature,

(ii) b0 = 0,

(iii) the blue sphere of curvature has at least an A3 contact with M at p.

Notice again that a contact involves a sphere and the surface. The contact therefore provides
information on the surface but also on its focal surfaces —the blue/red one assuming the the sphere
in contact is a principal blue/red sphere of curvature. The reader is referred to [BGG85] for local
models of the focal at such singularities. We actually have the following:

Observation. 3 At a ridge point, the focal surface is not regular —the center of the osculating
sphere is located on a cuspidal edge of the focal surface.
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Figure 8: A2 contact with the blue sphere Figure 9: A2 contact with the red sphere

Figure 10: A+
3 contact of the blue sphere of

curvature at a blue elliptic ridge point (on the
blue curve)

Figure 11: A−
3 contact of the blue sphere of

curvature at a blue Hyperbolic ridge point (on
the green curve)

4.4 Contact points at umbilics

The Monge patch at an umbilic is of the following:

z =
1
2

k(x2 + y2)+
1
6
(b0x3 +3b1x2y+3b2xy2 +b3y3)

+
1

24
(c0x4 +4c1x3y+6c2x2y2 +4c3xy3 + c4y4)+ . . .
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16 Cazals & Pouget

Note that away from umbilic, the x and y coordinates of the Monge coordinate system follow the
principal directions; at the umbilic there is no such canonical choice of coordinates, hence the values
of b0 6= 0 and b3 6= 0 are not relevant and other invariants must be considered.

To see which ones, consider the contact function given by Eq. (8). Since r = 1/k1 = 1/k2, it is
dominated by the cubic terms. More precisely, the singularity is generically a D±

4 . The number of
ridges passing through the umbilic is the number of curves in the zero level set of contact function.
Hence this number reads on the normal form, and is equal to one or three as mentioned in observation
2. This fact is not intuitive and it is neither obvious that ridges pass through umbilics. A way to
explain these facts is to study the gradient field ∇k1 (the same holds for ∇k2) well defined at non
umbilical points. Indeed a non-umbilical blue ridge point can be seen as a point on a blue curvature
line where ∇k1 is orthogonal to the curve that is ∇k1.dmax = 0, or equivalently the iso-line of k1 is
tangent to the curvature line. Hence one has to study orthogonality between the two fields ∇k1 and
dmax. In section 3.1, it has been shown that the index of the dmax fields distinguishes stars (index
-1/2) from lemons or monstars (index +1/2). The study of k1 and ∇k1 shows that generically, one
has the following:

• k1 has a minimum, then ∇k1 has index 1; this also implies that the umbilic is a star and that
there are 3 directions in which ∇k1⊥dmax see Fig. 13;

• there is a curve along which k1 = k is constant passing through the umbilic, then ∇k1 has index
0 and there is 1 direction in which ∇k1⊥dmax see Fig. 14.

The distinction between these two cases also reads on the Monge cubic CM , its number of real factor
lines is the number of ridges, hence it depends on the sign of its discriminant D = δ (CM). One can
summarize the previous discussion as follow:

Theorem. 4 Generic umbilics are of two types:

• Elliptic or 3-ridge umbilic. The Monge cubic has three different real factor lines, or equiv-
alently the contact function has a D−

4 singularity, and three ridge lines cross at the umbilic.
Moreover at the umbilic, k1 has a minimum and k2 a maximum. Such an umbilic is a star.

• Hyperbolic or 1-ridge umbilic. The Monge cubic has only one real factor line, or equivalently
the contact function has a D+

4 singularity, and one ridge passes through the umbilic. Moreover
passing through the umbilic, there are two curves along which k1 (resp. k2) is constant egual
to k. Such an umbilic is either a lemon, a monstar or a star.

The number of ridges is given by the number of real factors lines of the Monge cubic, but these
lines are not the tangent directions to ridge lines going through the umbilic. However, these tangent
directions can be computed from the Monge cubic cf. [HGY+99].

The intersection between the surface and its osculating sphere at an umbilic is not reduced to a
point (cf. Observation 2). This fact remains true close to the umbilic and in particular on ridges, so
we have:

Observation. 4 A ridge passing through an umbilic must be hyperbolic.
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Smooth surfaces, umbilics, lines of curvatures... 17

It also turns out that ridges are smooth curves crossing transversally at the umbilic and changing
color there —from a minimum of k1 to a maximum of k2. Notice that a ridge may not pass through
an umbilic, then it is of a single color and changes type at each turning point if any —there is an
even number of such points.

Rmk 2 A finer distinction of elliptic umbilics concerns the ordering of ridge colors around the
umbilic: it is called symmetrical if ridges alternate colors RBRBRB (then T = b2

0 + b2
3 + 3(b0b2 +

b1b3) < 0) and unsymmetrical if the ordering is RRRBBB (T > 0).

unsymmetric elliptic umbilicHyperbolic umbilic Symmetric elliptic umbilic

Figure 12: Ridges at umbilic

Figure 13: Elliptic umbilics are stars, either symmetric or unsymmetric. Dashed lines are level sets
of the blue curvature, thin lines are blue curvature lines and thick lines are blue ridges. Note that a red
ridge will continue each branch of the blue ridge, the color changes at the umbilic. The first picture
features a symmetric umbilic and the second one an unsymmetric umbilic. Figure from [HGY+99].
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18 Cazals & Pouget

Figure 14: Hyperbolic umbilics: star, lemon and monstar. Dashed lines are level of the blue curva-
ture, thin lines are blue curvature lines and thick lines are blue ridges. Figure from [HGY+99].
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5 Medial axis, skeleton, ridges

5.1 Medial axis of a smooth surface

Given a closed manifold S embedded in R
3, the medial axis MA(S) consists of the points of the open

set R
3\S having two or more nearest points on S. A related notion is the skeleton of R

3\S, which
consists of the centers of maximal spheres included in R

3\S —maximal for the inclusion amongst
such spheres. For smoothly embedded manifolds, the closure of the medial axis is actually equal to
the skeleton, which is why we just refer to the medial axis in the sequel.

The medial axis has an outstanding position in many communities and has been rediscovered
several times. Example relevant citation are [Erd46, Hor83] in analysis, [Tho72, Mil80] in differ-
ential geometry, [Ser82, Ser88, BA91, BA92] in mathematical morphology. Since we just aim at
presenting the local and global structure of the medial axis, we shall follow [BGG85, GK00], but the
interested reader should also consult [Yom81].

Having discussed the contact of a sphere with the surface, let us recall the classification of medial
axis points and the corresponding stratified structure. While describing ridges, we actually cared
more for the surface. For the medial axis, we change the perspective and care for the centers of
the maximal spheres. When talking about a contact, one should therefore keep in mind that the
corresponding sphere contributes its center to the medial axis.

Since we care for spheres intersecting the surface in an isolated point —otherwise the sphere is
not contained in R

3\S, the contact points must correspond to A+
1 and A+

3 singularities. Notice that
an A+

1 singularity corresponds to a simple tangency. We shall drop the superscript and replace it by
the multiplicity of the contact, that is Ak

1 refers to a sphere having k separate A+
1 contacts. The medial

axis points actually correspond to the following five cases:

• A4
1,A

3
1,A

2
1 The sphere touches the surface at two, three or four points, and has a simple tangency

at each contact point. A4
1 points are isolated points; A3

1 points lie on curves, A2
1 lie on sheets

of the medial axis. Moreover, one has the following incidences. At an A4
1 point, six A1

2 sheets
and four A3

1 curves meet. Along an A3
1 curve, three A2

1 sheets meet.

• A+
3 The contact point is an elliptic ridge point. The corresponding medial axis points bound A2

1
sheets.

• A+
3 A1 The sphere has two contact points. The center of the sphere lies at the intersection between

an A3
1 curve together with an A+

3 curve. This is where an A2
1 sheet vanishes.

An example is presented on Fig. 15. The top part looks like a chimney with triangular section
and a void in the middle. Then the void vanishes and we are left with a cylinder of roughly triangular
section. The the section of the cylinder changes from triangular to roughly elliptic. Eventually, the
cylinder splits into two legs of elliptic sections. Near the top, the structure of the medial axis is that
of a tetrahedron, with six A2

1 sheets and four A3
1 curves meeting. The boundary of each sheet consists

of an A3 curve. When the section gets rounder, one A2 sheet vanishes at an A3A1 point.
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20 Cazals & Pouget

There is an intuitive way to understand the preceding results, by counting separately the numbers
of degrees of freedom and the number of constraints attached to a particular medial axis point.
To see how, recall that a contact involves one sphere and one or more points on the surface. In
terms of degrees of freedom (dof), a sphere yields four degrees of freedom, choosing a point on
a surface is another two dof, and choosing a point on a curve drawn on a surface is one dof. In
terms of constraints at the contact points, constraining a sphere to have an A1 contact imposes three
constraints. (Indeed the tangent plane being set to that of the surface at p, we are left with the choice
of the radius —which defines the pencil of spheres through the contact point.) Similarly, having
an A3 contact imposes four degrees of freedom since the radius of the sphere has to be one of the
principal curvatures. Let us now discuss the different cases:

• A2
1 Having two contacts of order one imposes 2.3 = 6 constraints. But choosing two points on S

together with the contact spheres yields 2.2 + 4 = 8 dof. One can expect A2
1 points to lie on

sheets.

• A3
1 Three A1 contacts define 3.3 = 9 constraints, and 3.2+4 = 10 dof. A3

1 points are expected to
lie on curves.

• A4
1 Four A1 yield 4.3 = 12 constraints and 4.2+4 = 12 dof. These medial axis points are expected

to be isolated.

• A3 Such a point yields 4 constraints. In terms of dof, and since A3 points lie on curves on the
surface, we have one dof for the choice of the contact point, and four for the sphere. A3
contacts are therefore expected along curves.

• A3A1 The contact points respectively yield 4 + 3 constraints. On the other hand, choosing one
point along a curve, another on the surface, together with the dof of the sphere yield 2+1+4
dof. Such contacts are expected to be isolated.

5.2 Medial axis and ridges

Spheres centered on the boundary of the medial axis project onto elliptic ridge points of type A+
3 on

the surface. But an elliptic ridge point can fail to be the contact of a point of the boundary of the MA
in two cases: (i) if the limiting bitangent sphere crosses the surface away from the ridge point or (ii)
if the surface is locally inside this sphere. (This latter case happens in elliptic regions for a positive
minimum of k2 or a negative maximum of k1). In the first case, the sphere is not contained in R

3\S,
and in the second it is not maximal for inclusion.

Fig. 16 illustratesd case (i), the lowest point is an elliptic ridge point but its bitangent sphere has
a non local intersection with the curve. Fig. 1 illustrates case (ii), the blue elliptic ridge is the loci of
negative maximum of k1. The MA, which is an ellisoid in the equatotial plane (spanned by the two
longest principal axis of the ellipsoid), only gives birth to the red ridge (negative minimum of k2).
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Figure 15: The stratified structure of the medial axis of a smooth surface
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Figure 16: An extrema of curvature not image of the medial axis boundary

6 Conclusion

We surveyed the notions of umbilics, lines of curvatures, foliations, ridges and medial axis for
smooth surfaces, with an emphasis on global structure theorems.

An important aspect which has been eluded is the dynamic case, that is the structure theorems
valid if one replace a surface by say a one-parameter family of surfaces. Of particular interest in
that case are the birth and death phenomena. These indeed feature transitions between patterns
observed in the static case, and the time events between them are a measure of persistence of the
objects involved. The reader is referred to [BG86, GK02, BGT96] [HGY+99, chap.7] for pointers
in that direction concerning ridges and MA. Note that it does not make sense to study a single line
of curvature dynamically. One has to consider the topology of the principal foliation instead, this is
usually referred as bifurcation theory, see [Tri02].

7 Appendix: Umbilic classification in the complex plane

The classification of umbilics with respect to the cubic part of the Monge form of the surface can
be illustrated by a diagram in the plane (Fig. 17). With a change of variables which corresponds to
a rotation in the tangent plane and noting ζ = x + iy the cubic form b0x3 + 3b1x2y + 3b2xy2 + b3y3

becomes Re(ζ 3 + ωζ 2ζ̄ ) for some complex number ω . Then umbilics are parameterized by ω in
the complex plane. The zero sets of the four invariants S,U,D and T give four curves partitioning
the plane in sectors. Umbilics on the complement of these curves are generic.
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principal direction
1 limiting

3 limiting
principal directions

3 ridges1 ridge

S=0,  Index

U=0,  Number of principal directions

D=0,  Number of ridges

T=0,  Symmetry of ridges

Lemon

Monstar

Elliptic Star Unsymmetric

Ellitic Star Symmetric

Hyperbolic Star

Index −1/2

Index +1/2

Figure 17: Umbilic classification in the complex plan
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