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Preuve par réflexion dans la sémantique

Résumé : Les approches conventionnelles pour décrire la sémantique des langages de
programmation reposent habituellement sur des relations, en particulier sur des relations
inductives. On peut ensuite simuler ’exécution de programmes en faisant fonctionner des
outils de recherche de preuve. Nous décrivons une approche fonctionnelle pour automatiser
les démonstrations portant sur la sémantique des langages de programmation. La méthode
de réflexion est utilisée pour prendre en compte les faits déja connus dans le contexte de la
démonstration. La contribution principale de ce travail est que nous avons développé une
approche systématique pour décrire et manipuler des inconnues dans ’exécution symbolique
de programme pour le développement de preuves formelles. L’outil que nous obtenons est
plus rapide et plus puissant que les approches conventionnelles.

Mots-clés : méthodes formelles, théorie des types, calcul des constructions, sémantique,
réflexion
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1 Introduction

In the context of theorem proving, there are two ways to describe the semantics of a pro-
gramming language. The most commonly used, operational semantics, relies on inductive
propositions. The execution of the program statements is represented by a proposition relat-
ing a program, its input and its output. Universally quantified logical formulas, presented as
inference rules, are provided to describe under which conditions a given program fragment
executes correctly. Proving that a given program maps a given input to a given output in a
given context corresponds to showing that the proposition relating this program, input, and
output is a consequence of the inference rules and the context.

An alternative approach is to describe the programming language semantics as a function
mapping programs and inputs to outputs. This function can be used to compute the result
of executing a given program on a given input, but it is not suitable to reason on programs
using information coming from the context. There is a way to make the functional approach
more powerful, so that it uses the context.

We talk about functional semantics rather than denotational semantics because our work
does not come with the usual background on domain theory or complete partial orders.

To simulate the execution of a program using the operational semantics, we need to
combine this semantics with a proof search procedure. To simulate the execution of a
program using the functional semantics, we only need to apply a function to the program
and inputs and reduce it to the output. In this sense, the functional semantics opens the
door to proof by reflection because it makes it possible to represent both the semantics
and the proof procedure. But the proof tool that we obtain is still rather weak, because it
can reduce to final value only for ground programs and it does not use the context. Our
goal is to obtain a proof procedure that is more powerful than conventional proof search.
The most important result is a technique which helps to reason on metavariables, in other
words, symbolically represented expressions and instructions. This technique is systematic
and general.

RR n° 5134



4 Das Barman & Bertot

Common methods to automate the proof search are based on unification and resolution.
A proof can be viewed as a goal to solve, given a context of hypotheses. A unification and
resolution based procedure looks into the local context and tries to match the current goal
against the conclusion of one of the hypotheses. If it succeeds, then it returns a subgoal for
each of the premises of the matched hypothesis.

The drawbacks of this approach are, first, that the general proof strategy is not focused
and loses time in exploring a large search space and second, that it does not have computation
power. So we can arrive in a situation where, even if we have enough information to execute
an instruction we won’t be able to execute. We will show such an example in the next
section.

In type theory based proof assistant like Coq [8] functions are provided and reductions
are used to compute them. Functions compute on data objects. In usual formal proofs the
facts related to computations are provided as assertions, which are in fact relations between
data objects. We use reflection to bridge this gap to use functions in proof search. We collect
the data objects from the given facts and put them in several tables. Unlike unification and
resolution based approach, we do not look for a match for a hypothesis in the context
to do the computation, we consult these tables and use functions to do the computation.
Functional approach is more focused and does not need to search in the entire search space,
as we can directly consult the particular table related to the enquiry. Function evaluation is
performed by term reduction and reasoning on unknown expression needs special care. We
show a way to work around this problem. To implement the function which does not follow
the structural recursion we recall iteration technique [2].

We claim two main results. First, using reflection and a functional approach to automate
proof search we produce an easier and better way than the currently available unification
and resolution based technique in proof automation. Second, more important, we present
a general and systematic way to reason on unknown expressions and thereby facilitating
symbolic computations (or computations involving metavariables) inside type theory.

Here is the structure of the paper.

In Section 2 we define the simple imperative language IMP. We formalize its operational
semantics by inductive relations and discuss about our main objective, a step towards au-
tomation, giving a look into the current situation. We show the difficulties with the current
solution. In Section 3 we present the functional interpretations of IMP. We show how to
collect and use data objects from the provided facts to execute instructions in a functional
approach. In Section 4 we give the idea of reflection and how it will be used in our context.
We provide a systematic and general technique to work with metavariable. To implement
the function which does not follow structural recursion we use iteration technique, which can
be found in detail in our previous work [2].

All the definitions have been implemented in Coq and all the results proved formally in
it. We use here an informal mathematical notation, rather than giving Coq code. There is
a direct correspondence between this notation and the Coq formalization. Using the PCoq

INRIA



Proof by reflection in semantics 5

graphical interface (available on the web!), we also implemented some of this more intuitive
notation. The Coq files of the development are on the web?.

2 IMP and its semantics

Winskel [10] presents a small programming language IMP with while loops. IMP is a simple
imperative language with integers, truth values true and false, memory locations to store the
integers, arithmetic expressions, boolean expressions and instructions. The formation rules
are

arithmetic expressions: a :=n| X | ap + a1 | ap — a1 | ao * ag;
boolean expressions: b ::= true | false | ag = a1 | ag < a1 | =b | by V by | by A by;
instructions: 4 ::=skip | X < a | ig;41 | if b then i else 4 | while b do 4

where n ranges over integers, X ranges over locations, a ranges over arithmetic expressions,
b ranges over boolean expressions and i ranges over instructions. We formalize this language
in Coq by three inductive types AExp, BExp, and Inst.

Locations are represented by integers. One should not confuse the integer denoting a
location with the integer contained in the location. Therefore, in the definition of AExp, we
denote the constant value n by Num(n) and the memory location with address v by Loc(v).
The specification of arithmetic expressions is as follows.

AExp: Set

Loc(+) : Z — AExp

Num(-): Z — AExp

(- + -): AExp — AExp — AExp

We see instructions as state transformers, where a state is a partial map from memory
locations to integers. We can actually represent a state as a list of bindings between memory
locations and values. Two states are different if there’s at least one different binding.

State: Set
[|: State
[+ -]: Z — Z — State — State

When the content of a location v in a state ¢ is mapped to n, we represent the new state as
[v—n,0].

Lhttp:/ /www-sop.inria.fr/lemme/pcoq/index.html
2 http://www-sop.inria.fr/lemme/Kuntal. Das_Barman /reflsem/
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6 Das Barman & Bertot

Operational semantics consists in three relations giving meaning to arithmetic expres-
sions, boolean expressions, and instructions. Each relation has three arguments: The ex-
pression or instruction, the state in which the expression is evaluated or the instruction
executed, and the result of the evaluation or execution.

({-,)a ~ -): AExp — State — Z — Prop
({-,)8 ~ -): BExp — State —» B — Prop
({-, )1 ~ -): Inst — State — State — Prop

For arithmetic expressions constants are evaluated to themselves. Memory locations are
interpreted by looking up their values in the state. Consistently with the spirit of operational
semantics, we define the lookup operation by derivation rules rather than by a function.

(lookup o v n)
(Loc(v),a)a ~ n

where

lookup: State — Z — Z — Prop
lookup_found: (v,n: Z;o: State)(lookup [v — n,a] v n)
lookup_recursively: (v,v',n,n': Z;o: State)

v # v' — (lookup ¢ v n) — (lookup [v' — n',0] v n)

Notice that we do not assign any value to empty locations, rather leave them undefined.
Therefore instead of giving a default value to uninitialized variables, the semantics decides
to stop evaluation.

The operations are interpreted in the obvious way, for example,

(ag,o)a ~ ng  (a1,0)a ~ n1
(ap + ay,0)a ~ ng +ny

where the symbol + is overloaded: ag + a1 denotes the arithmetic expression obtained by
applying the symbol + to the expressions ag and a1, ng +n1 denotes the sum of the natural
numbers ng and nq.

In short, the operational semantics of arithmetic expressions is defined by the inductive

relation
((-,-)a ~ -): AExp — State — Z — Prop

eval_Num: (n: Z;o: State)({(Num(n),c)a ~ n)
eval_Loc: (v,n: Z;o: State)(lookup o v n) — ({Loc(v),c)a ~ n)
eval_Plus: (ag,a1: AExp;ng,ny: Z;o: State)
({ag, o)A ~ mo) — ({a1,0)a ~ no) —
(((10 +a1,0'>/.\ ~ N +TL1)

INRIA



Proof by reflection in semantics 7

For boolean expressions we have a similar form of evaluation. The operational semantics
of boolean expressions is defined by the inductive relation

({-,)s ~ -): BExp — State — B — Prop
eval_True: (o: State)({true, o) ~ true)
eval_False: (o : State)((false, o)g ~ false)
eval_Less_or_equal: (aj,as: AExp;ny,ns: Z;o: State)
({a1,0)a ~ n1) — ({az, 0)a ~> n2) —
(n1 < n2) — ({a1 < az,0) ~ true)
eval_not_Less_or_equal: (aj,as: AExp;ni,nq: Z;o: State)
({a1,0)a ~ n1) — ({az, o)A ~> n2) —
(ny <n1) — ({a1 < ag,0)p ~ false)

The operational semantics of instructions specifies how an instruction maps states to
states. For instance, the assignment X <« a evaluates the expression a and then updates
the contents of the location X to the value of a.

<a’7 U)A ~n O[X+sn] ™ o

(X «a,0)~ 0’

where o7x,.,) ~» o' asserts that ¢’ is the state obtained by changing the contents of the
location X to n in o. It could be realized by simply ¢’ = [X +— n,o0]. This solution is
not efficient, since it duplicates assignments of existing locations and it would produce huge
states during computation. A better solution is to look for the value of X in ¢ and change

1t.
(‘[+=] ~ -): State — Z — Z — State — Prop

update_first: (v,n1,n2: Z;0: State) ([v — n1, 0], ~ [v — n2,0])
update_rest: (v1,v2,n1,n2: Z;01,02: State) vy # vy —
(01[v2.—>n2] ~ 02) = ([vg = n1701][mHn2] ~ [v1 = 0y, 09))

Notice that we require a location to be already defined in the state to update it. We have
not specified any operational semantics to update a location not present in the state. This
corresponds to requiring that all variables are explicitly initialized before execution.
Evaluating a sequential composition 41;%2 on a state o consists in evaluating ¢; on o,
obtaining a new state o1, and then evaluating i on o1 to obtain the final state o,.

(1,00 ~ o1 {2,010 ~ 09

(t1; 42,00 ~ 09

We have two rules for while loops. If b evaluates to true, 7 is executed with o to produce
a new state o', with which the loop is evaluated again. If b evaluates to false, execution
terminates and leaves the state unchanged.

(b,o)g ~ true (i,0) ~ o' (while b doi,d') ~ " (b,o)p ~ false

{while b do i,0)| ~ o (while b do i,0) ~ o

RR n° 5134



8 Das Barman & Bertot

These rules and the rules for skip and conditional expressions can be formalized in Coq
in a straightforward way by an inductive relation.

(-, )1 ~ -: Inst — State — State — Prop
eval_skip: (o : State)((skip, o) ~ o)

eval_assign: (o,0’: State;v,n: Z;a: AExp)

({(a,0)a » 1) = (O[pn) ~ ') = (v < a,0) ~ ')
eval_scolon: (o, 01,09: State;iq,ia: Inst)

(i1, oh ~ a1) = ({iz, 00 ) ~ 02) = ({i1;92,0) ~ 02)

eval_while_true: (b: BExp;i: Inst;o,0’,0" : State)

((b,0)g ~ true) — ({(i,0) ~ d') —

((while b do i,0")) ~ ¢"") — ({while b do 7,0} ~ ¢")
eval_while_false: (b: BExp;i: Inst;o: State)

((b,0)g ~ false) — ({while b do i,0) ~ o)

2.1 Difficulty in automation

In proof assistants, like Coq, Isabelle/HOL, executing instructions can be viewed as proving
them as lemmas, where the facts needed to help the execution are provided as hypotheses.
For instance, we would like to show an execution of a sequence of two instructions 4; and
i9 starting from a state o will obtain a final state o', given the facts that execution of ¢; in
the state o yields a state o’ and the state ¢” will be obtained in an execution of i, in the
state o’.

Lemma 1. Vo,0',0": State.Viy,io: Inst.
(i1, o0 ~ ') = ({iz,0" ) ~ ") = ((ix;12, 00 ~ o).

~ J ~ v
~ ~~

facts goal
To automate this proof, which is similar to the operational semantics description of

eval_scolon, difficulties arise to derive the intermediate results, the state ¢’ in our case, which
does not appear in the goal. Usually this kind of proof is done by resolution and unification,
as in Prolog interpreters, and missing values are replaced with existential variables to be
instantiated later through unification. For our example in Coq, a unification and resolution
based procedure EAuto finds a match with eval_scolon and replaces ¢’ by ?1. Then it needs
to solve two more subgoals,viz., ({i1,0); ~?1) and ({iz, ?1); ~ ¢"). It then finds a match
in the context for both the subgoals and therefore instantiates ?1 to ¢, thus solving the
goal. However a unification and resolution based procedure fails when computation power
is needed. For instance, consider the following lemma

Lemma 2. Vo: State.Vu: Z. (lookup o v 1) — (while 3 < v do skip,a); ~ 0.

~ v ~ >
~~ ~~

facts goal
Given the fact that the location v is bound to 1 in the state o, we need to prove that

execution of the while loop will not change state. We have necessary informations to prove

INRIA



Proof by reflection in semantics 9

that the boolean expression 3 < 1 will be evaluated to false, but such a proof does not exist
in the context and needs to be computed. A unification and resolution based procedure does
not have computation power for this. A way to solve this problem is to use functions instead
of relations. Functions can also compute intermediate results, thus handling lemma 1.

As we have mentioned before, previously computed results are available as assertions,
which is in fact relations between data objects. But the functions compute on data objects,
not on assertions. Unification and resolution based procedures use context to do the proof
search. To use functions, we need to find the data objects from the context that truly repre-
sent the context. Now we show how to achieve this, along with the functional interpretations
of the language.

3 Functional interpretation

Functions are well suited to describe how to evaluate arithmetic and boolean expressions,
lookup for variable values or update the state, as they follow structural recursion. But we
want these evaluation functions to use data from the context. We build few tables to collect
this information from the context and then design evaluation functions to consult regularly
these tables. For instance,

Lemma 3. Vaq,as: AExp.Vo: State
(a1,0)a ~ n1 — (a2, 0)a ~ ng — {a1 + as,a)a ~ ny + na.

~ ~
~~ ~~

facts goal
To keep these information on arithmetic expressions, a; and as, we create a table

T'aexp (t0 be read as list of results given for arithmetic subexpressions). T apxp a list
of triplets, where each triplet consists of a state, an arithmetic expression and the inte-
ger value of this arithmetic expression in this state. For example, for lemma 3 T'Agxp =
[(0,a2,n2), (0,a1,n1)]. We ensure that this table contains information that is only provided
in the context with the consistency function:

Caexp(+): (list State x AExp * Z) — Prop
Jagsp: True
[(0, 3, n), lngplhgnp: ¥ @: AExp.Y n: Z.Y o: State. (a,0)a ~ n A Cagxp(I"AExp)-

Similarly we create different tables to collect different types of information from the context.
We can have results to lookup in the memory states, to update a memory state, evaluated
boolean expressions and executed instructions. We will represent them as T oups Thpdate:
Tge and Tj g respectively. Again, we ensure that these tables are consistent with the
context with a set of consistency functions, viz., Ciookup(-); Cupdate(-); CBExp(-) and Cingt(-),
respectively. Definition of these functions are similar and we omit them.

To evaluate any expression, we first look in the corresponding table, whether we already

know the result or not. If not, we follow the semantics. Therefore, the evaluation function

RR n° 5134



10 Das Barman & Bertot

for arithmetic expressions is defined as follows:

[[]: AExp — State — (list State x Z x Z)
— (list State = AExp * Z) — (option Z)

Aa: ... Ao “‘)‘T{ookup: .‘.)\T"AEXP:
x where (0, a, x) € Thg,,
Otherwise:

[Num(n), Trlookup7 TrAExp]]o =n
[Loc(V), Triookups T aExp]e := flookup(a, v, T,’ookup)
( [[ala Trlookupa TrAExp]]o
+ [[a27 Trlookupa TrAExp]]o
if Ja1, T iookup, T AExplo 7 €rror

|[(J,1 + az, Tr|°°k“p7 TrAEXP]]U =< & [[(12, Trlookupa TrAExP]]o 7é error
error

if Jar, T iookups T AExplo = €rror

or [az, Tliookup, T AExp]s = error

lao — a1, Triookup, T AExplo ="
[ao * a1, Tiookups T AExplo = """

where flookup(-,-,-) is the function giving the contents of a location in a state, defined by
recursion on the structure of the state. It differs from lookup because it is a function, not a
relation; lookup is its graph. We use the option type of Coq for type lifting.

In the same way, we define the evaluation function for boolean expressions

[[]: BExp — State — (list State x Z x Z) — (list State x« AExp * Z)
— (list State * BExp x B) — (option B).

We overload the Scott brackets [] to denote the evaluation function both on arithmetic
and boolean expressions.
Similarly, we define the update function

-[-/-]: State = Z — Z — (list State % Z % Z  State) — (option State).

4 Proof by reflection

In usual formal proofs, hypotheses about computations are represented as assertions that
some relation hold for some piece of data. The proof search mechanisms usually search
the context containing all these hypotheses to see if the goal can be solved directly if it is
one of these assumptions. In a proof system based on type theory like Coq, functions are
also provided and reduction can be used to compute with these functions [7]. The idea of
reflection is to use these functions to perform the proof search. But functions compute on
formalized data and the (context) hypotheses are not formalized data at the level of these
functions but only at the level of the proof system. For the needs of reflection, we have
already built data to represent the hypotheses at the level where functions can compute.

INRIA



Proof by reflection in semantics 11

This discussion on levels can be found in [1]. Reflection was pioneered in Coq by Samuel
Boutin [3], where reflection was used to decide efficiently whether two expressions, denoting
values in a ring, are equal. Similarly, Kumar Neeraj Verma and Jean Goubault-Larrecq [9]
has recently used reflection to build a certified BDD algorithm in Coq. Work on reflection in
Coq can be also found in [6]. In the literature we do not find any reference where reflection
was used in semantics.

To prove a given property P applied to some term ¢, using reflection, is as follows:
Consider a proof-assistant where we can both describe and prove programs. Then write a
program @ that takes ¢ as input and returns true only if when P(¢) holds. In other words,
prove that Q(t) = true = P(t) and therefore one can use @ instead of P.

In our case, we would like to prove that (o,7); ~ ¢’ holds given a set of hypotheses T". We
should, therefore, write a function ¢ which takes data objects from T' that truly represents
T',o and 7 as inputs and returns ¢’ only if when (0,4}, ~ ¢’ holds along with I". To have
this last criteria we need to prove Q(o, 4, data objects fromT) =o' = T — (a,i); ~ o’

In section 2 we described two problems that need to be solved by proof search engines to
build proof in semantics. The first problem is to find intermediate values in computation.
This is solved in a natural way, the evaluation computations. The second problem is to
interleave arithmetic computation with proof search and this, too, can be easily solved
if evaluation functions call the relevant arithmetic functions. For these problems, proof
tools based on function evaluation are better than proof search tools based on unification
and resolution. Function evaluation is also more focused than proof search and therefore
more efficient. All this process becomes very powerful if fast reduction mechanisms are
implemented in proof assistant [5].

4.1 Giving names

A new difficulty arises when we reason on unknown expressions. Consider the following
program :

Lemma 4. Vo: State.Vv: Z.(lookup o v 3) — (o, (while v < 1 do skip)); ~ o.

In this case the memory state is given by a universally quantified variable o. If we
remember, in section 2, we defined state as an Inductive type Set with two constructors, one
describes the case when the list is empty and the other describes the case when the list is
non empty. But it does not say anything if we don’t know anything about this list, in other
words if such a list is described by a metavariable, for example by ¢ as above.

In type theory based proof-assistant, function evaluation is performed by term reduction.
Term reduction changes the term being studied, only if the current data matches one of the
reduction rules. For instance, [a1 + a2, T iookup, T AExp Jo Teduces to [a1, Tliookups T AExplle +
a2, Triookup, T AExp]o- But reduction does not occur if one of the expression is represented by
a universally quantified variable, for instance [a, T iookups T AExplo Stays [@; T iookups T AExplo -

The context can still contain enough information related to these metavariables to execute
instructions, consider lemma 4. Therefore we need a way to reason about them. The
solution is to associate a number to metavariables like . We do it in a systematic way. We

RR n° 5134



12 Das Barman & Bertot

define a new inductive type called n_State (to read as named state) which contains an extra
constructor for these numbered terms.

n_State: Set

[ln: n_State

[+~ -, Z — Z — n_State — n_State
metavariables: N — n_State

Elements of n_State are names for expressions of type State in the theorem prover when
an unknown expression of type State is available we assign a number (a name) n and we
represent it by metavariables(n). When an expression of type State is [- — -, ¢l] we construct
the name n_t! for ¢/ and we give the name [- — -, n_tl] for the whole expression. Similarly we
associate numbers to all those arithmetic expressions, boolean expressions and instructions
which are known by their symbolic names. For arithmetic expressions it is as follows:

n_AExp: Set

n_Loc(-): Z — n_AExp

n_Num(-): Z — n_AExp

(- +n +): n_AExp — n_AExp — n_AExp

metavariable; : N — n_AExp

The specification for named boolean expressions and named instructions are similar and we
omit them.

Once we assigned numbers to metavariables we need to keep track of them. We do so
by creating few more tables where we have entries only for metavariables as in other cases
it’s easy to get back the original. We have four such tables, namely, Tstate, T AExp, | BExp
and T, for metavariables representing states, arithmetic expressions, boolean expressions
and instructions, respectively. After we have assigned names to all arithmetic and boolean
expressions, instructions and states, to work with the metavariables we define new result ta-
bles, T n_iookup, T 'n_update, | n_AExp, | n_BExp and T'ninst, that have a similar role and structure
to the result tables, introduced in section 3, but contain named expressions.

Similarly, we need to change the consistency functions to work with named expressions.
For instance, the consistency function for arithmetic function is as follows.

Coaexp(-): (list State x n_State) — (list AExp * n_AExp)
— (list n_State x n_AExp * Z) — Prop
ATstate: - a)\TAExp5 cee

[]:._AExp : True

(a, U>.A ~n A Cn_AExp(TState7 TAExp, Trn_AExp)
[(n . n.a n) T AE ]r Ao if [[n—aa TState]] —o & [[’rL_a, TAExp]] — a
T T 7/ n-ARxpIn-AExp False

if [n-0, Tstate] ~— error or [n_a, Taexp] — error

INRIA



Proof by reflection in semantics 13

In the above, [n_0, Tstate] — o is the translation from the named state to state. Similarly
we need to translate arithmetic expressions, boolean expressions and instructions. We change
the consistency functions for lookup in a state, arithmetic expressions, boolean expressions
and instructions as well. They are similar and we omit their detail.

We also need to change the evaluation functions accordingly, so that we can work with
the named expressions. For instance, now evaluation function for arithmetic expressions will
be the following.

[-1: n-AExp — n_State — (list n_State x Z x Z)
— (list n_State * n_AExp * Z) — (option Z)

. . r . r .
An_a: ... Ano: ... )‘Tn,lookup T )‘Tn,AExp T
r
x where (n_o, n_a, x) € T} ag,,
Otherwise:
[[n_Num(n), T o_lookup> Trn_AExp]]n_a =n
[n_Loc(v), T niookup, T'nAExpln_c = n_flookup(n_o,v7T:L|°°kup)
4
ﬂn—ah Trn_lookupa Trn_AExp]]n_o
+ ﬂn—a27 Trn_lookupa Trn_AExp]]n_o
if [n-a1,- - Jno # error
[[n—al +n n-agz, Trn_lookup7 Trn_AExp]]n_o =1 & ﬂn—a2, o ']]n,a # error

error
if [n_a1,--Jno = error
or [n_az,--Jno = error

[[n—ao —n N-a1, Trn_|00kupa Trn_AExp]]n_U =

I * Tr T =

n_ap *n N-ai, n_lookup> nAExp]]n,a =
[metavariable,(n), T nicokup, T n AExp]n o := error

Our approach is systematic. The structure is kept unchanged with two main differences.
First, we changed the input to their named counterparts and second, we added an extra rule
to deal with the metavariable.

We prove that this evaluation function agrees with the operational semantics given by the
inductive relation {-,-) ~» - (all the theorems given below have been checked in a computer-
assisted proof). Here is the statement for arithmetic expressions.

Theorem 1.

V Tstate: (list State % n_State).V T tookup - (list n_State x Z = Z).

V Taexp: (list AExp x n_AExp). V T} »g,,: (list n_State * n_AExp * Z).
V n_o: n_State.V n_a: n_AExp.V o: State.V a: AExp.V n: Z.

Cn_lookup(TStatea TI':IJOOkup) - Cn_AExp(TStatey TAExp7 Trn_AExp)
- |[n_a, n_a, T'nlookups Trn,AExp]] =n

— [n-o, Tstate] — 0 — [n-a, Tagxp] — a
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14 Das Barman & Bertot

— (a,0)a ~ n.
We also proved that evaluation functions for boolean expression, to update memory state
and to lookup into a memory state agree. They are similar and therefore we omit them.

4.2 The iteration technique

We cannot define the evaluation function for instructions in the similar way as we did for
arithmetic and boolean expressions, since execution of instruction (in particular while loop)
does not follow structural recursion. In our previous work [2], we presented the iteration
technique to work around this problem. We give a short account here, for more details we
suggest to read the original work.

The evaluation function for instructions can be provided in a way that respects typing
and termination if we don’t try to describe the evaluation function itself but the second
order function of which the evaluation function is the least fixed point. This function can be
defined in type theory by cases on the structure of the instruction.

F: (n_Inst — n_State — (list n_State x Z * Z) — (list n_State x Z * Z * n_State)
— (list n_State x n_AExp x Z) — (list n_State x n_BExp x B)
— (list n_State % n_Inst x n_State) — (option n_State))
— n_Inst — n_State — (list n_State x Z x Z) — (list n_State * Z * Z  n_State)
— (list n_State x n_AExp * Z) — (list n_State * n_BExp x B)
— (list n_State * n_Inst * n_State) — (option n_State)
Af: .o dnz: o dnoo L
)\Trn_lookup RPN /\Trn_update3 R )\Trn_AEXp: e )\T’n_BExp Do )\Trn_mst: e

n_o’ where (n_o, n_i, n.o') €T
Otherwise:
(F f Skipn n-o Trn,lookup Trn,update Trn,AExp Trn,BExp Trn,lnst) =n_o

r
n_Inst

(F f (Whlle n_b do n_z)n n_o Trn_|°°kup Trn_update Trn_AExp Trn_BExp Trn_lnst)
( (f (while n_bdoni), (fnino ---) )
if [n-b, T'niookups T'nAExps T'nBExp]n_o = true
& (fnino ---) # error

=4 no if I[n_b, Trn,lookupa TrnAExpa Trn,BExp]]n,a = false
error if [n-b, T"nlookups T n_AExps T n_BExp]n_o = €rror
or (fningo ---) =error

{ or (f (while n_bdoni), (fningo ---)---)=error

(F f (metavariablei(n)), n_o ---) :=error

We omit the full description of the evaluation function F, as it makes the text unreadable
and can be easily understood from the description of while clause.
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Proof by reflection in semantics 15

Intuitively, writing the function F is exactly the same as writing the recursive function,
except that recursive calls are simply replaced by a bound variable (here f) in recursive
calls.

The function F describes the computations that are performed at each iteration of the
execution function and the execution function performs the same computation as the func-
tion F when the latter is repeated as many times as needed. Later we will use the following
notation

F' =g (F(F -+ (F g) =)
k times

And finally to complete the task of reflection we prove that the evaluation function for
instruction yields the same result as the operational semantics.

Theorem 2.
V Tstate: (list State x n_State).V T} o0t (
V Th update: (list n_State x Z  Z x n_State).

V Taexp: (list AExp % n_AExp). V T AExp: (list n_State * n_AExp * Z).

n,

V Teexp: (list BExp x n_BExp). V T} ge 0 (list n_State x n_BExp * B).
V Tinst: (list Instxn_Inst). V T; | . : (list n_State * n_Inst * n_State).

n

V k: N.V n_o,n_o': n_State.V n_i: Inst.V o: State.V i: Inst.

list n_State x Z x Z).

C(TStatea TAExpa TBExpa Tlnsta Trn,lookupa Trn,updatea Trn,AExpa Trn,BExpa Trn,lnst)

Tr

k H r r r r — !
- (F LnineT n_update Tn_AExp Tn_BExp Tn-lnst) =no

n_lookup

- |[n_a, TState]] — 0 — |[n—i7 Tlnst]] — i

— 3 ¢': State.[n_o’, Tstate] — o’ A{o,i) ~ o’

C is a function which sums up the work by all consistency functions, namely Cp iookup;
Cn_update7 Cn-AExpa Cn_BExp and Cy_jnst-

Note that we provide L, replacing the bound variable (denoted by f earlier), to the
functional F' to execute the program. Execution of a program fails in either of two cases.
First, if the execution encounters any runtime error, or second, if the given number of
iterations (here k) is not enough to finish the execution.

5 Conclusions

This technique to assign names to metavariables has a vast potential. It is systematic
and does not depend on the language. Our method tries to maximize the potential for
automation: we have implemented a tactic that successfully handles complex goals. We hope
to apply the same technique for larger languages and use them in proofs about compilers.
There are good reasons to believe that this will be possible because our approach is very
systematic. In recent work on a more complete programming language with procedure, we
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16 Das Barman & Bertot

could see that the functional approach carries over nicely to larger programming language,
even though semantics requires mutual inductive propositions.

In the literature we found work by Nancy A. Day and Jeffrey J. Joyce where they
discuss about Symbolic Functional Evaluation[4]. But this work is different from ours, as in
their work symbolic functional evaluation is an algorithm for executing functional programs
to evaluate expressions in higher order logic. It carries out the logical transformations of
expanding definitions, beta-reduction and simplification of built-in constants in the presence
of uninterpreted constants and quantifiers. They suggest different levels of evaluation for
such an algorithm to terminate while evaluating the arguments of uninterpreted functions.
However this kind of capability already exists in the Coq proof-assistant, where the tactic
Simpl does a similar work. In our work we showed a way to reason on metavariables. One
can have some information related to uninterpreted symbols and use it in an intelligent way.

The main lesson we learned in this work is the technique for naming sub-expressions that
makes it possible to reason about non-closed programs.
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