-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Parallel Programming with the System Applications to
Numerical Code Coupling
Francois Clément, Roberto Di cosmo, Zheng Li, Vincent Martin, Arnaud
Vodicka, Pierre Weis

» To cite this version:

Frangois Clément, Roberto Di cosmo, Zheng Li, Vincent Martin, Arnaud Vodicka, et al.. Parallel
Programming with the System Applications to Numerical Code Coupling. [Research Report] RR-
5131, INRIA. 2004. inria-00071452

HAL Id: inria-00071452
https://hal.inria.fr /inria-00071452
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50453308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00071452
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5131--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parallel Programming with the Ocam|P3| System
Applicationsto Numerical Code Coupling

Francgois Clément — Roberto Di Cosmo — Zheng Li — Vincent Martin — Arnaud Vodicka

— Pierre Weis

N° 5131
Mars 2004

THEMES 2 et 4

apport

derecherche







Zd INRIA

ROCQUENCOURT

Parallel Programming with the Ocam|P3| System
Applications to Numerical Code Coupling

Francois Clémentf] , Roberto Di Cosmdl , Zheng Lifl , Vincent Martinf] , Arnaud Vodickall ,
Pierre Weidl

Thémes 2 et 4 — Génie logiciel
et calcul symbolique — Simulation et optimisation
de systémes complexes
Projets Cristal et Estime

Rapport de recherche n° 5131 — Mars 2004 —B8l pages

Abstract:  Writing parallel programs is not easy, and debugging them is usually a nightmare. To cope
with these difficulties, a structured approach to parallel programming using skeletons and templates based
compilation techniques has been developed over the past years by several researchers, including the P3L group
in Pisa. The OcamlP3l system marries the Ocaml functional programming language with the P3I skeletons,
yielding a powerful parallel programming system and methodology: OcamlP3l allows the programmer to write
and debug a sequential version of his program (which, if not easy, could be considered as routine), and then the
parallel version is automatically deduced by recompilation of the source program. The invaluable advantage of
this approach is stagging: the programmer has just to concentrate on the easy part, the sequential programming,
relieving on the OcamlIP3l system to obtain the hard part, the parallel version. As an additional benefit, the
semantics adequacy of the sequential and parallel versions of the program is no more the programmer’s concern:
it is now the entire responsability of the OcamIP3| compiler.

In this paper, we report on the successful application of OcamlP3l in the field of scientific computing, where
the system has been used to solve a problem of numerical code coupling, obtaining parallelization for free.

The interaction has been quite successful, as, in the process of solving the coupling problem, a wealth of
new ideas have emerged on the design of the system, which are now incorporated in the current version of
OcamlP3l: coloring of virtual and physical computing network nodes to specify their relative mapping, and the
new notion of parfuns or parallel computing sub-networks reified as functions at the programmer’s level. Those
two notions both increase efficiency and ease the writing of programs, being a step to smoother integration of
parallel computing into the functional programming paradigm.

Key-words: parallel programming, functional programming, skeleton based programming model, code cou-
pling

The OcamlP3l system has been partially funded by a Galileo bilateral France-Italy project.

* Projet Estime. Francois.Clement@inria.fr.

t Projet Cristal and PPS, Université de Paris 7. roberto@dicosmo.org.
 Projet Cristal. Zheng.Li@inria.fr.

§ Projet Estime. Vincent.Martin@inria.fr.

9 Projet Estime. Arnaud.Vodicka@inria.fr.

I Projet Cristal. Pierre.Weis@inria.fr.

Unité de recherche INRIA Rocquencourt



Programmation paralléle avec le systéme OcamlP3|
Applications au couplage de codes numériques

Résumé : L’écriture de programmes paralléles n’est pas une téache facile, et les déboguer est généralement
un cauchemard. Pour pallier & ces difficultés, une approche structurée de la programmation paralléle utilisant
des techniques de compilation basées sur des squelettes et des modéles & été développée ces derniéres années
par plusieurs chercheurs dont le groupe P3L & Pise. Le systéme OcamlP3l allie le langage de programmation
fonctionnelle Ocaml avec les squelettes P3l, menant & un systéme de programmation paralléle performant et une
méthodologie puissante : OcamlP3l permet au programmeur d’écrire et de déboguer une version séquentielle
de son programme (tache qui, sans étre facile, peut étre considérée comme routiniére), et ensuite la version
paralléle est automatiquement déduite par recompilation du programme source. L’avantage considérable de
cette approche est donc que le programmeur ne doit se concentrer que sur la partie facile, la programmation
séquentielle, et il se repose sur le systéme OcamlP3l pour obtenir la partie difficile, la version paralléle. De
plus, 'adéquation des sémantiques des versions séquentielle et paralléle du programme n’est plus du ressort du
programmeur, c¢’est maintenant I’entiére responsabilité du compilateur OcamlIP3l.

Dans ce papier, nous rapportons comment une utilisation d’OcamlP3| dans le domaine du calcul scientifique
a été couronnée de succés. Le systéme a été utilisé pour résoudre un probléme de couplage de codes numériques,
fournissant gratuitement la parallélisation.

L’interaction a été plutdt fructueuse, puisqu’en résolvant le probléme de couplage, de nombreuses idées
nouvelles concernant la conception du systéme ont emmergé, et sont maintenant incorporées dans la version
courante d’OcamlP3l : la coloration des noeuds virtuels et physiques du réseau de calcul pour spécifier leurs
affectations réciproques, et la nouvelle notion de parfuns, ou de sous-réseaux de calcul paralléle, réifiés comme
fonctions accessibles au programmeur. Ces deux notions améliorent & la fois l'efficacité et la facilité d’écriture
des programmes, et sont donc un pas vers une intégration plus douce du calcul paralléle dans le paradigme de
la programmation fonctionnelle.

Mots-clés : programmation paralléle, programmation fonctionnelle, modéle de programmation basé sur des
squelette, couplage de codes



Parallel Programming with the OcamlIP3l System 3

Contents
1 ] n 10 ) 3
mlzﬂ% 4
1__Overview of the svsterml . . . . . . . . . . e 4
Iy related semanticd . . . . . . . e e e e 4
2.3 Skeletons as stream processord . . . . . . oo o e 5
2.4 The skeleton combinators in QcamlP3l . . . . . . . . . . . 5
2.5 Skeleton syntax, semantics, and tvDed . . . . . e e e e 5
inators as skeleton generatord . . . . . . . . . . L e e e e e e e e e e e e e e e 5
5.2 Typin icsof skeletond . . . . . . . . . e e e e e e e 7
2.6 The parfun constriictionl . . . . . v v v v e e e e e e 7
2.7 __The pardo parallel scope delimited . . . . . . . o o o o e e 8

B_Using the systend 12

l4__A Scientific Cnmn'uﬁnﬁa_p_p]j_ga_ﬁ_oﬂ 13
K1 The coupling probleml . . . . . ... L 13

W.1.1 The problem of 3D flow simulation in porousmedid . . . . .. ... ... ... .. .... 13
M@%ﬂmﬁnﬂ ..................................... 14
413 Codestocoupld. . . . . . . . . . . . 16

K14 The (’onn]inggmj_th_rﬂ ..................................... 16
U2 The OcamIP3l implementation . . . . . . . . o o oot e e e e e e e 17

5 Evaluation of the resultd 19
I6__Conclusions and Future work 21
IA_The domain decomposition method 23

[A.1_The continuous 3D flow simulation problem . . . . . . . . . . ... 24

....................................... 24
A4 The Robin-to-Robin interface operatod . . . . . . . . . . . . . o e e 25

[A.5_The nonsymmetric linear system formulatiod . . . . . . . .. ... .. ... ... ... ...... 25
[B_The interface of the Ddec maduld 25

1 Introduction and Overview

In a skeleton-based parallel programming model [Col89, DFHT93, DMOT92| a set of skeletons, i.e. of second
order functionals modelling common parallelism exploitation patterns, are provided to the user/programmer.

The programmer must use the skeletons to give parallel structure to an application and uses a plain sequential
language to express the sequential portions of the parallel application as parameters to the skeletons. He/she
has no other way to express parallel activities but skeletons: no explicit process creation, scheduling, termina-
tion, no communication primitives, no shared memory, no notion of being executing a program onto a parallel
architecture at all. This means that the programmer has no responsibility in deriving code for creating parallel
processes, mapping and scheduling processes on target hardware, establishing communication frameworks (chan-
nels, shared memory locations, etc.) or performing actual interprocess communications. All these activities,
needed in order to implement the skeleton application code onto the target hardware are completely in charge
to the compile/run time support of the skeleton programming environment. in some cases, the compiler/run
time environment also computes some parameters such as the parallelism degree of the communication grain
needed to optimize the execution of the skeleton program onto the target hardware [Pel93, BDOT95, [Pel98].



4 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

OcamlP3l is a programming environment that allows to write parallel programs in Ocami] according to the
skeleton model supported by the parallel language P3E, provides seamless integration of parallel programming
and functional programming and advanced features like sequential logical debugging (i.e. functional debugging
of the parallel program via execution of the architecture at all parallel code onto a sequential machine) of
parallel programs and strong typing, useful both in teaching parallel programming and in building of full-scale
applications.

This paper describes the current stable status in the evolution of the OcamlP3l skeleton-based functional
parallel programming system, and presents a major numerical application whose development has been hugely
simplified and streamlined by using the skeleton approach and the additional facilities provided by the system.
This numerical application is built by coordinating through OcamlP3l several preexisting legacy codes written in
C++, a task that was considered a serious challenge even when one forgets completely about parallelization. By
using the skeleton approach, we got both coordination and parallelization of the legacy codes at an abstraction
level simply not possible otherwise.

The paper is structured as follows: in section B we give a detailed overview of OcamlP3I’s design, discussing
in detail the major differences with the previous versions, in particular the parfun and pardo combinators and
the use of colors to control load balancing; in Section Bl we explain how to build and run applications. Then we
turn to the case study in Section Bl and we evaluate the performance results in Section B} an Appendix provides
the necessary background on the domain decomposition method used in the application. Finally, we conclude
in Section B

2 The OcamlP3| system

2.1 Overview of the system

In OcamlIP3l, as in all skeleton-based systems, the user describes the parallel structure of the computation by
means of a set of skeletons. One distinctive feature of OcamlP3l, though, is that the semantics of these skeletons
is not hard-wired: the system allows the user to compile his code, without any source modification whatsoever,
using a choice of various possible semantics.

2.2 Three strongly related semantics

In OcamlIP3l, as described in the seminal paper [DDCLP98|, we provides three semantics, for any user program.

sequential semantics the user’s program is compiled and linked against a sequential implementation of the
skeletons, so the resulting executable can be run on a single machine, as a single process, and easily
debugged using standard debugging techniques and tools for sequential programs,

parallel semantics the user’s program is compiled and linked against a parallel implementation of the skele-
tons, and the resulting executable is a generic SPMD program that can be deployed on a parallel machine,
a cluster, or a network of workstations,

graphical semantics the user’s program is compiled and linked against a graphical implementation of the
skeletons, so that the resulting program, when executed, displays a picture of the parallel computational
network that is deployed when running the parallel version.

From the user’s point of view, those three different semantics are simply obtained by compiling the program
with three different options of the compiler.

Of course, our goal is to guarantee that the sequential and the parallel execution agree: for any user program
the two semantics should produce exactly the same results.

1See URL http://pauillac.inria.fr/ocaml/.
2See http://www.di.unipi.it/.susanna/p31.hmt1.



Parallel Programming with the OcamlIP3l System 5

2.3 Skeletons as stream processors

The OcamlP3l skeletons are compositional: the skeletons are combinators that form an algebra of functions and
functionals that we call the skeleton language.

To be precise, a skeleton is a stream processor, i.e. a function that transforms an input stream of incoming
data into an output stream of outgoing data. Those functions can then be composed arbitrarily, thus leading
to trees of combinators that define the parallel behaviour of programs.

This mapping of skeletons to stream processors is evident at the type level, since the skeletons are all assigned
types that reflect their stream processing functionality. Of course, the compositional nature of skeletons is also
clear in their implementation:

For the parallel semantics implementation, a skeleton is realized as a stream processor parameterized by
some other functions and/or other stream processors.

For the sequential semantics implementation, we provide an abstract data type of streams (the polymorphic
’a stream data type constructor), and the sequential implementation of the skeletons is defined as a set
of functions over those streams.

2.4 The skeleton combinators in OcamlP3|

In the current release of OcamlP3l, the combinators (or basic building blocks) of the skeleton language pertain
to five kinds:

o the task parallel skeletons that model the parallelism of independent processing activities relative to
different input data. In this set, we have pipe and farm, that correspond to the usual task parallel
skeletons appearing both in P3| and in other skeleton models [CalR9, DEHT93, [DGTY95].

o the data parallel skeletons that model the parallel computation of different parts of the same input data.
In this set, we provide mapvector and reducevector. The mapvector skeleton models the parallel
application of a generic function f to all the items of a vector data structure, whereas the reducevector
skeleton models a parallel computation that folds the elements of a vector with a commutative and
associative binary operator (®).

Those two skeletons are simplified versions of their respective map and reduce analogues in P3l. They pro-
vide a functionality quite similar to the map(x) and reduce (/) functionals of the Bird-Meertens formalism
discussed in [Bir87| and the map and fold skeletons of SCL [DGTYY5).

e the data interface skeletons that provide injection and projection between the sequential and parallel
worlds: seq converts a sequential function into a node of the parallel computational network, parfun
converts a parallel computational network into a stream processing function.

o the parallel execution scope delimiter skeleton, the pardo combinator, that must encapsulate all the code
that invokes a parfun.

e the control skeleton, the loop combinator, that provides the necessary repetitive execution of a given
skeleton expression (loop is not a parallel construct per se).

2.5 Skeleton syntax, semantics, and types

We briefly describe here the syntax, the informal semantics, and the types assigned to each of the combinators
of the skeleton language.

2.5.1 Combinators as skeleton generators

First of all, let’s explain why the actual Ocaml types of our skeletons are a bit more complex than a naive view
would have guessed. In effect, those types seem somewhat polluted by spurious additional unit types, compared
to the types one would consider as natural. Of course, this additional complexity is not purely incidental: it
has been forced by strong practical considerations to implement new functionalities that where mandatory to
effectively run the numerical applications described below.

We now explain the rationality of these decisions for the simplest skeleton, the seq combinator. As explained
above, seq encapsulates any Ocaml function f into a sequential process which applies f to all the inputs received



6 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

in the input stream. Writing seq f, any Ocaml function with type £ : ’a -> ’b is wrapped into a sequential
process (this is reminiscent to the 1ift combinator used in many stream processing libraries of functional
programming languages). Hence, we would expect seq to have the type

(’a -> ’b) -> ’a stream -> ’b stream.
However, in OcamlP3l, seq is declared as

seq : (unit -> ’a -> ’b) -> unit -> ’a stream -> ’b stream

meaning that the lifted function argument £ gets an extra unit argument. In effect, in real-world application,
the user functions may need to hold a sizeable amount of local data, like those huge matrices that have to be
initialised in the numerical application described further on, and we must allow the user to finely describe where
and when those data have to be initialized and/or copied.

Reminiscent to partial evaluation and A-lifting, we reuse the classical techniques of functional programming
to initialize or allocate data globally and/or locally to a function closure. This is just a bit complicated here,
due to the higher-order nature of the skeleton algebra, that in turn reflects the inherent complexity of parallel
computing:

e global initialization: the data is initialised once and for all, and is then replicated in every copy of the
stream processor that a farm or a mapvector skeleton may launch; this was already available in the
previous versions of Ocaml|P3l, since we could write

let £ =
let localdata = do_huge_initialisation_step () in
fun x -> compute (localdata, x);;

farm (seq f, 10)

o local initialization: the data is initialised by each stream processor, after the copy has been performed by
a farm or a mapvector skeleton; this was just impossible in the previous versions of OcamlP3l; with the
new scheme it is now easy:

let £ () =
let localdata = do_huge_initialisation_step () in
fun x -> compute (localdata, x);;

farm (seq f, 10)

when the farm skeleton creates 10 copies of seq £, each copy is created by passing () to the seq combinator,
which in turn passes () to f, producing the allocation of a different copy of localdata for each instancel.
Note also that the old behaviour, namely, a unique initialization shared by all copies, is still easy (and
can be freely combined to further local initializations if needed):

let f =
let localdata = do_huge_initialisation_step () in
fun () -> fun x -> compute (localdata, x);;

farm (seq f, 10)

To sum up, the extra unit parameters give the programmer the hability to decide whether local initialisation
data in his functions are shared among all copies or not. In other words, we can regard the skeleton combinators
in the current version of OcamlP3I as “delayed skeletons”, or “skeleton factories”, that produce an instance of a
skeleton every time they are passed an () argument.

3In practice, the initialization step may do weird, non referentially transparent things, like opening file descriptors or negociating
a network connection to other services: it is then crucial to allow the different instances of the user’s function to have their own
local descriptors or local connections to simply avoid the chaos.



Parallel Programming with the OcamlIP3l System 7

2.5.2 Typing and semantics of skeletons

We can now detail the other skeletons:

The farm skeleton computes in parallel a function f over different data items appearing in its input stream.
From a functional viewpoint, given a stream of data items z1,...,z,, and a function f, the expression
farm(f, k) computes f(x1),..., f(x,). Parallelism is gained by having k independent processes that com-
pute f on different items of the input stream.

If f has type (unit -> ’b stream -> ’c stream), and k has type int, then farm(f, k) has type unit
-> ’b stream -> ’c stream.

The pipeline skeleton is denoted by the infix operator || |; it performs in parallel the computations relative
to different stages of a function composition over different data items of the input stream.
Functionally, filllfa...11lf, computes f,(...f2(f1(x;))...) over all the data items z; in the input
stream. Parallelism is now gained by having n independent parallel processes. Each process computes a
function f; over the data items produced by the process computing f;_; and delivers its results to the
process computing f;i1.
If f1 has type (unit -> ’a stream -> ’b stream),
and f5 has type (unit -> ’b stream -> ’c stream),
then f1|||f2 has type unit -> ’a stream -> ’c stream.

The map skeleton is named mapvector; it computes in parallel a function over all the data items of a vector,
generating the (new) vector of the results.
Therefore, for each vector X in the input data stream, mapvector(f,n) computes the function f over all
the items of X, using n distinct parallel processes that compute f over distinct vector items.
If f has type (unit -> ’a stream -> ’b stream), and n has type int, then mapvector(f,n) has type
unit -> ’a array stream -> ’b array stream.

The reduce skeleton is denoted reducevector; it folds a function over all the data items of a vector.

Therefore, reducevector(f,n) computes 1 fzaf ... fz, out of the vector z1,...,z,, for each vector in
the input data stream. The computation is performed using n different parallel processes that compute
!

If f has type (unit -> ’a * ’a stream -> ’a stream), and n has type int, then
reducevector(f,n) has type unit -> ’a array stream -> ’a stream.

2.6 The parfun construction

In the original P3| system, a program is clearly stratified into two levels: there is a skeleton cap, that can be
composed of an arbitrary number of skeleton combinators, but as soon as one goes outside this cap, passing
into the sequential code through the seq combinator, there is no way for the sequential code to call a skeleton.
To say it briefly, the entry point of a P3| program must be a skeleton expression, and no skeleton expression is
allowed anywhere else in the code.

This stratification is quite reasonable in the P3| system, as the goal is to build a single stream processing
network described by the skeleton cap. However, it has several drawbacks:

e it breaks uniformity, since even if the skeletons look like ordinary functionals, they cannot be used as
ordinary functions, in particular inside sequential code,

e as examplified in the application of section H, many numerical algorithms boil down to simple nested
loops, some of which can be easily parallelised, and some cannot; forcing the programmer to push all the
parallelism in the skeleton cap could lead to rewriting the algorithm in a very unnatural way,

e as in our numerical application, a parallelizable operation can be used at several stages in the algorithm:
the P3l skeleton cap does not allow the user to specify that parts of the stream processing network can
be shared among different phases of the computation, which is an essential requirement to avoid wasting
computational resources.

To overcome all these difficulties and limitations, the 1.9 version of OcamlP3l introduces the new parfun
skeleton, the very dual of the seq skeleton. In simple words, one can wrap a full skeleton expression inside a
parfun, and obtain a regular stream processing function, usable with no limitations in any sequential piece of



8 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

code: a parfun encapsulated skeleton behaves exactly as a normal function that receives a stream as input,
and returns a stream as output. However, in the parallel semantics, the parfun combinator gets a parallel
interpretation, so that the encapsulated function is actually implemented as a parallel network (the network to
which the parfun combinator provides an interface).

Since many parfun expressions may occur in a OcamlIP3| program, there may be several disjoint parallel process-
ing networks at runtime. This implies that, to constrast with P3l, the OcamIP3l model of computation requiers a
main sequential program: this main program is responsible for information interchange with the various parfun
encapsulated skeletons.

One would expect parfun to have type (unit -> ’a stream -> ’b stream) -> ’a stream -> ’b stream:
given a skeleton expression with type (unit -> ’a stream -> ’b stream), parfun returns a stream process-
ing function of type ’a stream -> ’b stream.

parfun’s actual type introduces an extra level of functionality: the argument is no more a skeleton expression
but a functional that returns a skeleton:

val parfun :
(unit -> unit -> ’a stream -> ’b stream) -> ’a stream -> ’b stream

This is necessary to guarantee that the skeleton wrapped in a parfun expression will only be launched and
instanciated by the main program, not by any of the multiple running copies of the SPMD binary, even though
thoses copies may evaluate the parfun skeletons; the main program will actually create the needed skeletons by
applying its functional argument, while the generic copies will just throw the functional away, carefully avoiding
to instanciate the skeletons.

2.7 The pardo parallel scope delimiter
pardo typing

Finally, the pardo combinator defines the scope of the expressions that may use the parfun encapsulated
expressions.

val pardo : (unit -> ’a) -> ’a

pardo takes a thunk as argument, and gives back the result of its evaluation. As for the parfun combinator,
this extra delay is necessary to ensure that the initialization of the code will take place exclusively in the main
program and not in the generic SPMD copies that participate to the parallel computation.

Parallel scoping rule

The scoping rule has three requisits:

e functions defined via the parfun combinator must be defined before the occurrence of the pardo combi-
nator,

¢ those parfun defined functions can only be executed within the body of the functional parameter of the
pardo combinator,

e no parfun can occur as a sub tree of a pardo combinator.

2.7.1 Structure of an OcamlP3| program

Due to this scoping rule, the general structure of an OcamlP3l program looks like the following:

(* (1) Functions defined using parfun *)
let f = parfun(skeleton expression)
let g = parfun(skeleton expression)

(* (2) code referencing these functions under abstractions *)

lethx= ... (f ...) ... (g ...)



Parallel Programming with the OcamlIP3l System

(* NO evaluation of code containing a parfun
is allowed outside pardo *)

(* (3) The pardo occurrence where parfun encapsulated
functions can be called. *)
pardo
(fun O ->
(* NO parfun combinators allowed here *)

(* code evaluating parfun defined functions *)
let a
let b

f ...
h ...

)

(* finalization of sequential code here *)

Skeleton Network

Letj=........... (CF)
Letk=...... (CF)
> Let f = parfun(............ I(SF)

—>  Letg=parfun(............ ) (SE)

Skeleton Network g

~ Letn=parfun(........... ) (SF) &N
Pardo
Skeleton Network n
Leta="f
Letb=g
Letc=ha
Letd=nb CF: Common Function
............ SF: Skeleton Function

Figure 1: parfun and pardo: the overall structure

At run time, in the sequential model, each generic copy just waits for instructions from the main node; the
main node first evaluates the arguments of the parfun combinators to build a representation of the needed
skeletons; then, upon encountering the pardo combinator, the main node initializes all the parallel computation
networks, specialising the generic copies (as described in details in [DDCLP98]), connects these networks to
the sequential interfaces defined in the parfun’s, and then runs the sequential code in its scope by applying
its function parameter to () :unit. The whole picture is illustrated in Figure [[l The skeleton networks are
initiated only once but could be invoked many times during the execution of pardo.



10 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

2.8 Load balancing: the colors

In the Ocaml|P3l system, the combinators expressions govern the shape of the virtual processor network that is
entirely designed during compilation. However, the mapping of these virtual nodes to physical processors is thus
delegated to the OcamlIP3l system. This automatic mapping is not realistic and we describe here a new feature,
the colors, that allow the programmer to annotate trees of combinators to specify virtual-to-physical mapping
requests that drive the system automatic strategy. Pushing the difficult part of the mapping specification to the
programmer’s knowledge and ability, this simple and practical idea gives surprisingly good results in practice.

Let’s consider as an example, the expression
farm (seq (fun x — x * x),16)
that corresponds to a network of one emitter node, one collector node, and 16 worker nodes which compute the
square function. Such a computational structure is clearly shown as the result of the execution of the graphical
semantics of the program. There are numerous ways of mapping a set of virtual nodes to a set of physical nodes.
Which is the best mapping and how to obtain it from the compiler is still unclear at this stage: for the time
being, the process is completely automatic and the programmer has no control over the strategy used by the
system to found a good mapping.

The simplest automatic solution is a round robin algorithm which maps a line of virtual nodes and a line of
physical nodes, one by one, until all virtual nodes are allocated. If the line of physical nodes is exhausted first,
allocation starts again from the beginning of the physical line as if the line were circular. Unfortunately, such
a solution doesn’t take into account the load balancing constraints: all the physical (resp. virtual) nodes are
considered equivalent in computing power and are used evenly. But this is not realistic, since the programmer
does know that some virtual nodes will have a huge amount of computation to perform, while some others will
not; the programmer also knows that those physical nodes (probably being different machines) also vary a lot
in their capability. So we need a programatic way to pair the virtual nodes with heavy computational work to
powerful physical nodes. We introduce the notion of color as a general method to specify the relative capability
ranks of both virtual and physical processors.

A color is an optional integer parameter that is added to OcamIP3I expressions in the source program and to
the execution command line of the compiled program. We use the regular Ocaml’s optional parameters syntax,
with keyword col, to specify the colors of a network of virtual nodes. For example, writing farm “col:k (£, n)
means that all virtual nodes inside this farm structure should be mapped to some physical nodes with a capability
ranking k. The scope of a color specification covers all the inner nodes of the structure it qualifies: unless
explicitely specified, the color of an inside expression is simply inherited from the outer layer (the outermost
layer has a default color value of 0 which means no special request).

For combinators farm, mapvector and reducevector, in addition to the color of the combinator itself, their
is an additional optional color parameter colv. A colv[ | specification is a color list (i.e. an int list) that
specifies the colors of the parallel worker structures that are arguments of the combinator. As an example, the
OcamlP3| expression

map “col:2 “colv:[ 3; 4; 5; 6 1 (seq £, 4)

is a mapvector skeleton expression, with emitter and collector nodes of rank 2, and four worker nodes (four
copies of seq f) whith respective ranks 3, 4, 5, and 6.

To carefully map virtual nodes to physical nodes, we also need a way to define the colors of physical nodes.
This information is specified on the command line when launching the program. One can write:

prog.par -p3lroot ipl:portl#colorl ip2:port2#color2 ... \
ip_i:port_i#fcolor_i ...

where ip_i:port_i#color_i indicates the ip address (or name), the port, and the color of the physical node i
participating to the computation. The port and color here are both optional. With no specified port, a default
p3lport is used; with no color specification, the default color 0 is assumed.

If the colors of all the virtual processors and all the physical processors have a one-to-one correspondance,
the mapping is easy. But such a perfect mapping does not exist in general: first of all, there is not always
equality between the amount of physical processors we have and the amount of virtual processors we need;
second, in some very complex OcamlIP3| expressions, it is complex and boring for the programmer to calculate
manually how many virtual nodes are needed for each color class.

So, we decided to use a simple but flexible mapping algorithm, based on the idea that what a color means
is not the exact capability required but the lowest capability acceptable. For example, a virtual node with color



Parallel Programming with the OcamlIP3l System 11

value 5 means a physical node of color 5 is needed, but if there is no physical node with value 5, and there exists
a physical node of color 6 free and available, why don’t we take it instead? In practice, we sort the virtual nodes
in decreasing order of their color values, to reflect their priority in choosing a physical node: virtual nodes with
bigger colors should have more privilege and choose their physical node before the nodes with smaller colors.
Then, for each virtual node, we lists all the physical nodes with a color greater than or equal to the virtual node
color. Among all those qualified ones, the algorithm finally associates the virtual node with the qualified node
which has the smallest work load (the one that has the least number of virtual nodes that have been assigned
to it).

This algorithm provides a mapping process with some degree of automatization and some degree of manual
tuning, but one has to keep in mind that the color designs a computational class, qualitatively, and is not an
exact quantitative estimation of the computational power of the machine, as the current version of OcamlP3I
does not provide yet the necessary infrastructure to perform an optimal mapping based on precise quantitative
estimations of the cost of each sequential function and the capabilities of the physical nodes, so that we cannot
guarantee our color-based mapping algorithm to be highly accurate or highly effective.

Still, the “color” approach is accurate and simple enough to be quite significant to the programmer: according
to the experiments we have conducted, it indeed achieved some satisfactory results in our test bed case (see
section H).

Figure @ summarizes the types of the combinators, exactly as they are currently available to the programmer
in the 1.9 version of OcamlP3l, including the optional color parameters.

type color = int

val seq :
?col:color ->
(unit -> ’a -> ’b) -> unit -> ’a stream -> ’b stream
val ( [ )
(unit -> ’a stream -> ’b stream) ->
(unit -> ’b stream -> ’c stream) -> unit -> ’a stream -> ’c stream
val loop :
?col:color ->
(’a -> bool) * (unit -> ’a stream -> ’a stream) ->
unit -> ’a stream -> ’a stream
val farm :
?col:color ->
?colv:color list ->
(unit -> ’b stream -> ’c stream) * int ->
unit -> ’b stream -> ’c stream
val mapvector :
?col: color ->
?colv:color list ->
(unit -> ’b stream -> ’c stream) * int ->
unit -> ’b array stream -> ’c array stream
val reducevector :
?col:color ->
?colv:color list ->
(unit -> (°b * ’b) stream -> ’b stream) * int ->
unit -> ’b array stream -> ’b stream
val parfun :
(unit -> unit -> ’a stream -> ’b stream) -> ’a stream -> ’b stream
val pardo : (unit -> ’a) -> ’a

Figure 2: The types of the OcamlIP3l skeleton combinators



12 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

3 Using the system

Compared with most parallel programming system, the coding, debugging and execution of OcamlP3l programs
are simpler and more elegant.

As mentioned in previous sections, OcamlP3I provides three strongly related semantics: sequential, parallel
and graphical semantics. In practice, the programmer can compile any OcamlP3l program into three different
but semantically related executable codes by specifying different compiling options to the ocamlp3lcc compiler
driver, without modifying her source code at all.

e With the option -seq, the source files is compiled into sequential code running on a single machine. By
invoking the command

ocamlp3lcc -seq sourcename.ml

we get an executable file called sourcename.seq that can be directly run on a single machine, tested and
debugged using the regular OCaml source level debugger as any other sequential program.

e With the -gra option, we get an executable file which draws the skeleton network specified by the program
expressions. Typing the command

ocamlp3lcc -gra sourcename.ml

we obtain sourcename.gra whose execution displays in a graphical window the parallel networks used by
the program.

e Finally, the parallel code version is obtained with the option -par. The compilation command is
ocamlp3lcc -par sourcename.ml

that produces sourcename.par, the SPMD generic executable that will be deployed on all the nodes
participating in the computation. One copy of this executable is launched on all the working processors,
and waits for configuration information which is sent by a designated root node, which will also run the
pardo encapsulated sequential code. The designated root node is just another copy of the same executable
that is simply run with the specific command line option -p3lroot. In addition the root node receives
a list of arguments that specifies all needed information about the nodes involved in the computational
network (their ip address or name, their port and color), together with some other optional running
parameters. In short, the command should spell like

sourcename.par -p3lroot nodes_info_list

An example has already been given in section [Z8 where we described how colors are assigned to the
physical nodes.

The implementation in these three semantics greatly facilitates the development of parallel applications.
The parallel implementation is the final goal of the development, but the programming, and especially the
debugging of the parallel application, is awfully complicated when compared to the same tasks in the sequential
world. This is why in the OcamlP3l phylosophy, development and debugging starts on a sequential prototype,
where the programmer can focus on the algorithmic aspects of the function to compute, and then moves on
to the parallel implementation, relying on the equivalence between sequential and parallel semantics. Indeed,
an Ocam|P3l program compiled and executed successfully in sequential mode should always get success in the
parallel mode.

Sequential development and parallel execution is one of the most distinguished and powerful features of
OcamlP3l, and this is why we plan in the future to prove formally the equivalence between these two semantics.
This task is far from easy, but the outcome is very well worth the effort, as we will then get for free the
equivalence between parallel and sequential semantics for all user programs.

Finally, the graphic semantics is also helpful, as it allows to get an intuitive view of the whole parallel
structure of the parallel program directly from the sources, and this information is precious to tune the mapping
from virtual to physical nodes, and to help in the design and analysis of the parallel application.



Parallel Programming with the OcamlIP3l System 13

Several tools are also provided to help programing in OcamIP3| system. Such as the ocamlp3lrun which is
developed for the automatic distribution of the parallel code copies to a set of machines, the ocamlp3lps to
print PIDs of all processes running OcamlP3| programs on the net, the ocamlp3lkiller to terminate all the
processes executing an OcamlP3l program, and many others that we do not detail here.

But the execution model is so simple, that the user can very often write a small script devoted to run the
program at hand on the specific hardware configuration available: as an example, we present in Figure B the
short shell script that we use to launch the computation detailed in the next section in parallel on 8 nodes of a
cluster, the first one being slower than the others.

#!/bin/sh

NODES="clus-101 clus-102 clus-103 clus-104 \
clus-105 clus-106 clus-107 clus-108"
PAR="./coupling_subdomains.par"

echo -n "Launching P3L amorphous nodes on the cluster:"
for NODE in $NODES; do
echo -n " $NODE"
ssh $NODE $PAR 1> log-$NODE 2> err-$NODE &
case $NODE in
clus-101) COLORED_NODES="$COLORED_NODES $NODE#1";;
*) COLORED_NODES="$COLORED_NODES $NODE#2";;
esac
done

echo "Starting computation with $COLORED_NODES..."
$PAR -p3lroot $COLORED_NODES 1> log-root 2> err-root

echo "Finished."

Figure 3: A simple script to handle program launch and termination.

4 A Scientific Computing application

We report now our experiment devoted to the implementation using the OcamlP3l environment of a non trivial
scientific computing application: the parallel simulation of flow in 3D porous media.

4.1 The coupling problem

Let us first present the main organization of the application to implement. The reader will find in appendix [Al
some hints about the domain decomposition method we used: the non-overlapping non-conforming domain
decomposition method based on Robin interface conditions. The interested reader may also refer to [AY97] and
[ATMNO2], where the method was first introduced and analyzed, or to [CMV 03| for further details about the
implementation aspects.

In the next section EETT], we briefly explain to a reader unfamiliar with finite element discretization, how
one can obtain a linear system such as ([ll whose solution is an approximate representation of the fields we are
looking for. In section EET.2, we also briefly describe the coupling between subdomains method. A zoology of
notations and operators is introduced that a hurried reader might ignore, jumping directly to the equation ()
at the end of section This equation () is the final linear system that we want to solve, where A is a
block sparse matrix and A is a block vector of the form A = (Ao, ..., \p—1) With A\; = (Aijy, ..., Aij,, )-

4.1.1 The problem of 3D flow simulation in porous media

The 3D flow simulation problem, amongst almost every problems from the physics, can be set as a Partial
Derivative Equation (PDE) problem in a domain 2 C R? with boundary conditions on ' = 9 for which we



14 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

Figure 4: The subdomain ; and its n; neighbors 2, , ji € N;. The approximation spaces A;;, and A;,; on each
side of the interface ¥;;, are different. For the sake of simplicity, the picture has been drawn in two dimensions.

have to search for functions depending on the coordinate variables (space and/or time), here a pressure field
and a velocity field depending on the 3D space coordinates, see appendix [Al

To numerically solve such a PDE problem on a computer, we have to choose approximation spaces in which
we search for discrete approximations of the unknown functions. These finite dimension spaces are built from
a 3D mesh associated with the domain 2 and are the so-called Finite Element spaces. After discretization, we
obtain a linear system of the form
(1) Lv =y,

where L is a—generally huge—sparse matrix, the unknown v is a vector collecting the degrees of freedom for
the approximation of the pressure and the velocity and the right-hand side g is another vector collecting the
known data.

Common algorithms to solve the linear system ([l) have a complexity of O(N?) and memory requirements
of O(N#) where N is the dimension of the unknown v, see [Dem97|. Thus, it is interesting to cut the original
domain into pieces, and solve—coupled—similar subproblems of smaller size. Therefore, the domain decompo-
sition method consists in working with an auxiliary unknown set only at the interfaces between the subdomains.
Of course, solving the subproblems in parallel brings another range of gain.

4.1.2 The coupling technique

We suppose now that the domain  is decomposed into n non-overlapping subdomains ;, with i € I,, =
{0,1,...,n — 1}, and we denote by I'; = 9Q; N T" the—external—part of the boundary of 2; in common with
the boundary of Q. Let X; = 0Q;\T" be the internal boundary of Q; and let ¥ = Uieln Y, be the structure of
the decomposition. Then, we can define the interface between subdomains €2; and Q; as X;; = 3 = 5; N E;.
When 3;; is neither empty nor reduced to a point or a line, the two subdomains are called neighbors. We
denote the number of neighbors of subdomain Q; by n; and the set of their indices by N; = {j1,72,- -, Jn; }-
See Figure H for an illustration. The set of all couples of neighbors, called connectivity table, is denoted by
N ={(i,7)/i € L., j € N;}; it is naturally ordered by the lexicographic order on N2. Let s be the permutation
involution of N defined by

(2) s:(i,j) e N — (j,1) e N.

Given a 3D mesh associated with 2;, we can build 2D meshes associated with all the interfaces of the internal
boundary ¥; simply by collecting the trace of the 3D mesh on the ¥;;’s. And, for each interface ¥;; = X;;, we
can use the two 2D meshes on each side to build two 2D approximation spaces denoted by A;; and Aj;. But,
the two 3D meshes associated with two neighboring subdomains may have been built separately, thus they can
be non matching at the interface and the two 2D meshes on each side may be different. Hence, we generally



Parallel Programming with the OcamlIP3l System 15

have A;; # Aj; (see Figure H) and then, it is useful to define the projection P;_.; from A,;; onto Aj; = A;; such
that
3) VAij € Nij Vi € Nij, (A — Pisj i, fig) iy = 0,

where (A, u);; = fEij A(z)u(z) dz is the L? dot product between functions defined on ¥;;. We setfl:

A= P Ay A=Pr= P Ay

(4) ~ JEN ~ ~ i€lp, ~ (i,5)EN
L @A - @an A-Dh- B A
JEN JEN i€l, (4,7)€s(N)

The vectors \;; of A;; are called interface values. Similarly, the \;’s (resp. \;’s) are called inner (resp. outer)
internal boundary values and the \’s (resp. :\’s) inner (resp. outer) structure values. By extension, we still
denote by s the permutation involution operator mapping A onto A.

Let R; (resp. RZ) be the restriction operator from A onto A; (resp. from A onto /~\Z—). Their transposed are
the reconstruction operators, thus

(5) EZ ()\O""’Anil) €~A — )\ieAi~
RZT N EAN — (0,...,/\i,...,0)€A,

let P; be the projection operator from A; onto A; define from the P;_,;’s above by

(6) Pt (Nijys - Aign,) € A — (Pieji Xigas - - Pij Nij ) € Aa
Let S,, be the Robin-to-Robin interface operator defined by, see appendix [A]

(7) Sgi 1 i € Ni > pi = pi(v) € Ay,

where u; depends explicitly on the solution v; of the inner linear system,

(8) Livi = (gi, Ai)-

Matrix L; and right-hand side g; are the similar counterparts of L and ¢ appearing in ([I) but set on the
subdomain (2.
We also define the global operators

9) P=> RI'PR:A— A and S,=) RIS, Ri:A— A
€1y, i€1ly

Then, the domain decomposition method amounts to replace the linear system (), set in the 3D domain €2,
by an—equivalent—Ilinear system, set on all the 2D interfaces of the decomposition of 2 into subdomains, i.e.
on the structure X, that we call the outer linear system, see appendix[Al Thus, we search now for a vector A € A
solving
(10) AN=0

where the nonsymmetric matrix A and the right-hand side b are given by

(11) A=1d—sPS, and b= sPS,0.

4Take care to the different ordering of the—same—components in A and A. For example, with three subdomains neighboring
each other, we simply have

A= ((Mo1, Aoz2)s (A10, A12), (A20,A21)) and  s(A) = A = ((A10, A20), (Mo1, A21), (Moz, A12))-



16 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

4.1.3 Codes to couple

To implement the coupling, we have access to three C++ codes.

The build_interface_meshes code inputs the name of the file describing the 3D mesh associated with a subdo-
main, say of number i. It reads this file from the disk, computes all the 2D meshes for the approximation
spaces A;j, j € N; and then writes the files describing these 2D meshes on the disk. It outputs nothing.
It needs no I/0 redirections.

Parallel execution for all subdomains may be balanced according to the size of the 3D meshes, e.g. with
the color feature of section

The build _projection _matrix code inputs a couple of names of the two files describing the two 2D meshes on
the same interface, say of numbers i and j. It reads these files from the disk, computes and finally outputs
the corresponding projection matrix P;_,;.
It needs redirection of its standard output.
Parallel execution for all couples of neighboring subdomains may be balanced according to the product of
the size of the 2D meshes on both sides of all interfaces, with the color feature of section 28

The solve_on_a_subdomain code inputs the name of the file describing the 3D mesh associated with a sub-
domain, say of number 7. It reads this file from the disk and enters an infinite loop waiting for a keyword.

When given the keyword "init", it computes the inverse of matrix LE, then computes and out-
puts S,,0; = pi(L;(g:,0;)) needed for the computation of the right-hand side b.

When given the keyword "loop", it inputs )\;, then computes and outputs So,\i = pi(L;(0;, \;))
needed for the computation of the matrix-vector product.

When given the keyword "final", it inputs A7,
then computes and writes on the disk v} = L; '(gi, \}).

It needs redirection of both its standard input and standard output.

Moreover, the "init" phase is very costly and must be performed once and for all. Therefore, this code
has to be locally initialized, with the skeleton generator feature of section 251l and has also to have the
ability to be recalled, by having its I/O channels stored.

Parallel execution for all subdomains has to be balanced according to the size of the 3D meshes, again
with the color feature of section Z8 as it is important to allow a fine tuning of the memory swapping
difficulties, see section

Since the matrix A of the outer linear system ([0 is nonsymmetric, it is advisable to accelerate the con-
vergence with a nonsymmetric Krylov method, e.g. Bi-CGStab [van92] or GMRes [SS86]. Such an iterative
algorithm, here Bi-CGStab, only needs the axpy and dot routined from the BLASBasic Linear Algebra,
Subprograms—Ilibrary and a—preferably matrix-free—matrix-vector product routine, denoted here aax, that
computes the action of matrix A on any vector \ (and, of course, the right-hand side b and an initial guess \°).

Rather than coding the whole Bi-CGStab algorithm with OcamlIP3l skeletons, it is very interesting to define
the sole aax routine as a stream processing network that can be used as an ordinary function, i.e. with the
parfun skeleton, see section 28l Furthermore, we will keep the ability to change the algorithm, e.g. for GMRes,
without recoding the aax routine.

4.1.4 The coupling algorithm
Then, the coupling algorithm is the following.
Initialization

e build in parallel the interface meshes for all subdomains.
e compute in parallel the projection matrices for all entries in the connectivity table.

e compute in parallel the inverse L; L of the matrices of the inner systems for all subdomains.

5 Actually, only a sparse LU factorization is performed.
Saxpy computes the vector a.x + y from the scalar a and the vectors = and y and dot computes the—scalar—dot product (z,y)
from the vectors x and y.



Parallel Programming with the OcamlIP3l System 17

define aax that applies in parallel matrix A = Id — sP.S; to any vector \.

compute in parallel the right-hand side b = sP.S,0.
choose \? = 0.

e choose an algorithm to solve the outer system, e.g. Bi-CGStab.

Iteration

e run the algorithm with the parallel matrix-vector product aax, the right-hand side b and the initial
guess \.

e call the solution \*.
Finalization

e solve in parallel the inner systems associated with S;A* and store the v}’s for all subdomains.

4.2 The OcamlP3l implementation

The Ddec module is dedicated to domain decomposition, its interface is given in the appendix [Bl In particular,
it delivers types for the unknown vector A that ease the implementation of the restriction and reconstruction
operators R; and RZ—T, and the routines axpy and dot. Similar types are designed for the projection matrix P
and a function to apply this matrix is provided.

The coordination code itself is so simple that it can be presented in extenso.

(* we have emphasized the OcamlP3l skeletons *)
let spawn_it command cin cout =

match !cin, !cout with

| Some ic, Some oc -> ic, oc

5 | _ -> Printf.printf "Calling J%s\n" command;
let ic, oc = Unix.open_process command in
cin := Some ic; cout := Some oc;
ic, oc;;

10 let encapsulate_mapvector colv prog n =

let body _ = mapvector “colv:colv (seq prog, m) in
let network = parfun body in
(fun v ->
let s = network (P3lstream.of_list [v]) in
15 List.hd (P3lstream.to_list s));;

let build_all_interface_meshes =
let colv = Ddec.colv_sorting_subdomains in

let prog =
20 (fun _ -> fun i ->
let file = Ddec.filename_of_3D_mesh_number i in
let command = "build_interface_meshes "“file in

Sys.command command) in
encapsulate_mapvector colv prog Ddec.number_of_processors;;
25
let build_all_projection_matrices =
let colv = Ddec.colv_sorting_connectivity_table in
let prog
(fun _ -> fun i -> fun j ->
30 let file_i = Ddec.filename_of_2D_mesh_number i j
and file_j = Ddec.filename_of_2D_mesh_number j i in
let command =
"build_projection_matrix "~“file_i~" "~“file_j in
let ic = Unix.open_process_in command in



18 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

35 read_projection_matrix ic) in
encapsulate_mapvector colv prog Ddec.number_of_processors;;

let solve_on_all_subdomains =
let colv = Ddec.colv_sorting_subdomains in
40 let prog _ =
let cin = ref None and cout = ref None in
(fun (i, tagged_lambda_i) ->
let file_i = Ddec.filename_of_3D_mesh_number i in
let command = "solve_on_a_subdomain "~“file_i in
45 let ic, oc = spawn_it command cin cout in
Ddec.print_tagged_internal_boundary_values
oc tagged_lambda_i;
flush oc;
let mu_i = Ddec.read_internal_boundary_values ic in
50 Ddec.iter_vector_of mu_i) in
encapsulate_mapvector colv prog Ddec.number_of_processors;;

pardo (fun () ->
Printf.printf "Beginning of 3D coupling\n";
55  (* Initialization *)
let n = Ddec.number_of_subdomains in
let v = Array.init n (fun i -> i) in
build_all_interface_meshes v;
let projection_of =
60 let projection_matrices =
let v = Array.of_list Ddec.connectivity_table in
build_all_projection_matrices v in
Ddec.projection_with projection_matrices in
let f_of =
65 (fun v ->
let mu = solve_on_all_subdomains v in
let mu_tilde = projection_of mu in
permutation_of mu_tilde) in
let aax =
70 (fun lambda ->
let v = Ddec.iter_vector_of lambda in
let mu_double_tilde = f_of v in
(Ddec.axpy (-.1.) mu_double_tilde lambda)) in
let b =
75 let v = Ddec.init_vector_of_size n in
f_of v in
let lambda0 = Ddec.zero_structure_values n in
let algorithm = Bicgstab.algorithm Ddec.axpy Ddec.dot in
(*x Iteration *)
80 let lambda_star = algorithm aax b lambda0 in
(*x Finalization *)
let v = Ddec.final_vector_of lambda_star in
solve_on_all_subdomains v;
Printf.printf "Ending of 3D coupling\n"
85 );;

We can get automatically the graphics describing the parallel structure from the graphics semantics (Fig-
ure H), and immediately see the three independent parallel computation networks that the system is using. One
of them is heavily used in the code of the Bi-CGStab solver, which is standard sequential code, not shown here,
calling the parallel network as a function along its iterations.



Parallel Programming with the OcamlIP3l System 19

Figure 5: The parallel structure of coupling.ml. Configuration with 8 subdomains and 24 interfaces. See the
decomposition in Figure Bl

The function spawn_it (lines 2-8) has type string -> in_channel option ref -> out_channel option
ref -> in_channel * out_channel. It allows to spawn processes and to collect once the channels connected
to both their standard input and standard output, and still keeping the ability to feed and listen to them again
later.

The function encapsulate_mapvector (lines 10-15) has type
int array -> (unit -> ’a -> ’b) -> int -> ’a array -> ’b array. It returns a stream processing net-
work that encapsulates a mapvector skeleton inside a parfun skeleton. This allows to compute in parallel a
function over all the components of a vector anywhere in the sequential code, i.e. inside any Ocaml function.

The functions build_all_interface_meshes (lines 17-24),
build_all_projection_matrices (lines 26-36) and solve_on_all_subdomains (lines 38-51) correspond to
the three codes to couple of section LT3 They are all defined through the encapsulate_mapvector network
factory, with the color feature to balance their loads, but using ad’hoc techniques to connect —or not— their
standard 1/O’s. Only the third one uses the scheme of section B for local initializationd.

The algorithm is implemented inside the pardo scope delimiter (lines 53-85). It uses the three previously
defined stream processing networks, the third one been repeatedly employed. The function f_of (lines 63—67)
defines the function f = sPS, from equation (0) for which we are searching the fixed point. It is used in both
the bodies of the matrix-vector product aax (lines 68-72) and of the right-hand side b (lines 73-75).

5 Evaluation of the results

The domain decomposition coupling using OcamlP3| was tested on academic problems. The goal was to show
the efficiency both in terms of development delays and in terms of CPU time needed to solve a model problem.

About the first issue, what certainly remains the climax of this collaboration was the first parallel run on our
cluster. The very first time the code ran correctly in the sequential mode on our development Intel/PC station

"Here an _ generalizes the unit: () for further developments of OcamlIP3l.



20 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

under Linux, we decided to test immediately on the newly arrived cluster of Intel/PC nodes also under Linux:
we recompiled in the parallel mode with the -par option on the station, we scp’ed on the cluster all executable
files (the OcamlP3l code and the three codes to couple) and data files and ran the code. And it worked! Without
any parallel debugging needs, and this maybe anecdotal, but also without the bother to install anything specific
on the cluster, neither OcamIP3l nor Ocaml.

We solve the problem ([[Z) in the domain Q = [0,1] x [0,2] x [0,5], with a constant scalar permeability
(K =1). We choose a right-hand side (¢,P) = (¢, 0), such that the solution pressure is the regular function p* =
(1 —2)y(2 —y)z(5 — z). An example of a numerical solution can be seen in Figure

Figure 6: Pressure field for a computation over 8 non matching subdomains. For picture purposes, we present
a split view of 5 subdomains. Note that the meshes do not match at the interfaces. Large (resp. small) values
of the pressure are represented in red (resp. blue).

The problem ([[2)) was discretized with first order Raviart and Thomas Mixed Hybrid Finite Elements,
see [BE9I] or [CROI]. The subproblems ([I8) in each subdomain are solved with the sparse direct LU solver
provided in the UMFPack V4.1 library, see [Dav03]. The meshes used in the tests consisted of regular hexahedra.
In the domain decomposition method, the Robin coeflicient «;;’s are all set to 5 for all the interfaces. The
convergence of the Bi-CGStab algorithm is reached when the norm of the error is reduced by a factor 101°.

All the tests were run on the INRIA cluster composed of 16 Xeon bi-processors with 2 GBytes of memory
and more than 2 GHz of frequency. The cluster is not fully homogeneous: 13 nodes have a frequency of 2.8
GHz and 3 nodes have a slower frequency of 2.0 GHz or 2.2 GHz. The communication between the nodes is
made via a Gigabit dedicated network.

We present the extensibility results in two cases: when the interface meshes match, see Table [l and when
the interface meshes do not match, see Table Bl The principle of this extensibility test is as follows: one keeps
a constant load per processor and then increases the number of processors. The goal is to keep as much as
possible a constant computation time, although the overall task has increased and communications are required
to couple the global problem. In the context of domain decomposition, one processor is associated with one
subdomain and the global domain is divided into 1, then into 2, 4, ...subdomains.

Various manners of decomposing the global domain 2 in a structured way are explored, the number of
subdomains along the Oz (resp. Oy, Oz) axis is denoted by N, (resp. Ny, N.). Each subdomain possesses
approximately 50 000 cells. The total load for, say, 16 subdomains is approximately 16 times greater than for 1
subdomain, but as it is run over 16 processors, one could expect that the CPU time remains constant, or does
not increase too much.

Several remarks can be made.

e An overhead always exists when going from one subdomain to two subdomains. This is normal as no
Bi-CGStab iteration, nor projection, nor communication is necessary when there is only one subdomain.



Parallel Programming with the OcamlIP3l System 21

e When the number of subdomains increases, the CPU time is approximately constant and the number of
Bi-CGStab iterations increases slowly. It depends on the test case: when the interface meshes match, the
projection phase is much faster and cheaper in terms of memory requirements than when the interface
meshes do not match; this explains why the number of Bi-CGStab iterations and the CPU is greater in the
latter case. This also explains why the way the domain is divided into subdomains plays a more important
role in the non-matching case: the more interfaces, the more required projections, and the more expensive
each iteration.

e The "init" phase, during which the factorization of the operators L; is performed, see section EET3 is
the costliest part of the global computation in terms of CPU and of memory: for a 51 200 cells subdomain,
it requires approximately 1.4 GBytes of memory, i.e. 69% of the total amount of the memory available
on a node. In the matching test case, no swap was necessary, and the slowest processor was delaying all
the others.

But in the non-matching test case, the subdomains were not identical: some had about 40000 cells and
some others 60 000 cells. The largest subdomains needed to swap during the "init" phase. In this case, it
became crucial to balance the load and the computer resources. The colors described in section were
useful to obtain such a balance: slow processors had to treat the smallest subdomains, while the other
processors took care of the rest. A comparison between tests using the colors and a series of tests without
colors, and therefore an arbitrary—a, priori not the worst—load distribution can be seen in Table 2l One
can gain up to 25% or even 40% of the total elapsed time.

e There exists a bottleneck in communication that is due to both the way the algorithm is implemented and
the way the communications are treated by OcamIP3l. All the communications between the subdomains
are centralized, and therefore, when the number of subdomains increases, the large amount of communi-
cation treated by one process may cause an important overhead at each iteration. In these experiments,
this drawback did not seem to be the crucial issue. But in larger tests, one may need to override this
bottleneck problem. This is why a structure to allow communication from process to process is one of the
developments planned in OcamlP3l.

(Ng,Ny,N.) | # SD | CPU | # Iter | total # cells | T,,/T}
1x1x1 1 [1720"] 0 51200 1
1x1x2 2 [2121"] 6 102 400 1.23
1x1x4 4 [2151"] 18 204 800 1.26
1x1x8 8 [2020"] 18 409 600 1.17
Ix1x16 | 16 [2147"] 22 819200 1.26
1x2x2 4 [1759"] 8 204800 1.04
1x2x4 8 [2020"] 8 409 600 117
1x2x8 16 [21'59” | 21 819200 1.27

[ 1x4x4 [ 16 [2241"] 23 | 819200 | 1.31 |
2x2x2 8 [2108"] 8 409 600 1.22
2x2x4 16 [2303"] 20 819200 1.33

Table 1: Extensibility test for the conforming case. All the subdomains are identical. CPU time as a function
of the number of subdomains (=number of processors used). CPU times are given in minutes and seconds. The
configuration of the decomposition into subdomains, the number of Bi-CGStab iterations, the total number of
cells in the global domain and the ratio between the CPU time for n subdomains and 1 subdomain are also
given.

6 Conclusions and Future work

This approach was profitable and fruitful for both solving a numerical computation problem (namely a code
coupling problem) and to benefit from the INRIA cluster powerful computation capabilities. The ability to
write the numerical code in a purely sequential framework, then to quickly test and debug it while still running



22 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

(Ng,Ny,N.) | # SD | CPU No Col | CPU Col | # Iter | total # cells
1x1x1 1 17'20” 17'20” 0 51200
1x1x2 2 44'29" 26'25" 13 100 604
1x1x4 4 30’50 2512 16 208 046
1x1x8 8 32'36" 25'03" 18 386 092
1x1x16 16 41'08" 29'13" 23 804 654
1x2x2 4 39’33 29'14" 19 201 878
1x2x4 8 50"53" 27'57" 28 398916
1x2x8 16 44’28 34'13" 32 816904

[ 1x4x4 [ 16 | 3705” | 31'28” | 26 | 785496 |
2x2x%x2 8 37'37" 33'25" 30 421691
2x2x4 16 45'05" 31'00” 31 812194

Table 2: Extensibility test for the non conforming case. The subdomains are all different. CPU time as a
function of the number of subdomains (=number of processors used). CPU times are given in minutes and
seconds in two configurations: in the “No Col” column, the color option was not used, whereas in the “Col”
column, a coloration of tasks and physical nodes was used to balance the load.

on small amount of data was just mandatory to get the program correct in the first place. The additional benefit
of running the graphical semantics was a plus to understand and explain how the computation was proceding
to get the final result.

Finally the huge boost obtained by parallelizing the program via a mere recompilation was just magic: the
parallel executable ran just correctly right out of the box the first time we had access to the cluster!

On the research and social point of view, the collaboration of our two teams was just examplary: we needed
not less than 6 months to start grasping one each other’s ideas and problems, but since then the collaboration
was very fruitful, producing new results on each sides. Numerical researchers succeeded at resolving a complex
and not yet well understood problem using a functional programming approach that they started to like very
much, while the language specialists added new interesting features to OcamlP3| to answer in a clean way
to effective practical computational problems (such as the load-balancing specification using colors, the precise
study of partial evaluation for initialisation of nodes, and the new parfun skeleton to handle lifting of sequential
code).

We all appreciated very much the nice and clean theoretical fundation
of OcamlP3l and found it invaluable to be able to give a precise semantics to the parallel programs: parallel
and sequential versions do have the same semantics.

Our plan for future work is to proceed on the practical and theoretical levels as follows:

e test the coupling between different codes treating different physics,

e enrich the offer of OcamIP3l by providing mapvector and reducevector skeletons adapted to specific local
communications to avoid bottleneck problems,

e enrich also the semantics of mapvector to recover the full power of the original map combinator, particularly
relevant to the huge matrices computation that are typical of the numerical problems we have to solve,

e set up a general library or programming plateform to solve numerical code-coupling,

e prove the complete adequation between the sequential and parallel semantics of OcamIP3| programs.

References

[AJMNO2] Y. Achdou, C. Japhet, Y. Maday, and F. Nataf. A new cement to glue non-conforming grids with
Robin interface conditions: the finite volume case. Numer. Math., 92(4):593-620, 2002.

[AY97] Todd Arbogast and Ivan Yotov. A non-mortar mixed finite element method for elliptic problems
on non-matching multiblock grids. Comput. Methods Appl. Mech. Engrg., 149(1-4):255-265, 1997.
Symposium on Advances in Computational Mechanics, Vol. 1 (Austin, TX, 1997).



Parallel Programming with the OcamlIP3l System 23

[BDO"95] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Structured High
level programming language and its structured support. Concurrency Practice and Ezperience,
7(3):225-255, May 1995.

[BF91] F. Brezzi and M. Fortin. Mized and Hybrid Finite Element Methods. Springer-Verlag, Berlin, 1991.

[Bir87] R. S. Bird. An introduction to the Theory of Lists. In Manfred Broy, editor, Logic of programming
and calculi of discrete design. NATO ASI Series, 1987. International Summer School directed by
F. L. Bauer, M. Broy, E. W. Dijkstra and C. A. R. Hoare.

[CMVT103] F. Clément, V. Martin, A. Vodicka, R. Di Cosmo, and P. Weis. Domain decomposition with local
refinement for flow simulation around a nuclear waste disposal: direct computation and simulation
using code coupling with ocamlp3l. In Proc. of Internat. Conf. on Supercomputing in Nuclear
Applications, 2003.

[Col89] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations. Research
Monographs in Parallel and Distributed Computing. Pitman, 1989.

[CRO1] G. Chavent and J. Roberts. A unified physical presentation of mixed, mixed-hybrid finite elements
and standard finite difference approximations for the determination of velocities in waterflow prob-
lems. Advances in Water Ressources, 14(6):329-348, 1991.

[Dav03] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method.
Technical Report TR-03-006, U. of Florida, 2003. Submitted to ACM Trans. Math.

[DDCLP98] Marco Danelutto, Roberto Di Cosmo, Xavier Leroy, and Susanna Pelagatti. Parallel functional
programming with skeletons: the ocamlp3l experiment. The ML Workshop, 1998.

[Dem97] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[DFHT93] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, and Q. Wu. Parallel
Programming Using Skeleton Functions. In PARLE’93, pages 146-160. Springer, 1993. LNCS No.
694.

[DGTY95] J. Darlington, Y. Guo, H. W. To, and J. Yang. Parallel Skeletons for Structured Composition.
In Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM
Press, July 1995.

[DMO*92] M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A methodology for the
development and support of massively parallel programs. Future Generation Computer Systems,
8(1-3):205-220, July 1992.

[Pel93] S. Pelagatti. A methodology for the development and the support of massively parallel programs.
Technical Report TD-11/93, Dept. of Computer Science — Pisa, 1993. PhD Thesis.

[Pel98] S. Pelagatti. Structured development of parallel programs. Taylor&Francis, London, 1998.

[SS86] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving non-

symmetric linear systems. SIAM J. Scient. Statist. Comput., 7(3):856-869, 1986.

[van92] H. A. van der Vorst. BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the
resolution of nonsymmetric linear systems. SIAM J. Scient. Statist. Comput., 13(2):631-644, 1992.

A The domain decomposition method

We set first the 3D flow simulation problem in the domain €2, then we consider the non-overlapping domain
decomposition method based on Robin interface conditions described throughout section EZIl We recall that
one should refer to [AY97], [A.IMNOZ| to have a full overview of the method. We only give here the main steps,
more details and further references can also be found in [CMVT03].

In particular, for the sake of simplicity, everything is set in the continuous case; so, here, the A;;’s are infinite
dimensional spaces and the P;_,;’s are equal to the identity operator. Then, performing discretization roughly
amounts to replace functions by vectors, operators by matrices and problems as ([2) by linear systems.



24 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

A.1 The continuous 3D flow simulation problem

Let Q be a convex domain in R3, and let I' = 94 be its boundary. We suppose that the flow in Q is governed by
a conservation equation together with Darcy’s law relating the gradient of the pressure p to the Darcy velocity

—

u,

divi = ¢ in
(12) i = —K/(gradp) in O
p =D on I,

where K is the permeability tensor in the domain, ¢ is a source term and p the given pressure on the
boundary IH. Given K, ¢ and P, we solve (@) for a scalar function p(z,y,z) and a vector function U =
(12 (2,9, ),y (2,9, 2), 02 (2, 2))

In section Bl we summarize in () the unknowns by v = (p, i), the—known—right-hand sides by ¢ = (¢, p)
and the partial derivative operator by the matrix L.

A.2 The multiblock problems

We denote by p;, u;, K; and ¢; the restrictions of p, u, K and ¢ to €;, and by p, the restriction of p to I';. We
can show that problem ([IZ) in 2 is equivalent to the following problems in the subdomains €2;,

div ﬁi = q; in Qi
(13) Vi€ I, i = -K;(gradp;) in Q;
i = D on [';,

together with the transmission conditions,

(14) v‘] 6./\/;', { . pi = p_]a on El]

u; - ﬁi = —uj- ﬁj on Eij,

where 7; denotes the external unit normal to ;. The two equations in ([4]) express the continuity of the pressure
and of the normal Darcy velocity across each interface 3;; between two neighboring subdomains 2; and ;.
We can also show that, for any «;;, a;; > 0, the system (I4) is equivalent to the Robin transmission conditions,

(15) Vi eN; —U; Vi tagpi = U Ui+ agp; on X
v —ﬁj . Ijj “+ ajipj = ﬁz . 171 —+ ajipi on le

Finally, the Dirichlet problem ([2) is equivalent to the following Robin problems,

divi; = g in Q;
(16) Viel, i, = -K;(gradp;) in Q;
b pi = p; on I

—Ui Ui+ = Uy U+ oigp; on ; (Vj € Ni).

Of course, all these subproblems are coupled through the Robin conditions, and using a direct method that
builds the inverse of the complete matrix would be as costly as solving the initial problem ([[Z). Hence, we need
to consider an iterative method.

A.3 The fixed point formulation

The latter problem () can be formulated as a fixed point problem, i.e. for all i € I,,, choose initial guesses p?
and 1), then iterate for n > 0,

R | .
div u;”r = q in Q;
Sn+1 ) - n+1 : )
(17) u; = —K;(gradp]™") in Q;
n+1 =
D; = P onI';
n+l  — +1 = - .
;" Uit agpl T = U U+ augpl on X;; (Vj € Nj).
81: = _ Oug Ouy Ou, . - . . T - __ (Op Op Op\T :
) k) k) )
divi = 5= + ¥ + 5= is the divergence of the—column—vector field G = (uz,uy,uz)" and gradp = (55 oy 5-)" is the

gradient of the scalar field p.



Parallel Programming with the OcamlIP3l System 25

A.4 The Robin-to-Robin interface operator

At this stage, it is natural to introduce the interface operators Sy,, for ¢ € I,,, that input their own Robin con-
ditions on all their interfaces and then output that for their neighborﬂ. They are defined in each subdomain €;
by

(18) Sql : ()‘ijw . 7)‘ijni) e\ — (,uijl, S ,,uijni) eA;

such that Vj € N;, i = U} -0 + aj;p}

where p} and U} are solutions to

(19) u; = __Ki (grad p;) in €
Pi = D onI';
—U; - Ui +aiipi = A on X;; (Vj € M)
Again, in section Bl we summarize in (§) the unknowns by v; = (p;,U;), the—known—right-hand sides

by g; = (¢:, ;) and the partial derivative operator by the matrix L;.
Then, using the restriction/reconstruction and projection operators defined in section by (&), (B) and (@),
the fixed point problem ([I[7) consists in solving

(20) A= sPS\ = f(N).

A.5 The nonsymmetric linear system formulation

Since the “operator S” is bilinear, namely S;A = SoA + 5,0, the fixed point problem 1) is clearly equivalent
to solve the linear system ([0) defined by () in section Bl The S,,’s matrices are symmetric, but because of
the projections, the matrix A is nonsymmetric.

Of course, at the end, when the solution A* of the system is reached, we have to solve once more the
inner subproblems ([J) associated with S;A* to obtain the sought pressures p; and Darcy velocities 4, in each
subdomain.

B The interface of the Ddec module

(* Module Ddec for 3D domain decomposition *)

val filename_of_3D_mesh_number : int -> string
val filename_of_2D_mesh_number : int -> int -> string

val number_of_subdomains : int
val number_of_processors : int

type interface
type connectivity_table = interface list
val connectivity_table : connectivity_table

val colv_sorting_subdomains : int array
val colv_sorting_connectivity_table : int array

type interface_values
and internal_boundary_values = interface_values array
and tagged_internal_boundary_values =
| Init
| Loop of internal_boundary_values
| Final of internal_boundary_values
and structure_values = internal_boundary_values array

9Notice that on the two sides of an interface, the sign of the external normal changes.



26 Clément, Di Cosmo, Li, Martin, Vodicka € Weis

val zero_structure_values : int -> structure_values

val read_internal_boundary_values
in_channel -> internal_boundary_values
val print_internal_boundary_values
out_channel -> internal_boundary_values -> unit
val print_tagged_internal_boundary_values
out_channel -> tagged_internal_boundary_values -> unit

val init_vector_of_size
int -> int * tagged_internal_boundary_values array
val loop_vector_of : structure_values
-> int * tagged_internal_boundary_values array
val final_vector_of : structure_values
-> int * tagged_internal_boundary_values array

val axpy : float -> structure_values -> structure_values
-> structure_values
val dot : structure_values -> structure_values -> float

val permutation_of : structure_values -> structure_values

type projection_matrix
type projection_matrices = projection_matrix array array

val projection_with :
projection_matrices -> structure_values -> structure_values



/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



	Introduction and Overview
	The OcamlP3l system
	Overview of the system
	Three strongly related semantics
	Skeletons as stream processors
	The skeleton combinators in OcamlP3l
	Skeleton syntax, semantics, and types
	Combinators as skeleton generators
	Typing and semantics of skeletons

	The parfun construction
	The pardo parallel scope delimiter
	Structure of an OcamlP3l program 

	Load balancing: the colors

	Using the system
	A Scientific Computing application
	The coupling problem
	The problem of 3D flow simulation in porous media
	The coupling technique
	Codes to couple
	The coupling algorithm

	The OcamlP3l implementation

	Evaluation of the results
	Conclusions and Future work
	The domain decomposition method
	The continuous 3D flow simulation problem
	The multiblock problems
	The fixed point formulation
	The Robin-to-Robin interface operator
	The nonsymmetric linear system formulation

	The interface of the Ddec module

