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Problémes d’équivalence polyndémiale
et applications aux cryptosystémes multivariés

Résumé : Le probléme de l'isomorphisme de polynémes comme base & la construction
de cryptosystémes a clef publique (en particulier de schémas d’authentification et de signa-
ture) a été proposé par J. Patarin lors de la conférence Eurocrypt’96 [P]. Ici, nous étudions
une variante de ce probléme, connue sous le nom d’isomorphismes de polynémes & un se-
cret, et nous proposons de nouveaux algorithmes pour le résoudre, qui améliorent tous les
algorithmes antérieurs. Ceux-ci nous permettent de prouver que, lorsque le nombre de poly-
nomes (u) est proche du nombre de variables (n), les instances considérées dans [P] et [P1]
peuvent étre cassées. Il est & préciser que le cas oil n — u est petit est le plus intéressant
pour des applications cryptographiques. En outre, nous montrons qu’une classe importante
d’instances présumées difficiles dans [P] et [P1] peut étre résolue en temps polynomial. Nous
terminons par des résultats numeériques illustrant les performances de nos algorithmes.

Mots-clés : Equations polynémiales multivariées, Isomorphismes de polynémes, Bases de
Grobner.



Polynomial equivalence problems and applications to multivariate cryptosystems 3

1 Introduction

Alternatively to public key cryptosystems based on integer factorization and discrete log
problems, there exists cryptographic schemes whose security relies on the difficulty of finding
a common zero of a set of non linear polynomials in several variables. This problem is known
to be solvable by Grdbner bases calculations!. Up to now, apart from the cryptanalysis of
HFE by J.C Faugére et al. [FJ], this tool has not been used to attack these systems. The
main reason is probably that there was no really efficient method to compute them. These
past years, significant progress has been made [Fa99],[Fa02], which carried out to the design
of a new efficient software to compute Grébner bases: fgb?.

In this paper, we are interested in variants of the Isomorphism of Polynomials (IP)
problem - as introduced by J. Patarin in [P]. Our idea is to link these variants to the above
problem of finding zeroes of a system of polynomials. Our approach is not only of theoretical
interest but also gives in some cases efficient methods to solve these IP variants, since we
are able to solve instances that are used in cryptographic applications. The variants we
consider are the Isomorphism of Polynomials with one secret (IP1S) problem, and its linear
counterpart. IP1S can be outlined as follows: given two sets of multivariate polynomials A =

{al(xla" ) 71'")7' o Jau(wla" ) an)} and B = {bl(xla" ) awn)a' o ;bu(xla" ) an)} over a
finite field I, , find - if any - an invertible matrix S and a vector T such that b;(z1,--- ,2,) =
ai((x1, - ,2,)S +T) for all i, 1 <4 < u. The linear variant of IP1S is the one where we

only look for a matrix S (i.e. T is the null vector of F}').

In [P], it has been shown how to derive a signature and an authentication scheme from
IP1S. It is believed more difficult [CGP] than the IP problem itself and as evidence of its
hardness, it is shown in [CGP] that the IP1S problem is at least as difficult as the Graph
Isomorphism (GI) problem or in other words, a deterministic polynomial time algorithm
solving the IP1S problem would also solve the GI problem (a result which has not been
achieved for the IP problem).

In this paper, for reasons we explain in the next section, we rename the IP1S problem
into the Polynomial Affine Equivalence (PAE) problem. We here study the PAE problem
and its linear variant, which we call the Polynomial Linear Equivalence (PLE) problem.
Apart from [GMS], no algorithm has been designed for these problems. We present here
new algorithms for solving them, based on the link we exhibit between them and that of
finding zeroes of a system of polynomials. When one of the two sets of polynomials A or B
induces a bijective mapping, we propose an algorithm of complexity O((n + 1)D"), where
D is the maximum degree of the polynomials involved for solving the PAE problem, and of
complexity O(nD"™) for the PLE problem. For the general case, we present algorithms of
complexity O(f(n)D™ + g(n)), where f(n) < 2n,Vn, and g(n) depends on the cardinality of
the varieties involved.

1Note that Grobner bases provide not only a tool for finding a zero of a system of polynomials, but
permits in fact to find all the zeroes.
?http://calfor.lip6.fr/ jcf/Software/Fgb/index.html
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4 Frangoise Levy-dit-Vehel , Ludovic Perret

The paper is organized as follows. We begin in section 2 by introducing our notations.

We also define more formally the PAE and PLE problems, which are the main concerns of
this paper. In section 3, we present some new properties of these problems. This section
is divided into two parts, the first one investigates structural properties, whereas the other
presents a geometrical interpretation of these problems. In section 4, we present two new
algorithms for solving the PLE problem which are based on the properties of section 3.
We compare in this part our algorithms with the one proposed in [GMS]. Independently
from these new algorithms, we exhibit instances of the PLE problem which are solvable in
deterministic polynomial time. In section 5, we generalize the algorithms of section 4 to the
affine case.
The last part is devoted to applications: we investigate the security of cryptosystems based
on the PAE and PLE problems. We prove that when the number « of polynomials and the
number n of variables are such that n — u > 0 is small, the parameter sizes of the instances
considered in [P| and [P1] do not guarantee a reasonable level of security. We point out
that this case is the most relevant one for cryptographic applications (indeed, when n — u
small, the considered systems of polynomials have only one common zero, or at worse very
few zeroes). We also show that a large class of instances that have been presumed difficult
in [P] and [P1] can be solved in deterministic polynomial time. We give evidences of the
efficiency of the methods we propose by presenting experimental results of our algorithms
on presumably intractable instances. Moreover, we present an efficient general total break
ciphertext attack on any encryption system whose security relies on the difficulty of the PAE
problem. This is the case for example for restricted (to IP1S) versions of C* [MI], HFE [P]
and TTM [TTM]. We end the paper by some comments on the IP problem.

2 Preliminaries

Throughout this paper we use the following notations. We denote by F, a finite field with ¢
elements, by X the vector (21, -+ ,2y), by F; [X] =F,[z1, ..., 2,] the polynomial ring in the
indeterminates 1, - - - , &y, over Fy, by My, »(Fy) the set of m xn matrices whose components
lie in F; and by GLn(F;) the invertible matrices in My, n(F;). For a subset V' C Fy, we
shall denote by Span(V) the F,-vector space generated by all the linear combinations of
vectors of V' and by dimg,(Span(V')) its dimension.

A term is a product of a field element by a product of the variables z1,--- ,z,. We
shall define the total degree of a term caf" ---z#~ ¢ € F, and (u1,---,u,) € N* by the
sum Y7 | p1;. As usual, the head term of a polynomial p € F;[X] is the biggest term of the
terms of p (with respect to some admissible ordering on the terms) and the degree of this
polynomial is the total degree of its head term.

Let F = {f1,---,fs} be a set of polynomials in F,[X]®, we shall say that F is bi-
jective if the function X — (fi(X),---, fs(X)) is a bijection. We shall denote by Vr =

{(z1,--- ,2n) € By : fi(z1,--- ,2p) = 0,V1 < i < s}, where F,; is the algebraic closure
of Fy, the wariety associated to the ideal < fi,---,fs >. A Grobner basis of the ideal

INRIA



Polynomial equivalence problems and applications to multivariate cryptosystems 5

< f1,---,fs > describes the variety Vr. For a detailed description of Grébner bases and
varieties, we refer the reader to [BeWe| and [COX].

Let A = {a1(X), -+ ,a,(X)} € F,[X]* and B = {b1(X),--- ,bu.(X)} € F,[X]* be two
sets of polynomials. We shall say that these two sets are linear-equivalent, denoted A = B,
if there exists S € GL,(FF,) such that b;(X) = a;(XS) for all 4,1 < i < u. We call such
a matrix a linear equivalence matriz between A and B. In the sequel, for convenience, we
shall denote these equations by B(X) = A(XS). The Polynomial Linear Equivalence (PLE)
problem is then the problem of finding a linear equivalence matrix between 4 and B, if any.

A natural extension is to consider bijective affine mappings over the F,;-vector space Iy .
We shall say that two sets of polynomials 4 and B are affine-equivalent, denoted A =4 B,
if there exists (S,T) € GL,(FF,) x F} such that A(X) = B(XS + T). We call such a pair
an affine equivalence pair between A and B, S being the linear part of this pair and T being
its affine part. The Polynomial Affine Equivalence (PAE) problem is then the problem of
finding an affine equivalence pair between 4 and B, if any.

This last problem was first introduced in [P] under the name Isomorphism of Polyno-
mials with one secret problem, in reference to the well known graph isomorphism problem.
We believe that this name is not well suited. Remember that two graphs are said to be
isomorphic if and only if they are identical after a permutation of the vertices of one of the
graphs. In such a setting, isomorphism is defined by a permutation and permutations are a
special kind of bijective mappings. The problems which are addressed in [P] and here are
much more general than the one of finding a permutation between two sets of polynomials.
For this reason, we think that the name PLE and PAE we chose are better suited. Moreover,
PLE and PAE are equivalence relations, as can be seen easily.

As pointed out by Geiselmann et al. in [GMS], it makes a difference whether the relations
=, and =4 are checked over F,[X] or over F,[X]/ < z] — ; >1<i<n. Indeed, if A =4
B(or A =1 B) over Fj[X] then A =4 B(or A =1 B) over F;[X]/ < 2] — 2; >1<i<n
but the converse is not always true. In this paper, we only work with polynomials over
F,[X]/ < @] — #; >1<i<n, since it appears to us to be the most natural space where
cryptographic applications can be designed.

—

3 General properties of polynomial equivalence

We quote here properties of the polynomial equivalence. Proofs can be found in appendix
A.

3.1 Structural Properties

For a polynomial p € F,[X], we shall denote by pD the terms of total degree d of this
polynomial and by p{¥) his terms of highest total degree d. By extension, we shall denote
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6 Frangoise Levy-dit-Vehel , Ludovic Perret

by A@D = {a{?(X), - ,a{?(X)} and by B@ = {{¥(X),---,b{?(X)}, the terms of total
degree d of A and B.

Note that if there exists an index i, 1 < i < w, for which a; and b; do not have the same
degree, then A #j, B.

Proposition 1. Let S € GL,(F,). Then B(X) = A(XS) <= BYW(X) = AY(XS) for all j,0 <
j < D, where D is the mazimum total degree of the polynomials of A and B.

Proposition 2. Let o € F,, Ay, = {a1(aX), -+ ,au(aX)}, By = {b1(aX), - ,by(aX)} be
sets of polynomials and S € GL,,(F,). Then B(X) = A(XS) <= B, (X) = Aa(XS), for all a in F,.

3.2 Geometrical Properties

In the sequel, we denote by V4 and V3 the varieties associated to 4 and B.

Property 1. Let (S,T) € GL,(F,) xFy. If B(X) = A(XS+T) then Vo = VS +T, with
VS +T = {'UBS+T 1UB € VB}.

Corollary 3.1. Let S € GL,(F,). If B(X) = A(XS) then V4 = VgS.
By property 1 and corollary 3.1, we have that A =4 B or A =y, B implies |V4| = |V3|.

Property 2. Let A, B, C, D be sets of polynomials, V.4,Vg, Ve, Vp be the varieties associated
to these sets and (S,T) € GL,(F,;) x F,.

(B(X) = A(XS+T) and D(X) = C(XS+T)) = VanVe = (Vg N Vp)S +T.

By adding the field equations {z{—z1,--- , 2% —2,} to a set of polynomials A, we change
the geometry of the solutions. In particular, the variety associated to this new set is equal
to VA NIy, a subset of Fy and not of Fy. Hence, we have a finite number of points in this
variety.

Corollary 3.2. Let (S,T) € GL,(F,) x Fy. If B(X) = A(XS +T) then VANTF; =
(VB ﬂE’;)S +T.

By using structural properties of the affine equivalence relation, we get:

Proposition 3. Let (S,T) € GL,(F,;) x F}.

If B(X) = A(XS +T) then Va, , NFy = (Vg,, NF})S + T for any fived p € Fy, Va,,
being the variety associated to < a1(X) —bi(p),--- ,au(X) — bu(p) > and Vs, , the variety
associated to < b1(X) — b1 (p),--- , bu(X) — bu(p) >.

Remark 3.1. The results of property 2, corollary 8.2 and proposition 8 are also true for
the linear equivalence relation.

For proposition 3, we have only used the properties of the affine equivalence relation. We
get the next proposition by using particular properties of the linear equivalence relation.

INRIA
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Proposition 4. Let (a,p) € Fy x F}, Ay p = {a1(aX) = bi(ap),- -+ ,au(aX) — bu(ap)},
Bap = {bi(aX) —bi(ap),--- ,bu(aX) —bu(ap)},U CFy and S € GL,(F,).

If B(X) = A(XS) then Va,, = Vs,,S, for any fized p € F?, with:

VAU,p = (ﬂanVAa,p) n (nlgdSDVA(d)) ﬂFg and VBU,p = (ﬂanVBQ,P) n (nlgdSDVB(d) ) QFZ,

D being the maximum total degree of the polynomials of A and B.

4 Polynomial linear equivalence algorithms

In this section, we present two new algorithms for solving the PLE problem. The first uses
a link between this problem and that of finding the common zeroes of a set of polynomials.
The properties given in 3.2 are used to design the second algorithm. We conclude this section
by exhibiting instances which can be solved in deterministic polynomial time.

4.1 Our first algorithm

The basic idea follows [GMS]. We know that when two sets of polynomials 4 = {a;(X),- - ,a,(X)}
and B = {b1(X),- - ,by(X)} are linear-equivalent, then the evaluation of the b;s on some
vector p € F} is equal to the evaluation of the a;s in p' = pS, for some linear equivalence ma-
trix S between A and B. Knowledge of the pair (p,p’) allows us to obtain n linear equations
in the components of S. The main idea of this algorithm is to convert the search of these
pairs into the solving of a non linear system of equations. For a vector p € Fy', we notice that
the variety associated to the ideal < {a;(X) — bi(p) }1<i<u, {2} — i} 1<i<n > gives all the
vectors p' € Fy such that B(p) = A(p'). We know that there exists a unique vector p' in this
variety such that p' = pS. When the polynomial mapping A is bijective, the variety above
gives exactly one such vector. But it is not the case in general and in order to improve the
effectiveness of the algorithm, we must construct varieties whose cardinalities are as small
as possible. In order to do that, we will use the properties of 3.1. More precisely, according
to proposition 1 and 2, if there exists a linear equivalence matrix S between A and B, then
we have the following;:

0.7 €8 x By 80) = AG) = | AT S S o

where D is the maximum total degree of the polynomials of A and B.

We now give an algebraic interpretation of these constraints. Let o be in IF;. We shall denote
by I, =< {ai(aX) — bi(ap) }i<i<u, {z! — :}1<i<n > and by V,, the variety associated
to this ideal. We also set I,(,j) =< {agj) (X) - bgj)(p)}lsz-Su, {z! — 2zi}1<i<n > and call Vp(j)
the variety associated to this ideal. Finally Vi, = (Nacvufi}Va,p) N (ﬂlsjgf,Vp(j)) denotes
the vectors p’ € F; such that A(p') = B(p) and achieve the constraints (I). With these
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8 Frangoise Levy-dit-Vehel , Ludovic Perret

notations, we point out that if there exists a vector p € Fy such that Vup = B for some
U CF, then, A #; B.

Idea of the algorithm
From the polynomials given in input, we construct sets Lj,1 < j < n such that each L;
contains the j-th row of candidates for the linear equivalence matrices between the two
inputs. When such a matrix doesn’t exist, the algorithm returns @. Let {e;}1<;j<n be the n
vectors of the canonical basis of Fy. The algorithm is the following:

Algorithm A

Input: Two sets of polynomials 4 and B.

OQutput: A linear equivalence matrix between A and B, if any and ) otherwise.
For j from 1 to n do

Choose U C F; randomly

Compute Vi,

If VUM # 0 then L; + VU,EJ. Else Return

EndFor
S + SeekRows(A,B,{Ly, -+ ,Lyn})
Return S

For all j,1 < j < n the elements of L; are candidates for the j-th row of a linear
equivalence matrix between A and B.

Remark 4.1. If A =; B and if A or B is a bijection® then there erists a unique linear
equivalence matriz between these two sets. Indeed, for all j, 1 < j < n, L; only contains the
j-th row of this matriz.

The function SeekRows outputs a linear equivalence matrix between 4 and B, if any,
and () otherwise. To recover this matrix, if such a matrix exists, it checks for all the invertible
matrices than can be constructed from the sets Ly,--- ,L,. We propose in appendix B an
improvement of this function.

Remark 4.2. The bigger the size of the subset U C I, the better algorithm A is. Indeed,
the more equations you have, the faster are done the calculations of the Groébner bases [Fa]
and the smaller the number of candidates in the varieties computed are. But remember that
the generation of the equations must be efficiently done.

Complexity
The complexity of calculation of a Grobner basis depends on the maximum degree of the
polynomials occurring during this computation [BeWe]. This parameter depends on the set
of polynomials but for polynomials which have a finite number of zeroes (varieties are so-
called O-dimensional varieties), which always occurs in cryptographic applications, it can be
bounded from above by O(D™) (see [BeWe] p.518). At each step j,1 < j < n the varieties

3When A =;, B and if one of the inputs is bijective then the other is also bijective
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Polynomial equivalence problems and applications to multivariate cryptosystems 9

Vy,ej computed have a finite number of points. Hence, when one of the inputs is a bijection,
the complexity of this algorithm is O(nD™).

In the general case, the function SeekRows checks the invertibility (by Gaussian elimination)
of at most [[;-, |L;| matrices. Finally, for generic instances, this algorithm has a complexity
of O(nD™+n®[[;_, |L;|). Our algorithm recovers in fact all the linear equivalence matrices
between the two sets of polynomials. Indeed, this complexity is exactly the one of finding
them all.

Previous work

To our knowledge, the only work done on this subject is presented by Geiselmann et al. in
[GMS]. For a detailed description of their algorithm, we refer the reader to this article. We
briefly recall in this part the principle of the algorithm proposed by these authors. We point
out that it was dedicated for the PAE problem, but it can be easily adapted to the PLE
problem. In this setting, the main idea is to remark that if I € Fy is the j-th row of a linear
equivalence matrix between two sets of polynomials A and B, then B,(e;) = A () for all
a € U C F;. An exhaustive search among the vectors [ € I} is then performed to recover
these candidates.

The set {I € Fy : Ba(e;) = Aa(l),Ya € U} is equal to NaevVa,e;- Hence, we have sub-
stituted in our algorithm the exhaustive search of the elements of {I € F} : Ba(e;) =
Ay (l),Ya € U} by the computation of a variety. In the worst case, the theoretical complex-
ity of computing V., is O(D™), where D is the maximum degree of the polynomials of A.
This must be compared with the complexity O(¢™) of the exhaustive search of [GMS]. But
the complexity of computing Grobner bases depends in practice very much on the algorithm
used and an efficient software, such as fgb, behaves much better than in the worst case[Fa|.
In addition, by investigating structural properties of the PLE problem, we have also added
new constrains which permit to decrease the size of the set of candidates and so to increase
the efficiency of our algorithm.

4.2 A second algorithm

This algorithm is more particularly dedicated to sets of polynomials which are not bijective.
The main idea is to use geometrical properties of the linear equivalence relation. According
to corollary 3.1, when A = B the varieties V4 and Vj are such that V4 = VS, for some
linear equivalence matrix S between A and B. Hence, for each vg € V3 there exists a unique
vector U4 € V4 such that U4 = vgS. According to proposition 4 the pair (04,vp) lies in
Va, % Va,,, with:

‘ZAU = (manU{l}VAa) N (n1§d§5VA(d)) N ]Fz?a
VBr = (Nacvu(1}VB.) N (M <4< p V@) NFY,

where D is the maximum degree of the polynomials of A and B and U is a subset of I, .
This property permits to improve the search of the pair (v4,vp) since it can be done in
Vay X Vi, a subset of V4 x Vg. Knowledge of the pairs {(v4,v5),vs € Vg, } allows us to
get n * dimg, (Span(Vp,)) linearly independent equations in the components of S.

RR n° 5119



10 Frangoise Levy-dit-Vehel , Ludovic Perret

It could be that the number of equations is not sufficient to recover S. Let p be a vector
which is not in Span(Vi). If A =5, B, we have, according to proposition 3, V4 = VS but
also V4, , = Vg, ,S. For each vector v € Vg, ,, we also have a unique vector v € V4, , such
that v = vS. As explained in proposition 4, the search of the suitable pairs can be done on
a subset of V4, = x Vg, , and more precisely in V4, , X V3, ,, with:

‘ZAU,p = (naEUU{l}VAa,p) N (mlsdgf)VA(d)) N E’};
VBU,p = (maEUU{l}VBQ,p) N (mlgdSEVB(d)) N ]FZL;

where U is a subset of F,.

Hence, the pairs {(0,v),v € Vg, } allow us to get n * dimg, (Span(Vp, ,)) new linearly
independent equations in the components of S, in addition to the equations always given by
the pairs {(U.4,vg),vs € Vg, }. Since p is chosen not to lie in Span(Vp), at least n of these
news equations are linearly independent from the equations given by {(v.4,vg),vs € Vg, }.
Note that, with these notations, if VAU,p = () for some subset U C F, and for some vector
p € F} then A £, B.

Idea of the algorithm
As long as the number of equations in the components of the matrix we try to determine
is not sufficient, we will compute, from the polynomials given in input, varieties V¥ and
V2k where VF is the k — th variety Vy,, ,, for different choices of U and p. Variety V*
is defined analogously (with respect to the set B). Those varieties verify V1:k = V2kg
for some linear equivalence matrix S between the two inputs, if any. When such a matrix
doesn’t exist, the algorithm returns . The algorithm is the following:

INRIA



Polynomial equivalence problems and applications to multivariate cryptosystems 11

Algorithm B

Input: Two sets of polynomials A and B.

OQutput: A linear equivalence matrix between A and B, if any and ) otherwise.
Initialization: V3! = V2l =...= Vb =V2r = P =0, cpt =0,1 = 1.
While cpt < n do

Choose p € Fy \ P and U C F,; randomly
Compute Vy, ,
If V4, # 0 then
Compute Vg,
(Vl’la Vz’l) — (VAu,p ) VBU,p)
cpt < cpt + dimg, (Span(V?1))
l«1+1
P + Span(PUV?!)
Else Return

EndWhile
S « SeekMatriz({VVF, V2F} i <r<i)
Return S

Remark 4.3. Let dj, = dimg, (Span(V?F¥)). At the end of the algorithm, we have 22:1 dy, >
n.

The function SeekMatriz outputs a linear equivalence matrix between the two inputs,
if any, and @ otherwise. It computes for each k,1 < k < a basis By2.x = {Uf’k, e ,’U?i;k} of
Span(V?**). For all the elements:

1,1 2,1 1,121 1,02, 1,0 21 11 d 1,0 d
{(('vl’ » U )7 a(vd’l 7Ud’1 ))7 :((vl’ U7’ )u J(Ud; avd; ))} € (V XBVQ’I) 1X"'X(V ><BVZ’I) Y
it checks if the linear system in the unknowns the components of a matrix M:

2,172, _ 1,1 212, _ 1,1 20 ar _ 11 20ar _ 11

v M =y, o M=y o M =0t s v M=oy (1)

is invertible and, if so, recovers this matrix. Finally, it checks if M is a linear equivalence
matrix between A and B.

Complezxity
Let D be the maximum degree of the polynomials of .4 and B. At eachstep k,1 < k <!l ofthe
while loop the varieties V¥ and V?* have a finite number of points. Hence, the complexity
of constructing these 2l sets is O(21D"). Let N = |[V1F| . The function SeekMatriz
computes [ bases of vector spaces, checks invertibility and solves at most Hi::l Nj, linear
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systems. Moreover, the maximum number of steps performed by algorithm B is given by
proposition 5:

Proposition 5. If A =1, B, then algorithm B performs at most n steps.

Proof
Let S € GL,(IF,), such that B(X) = A(XS). At the k-th step of algorithm B, the vector p
is chosen in F7' \ Span(Up<,<xV>"). Therefore, the vector pS is linearly independent from
the vectors {vS : v € Up<,<xV?>"}. Hence, at each step of the while loop, algorithm B
gives at least n new equations which are linearly independent from the equations given by
{(wS,v) 1 v € Up<r<kV?>7}. 0

Finally, the complexity of this algorithm is O(2nD™ + n®[],_, Ni). Note that this
algorithm recovers in fact all the linear equivalence matrices between two sets of polynomials.
This complexity is again exactly the one of finding them all.

Remark 4.4. N; represents an upper bound on the complexity of finding all subsets of
dy independent vectors of V1:*. The value of N, given above comes from enumerating all
subsets of dy, vectors in V1%, As we are interested only in subsets of independent wvectors,
to construct such a set of vectors, one chooses the first vector - say v - at random, then
the next one in VLF \ (Span({v}) N VYF), and so on. Thus, in order to evaluate the
complexity of finding all bases of cardinality dy in VVF, it would be more accurate to set
Ny = Hf’;l(|V1*k| —q"1). This might change the estimate on the complexity of function
SeekMatriz, especially when the cardinality of VVF is small.

The number of steps given in proposition 5 is the one occuring when dp =1, V1 <k <,
in which case l = n. It is clear that in practice this number will almost always be much less.
Indeed, the important point of proposition 5 is that the algorithm actually terminates.

Comparison with algorithm A
For each j,1 < j < n the variety Vu,ej computed in algorithm A is equal to the variety
VAU,ej in algorithm B. By construction, these two varieties contain a vector l; € Fj which
is the j-th row of some linear equivalence matrix S between 4 and B. In A, we focus only
on recovering the rows of a linear equivalence matrix. Hence, we have only to compute for
each j the variety Vy,ej, which contains the candidates for the j-th row of this matrix. In
B, when we compute Vy, . and Vp, ., we also find the pair (I;, ;) but in addition we try

to recover other pairs (U,v) € Va,., % V.., such that ¥ = vS.

Selection Strategy

In fact, these two algorithms are complementary and in order to minimize the number of

varieties computed, you can use the following strategy. '

Start with algorithm A and for each j,1 < j < n of the forloop, compute t = Y7 _, dimg, (Span(Vy,e, ))-
If t > n and 2j < n then stop the execution of A, compute for all k, 1 < k < j the varieties

VBy,., and recover a linear equivalence matrix with the function

INRIA
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SeekMatriz({Viy,e, VBu.., H<k<j)-

Else continue the execution of algorithm A.

Notice that 2j is the number of varieties computed in algorithm B, in the case when the set
of vectors chosen during the while loop of algorithm B were {e1,--- ,e;}.

4.3 Weak Instances of PLE

From both a practical and theoretical point of view, it is revelant to be able to identify the
instances which can be solved by a deterministic polynomial time algorithm. It is of major
interest when this problem is used in cryptography. In this part, we present instances of the
PLE problem admitting a deterministic polynomial time algorithm.

When restricting the inputs of the PLE problem to sets of polynomials of degree one,
the problem can be reformulated as follows:
Input: Two matrices A and B in M, ,(F,).
Question: Find if there exists a matrix S € GL,(F,) such that B = SA.

If one of the inputs matrices is invertible?, BA™! is the unique solution to this problem

More generally, consider two sets of polynomials A and B. According to proposition 1, we
know that if there exists S € G L, (F,) such that B(X) = A(XS) then BO(X) = AN (XS).
In the other direction, if we know that A" =; BM) and the mapping A® or BM) is bijective
then the unique linear equivalence matrix between AM and B® is S0 = BM(AM)~-1,
where A and BM) are the matrices representing the linear mapping A and B®). Since
S is also a linear equivalence matrix between A and B®), we have S = S. The unique
linear equivalence matrix between A" and B is a linear equivalence matrix between A
and B. Consequently, when the linear part of one of the inputs of the PLE problem is
bijective then we can find a solution by performing very basic linear algebra operations.

5 Polynomial affine equivalence algorithms

5.1 General Method

Since the PAE problem is very similar to the PLE problem, it seems natural to try to reuse
the algorithms described in section 4. A straightforward way to do this is:

For a in Iy,
Try to find by algorithm A or B an S € GL,(FF,) such that B(X) = A(XS + a).
If so, return (S, a).

This approach - which we shall call general method in the sequel - adds a factor ¢™ to
the complexity of the algorithms A or B of section 4. Another method can be derived from
the linear case by using an idea of 4.1, as follows.

4Remark that if A =y, B, then if A(resp. B) is invertible then B(resp. A) is also invertible !
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14 Frangoise Levy-dit-Vehel , Ludovic Perret

5.2 Generalization of algorithm A

We present here the affine version of algorithm A presented in 4.1. When A =4 B, then
the evaluation of the b;s on some vector p € Iy is equal to the evaluation of the a;s in
P =pS+T, for some affine equivalence pair (S,T) between A and B. Hence, knowledge of
the pair (p,p') allows us to obtain n linear equations in the components of S and T'. In order
to convert the search of this pair into the resolution of a non linear system of equations, we
set I, =< {ai(X) — bi(p) }1<i<u, {2] — zi}1<i<n > and denote V], the variety associated to
this ideal. Let eo be the null vector of F} and {e;}1<j<n be the n vectors of the canonical
basis of . The algorithm is the following:

Algorithm A’

Input: Two sets of polynomials 4 and B.

Output: An affine equivalence pair between A and B, if any and @ otherwise.
Compute V,

IfV,, # 0 then

Lo Ve,
For j from 1 to n do

Compute Ve,
If V., # 0 then L; « {ve; —lo : (ve;,l0) € Ve; X Lo} Else Return

EndFor
Else Return 0

(S,T) + Seek(A,B,{Lg,--+,Ln})

Return (S,T)
Ly is the set of candidates for the affine part of an affine equivalence pair between A and
B and for all j,1 < j < n the elements of L; are candidates for the j-th row of the linear
part of an affine equivalence pair. To recover this pair, if such a pair exists, the function
Seek checks for all the vectors in Ly and for all the matrices than can be constructed from
the sets Ly,--- , L,. The improvement proposed in Appendix B can also be adapted to this
function.

Remark 5.1. If A =1 B and if A or B is a bijection then there exists a unigque affine
equivalence pair between these two sets.

Complezxity of algorithm A’
Let D be the maximum degree of the polynomials of 4. When one of the inputs is a bijection,
the complexity A’ is O((n + 1)D™). In the general case, the complexity is O((n + 1)D™ +

(n +1)° TTizg |Li])-
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5.3 Generalization of algorithm B

The adaptation of algorithm B to the affine case is straightforward and is omitted.

5.4 Selection strategy

When u is "small" compared to n, it is very important to be able to decrease the size of the
varieties computed in A’or in B’. Unfortunately, contrary to the linear case, the structural
properties of the affine equivalence relation are useless in this context. In this case, we think
that the general method together with algorithm B is the best choice to do. Indeed, the
general method transforms a PAE problem into a PLE problem and even if it adds a factor
q"™ to the complexity of algorithm B, it allows to decrease the search space of the linear part
of an equivalence pair. In the other case, one can use the following strategy to minimize the
number of varieties computed. ‘

Start with algorithm A’ and for each j,1 < j < n of the forloop, compute t = Y} _ dimg, (Span(Ve,)).
Ift >n+1and 2j < n+ 1, stop the execution of A’ compute for all k, 0 < k < j the
varieties Vg, . Given {V¢, Jo<k<; and {Va,, }o<k<;, you can recover an affine equivalence
pair with a simple extension of the function SeekMatriz described in section 4.2.

Else continue the execution of B’.

6 Applications

6.1 Security of cryptosystems based on PAE

Remember that we call PAE problem in this paper, the problem which is called isomorphism
of polynomials with one secret in [P]. In this article, it has been shown how the PAE
problem can be used to derive a signature and authentication scheme. We do not recall these
constructions here, as our algorithms focus on the underlying problem which guarantees the
security of these schemes. Let us recall the parameters for which the PAE problem was
supposed intractable[P],[P1]. The two sets A and B are composed of u > 2 polynomials
in n indeterminates of degree two whose coefficients lie in IF,. The author recommends to
choose the number of variables n and the size q of the field such that gV2"*'* > 264 We
will now show that, in some cases, these parameters are far from being sufficient to achieve
a reasonable level of security. In particular, in order to improve the efficiency of these
schemes, the author suggests to restrict the affine equivalence to the linear equivalence. This
restriction strongly acts on the safety of these schemes, since as explained in 4.3 the PLE
problem has more properties than the PAE problem. Moreover, this problem admits a lot
of instances which can be solved in deterministic polynomial time. Hence, without adding
structural constraints on the shape of the polynomials of A and B, which have not been
given in the original design, these schemes are insecure. In order to avoid these weaknesses,
the sets of polynomials A and B must be chosen in such a way that the linear parts A
and BM are not bijective. Even with these additional constraints, these parameters don’t
really give rise to difficult instances of the PLE problem and are not adapted to the design
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of secure applications, as we shown in appendix D. Furthermore, the polynomial affine
equivalence problem admits also instances for which the complexity of resolution is far from
the cryptographically safe bounds. Experimental results are given in appendix D.

6.2 Chosen Ciphertext Attack

A large family of multivariate asymmetric encryption cryptosystems, like C*[MI|, HFE |[P]
and TTM [TTM] can be sketched as follows. Alice generates a set of polynomials

A={ai(z1, -+ ,2n), - ,au(21, - ,zn)} C Fylx1,---,2,]" in such a way that for all ¢ =
(c1,-++,cy) € Fy there exists a unique solution 5 to the system {ai(x1, - ,%,) —c1 =
0,---, ay(z1, -+ ,zn) — ¢, = 0} and this solution can be efficiently computed. In order

to hide A, Alice chooses two pairs (S,T) € GL,(F;) x F} and (U,V) € GL,(F,) x Fy,
computes B(X) = Uo A(XS+T)+V?t, denoted by B = {by(z1, - ,Zn),---,bu(T1, - ,20)},
and publishes B. When Bob wants to encrypt a message m = (my,---,my) € Fy, he
computes ¢ = (by(my, -+ ,mp), -+, by(my, -+ ,my)) and sends it to Alice. After receiving
c=(c1," - ,cy), Alice computes the solution ¢’ = (c},- - ,c,,) of the system A(X)—U~1ct +
U~'V*! =0 and recovers the message sent by computing (¢’ — T)S~! = m.

An open question is to know whether or not these schemes remain secure if the set of
polynomials A is public. In this situation, the security of these schemes relies not only on
the difficulty of finding a common zero of a system of non linear equations but also on the
difficulty of the Isomorphism of Polynomials (IP) problem (when A and B are given, the
problem is to recover the pairs (S,T) and (U,V)). Until now, this question remains open
since the best algorithm known to solve the IP problem® has a complexity of O(qu")[CGP].
As pointed out in this paper, the PAE problem seems to be more difficult than the IP
problem. Moreover, they have also shown that unless the polynomial hierarchy collapses,
the PAE problem and the IP problem are not NP-hard. But contrary to the ‘PAE problem,
which is at least as difficult as the graph isomorphism problem, we would like to emphasize
that there exists no theoretical evidence of the hardness of the IP problem. Hence, it is a
natural question to ask whether the security of these schemes could be increased if Alice
would choose (U, V) = (I,0,)" and publish A(X) and B(X) = A(XS +T).

We now show that if the public key is generated in this way, an adversary is able to
recover the secret pair (S,7) € GLn(F,;) x F} with only n + 1 queries to a deciphering
oracle. Remark that due to the symmetry of the relation =4, we have A(X) = B(XS'+T"),
with §' =S~ and T = —TS'. Let {e;}1<i<n, be the n canonical vectors of F'. In order
to recover the secret vector T', an adversary sends ¢y = (a1(eg),- - ,ay(€9)). The unique
cleartext mo € Ty corresponding to this ciphertext is such that b;(mo) = a;(eg) for all d,
1 <i < wu. Hence, mg = e9S'+T' = T'. To recover the j-th row of the matrix S’,1 < j <n,
an adversary sends c¢; = (ai(ej),- -+ ,au(e;)). The cleartext m; € F' corresponding to this
ciphertext is such that b;(m;) = a;(e;) for all 4, 1 <4 < u. We then have m; = ;5" + T’

5or very few solutions

8This algorithm works only in the particular case when the sets of polynomials .4 and B are bijective.
70, is here the null vector of F¥
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and therefore the j-th row of the matrix S’ is equal to m; — mg. Finally, knowledge of the
pair (S’,T") allows to recover easily the secret key (S,T') of Alice. Remark that when the
cleartext is not unique, we obtain with this method not exactly the rows of the secret pair
(S,T) but a list of candidates. Since for each row the number of candidates is not too big
(otherwise Alice herself would not be able to decrypt), the secret affine pair can be recovered
efficiently with the method described in [GMS] or with an extension of the method described
in appendix B. Hence, the security of encryption schemes like HFE, can not be related to
the difficulty of the PAE problem since in this situation the problem can be easily solved
with the help of a deciphering oracle.

Let (A,U o A(XS +T) + V?) be the public-key of a multivariate encryption scheme. It
is straightforward to see that if an adversary is able to recover the secret pair (U, V) then he
can use the method described above to find the other pair (S,T). Hence, our method can be
used in addition to an attack specifically designed to recover (U, V). Moreover, one sees at
once that when the secret pair (S,T') is given then the pair (U, V) can be easily recovered.
That is, when one of the two secret pairs is known, the other can be easily recovered. This
is not the case for the underlying IP problem and so the problem considered in the security
analysis of these schemes is weaker than the generic problem. It is left as an open problem
whether or not the IP problem can be solved in deterministic polynomial time if we have
access to a deciphering oracle.

7 Numerical results

Experimental results on the PLE problem

Conditions of the tests

We have generated a set of polynomials A = {a1(X),--,a,(X)} with respect to the con-
straints given in 6.1 and we have chosen g and n such that q‘/ins/2 > 264, We have randomly
chosen a matrix S in GL,(F,), we have computed B = {a1(XS), - ,a,(XS)} and we have
tested one of the algorithms described in section 4 with these two sets of polynomials on a
standard PC, using Magma software [Magma]. The results are quoted below:

n | u | field (1‘/5"3/2 Algo Time

16 | 16 | F 290 A ~ 4 min.
16 | 14 | T, 290 A ~ 7T min.
16 | 12 | T 290 B ~ 18 min.
14 | 14 | Ty 2221 A ~ 7 min.
14 |12 | Fy 2221 A ~ 15 min.

Experimental results on the PAE problem
Conditions of the tests
Let A= {a1(X), - ,a,(X)} be a set of polynomials chosen at random, ¢ and n be chosen
as above. We have randomly selected a pair (S,T) € GL,(F,;) x F}, we have computed
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B={a1(XS+T), - ,a,(XS+T)} and we have tested one of the algorithms described in
section 5 and appendix C with these two sets of polynomials. We have quoted the results
in the following table:

n | u | field q\/"j"a/2 Algo Time

16 | 16 IFy 266 A’ ~ 5 min.
16 14| I 206 A’ ~ 8 min.
16 | 12 F, 266 GM+B | =~ 20 min.
14 | 14 Iy 2221 A’ ~ 10 min.
14 | 12 Fy 2221 A =~ 20 min.

GM-+B stands for General Method together with algorithm B.

Interpretation
Since we have chosen u = n, the cost of our algorithms is approximately the cost of computing
several Grobner Bases. Hence, we can exhibit a large number of instances illustrating the
weakness of the security parameters given in [P]. We believe that the parameters chosen are
significative of the behaviour of our algorithms.

When the two sets of polynomials lie in F [X], the efficiency of the algorithms dedicated
to the PAE problem are similar to the ones dedicated to the PLE problem. Indeed, the
PLE algorithms use the particular properties of the linear equivalence relation. But when
the field is reduced to two elements, proposition 2 gives no information about the linear
equivalence matrix. Whereas when the field is bigger, one can see that the PLE algorithms
find a solution more quickly than the PAE algorithms.

Experimentally, it appears that algorithm B (resp. GM+B) is more efficient than algo-
rithm A (resp A’) when n —u > 4. In this situation algorithm B (resp. GM+B) computes
only two varieties. For generic instances, we can consider that this relation among u and n
can be used to select the better algorithm.

Some parameters propositions
For cryptographic applications, we strongly believe that u must be chosen approximately
equal to n. In this setting, we know that there exists very few solutions to our problems.
When u is small compared to n, there will probably be a large number of solution to these
problems. Hence, an improved exhaustive search like local search method or test and trials
method could work rather well.

For the PLE problem, we believe that the instances must be composed of homogeneous
polynomials over F5[X]. In this setting, one can see at once that proposition 1 and proposi-
tion 2 give no information on the linear equivalence matrices. With such instances, we are
in the same situation than for the PAE problem. For this problem, we have not found any
particular weakness in the structure of the instances.
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8 Conclusion

We have presented new approaches to the IP with one secret problem, which lead to the de-
sign of efficient algorithms. We studied the security of cryptosystems based on this problem
and it appears that the usually suggested parameters often yield weak instances. Advises
concerning parameters sizes are given at the end of the paper. We would like to point out
that the complexities given throughout the paper suppose that the computations of the va-
rieties involved are done by means of computing Grébner bases, which is - to our knowledge
- the best tool to date. In case a different algorithm is used, the complexities have to be
modified accordingly.
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Appendix A

Proof of proposition 1
=
Suppose that B(X) = A(XS), since the polynomials of A and B can be written uniquely as

a sum of terms, we have E;-D:o bgj)(X) = Zf:o agj)(XS) for all 4,1 <4 < u. By equating
the terms of total degree j, we get B@ (X) = AW (XS) for all j,0< j < D.

=

On the other direction, suppose that BY)(X) = AU (X S) for all j, 0 < j < D. We then have

bgj)(X) = %gj) (XS) foralli,1<i<wandforal j,0<j< D. By summing the equalities,

we get Ef:o bgj) (X) = ZD,O agj)(X S) for all 4,1 < 4 < w. Since the decomposition is

unique, we have B(X) = A(XS). 0

The proof of proposition 2 is straightforward, and is omitted.

Proof of property 1

Suppose that there exists a pair (S,T) € GL,(F,) x Fy such that B(X) = A(XS +T).

We first prove VgS + T C V4. Let v' = vpS + T be an element of VS + T. According to
the symmetry of the relation =4, we get A(v') = B((v' =T)S™') = B((vgS+T —T)S~ 1) =
B(vp). Since vp € Vg, one sees at once that A(v') = 0. Hence v’ lies in V4 and we have
VS +T C V4.

Now V4 C VS + T is straightforward since, if v is an element of V4, we have A(v) =
B((v—T)S~1) =0. Hence (v —T)S™! lies in Vg, that is v € VgS + T. n

Note that, since property 1 is true for all ' € Fy it is also true for T' = eg, the null vector
of Fy . Thus proving corollary 3.1.

Proof of property 2
Since B(X) = A(XS +T) and D(X) = C(XS + T) we get according to property 1, V4 =
VS +T and Ve = VpS+T. Whence VyNVe = (VBS+ T) n (VDS+ T) = (VB n VD)S +T.
O

Proof of corollary 3.2
Straightforward, since for all (S,T) € GL,(F,) x Fy, Fro(X) = Fro(XS +T), with Fro =
{z{ —21,--- , 2% — z,}. Moreover, Vi, = Fp. 0
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Proof of proposition 3
On sees at once that if there exists a pair (S, T) of GL,(F,) xFy such that B(X) = A(XS+T)
then for all fixed p € Ty, we have Bi,,(X) = A; ,(XS+T). Therefore, according to property
1 and corollary 3.2, we get V4, , NF} = (Vg, , NIF})S + T for any fixed p € 7. 0

Proof of proposition 4
As explained in the proof of proposition 3, if there exists a matrix S such that B(X) =
A(XS), then By ,(X) = A1,,(XS+T) for any fixed p € F. The linear equivalence relation
have many more properties than the affine equivalence relation. According to propositions
1 and 2, it is straightforward to see that for a matrix S € GL,(F;) and for any fixed p € Iy,
we have:

Bap(X) = Aq p(XS), for all @ in U.

X) = AX : . N
BX) = Al S):'{ BY,(X) = AV, (XS), for all 5,0 < j < D.

Since for all j, 1 < j < D, the polynomials of ASJ,),, and B&{),, are homogeneous, we have:

Asxj,)p = {(ai(aX) - al(ap))(j?7 o (ay(@X) — ay(ap)) D} = {agj)(aX), o ,a%j)(aX)}
{adal(X), - aiaf) (X)} = I AV

{(b1(aX) = by (ap))@), -+, (bu(aX) — by(ap)) P} = (B (aX),--- ,bF (aX)}
{a?b)(X), - ,adbd (X)} = i BY)

B

Therefore BU)(X) = AD(XS) & BY)(X) = AYL(XS) for all j, 1< j < D, for all a € F,
and for any fixed p € ;. 0

When j = 0, remark that AL, = {(a1(0) — b1 (ep)), - , (au(0) — bu(ap))} and BY), =
{(®1(0) — by (ap)),- - , (b (0) — by (ap))} which is not equal to B and A©.

Appendix B

Improvement of the function SeekRows

In [GMS], Geiselmann et al. propose a heuristic to improve the search of the good candi-
dates. We propose here a slightly different heuristic which has the advantage to be easily
parallelized.

Let £ < n and {Lh?sz} C {Ll,-" ,Ln} If (l’in"' ;lzk) € L’i1 X --- X sz are the
l;;-th rows of some linear equivalence matrix S between A and B, then B(E;?:l cili;) =
A(Z?Zl cjes;) for all (c1,--- ,¢x) € U x---x U, where U C F,. Therefore, from L;,, - -- L;,,
we obtain new sets Z,-l, - ,Z,-k by selecting the k-tuples of L;, x --- x L;, which achieve
the conditions above. Similarly to L;,, - - L;, these new sets also contain for all j,1 < j <k
the [;;-th rows of the linear equivalence matrices between A and B but we expect that these

new sets will be of smaller cardinality than L;,,--- L;, and no longer contain vectors which
are not the rows of some linear equivalence matrix.
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Refinement process

Input: An integer k, two sets of polynomials A, B and a set {L1,---,Ln} C (F7)™.
Output: A set {L;,---,L,} C (T )™.

Initialization: Ly =--- =L, =0 and I = {1,--- ,n}

Choose U C I,

While I # () do

Choose {i1,--- ,ir} € I randomly
For (l;,,---,l;) € L, x ---L;, do
If B(Yh eili;) = A(XS cjei;),Y(e, -+ ,cx) €U x -+ x U then
Li, + L;, U{ly,},--- , Ly, + Ly, U{ls,}
EndIf
EndFor
I T\ {ir, - ,ix}
EndWhile

Return {Li,---,L,}
The while loop can be divided into 7 independent tasks, each of them consists of com-
puting {L;,,---,L; } from {Lq,---, L }. Hence, this tasks can be independently computed

on % different processors.
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