archives-ouvertes

Program Supervision: Yakl and Pegase+ Reference and
User Manual

Sabine Moisan

» To cite this version:

Sabine Moisan. Program Supervision: Yakl and Pegase+ Reference and User Manual. RR-5066,
INRIA. 2003. inria-00071518

HAL Id: inria-00071518
https://hal.inria.fr /inria-00071518
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00071518
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5066--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Program Supervision: YAKL and PEGASE+
Reference and User Manual

Sabine Moisan

N° 5066
December 2003

THEME 3

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

Program Supervision: YAKL and PEGASE+ Reference
and User Manual

Sabine Moisan

Théme 3 — Interaction homme-machine,
images, données, connaissances
Projet Orion

Rapport de recherche n® 5066 — December 2003 — 187 pages

Abstract: This document describes concepts and tools that we have developed for the pro-
gram supervision task. The first part is a reference manual, which introduces the concepts
involved in this task as well as the proposed knowledge language and inference engine to
achieve this task. The second part is a user’s manual, which details both the YAKL de-
scription language and the PEGASE+ engine. It also provides examples and methodological
recommendations to develop a program supervision system with YAKL and PEGASE+.

Key-words: program supervision, knowledge-based systems, knowledge description lan-
guage, inference engine

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Pilotage de programmes : manuel de référence et
d’utilisation de YAKL et PEGASE+

Résumé : Ce document décrit les concepts et les outils que nous avons développés pour la
tache de pilotage de programmes. La premiére partie est un manuel de référence qui introduit
les concepts de cette tache, ainsi que le langage de description et le moteur d’inférence
que nous proposons pour la réaliser. La seconde partie est un manuel d’utilisation qui
détaille le langage YAKL et le moteur PEGASE+. Cette partie propose aussi des exemples et
des recommendations méthodologiques pour développer un systéme de pilotage en utilisant
YAKL et PEGASE+-.

Mots-clés : pilotage de programmes, systémes & base de connaissances, langage de des-
cription des connaissances, moteur d’inférence

YAKL and PEGASE+ Reference and User Manual 3

Foreword

This document deals with concepts and tools in program supervision.

The reference manual introduces the concepts of the program supervision task as well as
the proposed language and engine to achieve this task.

Program supervision is a task that is usually achieved by a human being, and which
can be automated by software tools. This task implies to manipulate concepts, such as
data, programs, sequences of programs, etc. The task is presented in chapter 1. We have
gathered the useful concepts in an abstract general model which thus describes the “program
supervision ontology”. The model, detailed in chapter 2, also underlines the main reasoning
phases that are applied while performing the task of program supervision. In order to
describe and manipulate the abstract concepts, we need a tractable representation, i.e.
some syntax. The syntax is a means to conveniently describe the concepts existing in the
theoretical model. The YAKL language introduced in chapter 3, provides a syntax for the
concepts in our model. It is easy to read for a human being and an automatic parser
has been developed that translates it into computer data structures that can be managed
by software tools. In our approach to program supervision the tools are knowledge-based
systems engines that mimic the strategy of an expert in the use of the programs. An engine
performs all the reasoning phases identified in the model. One particular engine, named
PEGASE+, is detailed in chapter 4. Its algorithm is in charge of the reasoning and the
controlling of the structures, according to the underlying model.

In the user’s manual part, chapter 5 presents the full syntax of YAKL and the require-
ments for the parser/translator, and chapter 6 summarises methodological recommendations
to develop a program supervision system with YAKL and PEGASE+. Chapter 7 illustrates
on examples how the methodology can be applied and chapter 8 gives a simple complete
example of a knowledge base. Chapter 9 gives an overview of the graphic user interface
that is provided to the experts to browse and modify a knowledge base, as well as to trace
an execution of a knowledge-based system. Finally, chapter 10 provides information about
how to install and use all the tools. Two appendixes are added for more information about
YAKL denotational semantics and about the list of possible error messages that may happen
during parsing of YAKL source files.

RR n° 5066

Sabine Moisan

INRIA

YAKL and PEGASE+ Reference and User Manual

Part 1

Reference Manual

RR n° 5066

Sabine Moisan

INRIA

YAKL and PEGASE+ Reference and User Manual 7

Chapter 1

The Program Supervision Problem

The use of existing libraries of programs has become a critical resource in many dis-
ciplines. Several different libraries of programs have been developed in domains like signal
processing, image processing and scientific computing. These libraries consist of a large
number of complex programs, written by specialists in one of these particular domains and
often applied by non-specialists in these domains. To achieve a particular goal, several pro-
grams have to be organised in a plan and their execution has to be monitored in order to
perform the best possible treatment. Using such libraries requires both extensive experience
with the use of the programs and detailed knowledge of the overall task for which they are
applied. Usually, given only the library of programs, a novice is unable to solve the complete
processing task.

1.1 Motivations

Programs are often viewed as limited to source or object codes. But an effective long term
management, should also take into account attached knowledge as diverse as knowledge
about the purpose, the scientific foundations, the intended applications, the conditions of
applicability, the results of past tests, the know-how of everyday end users, etc. This ver-
satile knowledge has been accumulated over the years (the life-time of the programs) and
is scattered among different people, who are “sources” of knowledge about programs, either
because they know the theory behind the code, because they have run the programs on
numerous data, or because they have written or modified the code. Moreover, not only
individual programs but also useful combinations of several programs to perform complex
tasks are part of the knowledge. Even deep mining into the source code of programs does
not provide enough information. Long term management and utilisation of such libraries
requires different types of know-how ranging from an extensive experience with the day-to-

RR n° 5066

8 Sabine Moisan

day use of the programs to a detailed knowledge of the physical process or mathematical
structure they implement.

Indeed, the programs and their use belong to a company “patrimony” that should not
be lost and that should be easy to re-use and to maintain. That is why companies need to
keep track of all the necessary skills for the optimal use of programs, for both user assistance
and knowledge management purposes. As an answer to this issue, we propose an approach
based on:

e A conceptual model for experts, designers and users of programs allowing them to
communicate about programs and their use with a unified terminology (based on
generic concepts, such as data, programs, sequences of programs, data flow, etc.).
Such concepts are recurrent and can be gathered in a general ontology;

e A descriptive knowledge description language to represent and manipulate abstract
concepts. For this purpose, we have defined YAKL, an open language which provides
experts with a user-friendly syntax and a well defined semantics for the concepts in
our model;

e Computer tools to ensure the consistency of the expressed knowledge, to operationalise
it into computer data structures and to produce effective systems to help run them
(semi)automatically, provided that all the necessary knowledge is properly formalised

Techniques of program supervision have a twofold objective: both to favour the capitali-
sation of knowledge about the use of complex programs and to operationalise this utilisation
for users not specialised in the domain.

The management of programs is generally performed by a person (termed the expert in
the following) and it relies on a large amount of knowledge. Not only the code lines, but also
the knowledge about how to run programs, how to evaluate their results, how to tune them,
how to combine them for higher level computations, etc. is necessary. Thus, when experts
-who have this know-how- are not available or when they retire or leave, it is necessary to
keep this processing knowledge in an understandable and possibly operational form. Such
knowledge is seldom made explicit in documentation and cannot be found in source codes’.

1.2 Analysis of the Program Supervision Activity

When analysing the activity of using a number of complex programs for an applicative
purpose, independently of the problem of the application (i.e. the goal of the user and the
semantics of the data), it appears that a lot of problems come from the processing itself.
Given a set of data to process and a set of programs applicable on the data, the first point
is to understand what each program does, i.e. build a model of the necessary concepts, such
as programs, data, and so on. Afterwards, since a single program is not usually sufficient

11t should be noted that explicitly clarifying such knowledge also makes redesign and modification of
codes easier.

INRIA

YAKL and PEGASE+ Reference and User Manual 9

to solve a complex processing request, the end-user must figure out which programs can be
combined together and how. That means knowing how to choose which program should come
first, then which ones may follow, and so on to eventually build “program combinations” that
achieve an application goal.

Moreover, when multiple combinations are possible some can be preferred (for example,
depending on the adequacy of program features with respect to the data at hand).

Then, to execute a chosen combination, the user has to actually run the programs, which
implies knowing their precise calling syntax, together with their usual parameter values, the
type of input they accept, and the type of output they produce (because the latter will
become inputs for the following programs in a combination). Internal data-flow managing
between programs may become very difficult to handle, e.g. if data are to be dispatched
among different programs. Finally, if at any point of execution, the current results are not
satisfactory, the user must infer which previously executed program is faulty, whether it can
be re-run with new parameter values and how to compute the new values, or whether it
must be replaced by another program.

Every end-user can not have such a deep understanding of the program semantics and
syntax. One possible solution to this problem is to use a tool that transparently manages the
processing complexity, in order to automate the easy reuse of the programs. Among different
techniques for reuse, we propose program supervision techniques which aim at capturing
the knowledge of program use in order to free the user from the processing details. The
objective is to facilitate the automation of an existing processing activity, independently
of any application. This means to automate the planning and the control of execution
of programs (e.g., existing in a library) to accomplish a processing objective, where each
program computes one step of the processing. Using a program supervision system, a user’s
input request produces as output the executions of the appropriate programs with their
resulting data.

1.2.1 Users of a Program Supervision System

A program supervision system typically addresses two kinds of users, experts and end-users.
The expert knows the libraries’ programs, so develops knowledge bases. For this purpose
experts can use a problem solving environment containing the basic knowledge representation
and reasoning structures. This manual is dedicated to experts building knowledge bases,
using the problem-solving environment associated with PEGASE in LAMA.

An end-user can benefit of all the expertise about the utilisation of a set of programs,
through the resulting knowledge-based system. He/she will actually use the system to solve
a problem, without having any expertise about the algorithmic details of the programs.
The only thing to do is to define the problem and the program supervision system solves it
autonomously or advises what are possible solutions. The end-user can then concentrate on
the application objective, without being distracted by processing problems. Note that the
end-user is not necessarily a human-being but can also be a software module, as is the case
with an autonomous system.

RR n° 5066

10 Sabine Moisan

1.2.2 Our Approach to Program Supervision

Instead of developing each KBS from scratch, we design engines, independent of specific
applications, but yet dedicated to the particular task of program supervision. A program
supervision environment, associated with the engine, is used by a specialist of a library of
programs to build a knowledge base. The result (i.e. the engine plus the knowledge base
plus the library of programs) is a knowledge-based system for program supervision which
can be utilised by an end-user to run an application. Program supervision is a very general
problem,; and program supervision techniques may be applied to any domain where complex
processing is necessary and where each sub-processing corresponds to a suitable chain of
several basic programs. To tackle this generality, we provide both knowledge models and
software tools which are independent of any application and of any library of programs. We
want them to be both general (i.e. independent of application domains and programs) and
flexible, which means that the lack of certain type of knowledge has to be compensated by
powerful control mechanisms, like sophisticated repair mechanisms. The goal of the model
and of the proposed tools is to allows experts to “package” a raw code into an “informative
module”, which contains the knowledge on how to run it, how to evaluate its results, how
to tune it, etc. It can be viewed as encapsulating programs, adding layers of different kind
of knowledge to source codes: (syntactic, strategic and semantic), as shown in figure 1.1.
Syntactic knowledge consists of calling syntax, order and type of input/output arguments,
or even information such as operating system or memory required. Strategic knowledge
corresponds to the way to assemble programs for complex tasks. Semantic knowledge is the
specialist’s know-how about the use of the programs and the decisions that should be made:
e.g. what are the discriminant characteristics of a program, how to perform result evaluation
or failure handling. Such packaging enhances the program with all the necessary knowledge
to use and re-use it in different situations, to document it and to help maintain it. In this
way, the specialist’s reasoning knowledge may be (partially or fully) integrated. The result
is understandable and reusable by other people in addition to the specialist who designed or
implemented the code. Different categories of knowledge may be differentiated to perform
program supervision: knowledge about the application domain, about the programs of a
particular library as well as about the expertise domain (image processing for example) or
about the problem solving strategy.

Such a module is understandable by other persons than the specialist who designed and
implemented the code, and different modules can be connected in various ways for more
complex tasks.

More formally, our model is based on a set of argument types and a set of operators.
For a particular application, 2 denotes the set of available operators and Y the set of their
input and output argument types. Each operator w € Q is represented by: (Z., O., P.),
where Z,, (resp. O,) C Y is the ordered set of types of w input (resp. output) arguments
and P,, the “protocol of use” related to w (i.e. the semantic knowledge, in the form of a set
of inference decisions to manipulate the operator). For the strategic knowledge, the model
provides several composition operations: sequence, alternative, parallel, iteration, etc. to
recursively organise operators into more abstract ones.

INRIA

YAKL and PEGASE+ Reference and User Manual 11

raw code

syntactic layer

i/lo specifications (data, parameters, formats),
command-line synatx

semantic layer

characteristics, sub—-modules selection/sequencing,
parameter tuning, result evaluation

strategic layer
failure handling strategy, operating mode, etc.

Figure 1.1: Program supervision provides a suitable framework for packaging raw code using
different types of knowledge. Conceptually, codes are wrapped with layers of syntactic,
semantic and strategic knowledge to form modules. This can be done in a recursive fashion
for more complex tasks.

1.2.3 The LAMA Platform

To implement different program supervision systems, we have developed a framework, namely
the LAMA environment [Moi98]. It is devoted both to knowledge base and inference engine
design. It integrates ontological as well as problem-solving models. The task ontology
corresponds to templates for knowledge base contents; it is implemented as a library of
re-usable components (abstract classes) that can be derived when ontology extensions are
needed. A knowledge base editor that supports YAKL is also provided by the platform. Tt is
parametrised by the grammar of the language. An evolution of the syntax thus corresponds
to a change in the grammar rules. Such an approach allows to reuse existing elements when
possible, to extend them when necessary or to consistently add new ones without modifying
the others. The library of re-usable components also provides instructions for writing the
reasoning strategy for a program supervision engine as an algorithm tuned by a set of crite-
ria. Additional tools are also provided in the environment, such as a knowledge verification
toolkit adapted to the engine in use, a graphical interface both to visualise the contents
of a knowledge base and to run the solving of a problem. Figure 1.2 shows the overall
architecture of the LAMA environment.

The LAMA platform is generic and customisable. It allowed us to define three different
program supervision engines, that propose variants of the general ontology and problem-
solving mechanism and thus implied modifications of the ontology and of the syntax of the

RR n° 5066

12 Sabine Moisan

Expert

End-User Graphical interfaces for
visualisation and execution

Graphical interfaces
for execution Language for knowledge

description (Y akl)
Knowledge Base verificator

Engine Designer

:j r;;gfgce for engine Communications Parser/Trans ator
g of Yaki
I

|
v .

Structures and instructions

Programming language C++/Lisp —

Figure 1.2: Architecture of LAMA and tools for engine designers, experts, and end-users

description language. These engines are briefly described hereafter and the PEGASE+ engine
—which is the most used— is detailled in chapter 3.

The PEGASE+ engine is based on a hierarchical planning method, it was the first engine
to introduce the concept of optional sub-operator in a sequential decomposition and the
corresponding new kind of expert-defined criteria. Another important improvement concerns
the failure handling mechanism, which introduces another kind of criteria (Repair).

The PULSAR [vdE96] engine combines hierarchical and dynamic operator-based planning
methods. This second planning method matches the description of both the type and the
contents of inputs and outputs with operator preconditions and effects. These concepts
are thus better exploited than in PEGASE. In addition, PULSAR introduces unordered de-
composition, a new type of composite operator decomposition and weights for attributes of
argument types.

Finally, the MEDIA engine introduces additional concepts needed for its hybrid and
perspective-based planning method, for example perspectives on data and weak precondi-
tions on operators (preconditions that allow a better fit with data to be analysed and with
objective, but can be relaxed when an optimal solution cannot be reached).

1.2.4 Formal Definition

More formally, we can define the program supervision process as follows:
Given as input:

e P ={p;/i € 1.n } a set of programs p;, (existing executable codes);

o {rp; U rc¢;} a set of representations rp; of the programs p; and of their use, plus a
(possibly empty) set of representations rc; of known combinations c; of the programs;

e {cry} a set of decision criteria;

INRIA

YAKL and PEGASE+ Reference and User Manual 13

e 7 a set of input data (real data, given by the end-user for a particular case);
e £0 a set of expectations about output data (e.g., their type and number);
e C(£0) a set of constraints on expected output data;

it produces as output:

o II ={{pr / pr € P and 3 partial order on pgs }}, a multiset, also named a plan, i.e. a
combination of programs (with a correct data flow and where the same program may
appear several times)

e O a set of actual output data such that:

- 0=1I(7),
— O fulfils £0 expectations,
— C(O) holds.

1.3 Knowledge-Based Techniques for Program Supervi-
sion

Artificial intelligence techniques have been used to embody the expertise on the use of
programs, in order to help a non-specialist user apply the programs in different working
environments. Indeed, a knowledge-based system may manage the library use, freeing the
user of doing so manually. This aid can range from advisory guide level up to fully automatic
program monitoring systems.

Knowledge-based techniques that are used to build program supervision systems achieve
both objectives of operational problem-solving and knowledge capitalisation about program
use. Knowledge-based techniques allow the necessary expertise to be captured and stored
for the support of a novice or an autonomous system performing program supervision. This
know-how once integrated into a knowledge base makes this utilisation possible (even in
robust automatic systems).

First, automatic and efficient operationalisation in the use of programs is necessary
due to the large amount of existing programs that are run by end-users who belong to
different domains. For example, image processing programs are more and more often used
by physicians, biologists, astronomists, etc., or even in automatic processing chains. Program
supervision systems offer non specialist users help concerning the choice, parametrising and
sequencing of programs. They manage the selection of the best programs, their ordering,
the data flows among programs, and they automatically detect problems and backtrack
if necessary to perform repairs. They take into account the specifics of programs, the
intermediate formatting of data, the complex calling syntaxes, etc. A program supervision
system provides end-users with reconfiguration and adaptation capabilities, which are crucial

RR n° 5066

14 Sabine Moisan

to the case of automatic processing chains. In some cases, a dialog may occur with the end-
user -on some points relevant to his/her competence- in order to collect information to guide
the reasoning process (typically to assess the quality of a result).

Second, program supervision techniques also allow experts to constitute a corporate
memory about the use of programs that exist in their company. This fulfils a requirement for
companies. Indeed, when experts -who have this know-how- are not available or when they
retire or leave, the company wants to keep this processing knowledge in an understandable
and possibly operational form. This knowledge is seldom explicited in documentation and
cannot be found in source codes. Explicitly clarifying such a knowledge makes redesign and
modification of codes easier.

1.4 Knowledge-Based Program Supervision System

A knowledge-based program supervision system emulates the strategy of an expert in the use
of the programs. As any knowledge-based system it typically breaks up into a general infer-
ence engine, a knowledge base dedicated to a particular domain, and a fact base describing
a specific problem in the domain (see figure 1.3). In the case of program supervision:

request | program Supervision

User —>I_I system
- / PSengine / Programs
Knowledge Base | = (pp)
O (rg . rcj &cry) @)

Fact Base

Figure 1.3: A knowledge-based program supervision system helps a user to use a set of
programs for solving a request on input data 7 to obtain output data O, as the results of
the execution of a plan II. It is composed of a program supervision engine and a knowledge
base. The knowledge base contains the rp; and rc; representations of programs p; and
combinations of programs c;, as well as the representations of various decision criteria cry.

e The program supervision (PS) engine is application-independent. It may use an auxil-
iary rule engine to process the different expert’s criteria (expressed by rules in PEGASE)
that are used during reasoning. The role of the engine is to use the knowledge stored
in the knowledge base for effective planning, execution and control of execution of the
programs in different working environments. It emulates the strategy of an expert in
the use of programs. A supervision system is able to execute all the different treatment
phases (more or less) automatically. Depending on the systems and on the application

INRIA

YAKL and PEGASE+ Reference and User Manual 15

domain the phases can be completely or only partly automated. To eventually obtain
satisfactory outputs, the reasoning engine explores the different possibilities (differ-
ent reasoning branches) and computes the best one, with respect to expert criteria,
available in the knowledge base.

The usual engine cycle of reasoning phases to solve a user’s problem is described in a
general model of resolution in section 2.2).

e The knowledge base is written by an expert; it depends on the application domain
and on the set of programs that is modelled. Achieving program supervision requires
a clear description of the knowledge associated with programs and how they should
be applied to solve a problem. The descriptions have to be as close as possible to the
experts model, to facilitate knowledge acquisition. They should also be sufficient for
the engine to select the programs, to initialise their parameters, to manage non trivial
data-flow, and to combine the programs to produce a satisfactory plan depending
on the input data, constraints, and request. The knowledge base encapsulates this
expertise on programs and processing, i.e. knowledge about the correct use of a
library of programs. This primarily includes descriptions of the programs and of
their arguments, but also expertise on how to perform automatically different actions,
such as initialisation of program parameters, assessment of program execution results,
etc. Such automatic actions provide the final system with flexibility and robustness
against changes of situations. A general model of knowledge for program supervision
is presented in section 2.1. Note that even in a given domain there is no unique way
of modeling the knowledge. See YAKL documentation for details on how to describe a
knowledge base. It should be noted that during the reasoning process, the knowledge
base is not modified.

e Once the knowledge-based system has been generated from the expert’s knowledge base
and the engine, the end-user only has to provide the system with information about
the data instances of the current problem to solve and an abstract goal to achieve
(among those accepted by the system). The fact base hence depends on the end-user’s
problem and contains the data instances describing this problem and all the necessary
environmental information. During the reasoning of the knowledge-based system some
data in the fact base may be modified or some other added (created as result of the
execution of operators).

In addition to these usual components, a program supervision system includes the library
of executable programs. Two kinds of interfaces are also added to this architecture: a
(graphical) user-interface and a communication interface between the KBS and the library
of programs.

RR n° 5066

16

Sabine Moisan

INRIA

YAKL and PEGASE+ Reference and User Manual 17

Chapter 2

Program Supervision Model

We have identified the important concepts involved in a program supervision process.
These concepts have been modelled from the point of view of software reuse as well as from
the point of view of program supervision in data processing and artificial intelligence, in
order to get the most widely usable representation. This chapter sketches the proposed
model.

2.1 Proposed Knowledge Model in Program Supervision

The knowledge model defines the structure of program descriptions and what issues play a
role in the composition of a solution using the programs. It is thus a guideline that enables
to represent programs to be re-used and a guideline on how to re-use them. A description
therefore should not only describe a program but also the information that is needed to
apply it in different situations.

2.1.1 Model Ontology Summary

In this section we define the terms we will be using in this model. To achieve effective mod-
elling of program supervision, we first define an ontology which contains general concepts,
such as data or programs. This ontology provides experts with “patterns” (or reusable tem-
plates) that they will instantiate with respect to a domain!, thereby obtaining a domain on-
tology. For example, if image processing is the domain, they may obtain an image-processing
ontology containing the description of images and image processing programs. Refining a
step further, they may even focus on a particular application, such as flaw detection; in this

1 An application domain refers to the object (focus of cognition) of the programs, for instance mathematics
or image processing are possible application domains.

RR n° 5066

18 Sabine Moisan

case they obtain an application ontology, e.g., containing the definition of artefact images
and specific flaw detection programs.

We have identified the concepts that play a role in program use and modeled them in
order to get the most widely usable representation, independently of any particular domain.
As a result we propose guidelines that enable the representation of programs and issues
that play a role in the composition of a solution using the programs. It is thus also a
guide on how to (re-)use them. Since the model presented here is intended to be indepen-
dent of any implementation, we have chosen general terms to name the common concepts
involved in program supervision. The terminology we have chosen is the result of an anal-
ysis [vdEvHT95, CMMO98]| of many existing systems related to program management that
we have either developed or closely studied. Even if each system has its own vocabulary,
some terms (like “operator”) are widely used. The next sections define the concepts of the
proposed general ontology and their concrete representation in YAKL. The most important
concepts are the operators, with their arguments and attached criteria.

e Operators (see section 2.1.2) perform actions and manipulate data.

— Primitive operators correspond to programs;

— Composite operator correspond to known combinations of operators that solve
abstract processing step;

e Arguments (see section 2.1.3) are attributes of supervision operators.

e Attached to operators, various expert criteria (see section 2.1.4) are used to describe
decisions during problem solving.

e Data and domain objects (see section 2.1.5) contain all necessary information on the
problem of the end-user.

e Abstract functionality expresses an objective to achieve (see section 2.1.6).

o A request (see section 2.1.6) express a user’s query, i.e. a functionality to achieve and
the data of the particular case to work on.

All these concepts are interrelated (see figure 2.4) and will be used by the problem solving
mechanism (see section 2.2) of a system, to produce as result a plan (see section 1.2.4 and
figure 1.3), consisting of a partially ordered list of (primitive) operators to be executed.

This approach provides experts with guidance for knowledge representation. The ontol-
ogy helps making explicit the role of knowledge elements in program supervision (such as
parameters) and allows them to identify missing or irrelevant knowledge (for instance lack
of argument setting).

The following sections detail the concepts in the ontology.

INRIA

YAKL and PEGASE+ Reference and User Manual 19

2.1.2 Supervision Operators

Supervision operators are used to define elements which perform actions and manipulate
data. They represent either concrete programs (primitive operators) or abstract processing
(composite operators). Both have input and output arguments (data or parameters). Both
kinds of operators also encapsulate various criteria (which may be represented by rule bases)
in order to manage their input parameter values (initialisation criteria), to assess the degree
of quality of their results (evaluation criteria on output data), or to react in case of bad
results (repair criteria). Several operators (of both types) may have to be applied to achieve
one single user’s abstract processing.
Their common representation includes (most items are optional):

e An optional reference to an abstract functionality —or processing objective— through
the name of a Functionality object previously defined, i.e. information on "what
is the operator for?" (e.g. “factor estimation”, or “segmentation” may be defined as
functionalities in image processing). A connection with a functionality is only necessary
for those operators that will be able to answer a user’s request.

e Optional characteristics: a symbol list describing non functional characteristics of an
operator, known by the expert (e.g. “slow, resource consuming”),

e Information on arguments, including their names, types, ranges or means to compute
their value (for input and output arguments, i.e. “on what does it acts?”);

e Pre and post conditions are tests which have to be checked before and after the execu-
tion of an operator. Preconditions apply on input data and state whether the operator
is applicable. Postconditions apply on output data and state what should hold after
the application of the operator. They may be used as clues during dynamic planning;
conditions are described by expressions referring to slot values of data arguments (or
domain objects);

e Expected effects describe what the operator achieves and what its side effects are on
the output, after execution, independently of which data the operator is applied on.

e Various criteria to specify the reasoning which is made on operators, such as initiali-
sation and adjustment of arguments or evaluation of the performance of the operator
(correctness of the results).

Supervision operators representing concrete programs are referred to as primitive op-
erators. In addition to this common information, primitive operator descriptions contains
all the information needed for the effective execution of the program (including its calling
syntax). The execution of a primitive operator corresponds to the execution of its associated
program, provided that its execution conditions are true. An abstract view of two primitive
operators is shown in figure 2.1.

Composite operators are the representations of higher level operations. They don’t have
attached operational actions but they break down into more and more concrete (composite

RR n° 5066

20 Sabine Moisan

Primitives rp;
Functionality | image thresholding alignment of genomic
sequences
Input
Data imagel to threshold . genomic sequence
. genomic bank
Parameters | threshold . percentage of identification
. coeff. of matching
Output image2 thresholded resulting file
Preconditions | noise imagel =Gaussian
Call cd imagel.path; blast bank sequence
muls -s threshold image2 | percentage...

Figure 2.1: Abstract view of primitive operators in two domains: image processing and
genomic analysis. A primitive operator may achieve a functionality (e.g., thresholding). it
has input and output arguments, and preconditions, in order to execute (e.g., on input data
format). Its calling syntax will be instantiated at execution time with the actual values of
arguments.

or primitive) sub-operators. They therefore correspond to decompositions that are usually
predefined by the expert in the knowledge base. The usual types of decompositions are spe-
cialisation (or alternative), sequence, parallel, and iteration. In all cases the sub-operators
in a decomposition may in turn be either primitives or composite ones. Since several opera-
tors can concretely realise one abstract functionality the specialisation decomposition type
provides a way of grouping operators into semantic groups corresponding to the common
functionality they achieve. This is a natural way of expression for many experts because it
allows levels of abstraction above the level of specific operators. The existence of these alter-
natives leads to a richer and more flexible knowledge base, with a wider range of applicability.
In a sequential decomposition some sub-operators may be optional. These decompositions
-at different levels of abstraction- must end with primitive operators. A composite operator
is therefore refined into its sub-components. In addition to the common information, the
way to refine a composite operator is expressed by:

e Control information about the type of decomposition into sub-operators,
e References to the sub-operators (e.g., by their names)

e Data flow information between a father operator and its sons and data flow between
sons in a sequential decomposition.

e Additional criteria (for choices, optional applications of sub-operators, and repair strat-
egy)

INRIA

YAKL and PEGASE+ Reference and User Manual 21
l—_rl Composite (rc;)
SEQUENCE

ITERATION TERNA

i

SEQUE PARALLEL

Prlmmve I:I
(rpi)

Prograrrs Programs Programs Programs
®) ®) ®) ()

Figure 2.2: A composite operator and its sub-operators. Composite operators are repre-
sented by white squares, while primitive ones are represented by grey squares ones. In this
example there is a sequence at first level, composed of another sequence, an iteration, an
alternative, and a parrallel. Primitive operators encapsulate programs, which may belong
to different libraries.

2.1.3 Arguments

Arguments are associated with operators (primitive or composite) and with functionalities.
They play an important role because many decisions (e.g., the selection of a program) are
based on the information that arguments provide. This is particularly true if processing is
data-driven, as in image processing. An operator with an attached functionality must have
at least the same number of arguments, with the same type (and for the moment also the
same names) as its functionality, but it may have additional ones (more parameters, for
example).

We differentiate two categories of arguments, data and parameter arguments. Data
arguments have fixed values which are set for input data (e.g., an input raw image), or
computed for output data (e.g. an output segmented image). Parameter arguments are
tuneable, i.e. their values can be set by means of initialisation criteria or modified by
means of repair criteria. Parameters are always input arguments. The initial input data are
provided to the system by the user in an initial request.

Output data arguments are computed during the reasoning process All arguments (but
preferably output data) can be “assessed” by means of evaluation criteria, and these judge-
ments drive the process of result evaluation and parameter adjustment.

2.1.4 Criteria

Finally, different types of criteria can be attached to operators. There are common criteria
attached to both composite and primitive operators (initialisation, evaluation, adjustment
and repair). There are also additional criteria defined for a composite operator (choice, op-

RR n° 5066

22 Sabine Moisan

tionality). The criteria are used to decide how to choose among alternatives, how to initialise
input arguments, how to evaluate results (output data), how to adjust the processing with
the determination of new input values for programs or the selection of other programs, and
how to repair in case of bad results. Criteria provide a program supervision system with
flexible reasoning facilities.

Common criteria

These are criteria common to composite and primitive operators. For each operator an
expert may define four kinds of criteria.

e Initialisation criteria contain information on how to initialise values of input arguments,
before executing the current operator.

e Evaluation/assessment criteria state the information on how to assess the quality of
the selected operator’s actual results after its execution. The operator results could not
be foreseen during planning but only determined after execution. Evaluation criteria
allow to detect and diagnose a problem?.

e Adjustment criteria express a way to locally repair a problem by re-running an operator
with modified parameter values, after a negative evaluation. Parameter adaptation
can be performed by any method provided by the expert (see page 46 for details in
PEGASE+).

e Several trials and errors are often necessary to obtain correct final results. A failure
handling mechanism (or repair mechanism) is necessary to fix the possible problems.
It is performed either locally inside an operator (by adjustment criteria in PEGASE)
or non-locally by message transmission to another operator in the plan. In PEGASE+
repair criteria, along with adjustment criteria, are assumed to describe a complete
strategy of repair and of diagnosis propagation in a hierarchy of operators after a
negative evaluation (see page 45 for details in PEGASE+).

Criteria for composite operators
For a composite operator an expert may define other specific criteria:

e Choice criteria are attached to composite operators with a specialisation decomposition
type. They select the operator(s) which is (are) the most pertinent among all the
available sub-operators, according to the data descriptions and the characteristics of
the operators. This kind of criteria is used for planning purposes.

¢ Optionality criteria are attached to composite operators with a sequential decomposi-
tion type with some optional sub-operator(s). They decide if an optional sub-operator
has to be applied depending on the dynamic state of the current data.

2In Prcask the diagnosis is expressed as a symbolic judgement, usually on a parameter value.

INRIA

YAKL and PEGASE+ Reference and User Manual 23

Figure 2.3 shows a high-level view of the main types of criteria, with their typical condi-
tions and actions. Several rules of each type constitute a rule base that contains the expert’s
know-how on particular reasoning decisions. These are only examples and many other types
of conditions and actions are possible for each kind of rule (see YAKL reference manual
chapter for details).

Typical rules for criteria

Choice Initialisation
If If

Object attribute a has value v Object attribute a has value v
Then Then

Use program p Set parameter p to value vl
Assessment Repair
If If

Result r has property p Operator of has problem pb
Then Then

Declare problem pb for 02 Transmit problem pb to operator 02

Figure 2.3: Abstract view of the most usual criteria, shown in the form of inference rules
(with a pseudo natural language syntax). Several rules of each type constitute a rule base
that represents the experts’ criteria.

2.1.5 Data and Domain Objects

Data and domain objects correspond to the description of data used by the programs and
of some application domain concepts which may influence the program supervision process.

Data and domain objects are stored in a base of facts (fact base) and they contain all nec-
essary information regarding the user’s program supervision problem. The data description
in the knowledge base plays an important role in program supervision because many deci-
sions are based on the information that data provide. This is particularly true if processing
is data-driven as in image processing, for example.

Concerning domain object, the purpose is not to provide a complete domain description
of objects involved in the application, but only of those which could influence the supervision
process. The domain objects are highly dependent on the application domain.

2.1.6 Functionalities and Requests

A functionality allows to group together all the operators achieving the same abstract func-
tion (4.e. “thresholding” in image processing). Its description only mention compulsory
inputs and outputs to perform the function. Requests are queries for an abstract functional-
ity on particular data, under particular constraints. They are the means for the end-user of

RR n° 5066

24 Sabine Moisan

a knowledge-based system to describe the initial problem. The aim of a program supervision
knowledge-based system is to respond to requests coming either from human end-users or
from another software system.

2.1.7 Interrelations of Concepts

The ontology not only defines the concepts but also their relationships. Figure 2.4 sum-
marises the main concepts of the model that have been presented in the previous sub-
sections and shows their relationships. It is an abstract, simplified view in the form of an
UML (Unified Modelling Language) class diagram.

* drefers to
% input data « SUperViS‘On
Argument |, i nput paranmeters< Operator g?mpi .
% output data <« 1..n 4] Criteria

* sub-operators

1..n

optionalit
criteria

achi eved b
> A

hoi ce
criteria

4 01 sIisjal

Request |-2ked 19} Functionality

Primitive Composite

calling syntax data flow
requestl Z%

relation (oriented) Sequence Alternative
<>— conposition
—l> speci al i sation

-======> ipstantiation

i <<instance of >> *

Domain Object

Figure 2.4: Relations between concepts in the ontology.

Most of the relations are “one to many”, e.g., one supervision operator is connected to
many input data (in UML notation, * denotes 0 or more) and to 0 up to 4 common criteria
(as presented in section 2.1.4): since no criteria of any kind is compulsory, an operator may
have no criteria at all. In the same way, a composite operator is connected by a composition
relation (denoted by a diamond) to several (at least one) sub-operators. Not all the possible
types of composite operators with respect to the type of their decomposition are represented
in this simplified view (only sequence and alternative types are because they are the most
commonly used). A primitive operator is a leaf of the hierarchy.A request and a functionality

INRIA

YAKL and PEGASE+ Reference and User Manual 25

are connected together. A functionality is itself connected to all operators that can achieve
it, because a functionality corresponds to an abstract processing objective and may therefore
be achieved by several operators. Each operator has in/out arguments and attached criteria
(which may refer to the operator arguments and/or to significant domain objects).

2.2 Model of Problem-Solving Mechanism

All introduced concepts are managed by a problem-solving mechanism, which is also dedi-
cated to the program supervision task. In parallel with the specification of the general ontol-
ogy described above, we have developed a general problem-solving mechanism (or method)
for program supervision. This mechanism is implemented in a program supervision engine.
The role of the engine is to exploit knowledge on programs in order to produce a plan of
programs that solves the user’s problem (as shown in figure 1.3). It mimics the strategy of
an expert in the use of programs. The reasoning engine explores the different possibilities
and computes the best one, with respect to available concepts descriptions.

First, the solving of a program supervision problem starts with a user’s request, which
states the functionality, the data on which this is to be achieved, and the context (some
domain object values) in which the problem is being solved. Then the problem-solving
mechanism of a program supervision system’s engine is launched. This mechanism emu-
lates the strategy of an expert in the running of the programs. Different techniques may
be adopted for that purpose, most of them are based on artificial intelligence planning
techniques. It is the case in PEGASE+.

A general model of this mechanism can roughly be decomposed into several phases, as
shown in figure 2.5:

1. Preliminary problem identification in term of a functionality to achieve. This phase
analyses the user’s request in order to translate it into a program supervision concept.

2. Construction proposal (selection and rank-ordering of programs, based on composite
operators, arguments, pre/postconditions and effects). This phase selects and assem-
bles programs, in order to build a (partial) executable series of programs (or even to
generate a code in some systems). It decides on the order of program executions to
solve the user’s problem on particular data.

3. Effective erecution of codes (based on primitive operator descriptions). This phase
runs (directly or via a communication protocol) the programs that have been ordered
by the previous phase after having filled current data and adequate parameter values.
It produces results.

4. Ewaluation of result quality (by evaluation criteria). This phase which detects potential
problems concerning the returned results (depending on the systems a problem may
be an execution error, a lack of information, an incomplete data, or a poor quality
for a result). It may be performed either in interaction with the end-user or it can

RR n° 5066

26 Sabine Moisan

User'sRequest & Data

I Identification I@ Program Supervision Engine
Knowledge @ ‘
Basein Program
Su ervisjong ; @ plan ; @ Plan& Results
p Construction (part of) Execution |=—=results I

Phe r oK

.’ ® @

S e Ll
to correct assessmen Evaluation
BAD

Program
Library

Figure 2.5: Main phases of program supervision: identification transforms the user’s request
into a PS objective, then construction selects and rank-orders the processing programs,
leading to a (partial) plan (1), execution calls the actual programs and produces results (2)
that are passed to evaluation, which returns assessments (3). If the assessments are correct
(4), the planning process can go on. If failures have been detected (5), repair decides which
correcting actions are appropriate (e.g. replanning (6) or re-execution (7)) after tuning some
parameters. Blue bold arrows show the main recursive loop. Plain black arrows show the
repair loops.

sometimes be fully automated thanks to measurement computation, expert-defined
criteria, methods to compare results with reference cases, etc, which are part of the
knowledge base. This phase produces assessments on results. If the results are good
enough, the process can go on.

5. If the assessment on results is negative, it is considered as a failure and a repair phase
decides which corrective actions are appropriate to undergo with respect to the current
proposal and the current problem (using repair and adjustment criteria). This may
lead to either reconsidering the arrangement of programs or changing some parameter
values. This phase may be automatic or interactive. Note that the failure detection
and repair mechanisms stay at the level of program supervision expertise. That is to
say that a failure is detected only when assessing the results of a program execution
and repaired only if the expert has been able to provide knowledge on how to repair
it. If the failure is caused by the program itself (e.g., an incorrect algorithm) or by
hardware problems, program supervision will of course be of no help to repair it.

Each phase relies on the semantics of the knowledge it uses. For example, in phase 3, a
prerequisite to executing a program is to initialise the values of its parameters: it is the role
of the initialisation criteria in our model. We have defined a denotational semantics for all
concepts in the general ontology (see annex A.1).

INRIA

YAKL and PEGASE+ Reference and User Manual 27

The process stops when either a proposal has been accepted as a solution by the user or
by the system (via an expert criteria) or when the system cannot make any other proposal.

According to the type of reasoning process to carry out, there may exist variants of the
phases of this general model, that can also be more or less interleaved. For instance, the
construction phase may be based on a planning Hierarchical Task Network (HTN) or on
operator-based planning techniques. Some systems offer a pure construction phase (often
based on planning techniques) and a postponed execution. When an evaluation/repair
mechanism exists all the phases are often interleaved because the effects of evaluation and
repair must be taken into account during the construction and each construction step may
depend on information that is only available after the execution of previous programs in the
plan. At a lower level, some basic steps can be performed in a more or less complex way.

User Request l

Identification
| — Operators
Y I - = Choice
D=t criteria
Conszructlon‘w\
I~ - <
. ~|~HK Optionality
plan Criteria
(part of)
\ |
Execution te—fp ————|—H Initcifailti:raigon
results
Evaluation e =— = ——— —|—— E(\:ﬂ]tlejfitéon
OK
BAD
Repair fe——————=—"|"[" Repair
i criteria
Reasoning phases KB

Figure 2.6: Relationships between decision criteria and reasoning phases. Dotted arrows
show which type of knowledge base (KB) criteria is used for which reasoning phase.

During the reasoning phases, the problem-solving mechanism exploits the concepts de-
scriptions. All the concepts and especially the decision criteria play different roles and they
are involved in different phases of the problem-solving mechanism in the program supervision
engine. Depending on the engine, the same type of knowledge may not be used the same

RR n° 5066

28 Sabine Moisan

way. For example, preconditions of operators are simply tested in PEGASE before operator
execution while they are used as clues for planning purposes in other planning strategies.

Concerning decision criteria, figure 2.6 summaries their relationships with the different
phases of the reasoning. For example, the execution phase uses the knowledge about the
concrete syntax of the programs and the initialisation criteria, while choice criteria between
supervision operators are related to the construction phase, and the repair phase uses ex-
perts’ repair criteria in cooperation with the engine mechanisms. The richer the knowledge
base is in terms of criteria, the more flexible the related reasoning phase will be.

2.2.1 Formalisation

More formally, we can define the program supervision process as follows:
Given as input:

e P ={p;/i € 1.n } a set of programs p;, (existing executable codes);

e {op; U oc;} a set of so-called operators representing the programs p; and their use
(op:), plus a (possibly empty) set of operators oc; representing known combinations
of the programs;

e T a set of input data (real data, given by the end-user for a particula r case);
e £0 a set of expected output data (only their type and number are known);
e C(£0) a set of constraints on expected output data;

it produces as output:

o IT ={pr /k € 1.m, m <= n, pr € P and 3 partial order on pxs }, a plan i.e. a
combination of programs

e O a set of actual output data such that:

— O=TI(T) and
— €(0) holds.

INRIA

YAKL and PEGASE+ Reference and User Manual 29

Chapter 3

Introduction to the YAKL
Language

The objective of YAKL is to provide a concrete means to capitalise in a both formal
and readable form the necessary skills for the optimal use of programs, for user assistance,
documentation, and knowledge management in a company. First, a readable syntax facili-
tates communication among people (e.g., for documenting programs) and, second, a formal
language facilitates the translation of abstract concepts into computer structures that can
be managed by software tools.

YAKL models only what is relevant to communicate about programs and to manipulate
(and run) them, without exposing their code. For this purpose, we define representations of
programs and we provide composition operations, such as sequence or alternative, to produce
higher-level combinations for complex tasks. In the following, we use the general term of
operator for the representations of both real programs and combinations.

3.1 Elements of the Language

Based on the general ontology, we design the YAKL language that offers a concrete syntax
to describe the concepts of the abstract model, at the right level for each development role.
It provides programmers with a way to document their programs, technicians with a way to
note guidelines to appropriately use programs, scientists with a way to annotate programs
and to link them with formulae or theoretical papers (and vice versa i.e. to find programs
connected with the same theory). YAKL is a means to describe the knowledge about a set of
programs, independently of any implementation language, any domain, or any application.
It is used both as a common storage format for knowledge and as a human readable format

RR n° 5066

30 Sabine Moisan

for writing, exchanging, and consulting knowledge. We have in parallel defined a formal
semantics for the language (see appendix A.1).

From an operational point of view, the language can also be translated into computer
structures to produce an executable knowledge-based system. YAKL already captures most
knowledge about program use, even elements which are seldom explicited in other approaches
(e.g., repair strategy). Furthermore it is an open language that can be extended or adapted
to suit different needs.

It should be noted that the language provides a syntax uniquely for the general ontology
(referring to common concepts, such as “program”, “argument”, etc.). Based on it, experts can
build knowledge bases to define and use other kinds of ontologies (domain and application
ontologies mentioned before), which are out of the scope of YAKL (e.g., an image processing
ontology, referring to image processing concepts).

YAKL uses both frame-based and rule-oriented descriptions. Frames are used for opera-
tors or arguments, whereas inference rules are used for criteria.

3.1.1 Operators and Arguments

Operators represent either concrete programs or abstract processing. Both have the same
common information about their input and output arguments and both encapsulate various
criteria in order to manage their input parameter values (initialisation criteria), to assess
the degree of quality of their results (evaluation criteria on output data), or to react in case
of poor results (repair criteria). Several operators (of both types) may have to be applied
to achieve a single user’s abstract processing.

Arguments are represented as operator attributes. YAKL provides them with a frame-
based representation and a hierarchical organisation for argument types.

For instance the YAKL source to define a new argument type (Polynom) for mathematical
processing is defined below, simply as an extension of a file (containing the text of a polyno-
mial system, plus slots containing information about numbers of variables and of equations).
This type will be added to YT and it can be used latter to type operator arguments. YAKL
syntax is close to natural expression, but more structured (keywords are indicated in bold
face). In particular, the frame slots have several optional predefined facets (e.g. range or
default).

Argument Type { name Polynom Subtype Of File
Attributes
Integer name nb_ variables
default 1
Integer name nb_equations
default 2 }

Operators representing concrete programs are referred to as primitive operators. They describe
the programs as “black boxes” known only by information on how they can be used in different
situations and by their input and output arguments. In addition to the common information, their
descriptions contain the information needed for effective execution of programs (including calling

INRIA

YAKL and PEGASE+ Reference and User Manual 31

syntax). The execution of a primitive operator corresponds to the execution of its associated
program.

The structural part of YAKL code to describe an image thresholding operator is given below
(we suppose that a type Image has been previously defined, with a noise attribute). It details the
achieved functionality (thresholding), input and output arguments, a precondition on image noise,
and the calling syntax, which has to be instantiated at execution time with the actual values of
arguments.

Primitive { name thresh
Functionality thresholding
Input Data

Image name imagel comment "original image"
Input Parameters

Float name threshold

default 1

Output Data

Image name image2 comment '"thresholded image"

Preconditions imagel.noise == gaussian
(Criteria omitted ... see 3.1.2)
Call

language shell
syntax cd imagel.path ";" thresh -s threshold image2 }

Composite operators represent higher level operations. They break down into more and
more concrete (composite or primitive) sub-operators. They therefore correspond to useful
decompositions that are predefined by the expert. These decompositions at different levels
of abstraction must end with primitive operators. Currently, YAKL offers alternative (|),
sequence (-), parallel (||), and iterative (%) as types of decomposition. In a sequential
decomposition some sub-operators may be optional. Alternative decompositions provide a
way of grouping operators into semantic groups corresponding to the common functionality
they achieve. This is a natural way of expression for many experts because it allows levels
of abstraction above the level of programs. In addition to the common information, the way
to refine a composite operator is expressed by:

e Control information about the type of decomposition into sub-operators,
e References to sub-operators,

e Data flow information between a parent operator and its children (and between children
operators in a sequential decomposition),

e Additional criteria (for choices, optional applications of sub-operators in a sequence,
and repair strategy).

The YAKL frame corresponding to the composite operator multivar of figure 3.1 is presented
below. It uses the previously defined argument type Polynom.

RR n° 5066

32 Sabine Moisan

Composite
poly

/

ALTERNATIVE

multivar
SEQUENCE

|:| Primitive

ASolve / maglesb]ve Com'p"ute_dim ."'.‘SO|Ve

Ty Ty 3

Figure 3.1: Example of mathematical operators. Composite ones are represented by white
squares, primitive ones by grey squares. In this example, there is an alternative at first level,
composed of another alternative and a sequence.

monovar

Composite Operator { name multivar
comment "solve polynomial systems with nb. variables >1"
Input Data Polynom name Sy
Output Data Polynom name sol
Preconditions Sy.nb_variables > 1
Body compute_dim - solver (- stands for a sequence)
Distribution (data flow parent-children)
multivar.Sy / compute_dim.PSin
multivar.sol / solve.sol
Flow compute dim.PSout / solve.Sy (data flow among children) }

3.1.2 Criteria

Different types of criteria can be attached to operators: common criteria attached to both
composite and primitive ones and additional criteria for composite operators only. Criteria
represent the dynamic knowledge about decisions (e.g., how to choose among alternatives
or how to adjust the processing with the determination of new input values for programs or
the selection of other programs). Criteria provide a system with flexible reasoning facilities.
For the time being, the criteria are represented in YAKL by specialised rule bases (groups of
rules) which are attached to operators. Initialisation of parameters, result evaluation, repair
and adjustment rule bases can be attached to all operators, while choice and optional criteria
are specific to composite ones. The locality of the criteria allows each piece of knowledge to
carry its own decision knowledge with respect to its role in the processing and the kind of
information it has access to.
The external form of a all kinds of rules is:

INRIA

YAKL and PEGASE+ Reference and User Manual 33

Let declarations
If premise
Then conclusion

which means: “if the situation described by the premise, after correct instanciations of
declarations, is recognised, the rule engine will launch the corresponding conclusion”.

The declarations part declares typed free variables that could be used in premise or
conclusion. Free variables refer to object in the fact base and their types are types of the
fact base (domain object usually). Regular local variables can also be declared.

The premise part checks some properties of global variables or of the free variables in
declarations that correspond to a typical situation with respect to the expert knowledge.
Several combinations of objects may verify the premise conditions (these combinations are
called instantiations of the rule).

The conclusion part is composed of actions that have to be performed if the situation has
been recognized by the premise. They consist of object slot value modifications of objects
in the fact base, creation or destruction of objects, or, in program supervision, argument
modifications of supervision operators. Actions can also modify the control of reasoning
(e.g., decide to stop executing an operator) (see chapters on YAKL for syntax details).

As an example, below is the YAKL form of the choice criteria of operator poly, that
decides whether to choose multivar or its alternative monovar:

Choice criteria
Rule { name choice_mono
If PS.nb_ variables ==
Then use operator monovar }
Rule { name choice_ multi
If PS.nb_variables > 1
Then use operator multivar}

3.2 Use of the Language

All concepts of our ontology are to be managed by inference mechanisms relying on knowl-
edge description. YAKL provides experts with a framework to store their knowledge about
programs in a knowledge base. Such a knowledge base contains only information that plays
a role in program management, i.e. descriptions of operators, their arguments, their com-
petence and applicability conditions of operators, their relations, etc.

The YAKL source of a knowledge base can be parsed and eventually translated into
various formats to be processed by computer tools: an inference engine for execution, a
graphical tool for visualisation, a simulator, etc. During the parsing, syntactic and semantic
verifications are performed on the knowledge description: e.g., type checking in assignments,
type compatibility between argument value type and default value or range, warning if
parameters have no initialisation method (default value or initialisation criteria), etc.

RR n° 5066

34 Sabine Moisan

Note that a knowledge base designed with YAKL can potentially be run by several in-
ference mechanisms, provided that it contains the required information for the inferences.
Different inference mechanisms may not use the same knowledge parts or not in the same
way.

The YAKL language has been designed to offer a model-based view of the use of programs
which is easy to comprehend because it conceals implementation or domain-dependent de-
tails. Using this language, experts can express their knowledge at the expertise level, guided
by dedicated representation patterns provided by the underlying ontology. YAKL offers a
high descriptive power convenient for most applications (except for distributed features) and
can be adapted to various needs. Its human-readable form is easily adopted by non computer
scientists, yet it can also be translated into various formats (e.g. XML) in order to facilitate
its interoperability with existing tools (e.g. on the Web). It helps formalise the description
by providing a common language to experts, which is understandable across domains, with
a formal semantics. Thus it enables sharing of knowledge between experts. Moreover, it can
be used in an incremental manner: from simple code documentation to a real knowledge
base for a program supervision system.

INRIA

YAKL and PEGASE+ Reference and User Manual 35

Chapter 4

Inside PEGASE-+

PEGASE+ is an engine dedicated to program supervision knowledge-based systems,
which can automate the choice and execution of programs from a library to accomplish
a processing objective. The PEGASE+ engine provides a HTN (hierarchical-task network)
planner, an execution module, some evaluation facilities and a repair mechanism using repair
and adjustment criteria. It works as a trial and error mechanism until the results are correct.

PEGASE+ is currently the most developed and tested engine that we have. Since 1994,
several knowledge bases have been developed with PEGASE+ in different application domains
[TMC99|. For example, in image processing for automatic target recognition [SMV*99], in
medical imaging [CAM™97], or for satellites images [MMMV96].

4.1 Components of a PEGASE+ KBS

4.1.1 Engine

Following the general model presented in the first chapter, the PEGASE+ engine is in charge
of automatic planning, execution and control of the programs, based on the knowledge
base contents. The algorithm of PEGASE+ is based on hierarchical planning (HTN). Given
as input a user’s request on particular data, PEGASE+ selects the most appropriate path
(depending on the context of application) in its hierarchy of operators (representing possible
plans). The final plan that produces satisfactory outputs is usually not straightforward, it
often results from several trials and errors, performed automatically by the engine. For this
purpose the engine builds a state tree, to be used to backtrack on bad decisions.

A general view of the algorithm of the PEGASE+ engine is shown in figure 4.1, and is
detailed in section 4.2. An ancilliary rule engine in forward chaining is called each time a

RR n° 5066

36 Sabine Moisan

criterion is triggered. This engine is the same for all types of rule and all the rules have the
same general syntax.

use of evaluation criteriato assess

the quality of operator results

use of choice and optionality criteria
to decompose the current operator : :

P opis
Deconposi tion (" whilspis pﬁmitive local N mereeessfeessseend ok
composite ko
Initial ———— Selection ;global i Repair
Sel ecti on of current op : ererannaned, g
EANUN 1101 o) 1 3T H -

use of repair criteriato decide
which kind of repair to apply

Figure 4.1: High-level view of PEGASE+ algorithm

4.1.2 Knowledge Base

A Eknowledge base for PEGASE+ mainly contains operators which are representations of pro-
grams (with descriptions of their data and parameters) and of typical combinations of pro-
grams, as well as criteria to guide the reasoning process. Experts can express their knowl-
edge at the expertise level, guided by a supervision-oriented description language (YAKL,
see chapters 2 and 3).

PEGASE-+ accepts two types of complementary declarative descriptions: structural frame-
based and rule-oriented. Structural descriptions are used for functionalities, operators, data
and arguments, while rules are used for criteria expression.

Structural Descriptions

According to the model, PEGASE+ manages the concepts of Supervision Operators, Argu-
ments, Functionalities, Requests, and Domain Objects. These concepts are implemented by
structured objects or frames.

The frame formalism (as introduced by Marvin Minsky) is used to model both the
knowledge base types and the fact base objects. Frames are useful to represent structured
objects and objects interrelations. They are often used to complement the expressive power
of production rules. Moreover, inheritance may be used to share relationships and properties.

INRIA

YAKL and PEGASE+ Reference and User Manual 37

Frames are complex data structures that represent typical situations or objects, which are
organized according to three levels:

1. The frame level corresponds to the entities being described. It acts as the type of such
entities.

2. The attribute level represents the most interesting characteristics of this entity, with
respect to the problem to solve. Attributes are called slots and correspond to predefined
roles in the situation described, or to sub-parts of composed objects, etc. The existence
of a slot, even if it is empty, is an indication that can be used by the AI reasoning
process. Slots may refer to classical data values such as integers, arrays, etc., or to
another frame instance.

3. At the slot level each slot is described by sub-attributes or facets; facets usually belong
to predefined categories. A particular category of facets are daemons, i.e., reflex
procedures called by the system without user intervention.

In our frame system four categories of facets are predefined for a slot. A facet of each
category is present in any slot although it may be empty (i.e., undefined).

The first two facets simply carry values which must be of the type of the slot value:
they are value (the current value) and default value. The third domain facet represents the
range of definition for the values of the slot. At this time, slot ranges may be of three types:
interval, collection, and specialization. Intervals describe sets of possible values ranging from
a minimum value to a maximum one—this supposes an ordering relation on the value type.
Intervals are usually numerical. Collections extensively provide all possible values in the
domain, and generally no order is assumed. Specializations specify a refined root class for
the value of the slot: any instance of the root class or of one of its subclasses is acceptable.

Of course the value and default facets must fall within the range of the slot. The corre-
sponding check is performed when setting the value and the default value of the slot.

The last facet is an if needed daemon. This daemon is called when the value of the
slot is required by the reasoning process and the wvalue facet is empty. The corresponding
function must have been previously defined by the expert. It computes the value of the slot
based on the current information available. If there is no if needed daemon, the default
value facet is returned if it is not empty; otherwise an error is raised.

Decision Criteria Module

The criteria are implemented by specialised rule bases which are local to operators. PE-
GASE+ incorporates a sub-module implementing a rule engine to process these rules.

In the proposed rule module a rule can be active or not. If it is active, its actions are
executed if and only if its conditions are all true (which means that there is an implicit and
between all the conditions in premise). Several instantiations (combinations of objects that
can instantiate the free variables) imply that the actions are performed as many times as
instantiations.

RR n° 5066

38 Sabine Moisan

The rule engine that runs the rules is currently a simple forward chaining engine. Running
a rule base means running each rule in it which is executable. The conditions in the rule
premise are tested sequentially in the order given by the expert, and the first active one
with a true premise is executed, then the rule is deactivated (i.e. removed from the list of
rules to check), afterwards, the rule engine tries all the other rules, and so on until the list
is exhausted.

In PEGASE+ five types of criteria are accepted. They correspond to five types of rulkes.
To choose between different alternatives the engine uses choice criteria, to tune program
before execution it uses initialisation criteria, to diagnose the quality of the results it uses
evaluation criteria and to repair a bad execution it uses adjustment and repair criteria. The
rules are specialised depending on the type of criteria they belong to, which means that the
accepted vocabulary is different in rules from different types (see chapter 3). The rules often
use information stored in the fact base in domain objects or data.

4.1.3 The Fact Base

The fact base contains facts (instances of data/arguments and domain objects) either given
by the initial user’s request,or asked the end-user during the reasonning, or deduced by the
system. In the initial request the user provides the system with instances of data which are
passed as arguments for the first selected operator.

The data instances are created by the execution of the operators. Data play an important
role in program supervision because many decisions are based on the information they
provide. This is particularly true if processing is data-driven as in image processing. The
instances in the fact base can also contain information on access to real computer data (e.g.,
a File instance contains a path and a basename).

In addition to data arguments of operators, some domain objects may also be used
during reasoning as they provide complementary information. Those objects are highly
dependent on the application domain and can be modeled by the expert in the same way
as data types. Although they may not be manipulated directly by programs, the correct
use of programs may refer to them. The domain object may be abstract ones (such as a
context of use referring to global conditions of processing) or more concrete (such as a patient
object in medical imagery, which stores information about the patient that may influence the
processing of his/her images). The rules can access (read/write) the information contained
in data and domain objects.

The fact base also contains the state tree representing the current reasoning. This tree
holds the history of all modifications on arguments or domain objects, during the execution
of the operators. The failures, backtracks, changes in some values, etc. are stored there,
whence they are available when repair is necessary. They are connected to the descriptions
of arguments and domain objects.

INRIA

YAKL and PEGASE+ Reference and User Manual 39

4.1.4 Connection with real Programs

Programs to be executed are autonomous entities, independent from and external to the
program supervision system. They may run on specific machines or under specific operating
systems.

If programs are modular entities of a local software library, their execution is straight-
forward: the programs are run with current data and adequate parameter values and their
final status is returned. In case of programs arranged within a stand-alone application,
sophisticated communication and synchronisation with programs must be integrated in ex-
ecution phase, following specific protocols. The same goes for distant programs that can
be reached only via the net. Further, a program supervision system can be a distributed
system involving information exchange between its different components and process syn-
chronisation. For all these reasons, we have started to develop a communication manager
that ensures communications within the program supervision system. Components commu-
nicate with each other thanks to messages that are routed by the communication manager,
using a protocole specific to each couple of components. In case the programs to supervise
are autonomous entities that pertain to a stand-alone application, the dialogue between the
engine, the knowledge base and the programs is handled via a proxy mechanism.

This communication manager will evolve in the near future.

4.2 The PEGASE+ PS Engine

The PEGASE+ global inference engine uses a hierarchical planning technique for its construc-
tion phase. A program supervision hierarchical planner works on a hierarchy representing
abstraction levels between operators (abstract/composite and real/primitive ones). A hier-
archical planner first constructs an abstract plan, then refines it for a particular situation.
Hierarchical planning is preferred in program supervision, mainly because the expert often
thinks in terms of abstract plan schemes. The relations between the abstraction levels de-
note mainly alternative (choices) or sequential decompositions. A plan step corresponds to
the execution (or decomposition) of an operator in the hierarchy with a particular parameter
instantiation.

Given a user’s request and a knowledge base, the engine develops an execution plan,
which correspond to the successive expansions of composite operators and execution of
primitive ones. In fact it develops several tentative plans, some of them may be aborted,
due to problems detected during reasoning. The solution plan, if it exists, is produced as a
result of program supervision, as well as the output data.

4.2.1 Main Loop

We are going to detail the main loop of the engine. It takes as input a user’s request and
follows the algorithm sketched in figure 4.2.

RR n° 5066

40 Sabine Moisan

In this figure the pieces of knowledge from the knowledge base that are used at each step
are written in red. It should be noted that the order in which these pieces of knowledge are
used is sometimes fairly different than the order of their declaration in YAKL.

The rest of this section describes each phase of the reasoning process (as presented in
section 2.2) in details for PEGASE+. As shown in the figure, the phases (indicated in dotted
rectangles) of construction, execution, evaluation, and repair are interleaved, because they
closely depend from one another: the results in the one step of construction may influence
the next other step, and a backtrack due to the necessity of repairing implies reconsidering
the current constructed plan.

4.2.2 Identification Phase

The first phase is a preliminary identification phase. In PEGASE+ the identification phase
performs a matching between the supervision operators in the current knowledge base and
a user’s request. It searches the whole knowledge base for (usually composite) operator(s)
which may solve the user’s problem, on the user’s data. The match is based on the func-
tionalities given to some operators by the expert and on the input data (their types and
number, see figure 4.3). The best match is the operator whose functionality corresponds to
the one requested by the user, and which has the same number of input data, belonging
to the same types (or a super-type) as the data provided to the system by the user. One
matching operator is chosen as root node for the next phases.

This implies that functionalities and arguments types have been properly defined by the
expert. If several operators match, the first found is taken (in depth-first search from the
root of the operator hierarchy).

INRIA

YAKL and PEGASE+ Reference and User Manual

Identification of starting supervision operator

using user’s request in/out types
& operators functionalities and in/out types

Construction of solution plan

add starting supervision operator in current plan

:
L]
L]
1
L]
L]
1
L]
' no
L |—= sto the current plan
: ™ |A current operator exists in plan P i's a sol ut ipon)
')
' (i.e. not yet executed)
: yes
L]
]
' test optionality of operator
: using optionality rules | ©Ptional and not applicable
L]
' L_not optional or applicable
[} pmmm———— e E]
' ' Execution !
: 1 | prepare operator = initialise parameters !
: ' using initialisation rules '
L]
' ' or default values '
[] 1 1
(]] + 1
] ' 1
' ' . false '
! ! | test preconditionsof operator ——=st op '
[] ! 1
: : true ;
]] '
1 []
execute program '
: ' real P gusing I-0 relations '
:)
! ; primitive &calling syntax !
' .
' ! / simulation 9enerate script _ .
' ' using -0 relations !
' ! execute operator & calling syntax '
']
E E composite: CAU€S% add sons in current plan !
' ' _ decompose '
: . using et —choose best son !
alternative .)
: : body and flows using choice rules || !
' [
' ! —add son in current plan :
. 1 i '
[] 1 1
[] 1 1
' 1 | execute effects !
1 1 .
' ' using effects !
[} 1 ¥
Lo ! :
' ' . false '
! ! | test postconditions of operator — stop '
1
' e La
' ; true
L] L] . . 1
: ' | evaluate results Evaluation and Repair '
L} L] L]
. , using evaluation | pb, apply repair strategy '
' ' rules repair | - => pactrack in plan s
! ' using repair rules '
' . or re—execute current operator !
' ' using adjustment rules '
L] 1 '
L] L] :
] o omom omommom oo E E E W W W W W M W W M W M W M W M W M W M M M W M M W M W M W M W WM W W o
! * ok, continue
L]
1
L]
L]
]

Figure 4.2: Schetchy Algorithm of PEGASE+ Engine Reasonning

42 Sabine Moisan

User Request }_N

- Functionnality : F1
— Data: D1 type T1

D2 type T2 ‘\ ;%

(T'1 super—type of T1) T2

operators achieving
functionality F1

Knowledge Base

Figure 4.3: PEGASE+ first restricts the search to operators with the same functionality as
the one indicated in the user’s request, then it selects among those the one(s) that have the
same number of arguments, with types compatible with the data provided in the request
(here C).

4.2.3 Construction Phase

The construction phase then selects and assemble operators in order to increment the current
partial plan. This phase performs a depth-first search in an operator hierarchy, starting from
the previously selected root operator (in identification phase). One single hierarchy is chosen
in the identification phase and the engine goes through this unique hierarchy, which must
therefore be complete, to find the best path.

This phase exploits this hierarchy composed of composite operators, of their descendant
and of their attached criteria (used for choices in particular). During this phase, composite
operators are expanded, their sub-operators are scheduled to be processed, and the plan
is refined. To refine a plan Py means to transform it by going one step downwards in the
abstraction levels of the hierarchy. This refinement operation leads to a derived plan, where
each operator is either an operator of Py or an operator derived from an operator of Py by
expansion of composite operators.

Only the current operator in the rank-ordered plan of PEGASE+ is expanded at a time.
First it is initialized (for parameter setting) using the initialization criteria. The expansion
then proceed as follows.

The children of a composite operator with a sequential decomposition type are added to
the plan, in the order given by the expert. If there is an optional sub-operator, it is also added
to the plan along with its applicability condition. The condition will be tested dynamically
just before the execution or the recursive expansion of the optional sub-operator. If the
condition is not met the operator will be skipped.

For a current composite operator with a specialization/alternative decomposition type,
the engine uses the attached choice criteria to select, among all the available sub-operators,

INRIA

YAKL and PEGASE+ Reference and User Manual 43

the one which is the most suitable, according to the data descriptions and the characteristics
of the operators. The syntax of choice rules allows the use of specific functions, such as
use_ operator_(of characteristic) and refuse_ operator (of characteristic). Their effect is
to increase (resp. decrease) the degree of interest associated to the sub-operators. The sub-
operator with the highest degree will be chosen (in case of equality, the first one in the body
list is preferred). The functions that take into account characterisics are less rewarding than
the others (i.e. use operator of characteristic x if it applies to operator op, will increase
less its degree of interest than use_operator op). The sub-operator with the highest degree
will be chosen. In case of equality, the first one in the body list is preferred. A sub-operator
marked as refused will not be considered for the current time (but it may be later if the
reasoning comes back to the choice point after bactrackting).

In a partial plan under construction both composite and primitive operators may appear,
but in the final solution(s), only primitive ones are allowed.

Figure 4.4 shows a simple example of an operator hierarchy. In this hierarchy there are
both primitive (e.g.,), and composite operators that will be expanded during planning

(e.g.,)

Figure 4.4: Phase of construction in PEGASE+: operator 1 is decomposed into its sub-
operators, operator 2 (primitive) is executed, after application of its attached initialization
criteria, then the choice between operators 4 and 5 is performed using the choice criteria,
etc. The (blue) dashed arrows represent the first plan generated by the engine [2, 5, 4].

When all the sub-operators are expanded, and recursively decomposed or executed, the
“effects” of the composite father operator are executed.

4.2.4 Execution Phase

If the current operator to treat is a primitive one, the execution phase runs (directly or via
a communication protocol) the program associated with it.

It starts by setting the values of their input arguments: the data and parameters indicated
in the calling syntax are replaced by their actual values. For parameter initialization, the

RR n° 5066

44 Sabine Moisan

engine first uses the initialization rules, then the default values for setting parameter values.
If some parameters still have no values, the execution is aborted, and the engine stops.

Concerning input data, it uses the data flows: distribution -coming from the father
operator- or flow -coming from brothers. The initial values of data are given by the request,
and passed trough the flows. Some data may come from the output data of other operators,
that is why planning is interleaved with execution and repair phases. Each planning step
may depend on information that is only available after the execution of previous programs
in the plan and the exact form of the plan typically depends on information that is available
at execution time only.

Afterwrds, the preconditions are tested to check if the operator should apply in the
current state, if not the engine stops. The execution itself calls the program !. Depending
on the chosen mode -real or simulation- it either concretely executes the call or only prints
a script, without real execution. The final objective of program supervision is usually the
actual execution of programs, eventhough the simulation mode may be useful, for testing
purposes for instance. After execution, the postconditions are tested. If they do not hold in
the resulting state the engine stops. Finally, the effects of the operator are executed.

4.2.5 FEvaluation Phase

The next phase is the evaluation (or assessment) of the operator results (output data). For
a composite operator, it comes after the processing of all its sub-operators, for a primitive
one its comes just after its execution. Evaluation fires the evaluation rules attached to the
current operator. Their goal is to label the operator as either “correct” or “to be repaired”.
These rules may be either completely automatic (if the expert knows a quantitative way of
evaluating the results) or interactive (if the expert indicates a dialogue with the end-user
about the features of the results). Dialogs with the end-user are predefined by the expert
by means of ask-user functions in the evaluation rules. The evaluation then operates auto-
matically for quantitative evaluation and is performed manually (by the user) for qualitative
evaluation. Sometimes one may need to use programs to evaluate other programs. PEGASE+
does not provide any help to construct these evaluation programs, but thanks to evaluation
criteria a mechanism to use them when they do exist. Moreover a module for curves evalu-
ation is provided to the experts, allowing automation of the evaluations on results, if they
are curves.

In fact PEGASE+ works on results descriptions not on real results. If real results are
stored in files or variables for instance, output data descriptions can collect and store infor-
mation about them (using I-O relations or rules, see chapter 2).

The evaluation rules express judgement (using assess_.. functions) and thus modify
the “judgement” attribute of operators and arguments.

Evaluation in primitive operators are usually difficult, they are easier in composite and
more abstract ones.

n the future it will be possible to specify the kind of execution (local or remote) see section 4.1.4.

INRIA

YAKL and PEGASE+ Reference and User Manual 45

4.2.6 Repair Phase

Finally, if the assessment on results is negative (i.e. if the current operator has been labeled
“to be repaired”, the repair phase calls the local repair and/or adjustment criteria (rule bases)
to decide how to repair it in order to improve the results. This could command backtracks
to previous steps in the plan, depending on the type of decisions that can be reconsidered.
In PEGASE+ there are two main repair actions: re-execution, which takes the current plan
and tries to find better values for tunable input parameters; and replanning, which tries to
find another plan. The repair method is provided by the expert, in repair rules, when he/she
models the program or the complex processing.

Several functions can be used in repair rules to express repair strategies (see also section
7.3.7). They work on an already executed plan that needs some repair. The plan to repair
is composed of a sequence of steps, corresponding to the successive executions/expansions
of operators. The expert’s repair strategy can be divided into several steps: problem prop-
agation (if the current operator cannot repair the problem locally), plan revision (if the
structure of the plan itself and the choices made are questionable), or local adaptation (if
the current operator can repair the problem locally by re-executing with new parameter
values). Problem propagation and plan revision lead to moves in the state tree. Each repair
strategy should end either on a local adaptation, i.e. after moving in the state tree, the
current state corresponds to an operator that has the knowledge to repair the problem by
re-executing itself, or on the execution of a new operator (i.e. not previously in the plan)
which will produce satisfactory results.

E.g., the expert can express that the bad evaluation information has to be transmitted
to a sub-operator or to the father operator in the hierarchy, or to any operator previously
applied. The control then switches to the target operator, whose repair strategy is then ac-
tivated, based on the diagnosis that has been sent to it. The problem must eventually attain
the offending operator, which can repair it by re-executing itself with adjusted parameter
values.

Here are the functions managed by PEGASE+ for these different steps.

For problem propagation:

e send wup transmits a problem to a father operator in the operator hierarchy. In the
example of figure 4.4, this function allows, if the evaluation after execution of step
4 is not correct, to delegate the repair to its father (1). The more global knowledge
associated with 1 will be used to find a better solution. For example, the repair
rules of 1 may express that, since the most sensitive sub-operator is 2, the problem
must be transmitted to it. And consequently, this operator will trigger its own repair
knowledge.

e send_down(childl) transmits a problem to a child (named childl). A father is able
to delegate the repair to one of its children. For example, in the previous case, 1
transmits the problem to 2, by the command send_ down(2). If we suppose that when
2 receives a problem (directly by the evaluation mechanism or by its father) its repair

RR n° 5066

46 Sabine Moisan

knowledge implies a re_ execute action, a new instantiation of this operator will be
re-executed after adjustment of its parameters.

e send_operator(op_name) transmits a problem to any (previously involved in the plan)
operator.

For plan revision:

e Return to the last (temporal order) choice: back_ choice makes the planner return in
the state before the last choice, in order to try another solution. In the example of
Figure 4.4, if the evaluation, after execution of step 4 is not sufficient, back choice
will force the planner to backtrack to a less refined plan, where operator 3 is not yet
refined.

For local adaptation:

e Adjust the current operator: re_ ezecute triggers the adjustment criteria (if they exist)
on the current operator. Ajustement criteria compute a new value for each questionable
parameter, not all parameters must change it depends on the problem detected in
evaluation criteria. Parameters that are not changed by the applied adjustment rules
keep the same value as in the previous execution. Values may be completely changed by
assignments or they may be increased or decreased starting from the current value. In
the last case, the parameter must have a range, because the increase/decrease process
is based on the limits of this range.

Parameters are most often numerical ones, and their value may be increased or de-
creased, according to their adjustment method (which may be changed in rules). Three
of the most common numerical adjustment methods are predefined in YAKL language:
i.e., taking a certain percentage of the original value, adding a constant to the original
value, and splitting the region of possible parameter values into two distinct regions,
and adapting the parameter to the middle of one of these regions (by dichotomy).
But the expert may define new ones, which must respect the expected signature: T
expert_method(T,T,T) where T is the type of the current parameter. For numerical
parameters T is int or double). When the engine calls the method, the first T argu-
ment will be filled by the current value, the second one by the increment/decrement
step and the last one by the minimum or maximum of the interval (only if the range
is an interval). It should be noted that the adjustment method must return a value
that will be added (resp. substracted) from the current one and not the resulting final
value. Indeed the final value is equal to the current value plus (resp. minus) the result
of the adjustment method.

Increasing (resp. decreasing) symbolic or string values, as well as numerical values
that have an enumeration as range, is fixed and predefined in the PEGASE+ engine: to
increase means to take the next value in the range, and the reverse way for decrease.

For other types of parameter values, since there is no admitted semantics on what does
increase/decrease such values mean, the engine does not use the adjustment methods.
The only way to adjust such parameters is to assign them a new value.

INRIA

YAKL and PEGASE+ Reference and User Manual 47

Functions send_up and send_ down have a sense only for hierarchical planners, which is
the case for PEGASE+-.

After an evaluation/reparation, a new line of execution starts (with new parameter val-
ues).

4.2.7 Error Messages

The following messages may happen during the execution of a KBS build using PEGASE+:

"<Engine>: No adequation for initial request: "IDENT

The types and names of in/out data of the current request (named IDENT) do not match with
the ones of any operator in the knowledge base. Check types and names in your operators
and functionality /request.

"<Engine>: No scheme for initial request " IDENT

No entry point has been found in the knowledge base operator hierarchy the current request
(named IDENT) i.e. no operator matches the required functionality. You may have forgotten an
“Achieved by..” line in a Functionality definition and/or a “Functionality ..” line in an Operator
definition.

"<Engine>: "No request - STOP"

No request has been defined in the .yak1 files.

"<Engine>: "Several operators match the funtionality data types of request, first is chosen;
Possible operators are: " list of IDENT

In the case when several operators (whose names aregiven by list of IDENT) in the knowledge
base match the funtionality required by the current request, one is chosen randomly.

"<Engine>: "No Program Supervision base, stop”

The C++ code generation (during parsing) did not produce a correct main program, and no
knowledge base has been defined. This should normally never occur if parsing was successful.

"<Engine>: "Invalid debug level, minimum assumed”
or "<Engine>: "Invalid request number, first assumed”

These messages correspond to an incorrect call to the knowledge-based system executable code
i.e. a command line with arguments out of bounds (e.g. a negative debug level).

"<Engine>: "Stop on exception "IDENT
or "<Engine>: "Unerpected system exception”

These messages may occur when an exeception (a PEGASE+ one or a system one) occurred
during execution. The TEXT is an information about the PEGASE+ function which raised
the exception. This denotes a serious problem.

"<Engine>: "Repair unable to find backchoice operator”
or "<Engine>: "Repair unable to find previous operator: IDENT

These messages may occur during the repair process, when the engine is unable to backtrack
to a given point in the previous reasonning states. Maybe the operator you chose for backtracking
does not exist in the base?.. or has not been executed in the past of the current state?

RR n° 5066

48

Sabine Moisan

INRIA

YAKL and PEGASE+ Reference and User Manual

49

Part 11

User’s Manual

RR n° 5066

50

Sabine Moisan

INRIA

YAKL and PEGASE+ Reference and User Manual 51

Chapter 5

Yakl Grammar

The vaxL language has been developed to allow experts to describe all the different
types of knowledge involved in program supervision, independently of any application do-
main, of any program library, or of the implementation language of the knowledge-based
system (in our case C++). YAKL is used both as a common storage format for knowledge-
bases and as a human readable format for writing and consulting knowledge bases. YAKL
descriptions can be checked for consistency, and eventually translated into operational code.

The language offers two types of declarative descriptions: structured frame-based and
rule-oriented. The frame formalism has been chosen to represent functionalities, operators,
data and arguments, while inference rules are used to express the various criteria that are
applied during the reasoning process. All the rules follow the same general syntax, but each
kind may have its own vocabulary.

This chapter describes in detail the BNF (Bacchus Naur Form) grammar rules of YAKL,
with the following syntactical conventions:

e A grammar rule is represented by:

one-non-terminal : sequence of terminals or non-terminals (maybe empty)

e Alternatives are indicated by a pipe (|);
o YAKL key-words are indicated in bold face: ex: Operator;
e Other terminals of the grammar are indicated in upper-case:

— IDENT denotes a symbol, beginning by a letter or a digit, and that may include
_or digits in the following; Warning: identifiers are interpreted either as names
of arguments of current operator or as domain object names or as variable names.
As a consequence, be careful not to use a variable that has the same name as

RR n° 5066

52 Sabine Moisan

an argument or a domain object (nor of a keyword of the programming language,
like 1long in C++).

— COMPOSEDIDENT denotes a sequence such as IDENT.IDENT.IDENT... which
represents access to sub-sub...-attributes (or methods)of frames, i.e. data, param-
eters, or domain objects; For instance, the syntax <frame_name>.<attribute_name>
allows in a rule to access to the value of the attribute named attribute name,
of the frame named frame_name. The frame may be e.g. an operator and the
attribute a data or a parameter, or the frame may be a domain object and the
attribute one of its own. A call to a method is also possible in composed identifi-
cators (notation: IDENT(...), if IDENT is the name of a method of the frame or
of the sub-attributes just before it in COMPOSEDIDENT), as well as a reference
to an element of a collection (notation: IDENT(INTEGER), if IDENT is the
name of an attribute of type Set, with at least the value of INTEGER elements).

— FLOAT denotes a float number with decimal point;

— INTEGER denotes an integer number;

— STRING denotes any sequence or characters between two ";
— CODE denotes any code source piece in C++;

— SYNTAX denotes a calling syntax for an operator, it may include options (it
corresponds to the line you type in the shell for example).

— LIST stands for a sequence of numbers or symbols, separated by blanks and
enclosed into brackets ([...]).

e Comments and marginal notes explain some points of this grammar.

All along this chapter YAKL source pieces are provided to illustrate the rules when
possible.

5.1 Start
pskb : kb _desc Global KB description, .kb file apart
| import_list del list or ’regular’ .yakl file

arg type def arg instance def
obj type def obj instance def
operator _or_functionality def request def

operator _or _functionality def : operator def
| functionality def

INRIA

YAKL and PEGASE+ Reference and User Manual 53

A program supervision knowledge base description in YAKL is composed of:

o Either a description of the knowledge base as a whole (kb_desc) in a separate file
(with a .kb extension), see next section (5.2) for details.

e or a’regular’ .yakl file (i.e. containing description of operators, rules, etc.) composed
of

— a set of imported file names (import_list).
— a set of declarations of functions or global variables, necessary for some code
written by the expert in separate C++ files (dcl_list). These are typically
declarations of signatures of functions called into CODE parts. This is similar to
the extern declarations in C++.
— definitions of argument types and instances (arg_type_def and arg_instance_def).
— definitions of domain object types and instances (obj_type_def and obj_instance_def).
— definitions of operators or of functionalities in any order (operator_or_functionality_def).
— definitions of requests (request_def).

5.2 Global KB Description

The knowledge base contents is defined only once, in a separate .kb file. The root node(s)
is(are) the one(s) at the top of the (preferably unique for PEGASE) hierarchy (ies) of operators
described in the knowledge base. Indicating the absolute path (KB Path, where all .yakl
files are assumed to be) is optional, by default current directory is assumed. Optional
code file names indicate where is some additional code, written by the expert (in C++), to
complement the knowledge expressed in YAKL; this code may concern methods or functions
that the expert wants to call, e.g. in rules or in pieces of CODE.

kb_desc : Kb { name IDENT

Complete Name strings strings is a sequence of STRINGS,
Authors strings separated by blanks
path

Version FLOAT
Root Node ident_list

codefiles
List of Files ident list
codefiles }
path : Moy be empty
| KB Path strings
codefiles : Moy be empty
| Code Files ident list (C++) code files for methods or functions

RR n° 5066

54 Sabine Moisan

Example

Kb { name star
Complete Name "Star detection"
Authors "L. and S."
Kb Path "Z:/Supervision/Example/"
Version 0.9
Root Node detect _star
List of Files starl star2

5.3 Regular Files

The .yakl files constitute the “flesh” of the knowledge base, they contain the descriptions
of all operators, instances of objects, rules, etc. that all together are the knowledge to be
used by the engine. You may have several of these files, but try to keep a convenient size
(not one file for each single operator and not one unique file for all operators!).

5.3.1 Imported files

The Import lines indicate the names of other KB files, needed for the description of the
current file contents. They contain YAKL source. The list of imported files should be given
without the .yakl extension. For instance, if an operator needs previously defined types or
operators, you must import the files where these types or operators have been defined, in
a similar way to the #include mechanism in C. If a file imports a lot of other file several
Import lines may be necessary.

import_list : May be empty
| import_list import_line
import_line : Import ident list Ends with end of line
Example

Import declaration-file simple-ops-file composite-ops-file

5.3.2 External Declarations

The purpose of this section is to declare function signatures (or variables) that are needed
inside the current file (usually in a CODE part). These functions must be defined in some
code file, Declarations are done one per line, each line starting by the keyword Extern.

INRIA

YAKL and PEGASE+ Reference and User Manual 55

decl list : Mauoy be empty
| decl list decl line
decl line : Extern CODE a correct declaration, one per line

NB: The contents of the declaration is not parsed and must be correct in the target pro-
gramming language, otherwise problems will arise when compiling the base. Note also that
methods (of argument types, for instance, see next section) need not to be declared this way,
because they are part of a type and thus declared by simply importing the .yakl file that
contains the corresponding type.

Example

Extern double compute value(int, const String &)
Extern int global var

5.3.3 Definition of Argument Types and Instances

The expert can define the necessary types of the arguments of the target programs, if they
are not predefined. YAKL provides a standard hierarchy of predefined types for data (with
predefined attributes and methods), either simple: Integer, Float, String, Symbol (with
predefined attributes), or structured: Image, File (with additional attributes and methods
the expert may need). Image is currently defined as a sub-class of File, so both have the
following attributes (of type String): basename, path and extension. They also have one
predefined method: get filename() which returns the complete name of the file. The Image
type has two more slots: x_size and y_size of type Integer.

Argument Types

The structured type hierarchy can be extended or overridden by the expert to describe any
complex data structures involved in the target application domain. New expert-defined
types may have methods. For each slot of a data type, the expert can specify a range of
possible values and a default value. The end-user or the engine during reasoning may in
turn provide a specific value.

arg_type def: May be empty
| arg_type list
arg type list : arg type
| arg_type list arg_type
arg_type: Argument Type { name IDENT comments
arg_subtype of attributes methods }

arg_subtype of: Moy be empty
| Subtype Of IDENT

RR n° 5066

56 Sabine Moisan

attributes :

| Attributes attribute _list
attribute list : attribute

| attribute list attribute

methods :
| Methods method _list
method list : method signature
| method _list method _signature

method _signature : IDENT IDENT (ident list)
comments :

| comment strings
strings : STRING

| strings STRING

NB: Each new type specifies its list of authorised method names. Method bodies should be
written in separate C++ files (Code Files, see section 5.2)). A method signature corre-
sponds to the type of its arguments and its return type. Note that no verification is done by
the parser on method arguments (nor the types neither the number of arguments are verified).

Attribute Declaration There are two forms for attribute declarations, so that experts
can choose the one they prefer. The first one — which may look “computer-oriented” to some
experts— is:

attribute : IDENT 1st IDENT is the type name

name [DENT 2nd IDENT is the attribute name.
comments attribute info

| Forward IDENT 1st IDENT is a yet to be defined type name
name IDENT 2nd IDENT is the attribute name.

| Override IDENT name
IDENT 2nd IDENT is a redefined attribute name.
comments if needed

| Set of IDENT name IDENT a collection

comments attribute_info
| Set of Forward IDENT name IDENT
comments attribute_info

NB: Forward indicates a forward reference, it is used when one cannot avoid referencing
a type that has not been defined yet, typically in the case of two types, that reference each
others (an attribute of the first type is of the second type and the reverse). Do not over use
this feature! Override is used to override the type definition of a super-class. By overriding
an attribute of a super class, the expert may refine its if needed daemon (and only this

INRIA

YAKL and PEGASE+ Reference and User Manual 57

facet in the current version).
Set of allows to define attribute types containing collections of objects of the same type (first
IDENT). Note that sets cannot be overriden.

Example

Attributes
Integer name x
Float name y
File name data_file

There exists a second version of attribute declaration, equivalent to the first one —
keywords have the same meaning— which may seem more natural to some experts:

attribute : IDENT 1st IDENT is the attribute name

a/an IDENT 2nd IDENT is the type name.
comments attribute info

| Override IDENT
a/an IDENT
comments attribute info

| IDENT a/an

Forward IDENT 2nd IDENT is a yet to be defined type name.
comments attribute info

| IDENT a/an Set of IDENT a collection
comments attribute info

| IDENT a/an Set of Forward IDENT
comments attribute info

Example

Attributes
x an Integer

y a Float
data_file a File

Attribute Information In both cases the information attached to an attribute is the
same:

attribute info : default range if needed

default :
| default value

RR n° 5066

58 Sabine Moisan

if needed :
| calculation CODE
| calculation IDENT

| calculation item _file

NB: if needed (calculation) is a so-called «daemons, i.e. a way to compute automatically
a value, if the value is necessary during the reasoning but not yet available. It could be a
small piece of code, a call to a function (defined in a code file and declared in the declaration
part of the current file), or an access in a file, using theitem notation (see page 64).

value : IDENT

| FLOAT

| INTEGER

| STRING

| | value set | for a collection

| nil for an empty collection
| { CODE }

range :

| range [interval]

| range [value_ set |
interval : FLOAT , FLOAT

| INTEGER , INTEGER
value set : ident list

| float _ list

| int_ list

| string_ list
ident list : IDENT

| ident_ list IDENT
float list : FLOAT

| float_list FLOAT
int_list : INTEGER

| int_list INTEGER
string list: STRING

| string list STRING

NB: The range of an attributes describe the possible values of this attribute, for numbers it
corresponds to the usual [min, maz] interval domains, for symbols (strings) is displays all
the acceptable values. Collections can be assigned o defoult value as a whole: either o set of
values (that must be of the right type) or the empty value (nil).

INRIA

YAKL and PEGASE+ Reference and User Manual 59

Example

Argument Type { name GData
comment "general, for all types of data"
Subtype Of Image
Attributes
Symbol name sort
comment "to distinguish 2 possible kinds of data:
pixel images or tables of numbers"
range [pixels float |
Methods
Float mini (), # return the minimum value in the image
Float maxi () # idem for the maximum

}

Argument Type { name Histogram
comment "Image histograms"
Attributes
Integer name nb_classes # nb of classes in histogram
calculation {{return 20;}} # Dummy code for the moment
Integer name nb_empty classes # nb of classes with no element
Methods
Bool holes() # return true if there are ’holes’ in histogram
repartition and computes new min and max

Argument Instances

Once the types defined, experts can define instances of these arguments, these instances will
act as “object values”, to be used in request attribute assignement (see section 5.3.5) or to
set the values of attributes of other instances.

arg_instance def :
| arg_instance list
arg instance list : arg instance
| arg_instance list arg instance
arg instance : Argument Instance{ IDENT Ist IDENT is the argument type name
name : IDENT comments 2nd IDENT is the instance name.
attribute assignments }

attribute assignments :
| Attributes attribute assig list

RR n° 5066

60 Sabine Moisan

attribute assig list : attribute assig
| attribute assig list attribute assig
attribute assig : IDENT := value IDENT is an attribute name
| IDENT := { attribute assig list } Inline description of sub-parts

NB: When an object is composed of sub-part objects, the expert may either define sub-objects
apart (before the composite one, in the same file or in an imported one), name them and
use their names as values to set attributes of the global object, or describe the attributes
of the sub-objects directly, in nested curly braces. The first option should be prefered when
sub-objects have a lot of attributes to fill, while the second option is easier when sub-objects
have only a few attributes with interesting values.

Example

Argument Instance {

Image name my image # instance of predefined type
Attributes

path := "/ul/Star/"

basename := "skyl"

extension := ".jpg"

}

Argument Instance {
GData name d1 # instance of expert-defined type
comment "Simple data for test"

Attributes
path := "/u/Example/" # attribute inherited from File
basename := "datal" # attribute inherited from File

5.3.4 Definition of Domain Types and Objects

In the same way, experts can define domain types and objects, if they are necessary to the
program supervision reasoning. They will not be used as arguments of operators but they
may appear for instance in rules to guide the reasoning process.

Domain Types

obj type def:
| obj type list
obj type list : obj type
| obj type list obj type

INRIA

YAKL and PEGASE+ Reference and User Manual

61

obj_ type : Object Type { name IDENT comments

obj subtype_of attributes }

obj subtype of:

| Subtype Of IDENT

Example

Object Type {
name Context
comment "global context of use of the system
Attributes
Symbol name automatic_mode
default no
range [yes no |
Symbol name systematic_display
range [yes no |

Domain Objects

obj instance def :

| obj instance list

obj instance list : obj instance

obj_instance : Object Instance { IDENT

RR

| obj_instance_list obj_instance

name IDENT
comments attribute_assignments }

Example

Object Instance {

Context name contextl
Attributes

systematic display := yes
}

n

° 5066

1st IDENT 1is the argument type name
2nd IDENT is the instance name.

62 Sabine Moisan

5.3.5 Definition of Functionalities and Requests
Functionalities

Functionalities are abstractions of processing actions, they may correspond to (be achieved
by) several concrete operators. Their descriptions are similar to operator ones, as far as
data and parameters are concerned.

functionality _def : Functionality { name IDENT comments
achieved input_ data parameters output_data }

achieved : May be temporarily empty
| Achieved by ident_list List of operators

input data :

| Input Data input_data_ list
output data :

| Output Data output_data_list
input_data_list : input datum

| input_data_list input_datum
input_datum : type name IDENT comments default
parameters :

| Input Parameters parameter list
parameter list : parameter

| parameter list parameter
parameter : type name IDENT comments default range

output_data_list : output_datum
| output_data_list output_ datum
output__datum : type name IDENT comments default io relations

type : IDENT IDENT is a type name, must have been already defined.
| nil Nil stands for o default type.

io_relations :

| I-O relation relation list
relation list : relation

| relation_list , relation

relation : COMPOSEDIDENT := exp := means assignment
| IDENT := exp (of sub..sub) slots) of current output data,
| IDENT = IDENT = means complete copy of input data to output data

NB: I-O relations are used to express relationships between data descriptions of an input
and an output data (e.g., files may share the same directory, basename, etc.). Assignment
of attributes (:=) implies sharing of values, while copy of data as a whole (=) means that,

INRIA

YAKL and PEGASE+ Reference and User Manual

63

after the copy, the arguments will behave independently. I-O relations are more useful in

operator descriptions.

Example

Functionality {

name star_detection
Achieved by detect stars
Input Data

Image name im

comment "raw image"
Output Data

File name objects

comment "file containing list of detected objects"

Requests

Requests come from users; they are instances of functionalities, they correspond to calling an
abstract processing on some concrete data, without willing to know which concrete operator

will achieve the processing.

request _def :
| request_ list
request_list : request
| request_list request
request : Request { IDENT
name : IDENT comments
attribute assignments }

1st IDENT is the name of a functionality,
2nd IDENT is the name of the request

Example

Request {
star _detection name detectionl

Attributes
im := my image

comment "Higher level abstract functionality"

RR n° 5066

64 Sabine Moisan

5.3.6 Definition of Supervision Operators
Head of Definition

operator _def :
| operator _list

operator_list : operator
| operator _list operator

operator : Primitive Operator { operator_ primitive }
| Composite Operator { operator_composite }
| Local Operator { operator_local }

operator__composite : operator common body plan
operator _primitive : operator common call
operator local : operator common Call rule list

NB: Local operators are used for simple processing steps that do not necessarily correspond
to a real executable code, their calling syntar equivalent is simply o list of rules (instead of
the calling syntax corresponding to an executable external code in primitive operators).

Common Part

operator _common : name IDENT Authors strings
comments functionality characteristics
input data parameters output_data
preconditions postconditions effects
initialisation assessment repair adjustment

NB: Assessment criteria describe a precise means for result evaluation for each operator.

functionality : Moy be empty
| Functionality IDENT

characteristics : Moy be empty

| Characteristics ident list just a list of symbols.
preconditions :

| Preconditions condition_ list true before execution
postconditions :

| Postconditions condition list true after execution
effects :

| Effects effect_list

INRIA

YAKL and PEGASE+ Reference and User Manual 65

effect list : effect
| effect _list , effect

effect : IDENT := exp
| COMPOSEDIDENT := exp
| { CODE }

NB: Effects express the effects (consequences) of an operator execution on its output
arguments (not on the domain objects). They are thus executed after the operator execution.

condition list : condition

| condition list , condition
condition : valid IDENT

| IDENT compar exp

| COMPOSEDIDENT compar exp

NB: valid is a predefined method, that checks if the argument really exists (e..g., in memory
for a file). It is predefined for YAKL types such as Image, File, etc. It has obuviously no
sense for scalar types (Integer, Float, String)

compar: <> |==|<|>]| <= | >=
exp : (exp)

| value

| COMPOSEDIDENT

| max (exp exp)

| min (exp exp)

| exp + exp

| exp - exp

| exp * exp

| exp / exp

| item INTEGER cast in file item ref
file : STRING

| IDENT

| COMPOSEDIDENT
item _ref :

| line IDENT

| line STRING

| line COMPOSEDIDENT

cast : (String)
| (Integer)
| (Float)

mazimum of 2 expressions
minimum of 2 expressions

sum of 2 (numerical) expressions
difference

product

division

access to a file

name of the file, as a string
name of the file

name of the file, as result of a call
Optional

significant word in line to search
significant word in line to search
significant word, result of a call

extracted string will be converted to a string
extracted string will be converted to an int
extracted string will be converted to a double

NB: When results are collected in a file they can be accessed by the item notation. The place
to search for the interesting information is indicated by a number (an INTEGER), which

RR n° 5066

66 Sabine Moisan

is the index of a word in the whole file or in a line. In the corresponding rules, STRING
stands for a file name (the file is either named directly or its name may be computed thanks
to an attribute value or a method call expressed by COMPOSEDIDENT). The place in the
file is indicated by the INTEGER (= word index), and the the line to search may be specified
by an optional key-word, which is any significant word appearing in it (item_ ref).

Note that in the index computation delimiters (space tab ; : =) don’t count as words!.

initialisation :

| Initialization criteria rule_list
assessment :

| Assessment criteria rule list
repair :

| Repair criteria rule list
adjustment :

| Adjustment criteria rule list

Primitive Operators

call : Call language language call list
| Call language language call _list type
call list: a_call
| call list a_call
a_call : syntax SYNTAX endsyntax
type :
concretely execute the actions
print actions, but do not execute them

| type real
| type simulation

language : C++
| Matlab
| shell

commands may be either internal (linked)
routines in C++ or Matlab routines
or external programs called via the shell

NB: You may have several actions for the same operator. For instance, first remove a file,
then execute a program creating this file, that is why you may write several syntax lines. All
actions share the same language (shell, or C++, or Matlab) and the same type of execution
(real or simulation).

Note that, to be able to call Matlab functions you must use a version of PEGASE+ that has
been specially tuned.

In the future, further extensions of the calling information will be added for remote programs.

INRIA

YAKL and PEGASE+ Reference and User Manual

67

Example

Call

}

Call

Primitive Operator{ name display pixel image

comment "Simple display"
Authors "A. L."
Characteristics pixels
Input Data
GData name input
File name value_table
Preconditions
input.sort == pixels # only for pixel images

language shell

syntax display input.get filename() value table.get filename()
endsyntax

input.get _filename() is a string, the name of the file,

it is thus acceptable as an element of a command (cf Appendix 2)
type real

Primitive Operator { name histogram

comment "Compute image histogram"
Characteristics float
Input Data

GData name input
Input Parameters

Float name y min

Float name y max

Float name step
Output Data

Histogram name histo
Preconditions

input.sort == float # only for float number tables

language shell

syntax histo input.get_filename() y_min y_max step
endsyntax

type real

RR n° 5066

68 Sabine Moisan

Composite Operators

body plan : Body sub_op_list
body-criteria for choices or optional sub-operators
Distribution link list
flow parameter flow

NB: Distribution is data flow between a parent operator and its children and Flow is data
flow among children in a sequence.

An operator used as an optional sub-operator in a body must have the same number of input
data and of output data (extra data are allowed if they are at the end) in the same order
and of the same type. When the operator is not executed because the optional criteria does
not apply, the input data are directly passed to the output data. This data flow should not
be expressed in the data Flow part.

sub_op_list : IDENT | or_decomposition

| IDENT - seq_decomposition

| IDENT |

| IDENT -

| [IDENT | -

| [IDENT | - seq_ decomposition

| IDENT || par_ decomposition
body-criteria :

| Choice criteria rule_list

| optional list
optional list : optional rule base

| optional list optional rule base
optional _rule_base : Optional criteria for IDENT rule_ list

NB: One has to write one rule base for each optional operator in the body. The IDENT after
«Optional criteria fory is the optional sub-operator name.

link list : link
| link _list link

link : IDENT . IDENT / IDENT . IDENT
| IDENT . IDENT := exp

NB: In distribution or flow 1st IDENT stands for the name of the (sub)operator, and 2nd
one for the name of an attribute. It is similar to a formal substitution of attribute name.

or__decomposition : IDENT
| or_decomposition | IDENT

seq_decomposition : IDENT
| [IDENT]

INRIA

YAKL and PEGASE+ Reference and User Manual 69

| seq_decomposition - IDENT
| seq_ decomposition - [IDENT |

par__decomposition : IDENT

flow :

| par_decomposition || IDENT
Data flow among sons is empty, in a choice
| Flow link_ list

parameter flow :

| Parameter Flow link list

NB: Parameter Flow allows parameters to be passed from a parent to its children. Flow
and Distribution are kept for data.

RR

Example

Composite Operator { name display float datax
comment "Discretize before display"
Input Data
GData name input

Body histogram - display pixel image

Distribution
display float data.input / display pixel image.input
display float data.input / histogram.input

Flow
histogram.ouput / display pixel image.histo

}

Composite Operator { name display _image
comment "highest level: display any type of data"
Functionality display # needed because it will be called
Input Data
GData name input_image
No real output except display on screen ...
Body display_pixel image | display_float_data
Distribution
display image.input_image / display _pixel image.input
display _image.input_image / display_float_ data.input
Flow
histogram.ouput/ display_pixel _image.histo

n

° 5066

70 Sabine Moisan

Definition of Criteria Rules

We first present the common syntax of all types of PEGASE’s rules, then we detail the
specifics of each type.
Remarks:

e It is often possible to insert a piece of code (in C++) either in premise or in actions
of the rules. But it may lead to problems when changing the language or even the
machine or compiler.

e Premise conditions and actions of a rule are linked by logical “and” (but no “or”), which
are represented by commas in the premise or action lists.

¢ Some functions are specific to one type of rule, but may sometimes be used in the
other types.

e Access to arguments of the current operator in one of its rules use the COMPOSEDI-
DENT notation, but the name of the current operator is implicit. For instance the term
datal.attribute2in a rule is equivalent to current_operator.datal.attribute2,
if datal is a data argument of the current operator. It is also possible to access to local
variable defined in the Let part (local to the rule, typed, and used for intermediary
computation purposes).

rule list : rule
| rule_ list rule
rule : Rule { rulebody }
rulebody : name IDENT comments owner
Let declslist for local variable declarations.
If precslist Then actslist
| name IDENT comments owner
If precslist Then actslist
owner : can be deduced, thus can be omitted
| owner IDENT operator to which rule is attached

declslist : decl
| declslist , decl
decl : IDENT a IDENT
| IDENT an IDENT
| IDENT in IDENT
| IDENT COMPOSEDIDENT COMPOSEDIDENT represents an access to
an object/argument attribute or a method call.

INRIA

YAKL and PEGASE+ Reference and User Manual 71

Premise

precslist : true

| prec

| precslist , prec
prec : (prec)

| not prec

| { CODE }

| rule_exp <> nil can be used to test a collection
| rule_exp == nil can be used to test a collection

| rule_exp compar rule_exp
| valid IDENT
| assessment_ premise

rule_exp: (rule exp)
| value
| max (rule_exp . rule_exp)
| min (rule_exp . rule_exp)
| rule_exp + rule_exp
| rule_exp - rule_exp
| rule_exp * rule exp
| rule_exp / rule_exp
| rule_exp quotient rule exp
| COMPOSEDIDENT

e Usual comparators (<, >, <=, >=, etc.), as seen before, can be used in the premise of
all the rules, they accept two (numerical) arguments, compare their values and return
a boolean. <> and == also accept symbolic arguments or strings.

e not indicates the negation of the following condition.

o C++ code is written between " and ”’

e ——= nil and <> nil test if an expression is (not) empty.
e valid tests if its argument exists.

e Usual numerical operators (-, +, /, *) can also be used in the premise of all the rules,
they accept two (numerical) arguments.

Specific rule vocabulary for program supervision is indicated in this font. Assessment
specific conditions in premise check the judgements that have been passed on either the
arguments or the operator by evaluation criteria. They often assess the actual results of
their operator after its execution/decomposition.

RR n° 5066

72 Sabine Moisan

assessment_ premise : assess operator? IDENT IDENT
| assess argument? IDENT IDENT
| assess data? IDENT IDENT
| assess parameter? IDENT IDENT
| previous assessment IDENT IDENT
| nb_previous_assess IDENT IDENT compar INTEGER

e assess operator? tests if the judgement of an operator (first IDENT) is equal to a
symbol (second IDENT).

e assess argument?, assess data? and assess parameter? test if an argument/data/parameter
(first IDENT) judgement is equal to a symbol (second IDENT).

e previous_assessment checks if a symbolic judgement (second IDENT) has been already
attached to the current operator or one of its sons (first IDENT).

e nb_previous_assessment checks how many times a judgement (second IDENT) has
been already attached to the current operator or one of its sons (first IDENT) and
compares it to a number.

Actions

actslist : act
| actslist , act The comma is a compulsory separator

act : common__ actions
| choice_actions
| optional actions
| initialisation actions
| assessment _actions
| adjustment_actions
| repair _actions

Code parts, assignments, and calls to the (predefined) display method are allowed in all
kinds of rules.

common_actions : CODE
| IDENT := exp

| COMPOSEDIDENT Method call
| COMPOSEDIDENT := exp
| display IDENT IDENT = name of an argument of current op.

INRIA

YAKL and PEGASE+ Reference and User Manual

Choice Choice rules conclude on the use (or rejection), among all the available sub-

operators, of the ones which are the most (less) pertinent.

choice actions : use operator IDENT
| use operator of characteristic IDENT
| refuse _operator IDENT
| refuse _operator_of _characteristic IDENT

e use operator and refuse operator allow to prefer or to refuse a given operator. A
refused operator is no longer examined for the current execution of the alternative

decomposition.

e use operator_of characteristic and refuse-operator of characteristic allow to prefer or

to refuse operator that have specific characteristics.

Example

Choice criteria # of previous composite display image
Rule { name choice_pixel
comment "If pixel image, display it as is"
If input _image.sort == pixels
Then use operator display pixel image
}
Rule { name choice_float
comment "If float data, discretize"
If input image.sort == float
Then use_operator display _float_image

Optional Optional rule actions decide if a sub-operator must be executed.

optional actions : use optional operator IDENT

RR n° 5066

74 Sabine Moisan

Example

Composite Operator { name global search

Body [visualisation | - compute_threshold
Optional criteria for visualisation
Rule { name opt_ visu

Let ¢ a Context

If c.systematic_dispaly == yes

Then use_optional _operator visualisation

}

Initialisation Initialisation rule actions initialise the values of input parameters before an
execution or a decomposition.

initialisation _actions : IDENT <- LIST
| IDENT <- STRING LIST
| COMPOSEDIDENT <- LIST
| COMPOSEDIDENT <- STRING LIST
| IDENT <- interval
| IDENT <- STRING interval
| COMPOSEDIDENT <- interval
| COMPOSEDIDENT <- STRING interval
| init_child__parameter COMPOSEDIDENT IDENT

NB: In these rules 1st IDENT is the name of a parameter and COMPOSEDIDENT repre-
sents an access to a parameter (sub)field.

When the choice of a value is left to the user, the expert proposes a list or an interval of
values and possibly a specific question (STRING).

e <-isused to ask the user for the value of an argument among a list of values or in an
interval (i.e. initialisation by the user).

e init_child parameter is used to assign to a parameter of a sub operator (COMPOSE-
DIDENT stands for suboperator name.subargument name) the value of a parameter
(named IDENT) of the parent (current) operator.

INRIA

YAKL and PEGASE+ Reference and User Manual

75

Example

Initialization criteria
Rule { name init

If true

Then fpath:="/u",

y := {{compute()}} # function call

}
Rule { name init2

If true

Then yyy <- "Value of y?" [1.0, 10.5 |

}

Initialization criteria # of previous operator histogram
Rule { name r_init
comment "initialize parameter with usual values"
If true
Then
y_min:= 0,
y_max := 256,
step := 256

Assessment Actions of assessment rules detect and diagnose a problem that has to be
repaired (locally or somewhere else). They allow to pass symbolic judgements on data,

parameters, or an operator as a whole.

assessment_ actions : assess_data IDENT IDENT
| assess parameter IDENT IDENT
| assess operator IDENT IDENT
| assess data by user IDENT LIST
| assess-parameter by user IDENT LIST
| assess_argument by user IDENT LIST
| assess_operator by user LIST LIST
| assess_data_by user IDENT STRING LIST
| assess_parameter by-user IDENT STRING LIST
| assess argument by user IDENT STRING LIST

e assess data and assess_parameter pass on a data/parameter (first IDENT) a symbolic

judgement (second IDENT).

RR n° 5066

76 Sabine Moisan

e assess_data by user, assess argument by user, assess argument by user are simi-
lar but the value of the judgement is given by the user, among a LIST provided by
the expert.

e assess_operator gives the current operator a symbolic global judgement (first IDENT)
and an indication (second IDENT), equal either to “repair” or to “continue”. Only
“repair” judgements will trigger repair rules,

e assess_operator by user is similar, except that the value of the judgement is given by
the user, among a LIST (1st one) provided by the expert the second LIST is composed
of “repair” or “continue” symbols that match with the judgements in the first LIST.

Example

Assessment criteria # of compute histogram operator
Rule {
name r_repartition
comment "check for regular divisions in histogram "
If histo.nb_empty_ classes / histo.nb_ classes > 0.5
Then
assess_operator bad_repartition repair # problem detected
and named “bad _repartition”

Repair Repair rule actions express how to transmit a problem in the operator hierarchy.

repair _actions : re_execute
| send up IDENT
| send_operator IDENT IDENT
| back choice IDENT
| send_down IDENT IDENT

e re_execute forces the re-execution of a primitive operator, this triggers its adjustment
criteria, in order to assign new values to parameters.

e send _up sends the current symbolic diagnosis (IDENT) to the parent operator of the
current one.

e send operator sends a symbolic diagnosis (second IDENT) to a specific operator (first
IDENT), which must at run-time have been previously applied in the current execu-
tion.

e back choice returns to the last temporal choice at run-time too.

INRIA

YAKL and PEGASE+ Reference and User Manual 77

e send down sends a symbolic diagnosis (second IDENT) to a specific child of the current
operator (first IDENT).

Example

Repair criteria # of histogram operator
Rule {
name r_repair
comment "re-execution of the histogram operator"
If assess_operator? compute_histogram bad_repartition
Then
re_execute # this triggers adjustment criteria
}

Adjustment Action of adjustment rules express a way to repair locally a problem, by
re-running the current operator with modified parameter values, after a negative evaluation.
The problem may have been detected in another operator.

adjustment actions : adjustment__method

IDENT 1st IDENT is the name of a parameter,
IDENT 2nd one is the name of its adjustment function.

| IDENT adjust_by user interval

| IDENT adjust_by_user STRING interval

| IDENT adjust by user LIST

| IDENT adjust by user STRING LIST

| adjustment_step IDENT exp new step value

| increase IDENT default: increase by one

| increase IDENT step number

| decrease IDENT

| decrease IDENT step number

NB: Here the 1st IDENT is always a parameter name

o adjustment _method provides an expert-defined adjustment function. The default func-
tion increases or decreases the value by 1 (addition or subtraction for numbers and
move one step further or back in the range for symbolic values). Note that range
is compulsory if you want to use an adjustment method. Percent, addition and di-
chotomy methods are provided for integers (percent_integer, addition_integer,
dichotomy_integer) and for floats (percent_float...).

e adjust by userisused to ask the user for a new value of an argument among a specified
list of values or in an interval. A default message is displayed; it may be changed by the
expert (via STRING). The arguments are not automatically displayed on the screen,
if you want a display, use the display function.

RR n° 5066

78

Sabine Moisan

e adjustment step assigns the value of the step of the adjustment function. By default,

the step value is 1.

e increase and decrease are used to increase (resp. decrease) the value of a parameter,
using the adjustment method associated with the parameter, by default the incre-
ment/decrement step is 1, another value may be provided. Note that in this case the

range is compulsory.

Example

Adjustment criteria
Rule {
name r_min_max
comment "change min and max ..."
If assess operator? histogram bad repartition # problem!
and histo.holes() # method holes of type Histogram returns true
Then
y_min := item 1 (Float) in "res"
res is the name of the file filled by meth holes with new

min and max; the item is cast to be a Float because y _min is

y_max := item 1 (Float) in "res"

INRIA

YAKL and PEGASE+ Reference and User Manual 79

Chapter 6

Methodology of Knowledge Base
Development with PEGASE+ and
YAKL

We propose a simple methodology, based on our practice of the system, to develop a
knowledge base for PEGASE+ (thus suitable for a hierarchical way of expressing knowledge).

The general idea is the following: the expert first describes the best known knowledge,
the surest one, e.g., operators corresponding to library programs, a well-known sequence
of operators, and so on. This knowledge is often easier and more natural to express for
the expert and remains relatively stable. Afterwards the expert can continue with criteria
definition (rules), data description, and domain objects. Data and domain objects supply
the information needed in rule definition and for knowledge base refinement. Some re-
structurations are often necessary during this development process.

6.1 First, Define Sub-Problems

When designing a knowledge base to solve a complex problem, it is suggested to divide the
whole problem into smaller sub-problems. Each sub-problem correspond to a sub-hierarchy
of operators, which may become more tractable than the global one. Moreover it is easier
first to describe the frames (operators, data, etc.), and then to decide which rules to attach
to which frame. The frame part is often more easy and natural to express for the expert
and remains relatively stable.

RR n° 5066

80 Sabine Moisan

The connections between the sub-problem hierarchies could be done later, but care must
be taken e.g., to keep types consistent among the input/output arguments of different sub-
problems.

1. Primitive operators are the simplest and easiest way to define small sub-problem rep-
resentations, they can be easily defined at the begining of the KB development. Their
definition includes input/output data, input parameters (numeric/symbolic informa-
tion), calling syntax, and some -simple in a first time- initialisation, adjustment and
evaluation criteria. This step provides the connection between the knowledge base and
the concrete programs.

2. It may appear, while defining the operators, that it is necessary to define some data
types (and domain object types) that are relevant to the application. They may be
refined later. Most of the decisions concerning the operators and their parameters will
initially be taken based on the information contained in these data and domain object
types. For instance, in image processing one must explicitly store the information of
the contents of an image in such a description, afterwards it is possible to write rules
such as: “if the amount of noise is stated in the description of an input image the size
of a smoothing filter can be initialised”.

3. In some cases however, it is more convenient to describe a high-level problem de-
composition and then to focus on each sub-problem and to refine its structure. A
high-level sub-problem often corresponds to an interesting functionality for the global
problem (from the end-user point of view); its definition starts with the definition of
a functionality. This step provides the more abstract view of a sub-problem.

4. In between those extreme positions, the definition of an intermediate sub-problem
corresponds to:

o the definition of a root composite operator and its descendents, this step supplies
control information and connections with the real programs, The composite de-
scriptions include input/output data, input parameters (usually more symbolic
information at composite level), a body, and some choice/optional criteria (usu-
ally defined top-down i.e. from composite to primitive operators) and assessment
ones (usually defined bottom-up)

e the refinement of all the associated criteria (and consequently the refinement of
some data types if necessary); this step refines the previous information.

In higher level descriptions (composite operators) input parameters may be more or less
symbolic information, while in primitive operators at the lowest level, they are more likely
to be numeric/string information.

INRIA

YAKL and PEGASE+ Reference and User Manual 81

6.2 Second, Add Strategic Criteria

The next step is the creation of the criteria rules which express the approach used by the
specialist to execute a plan. The knowledge structures provided by PEGASE enable the
systematic expression of the “rules of thumb” and approximate reasoning which are crucial
to successful problem-solving.This is done by means of the different kinds of rules discussed
earlier. A mixture of numeric and symbolic reasoning maybe required in formulating them.

e Choice rules, usually being the simplest, are defined first. They use the values of object
or data fields, data definitions, constraints in the request, etc. to select an operator
among the available choices.

¢ Initialisation rules are defined next. These may be somewhat more difficult, in that
they have to formalise the “rough initial guesses” that the specialist makes.

e Adjustment rules are then defined for operators which have adjustable parameters.
Step sizes for parameters have to be carefully chosen so that the change in the be-
haviour of the algorithm is neither too sudden nor too gradual.

e Then evaluation rules are defined. This is rather difficult a task, since the question
“Are the results good enough?” is often subjective, and appropriate quality measures
may not be readily available. However, a close examination of the specialist’s problem-
solving technique often reveals hidden reasoning capable of being expressed in concrete
terms as evaluation rules.

e Finally, the repair rules are defined. These rules determine the overall failure-handling
mechanism, and are crucial to the success of the application.

6.3 Complete and Refine the Base

Based on the sub-problem hierarchies constructed in paragraph 6.1 it is now possible to
fully determine the entire operator hierarchy. The best way to do this is to look at the
entire hierarchy as one big problem with several predefined sub-problems (the ones just
constructed).

1. Starting from low-level sub-problems one can then define more complex ones by gluing
sub-problems to each other. This gluing will be done by defining the data flows between
them and by establishing a control among them. The same sub-problem may appear
in several higher-level problems. This is the bottom up way. The advantage of a pure
bottom-up approach is that at each stage, one actually has constructed an operational
(though partial) knowledge base, that can be tested in order to correct small mistakes.

The decisions concerning the operators and their parameters can be based on results
of previous operators. The data flows are the means to incorporate such contents
dependency in the KB.

RR n° 5066

82 Sabine Moisan

2. The final refinements consist of

e Refinement of criteria rules, to choose among alternative, to initialise parame-
ters, etc. Rules often rely on data types or domain objects ones, so the detailed
descriptions of types can be done at the same time you construct the rules, oth-
erwise you can describe more information about some data than necessary. The
easiest rules are initialisation ones, then adjustment on parameter values. Repair
and evaluation are more complex to define. When initialising or adjusting a pa-
rameter it is often possible first to reason with symbolic information, and then
to translate the symbolic information into real numbers.

e Refinement of information very dependant on the application domain, such as
functionalities, characteristics - preconditions, postconditions, I-O relations, ef-
fects, w.r.t. data types and domain objects. Pre and post-conditions define the
semantics of an operator.

— Pre-conditions on input data description allow the execution of an operator.

— Post-conditions may be used to check the contents of output data descrip-
tions. So you have to check at the end of the development if all the postcon-
ditions that should be mentioned are really mentioned. Otherwise you can
end up with a partial description.

— IO relations store information on the results of an operator (e.g., change
of size of an output image w.r.t the input image,... Information pieces that
are the same as in the description of the input arguments must be men-
tioned explicitly in I-O relations, otherwise they are lost for the forthcoming
programs.

e Refinement of information about links among operators (usually done at the end,
when one is more sure about the KB organisation): data distribution and data
flows.

This phase is a constant back-and-forth cycle within the different abstraction levels,
and also in the data descriptions.

Of course, the way of expressing knowledge is not always optimum and some things
remain rigid, due to remaining problems or decisions made.

6.4 Guidelines

Here are some “rule of thumb” that can guide the KB construction:
e A parameter is something that tunes operators behaviour but not its functionality.

e Try to keep operators unaware of their possible combination in a sequence, choice, etc.
That is, names should be chosen w.r.t. the method an operator represents. Operators

INRIA

YAKL and PEGASE+ Reference and User Manual 83

should be self-contained. Father operators have knowledge about their decomposition,
but son operators should not have to know about their parents. So keep information
concerning a sequence (i.e. a history) of operations, at the level were the links between
operations are expressed (ie. in composite operators).

e Keep low-level information at low-level (e.g., numeric value of parameters of primitive
operators). If you want composite operators to be reusable, you have better not to
express information about sons in a too precise way. An idea is to use symbolic
information about the way the decomposition must be done at composite operator
level, and that this information is “translated” in a numeric/more precise way inside
son operators. This is useful for parameter initialisation/adjustment, assessment and
repair, choice, etc. FE.g., use predicates as use_operator_of_characteristic, or
symbolic values as “small”, “big”, etc.

e In many cases the reasoning for initialisation is performed in two steps. The first step
is reasoning with symbolic information, and the second step is a translation of the
symbolic information into real values. Knowledge for the first step must directly be
elicited from the expert, while the knowledge for the second step can come from the
expert (experience, heuristic values), can be calculated, or can be based on tests.

e Keep in mind this basic principle: a father operator knows about the organisation of
its sons and about the behaviour it expects from them. In spite of this "paternalistic"
view, son operators should be able to work on their own, thanks to the knowledge
about their own behaviour. The abstract description of a program should allow it to
be applied in different situations.

e It is very difficult to define a knowledge base independently from an application do-
main (z.e. so that the KB can be completely reusable). If, for example, a knowledge
base is constructed for a specific application in image processing (e.g., road scenes),
this specificity prevents it from been reused “as is” in other applications (e.g., under-
water scenes), because specific information could be stored in the description of an
image. Keeping that point in mind when writing a KB, allows experts to disconnect
as much as possible specific features from reusable ones, and makes the shift from
one application to another easier. For example the definition of a sub-type of Image
with specific attributes (e.g., application domain) and tests limited to this attribute
(e.g., If image.application domain == road scenes Then detect-cars) may restrict
the scope of the changes.

e About rules

— The best is to try to define the rules in a bottom-up way, that is to begin with the
rules related to the simplest sub-problems, and in particular primitive operators,
because they are closer to the real programs. The information is easier to get
and safer (less prone to interpretations and variations). Before defining rules at

RR n° 5066

84 Sabine Moisan

higher level, you must rely on the available low-level rules, otherwise some high-
level rules may never be implemented, for lack of existing means of obtaining the
necessary information.

— In order to obtain general and clear rules, prefer fine-grain ones. Fine grain rules
cannot be decomposed into smaller ones. Coarse grain rules are reasoning short-
cut that don’t take into account the exceptions. Intermediate symbolic values
may be useful in defining fine grain rules.

— Defining rules may lead to defining some additional operators (e.g., to compute
an initial value), which modifies the hierarchy. The rules may also lead to modi-
fications of data and domain object descriptions, because while constructing the
rules one can see on what information the decisions are based. The modifica-
tions mean to enrich them or, on the contrary, to remove useless attributes, not
relevant for program supervision reasoning.

6.5 Validation Facilities

Once the hierarchy seems terminated, you still have to test it against several requests on
different input data. The resulting KBS must be able to adapt itself to produce different
plans, in different situations. If it is not the case, errors should be detected, using the “trace”
facilities.

A good idea is to prepare test-beds, from the beginning of the KB development, which
are significant for the application. The test-beds may be kept all along the life of the KBS,
as reference tests, because a KBS is prone to change!

6.6 Requirements for Using Program Supervision Tech-
niques

This section analyses which properties the programs and their arguments must verify in
order to be candidates for re-use with program supervision techniques.

6.6.1 Program properties

If there is only one unique and clearly defined functionality for each program the model is
directly applicable. A primitive operator is thus created for each program. If it is not the
case, that is if one program achieves several distinct functionalities, the solution is either to
rewrite the program in order to split it into smallest ones, one per functionality, or to define
as many knowledge base operators as there exist sub-functionalities in the program.

Moreover, if the programs are already managed by an “interpretor” such as a command
language or a graphical interface, additional work is necessary to solve the communication
problems between a program supervision system and the individual programs.

INRIA

YAKL and PEGASE+ Reference and User Manual 85

6.6.2 Argument properties

Programs can only be re-used if they do not work with “magic numbers” i.e. fixed values for
important internal parameters that have been obtained by past experiments. So, explicit
internal parameters for each program by rewriting and adding explicit arguments. The
same problem may arise with data which may be implicit, e.g., in the case of programs
communicating via a shared memory. There are two possible solutions: the first one is to
rewrite the program and to create new arguments for all data. A second solution is to keep
the use of a shared memory, for efficiency reasons, but to represent explicitly the implicit
arguments in the primitive operator corresponding to the program.

6.6.3 Composite operator properties

Introducing a first abstraction level is natural when there exist several alternative primitive
operators sharing the same functionality. The solution is to create in the knowledge base
one composite operator per functionality. The decomposition of this composite operator of
choice type and the sub-operators are the alternative primitive operators.

When typical program combinations are available (e.g., shell scripts, with sequences, al-
ternatives, etc.) this information can be directly described and represented in the knowledge
base by creating one composite operator per typical combinations.

The knowledge base can contain several abstraction levels when the body of a composite
operator is itself composed of other composite operators.

6.6.4 Criteria properties

The criteria are not mandatory and each operator must not contain all types of criteria. The
repair knowledge for instance can be located only in a few precise operators. Even if the
knowledge representation of the operators is homogeneous, their usage is very dependent on
the knowledge to express.

The criteria can manage the degree of interactivity with the user. If there exist meth-
ods for automating the computing of values (parameter initialisation methods, parameters
adjustment methods, or methods for the evaluation of the results), these methods can be
directly translated into specialised criteria. If these methods do not exist, specialised criteria
can nevertheless be created to guide the interaction with the end-user. It is especially useful
for results evaluation: the role of the criteria can be limited to the automatic display of
some output data and of a list of possible assessments which are compatible with the repair
knowledge. The user only selects a particular assessment for the displayed results.

6.7 Summary
It appears that depending on the set of programs to supervise the knowledge modeling

effort is more or less important. These remarks lead to a coarse methodology of knowledge
base building: the easiest way is to begin by describing concrete individual programs, then

RR n° 5066

86 Sabine Moisan

to create higher levels of abstraction using composite operators. Criteria may be added
afterwards, the more criteria the knowledge base contains the more efficient and flexible the
program supervision process will be.

INRIA

YAKL and PEGASE+ Reference and User Manual 87

Chapter 7

Example of Knowledge Base
Development

This chapter details the different steps indefining a knowledge base using YAKL and
following the methodology previously described. It also states the main points to rememeber
for experts who want to use YAKL.

The expert, who is the knowledge base designer, defines YAKL files (with the .yakl
extension). Usually one file corresponds to a logical unit, such as a functionality and the
operators that achieve it. The emacs mode (see section 10.3.1) can help to respect the
syntax of the language. Each file must declare as “imported” the files containing entities it
refers to (e.g., types of data, primitive or composite operators, etc). Files must be parsed
in semantical order i.e. files defining new argument types before files containing operator
descriptions with arguments of these types, files defining primitive operators before files
containing composite operators that use these primitive ones in their bodies, etc. The
Makefile files provided in the distribution can help in doing this.

YAKL may be used in its simplest form to document program sources (by means of
primitive operators) and also a few usual ways of combining the programs (by means of
composite operators).

Here follow some steps to go from the simplest to the more complex use of YAKL in order
to either document or even design an operational knowledge base, i.e. that may be used by
an engine like PEGASE+ to actually perform program supervision.

7.1 Starting a new Knowledge Base

Following section 6.1, a new knowledge base starts with the definition of sub-problems, that
is the operators which represent the most important part of a knowledge base in program

RR n° 5066

88 Sabine Moisan

supervision. It is usually easy to begin with describing primitive operators and even some
composite ones.

7.1.1 Defining a Primitive Supervision Operator

A primitive operator usually corresponds to one existing program in the library, achieving a
processing function (or functionality in program supervision vocabulary, e.g., segmentation
in image processing). The operator describes the program as a “black box” only known
by some information on how it can be used in different situations and by its inputs and
outputs. In some cases, when programs are very big, it could happen that one program
achieves several distinct functionalities, the solution is either to rewrite the program in
order to split it into smallest ones, one per functionality, or to define as many knowledge
base operators as there exist sub-functionalities in the program. We can note that, as a
side-effect, the building of a program supervision knowledge base may have an influence on
the methodology of code design, resulting in more modular and structured codes.

Each supervision operator in the knowledge base has a name, in order to identify it, any
identifier is accepted. In the example below, the primitive operator corresponds to a program
that performs an oblique rotation on images, so its name has been chosen accordingly. A
primitive operator also indicates an author, who is the author of the corresponding program.

In the following, YAKL keywords (remind that they are reserved words in the syntax) are
in bold face (and the concatenation of all YAKL lines constitutes an acceptable definition).

Primitive Operator {

name obliqueRotation
authors "Mr. B."

An operator also has symbolic characteristics, that may help the selection process of the
engine, and input and output arguments, with an associated type. In the following example
the operator uses an “oblique analysis” method and detects from 1 up to 10 factors, that
is why its characteristics are “oblique, 1 10 factors”. These symbols can be used in choice
criteria for example (by calling [ref]use_operator_of_characteristic, see pages 93 and
73).

Characteristics oblique, 1 10 _factors

Input Data

File name reducedSequence
Input Parameters
Integer name nbFactors
comment "number of factors to look for"
default 3
range [1, 10]
Output Data
File name factorCurves
I-O relations
factorCurves.path := reducedSequence.path ,

INRIA

YAKL and PEGASE+ Reference and User Manual 89

In this first example, we have only used predefined types for arguments. Predefined
types are Integer, Float, String, File and Image. Image is currently defined as a
sub-class of File, so both have the following attributes (of type String): basename, path
and extension. They also have predefined methods: get_filename(), which returns the
complete name of the file (including its path) get_basename (), which returns the base name
of the file, and get_extended_name (), which returns the base name plus the extension of
the file. The Image type has two additional slots: x_size and y_size of type Integer.

YAKL distinguishes two categories of arguments: data and parameters. Data arguments
have fized values which are set or computed (via the data flow), while parameters can be
tuned. An operator cannot modify its input data arguments, but it can modify its input
parameters using initialisation or adjustment criteria (see pages 100 and 109). A data
argument refers to a global instance of a data object in the fact base (see page 94).

Each argument (data or parameter) has a name. The names of the arguments belonging
to the same operator must be different. An argument may have an optional attached com-
ment. The operator of the example has one input data argument, one integer parameter
and one output data.

Parameters usually belong to a simple type (integer, float or string), because for other
(structured) types it is not clear to decide what does “to adjust the value” mean. Parameters
may be described in more details by a default value (3 for nb_factors in the example), that
will be used when the engine needs to use the parameter value and when no exact value is
available. The default value constitutes a simple way to initialise a parameter, usually this
value is an average one, that is supposed to work in most of the cases. They may also have
an optional range of possible values. It may be an interval for numerical parameters (as in
the example) or an enumeration of values for all simple types (numbers and strings). They
may also have

To each output data of primitive operators only the expert may associate optional (but
recommended) so-called “I-O relations”, which describe relations connecting it with the
inputs. This applies only to structured type (for instance File or Image in the predefined
types), but not to simple types such as integers, floats or strings. This part may express
logical relations, thus giving some hints about the corresponding program behaviour (e.g.,
“the size of the output is half of the size of the input”) or more pragmatic ones, as in the
example, which writes that the path of the output file is the same as the one of the input
file. Output data arguments are computed during the reasoning process mostly by means
of these I-O relations when executing primitive operators. The expert may also use I-O
relations to impose some values on the output data (e.g., location of a file).

In order to actually call the real program, the engine first checks if the operator precon-
ditions are achieved. Preconditions (like postconditions) are a list of boolean expressions,
separated by commas (,). In the example, we only mention a very simple condition, checking
if the input file exists on the disk, represented in the language by the keyword valid.

Preconditions

valid reducedSequence

RR n° 5066

90 Sabine Moisan

The descriptive knowledge contained in this common part of operator descriptions is
used by the program supervision engine during planning. For example, information on the
functionality, characteristics, description of arguments, and pre/post-conditions of operators
is useful for selection purposes, while I-O relations maintain the continuity of data contents
along the reasoning, after each execution.

Provided that its execution preconditions are true, the execution of a primitive operator
corresponds to the execution of its associated program. A primitive operator thus describes
the necessary calling information. The only mandatory information is the language (i.e.
will the program be called via the shell or is it an internal C++/Lisp program) and the
calling syntax (or command line). Commands in this line are either procedures written in
the language of the engine (here C++ /Lisp) or shell scripts to be run under the operating
system of the machine. In the first case the procedures are usually written in so-called code
files, attached (and linked) to the knowledge base (see page 103), in the second case the
shell scripts must be executable. The additional indication of “type” (real or simulation) is
for the engine to know which type of execution is wanted: “real” is the default, and means
a real execution of the program, while “simulation” means that the syntax will be printed
but not executed. The latter case may produce scripts which could be run afterwards on

different sets of data.
Call

language shell

syntax cobl reducedSequence.get _filename() nbFactors endsyntax
program name cobl

type simulation

}

The syntax is composed of fixed parts, that must be kept as is (like cobl in the example)
and of parts that will be instantiated by the actual values of the input/output arguments
for execution (like nbFactors in the example). The parts of a calling syntax which are
equal to (or contain) the name of one of the current operator arguments will be interpreted
and translated as an access to this argument. So don’t use an argument name that may be
confused with a calling argument for instance, which must be translated as is. For instance,
if the action to execute is a shell call to tar don’t use an operator argument named c,
because it is a calling argument of tar, and syntax tar ¢ endsyntax must be translated
into tar c and not into tar current_operator.c. In particular, composed identifiers (like
reducedSequence.get_filename() in the example) are by default understood as access to
attributes or methods of the corresponding operator argument. If you want to avoid this
translation, just quote the tricky parts of the command line (by enclosing them into two
quotation marks).

It should also be noted that all the parts of the calling syntax must be of numeric,

symbolic or string type, so that they could be either printed or passed to the shell.
Here reducedSequence.get_filename() stands for the complete name of the file (which is
a string) (get_filename() is a predefined method on the File type). reducedSequence
alone would have generated a compile error, because the program supervision engine does
not know how to print a file object.

INRIA

YAKL and PEGASE+ Reference and User Manual 91

Remember:
e choose a (significant) name,
e provide a sound comment for documentation,

e decide which input arguments should be data (non adjustable) or parameter
(this is usually not straightforward!),

e choose types for input and output arguments (it is always possible to refine a
type, at first choose predefined ones or define new simple ones: see page 94)

e collect calling information (options, arguments, etc.) and decide the calling
syntax accordingly (in a printable form, with no confusing names of arguments
versus calling fixed parts).

o define simple I-O relations and conditions

See pages 64 and 66 for details.

7.1.2 Defining a Composite Supervision Operator

Once the primitive operators are described, one may want to manipulate “packages” of pro-
grams. Indeed, it may be convenient to gather in one entity some usual sequence of programs
or all the programs that perform more or less the same function with slight differences, etc.
This is done via composite operators.
The description of a composite operator starts like the description of a primitive one:
i.e. a name, inputs, outputs, preconditions, etc.
Composite Operator {
name poly
comment "solve polynomial systems"
Input Data
File name Sy
Output Data
File name sol
Preconditions
valid Sy
The way a composite operator has to be refined is expressed in its body which contains
a description of its decomposition into sub-elements, i.e. names of its sub-elements and the
control over them (which is the type of decomposition), and data flow information between
parent and children (named distribution) and between children in a sequence (named
flow).
The allowed types of decompositions are the alternative (indicated by |), the sequence
(indicated by -) and the parallel (indicated by ||). The most usual decomposition types are

RR n° 5066

92 Sabine Moisan

sequences and alternatives. A sequence decomposition indicates that all children links have
to be “executed” in order to consider the parent as executed. On the contrary, alternative
decompositions represent choice between different ways to solve a problem. An alternative
decomposition parent is considered as executed as soon as one of its children is. These
decompositions at different levels of abstraction must end on primitive operators. The sub-
operators (or sub-functionalities in the future) must have been previously defined (they must
be known by the parser). The same primitive or composite operator may appear in different
decompositions.

Sequence Decomposition

In the following example, the body describes a sequential decomposition among two sub-
operators: dimension and solver (but of course a sequence may contain more than two
sub-operators).

Body

dimensions - solver

Each operator (and the same is true for functionalities) has its own naming for its in-
put/output arguments which are considered as formal variables. In a composite operator all
arguments —in parent and children— referring to the same object or value must be connected
together, i.e. formal variables must be unified. That is why describing a decomposition of
sub operators implies to describe also how the data are transmitted between a parent and
its children, as well as between children in a sequence.

The connections between the formal arguments of a parent node and those of its children
are denoted by the term Distribution, while the connections between brothers in a con-
junctive link are denoted simply by Flow. After connection, a change to the common actual
value is passed on all the arguments connected to it. The syntax of the Distribution and
Flow sections is similar to the one used in logic for substitution of formal variables (and in
fact we address the same issue). It has the following form:

OperatorName . ArgumentName/OperatorName . ArgumentName (note the blanks
around the dots).

In the Distribution section, the first Operator Name must be the name of the parent op-
erator. Both types of flows connect data arguments respecting their roles (i.e. they are
consistent with respect to the inputs and outputs). That means that in the Distribution
section, inputs of the parent operator have to be connected with inputs of children (and the
same for outputs), while in the Flow section, a data flow only connects output arguments
of an elder child to input arguments of a younger one.

Distribution

poly.Sy / dimemsions.PSin
poly.sol / solver.sol

Flow

}

dimensions.PSout / solver.Sy

INRIA

YAKL and PEGASE+ Reference and User Manual 93

Remember:
e Sub-operators must already have been defined.

e All arguments must be connected by at least one data flow link (with
the correct in/out modes and type compatibility).

See page 68 for syntax details.

Alternative Decomposition

Here is another example of a composite operator with a body describing an alternative de-
composition among two sub-operators: principalCompAnalysisand correspFactorAnalysis
(but of course an alternative may contain more than two sub-operators).
Composite Operator {
name orthogonalDecomp
Input Data
File name analysisArea
Input Parameters
Symbol name metric
comment "metric to compute distances"
range [ki2 , identity]
Output Data
File name filteredArea

Preconditions

valid analysisArea
Postconditions

valid filtered Area
Body

principalCompAnalysis | correspFactorAnalysis
The data flows are simpler than for sequences because there is no flow among children.

They only consist of the Distribution part in alternative decompositions, like below:

Distribution
orthogonalDecomp.analysisArea / principalCompAnalysis.analysisArea
orthogonalDecomp.analysisArea / correspFactorAnalysis.analysisArea
orthogonalDecomp.filteredArea / principalCompAnalysis.filtered Area
orthogonalDecomp.filteredArea / correspFactorAnalysis.filtered Area

}

Summary about Flows

Figure 7.1 summaries the data flows for both sequences and alternatives. Parallel decompo-
sitions follow the same scheme as alternatives.

RR n° 5066

94 Sabine Moisan

X(@n) |

X(in)

Di striBution

Z(out) K(in)
QC]' Fl ow @ X (i) el Y2(0ut)

Sequence (Distribution and Flow) Alternative (Distribution only)

Figure 7.1: Data flows (between parent and children or between children)

Remember:
e Sub-operators must already have been defined.
e Don’t forget choice rules for all alternative sub-operators.

¢ Data flow connections (distribution) must exist with every sub-
operator (i.e. the input data of the parent must be connected with
the input data of each child, and the same for output).

See pages 68 and 73 for syntax details.

7.1.3 Defining Types

Predefined types for arguments may soon appear limites, so, in parallel with operator de-
scriptions, structured types can be described for both arguments of operators and for domain
objects that depend on the application. YAKL provides a standard frame-based represen-
tation for types with a hierarchical organisation. Both data and domain objects types
descriptions can include methods associated with them, e.g., display methods.

Argument types are used to type the arguments of operators (and of functionalities),
when predefined types are not sufficient.

Extending an existing Argument Type

In addition to the built-in types provided by the system (Integer, Float, String, etc.,
described page 88) operator arguments often require more sophisticated types. The expert
has to provide a representation for the new data types that are manipulated by operators. In
these descriptions the expert may include some “semantic” information about the important
features of the data that are affected by programs (e.g., in the image processing domain
theses features may be the size, the noise, the content type, the status, the main object of
interest, etc.).

INRIA

YAKL and PEGASE+ Reference and User Manual 95

For instance, the File or Image types, though useful, are rapidly limited for specific
applications. The expert can extend these types to fit the needs of the application, like
in the two examples below: NB: we only use the first version (“computer-oriented”) of the
definition of attributes (see 55) in all the following examples, but the second one would be
accepted as well.

Argument Type {

name MyImage
Subtype Of Image

Attributes Argument Type {
Integer name number .
name PFile
default 1

Override String name extension Subtype Of File

. Attributes
calculation calc fct .
. Integer name nb_variables
Symbol name physical process default 1
. nteger name nb equations
default mri I .
range [mri Xray nuclear | default 2}

Symbol name gradient

default : unknown

range : [low high unknown]
Symbol name format }

The Subtype Of key words indicate the name of the super type. The attributes of the
extended type (here File) are inherited by the derived type, and the expert may add new
attributes (like number) or override inherited ones (like extension). Overriding only allows
experts to modify the calculation (if needed daemon), like the call to cal_fct function
in the example!.

After this definition, it is possible for instance, to use the new type for an operator
argument, and to use the new attributes in rules, conditions, I-O relations, etc. For instance,
in the example of page 91 the change of type of the input data Sy to Pfile allows the expert
to add new preconditions with a semantical meaning for the application, and the description

becomes:
Composite Operator {

name poly
comment "solve polynomial systems with at least same
number of equations than number of variables"

Input Data

PFile name Sy
Output Data

PFile name sol
Preconditions

valid Sy,

Sy.nb_equations >= Sy.nb_variables

1In the future it will also be possible to modify default values or ranges of attributes.

RR n° 5066

96 Sabine Moisan

It is also possible to define new argument instances (to be used in a request, see page
102), filling the attribute values (both inherited and new ones):
Argument Instance {
MyImage name imagel
Attributes
number := 2
path := " /usr/home/Images"
format := 2
}
Of course it is also possible to define brand-new argument types, the syntax is the same,
but without the Subtype Of.

Remember:

¢ Experts data types may enrich the predefined types.

¢ Data types describe some semantical information about the program
supervision problem of an application.

See page 55 for details.

Defining a new Domain Type

Depending on the application, it may be necessary to define so-called “Domain Types”,
which correspond to types of objects related to the application domain, that can help in
the program supervision process. The aim is not to exhaustively represent all the objects
in the domain, but only those which have an influence on the engine reasoning (i.e. which
are useful in some criteria to drive the selections or choices). These objects of interest for
program supervision purpose in the application domain may be represented in the fact base.
The new types can then be used like other ones to define global instances of domain objects.
The instances contain information that can be accessed and modified during reasoning, for
example rules may test the values of the attributes of such objects in their premisses or
assign them values in their conclusions.
The syntax is almost the same as for argument types, but it should be noted that the
domain types are not accepted for operator arguments.
Object Type {
name Context
comment: "the context of processing"
Attributes
Symbol name user requirement
comment "user’s requirements for processing
range | fast average any |

}

Sub-typing is also possible:

INRIA

YAKL and PEGASE+ Reference and User Manual 97

Object Type {

name [P Context

Subtype Of Context

comment "the context for image processing"
Attributes

Image name reference image
¥

After this definition, it is possible to define new domain object instances (to be accessed
in rules), filling the attribute values (both inherited and new ones):
Object Instance {
Context name usercl
Attributes
user_ _requirement:= fast
}

Attributes that are of structured types, must be either filled by an instance, which must
have been defined beforehand or inline (see 60), here we chose the first option:
Argument Instance {
Image name riml

Attributes

path := "/usr/X/"

basename := "refer"

y_size := 256

}

Object Instance {
IP Context name ipc2
Attributes
user__requirement:= fast
reference image := riml

If not all attribute values are filled, the YAKL parser will produce a warning, but it
may be acceptable for the application: that means that the attributes will be filled during

reasoning (otherwise that means that they are useless for program supervision and may be
discarded!).

Remember:

¢ Domain types must contain only information useful for program su-
pervision.

e Sub-typing is possible.

See pages 55 and 60 for details.

RR n° 5066

98 Sabine Moisan

It should be noted that all domain objects have a predefined String attribute: name
which can be referred to in rules, effects, etc., as in the rule:
Rule { name retrieve_by_name
Let ¢ a Context
If c.name == ipc2
Then c.user requirement := fast }

7.1.4 Add Strategic Criteria

So far the descriptions of knowledge by means of operators, arguments, etc. provides a
rather static view. When this structural part of the knowledge base is well developed, comes
the time to think about more dynamic knowledge, that is criteria. Criteria provide decision
information that will be used by the engine during reasoning.

The operators use various criteria in order to manage their input parameter values (ini-
tialisation and adjustment criteria), to assess the correctness of their results (assessment
criteria on output data), and to react in case of bad results (repair and adjustment criteria).
They play different roles in the reasoning of a program supervision system.

For the time being, the criteria are represented in YAKL by specialised rule bases (groups
of rules) which are attached to operators. Initialisation, evaluation/assessment, repair and
adjustment rule bases can be attached to all operators, while choice and optional criteria
are specific to composite operators.

For all types of rules, premise (If part) of the rules are a list of boolean expressions
separated by commas (,). In the same way, actions (Then part) are a list of expression also
separated by commas.

The locality of the criteria allows each piece of the knowledge base to have its own decision
knowledge with respect to its role in the knowledge base and the kind of information it has
access to.

The easiest criteria to define are choice and initialisation ones.

7.1.5 Choice Criteria

In an alternative composite operator, like orthogonalDecomp in section 7.1.2, the program
supervision engine must have the knowledge to choose among alternate sub-operators. This
is given by experts in choice criteria, in the form of a set of rules (named a rule base) that
conclude on the choice (or rejection), among all the available sub-operators, of the ones
which are the most (resp. less) pertinent, according to the data description, the context and
the characteristics of the operators. This kind of criteria is used for planning purposes. A
choice rule for orthogonalDecomp is presented below:

INRIA

YAKL and PEGASE+ Reference and User Manual 99

Choice criteria
Rule {
name Choicel
If metric == identity
Then use_operator principalCompAnalysis

The rule in the example chooses the sub-operator named principalCompAnalysis, if
the metric to apply is the identity. Note that, since metric is a parameter (see page 93)
with no default value, it must have been assigned a value by some initialisation rules.

Choice criteria can also reject operators, or guide the choice towards an operator having
some characteristics (matching the Characteristics field of operators). For example in im-
age processing, suppose you have two operators that perform stereovision using a pyramidal
technique and that are based on contour chain points. The first operator directly implements
this algorithm, while the second one first separates the two interlaced acquisition frames by
sampling the lines. The second operator is thus well-adapted when motion is present. The
rule presented below implements such a choice criterion:

Choice criteria

Rule { name choice charact

If motion == present
Then use operator of characteristic sampling for motion
comment "only 1 of the 2 interlaced frames if motion"

}

Here is another example of choice rules, that select or refuse an operator, based in par-
ticular on information provided by the end-user about an input data: in_image.gradient;
<- means that the value will be dynamically asked to the end-user at execution time, see
page 74:

Choice criteria

Rule { name init_gradient

If in image.gradient == nil

Then display in _image , Call to the display method
in _image.gradient <- The user is asked to answer
"Importance of gradient in image background?"
[low high unknown] Possible choices for the user

}

Rule { name choicel
If in image.gradient <> high
Then use_ operator opl

}

Rule { name choice2
If in image.gradient == high
Then refuse operator opl,

use__operator op3

RR n° 5066

100 Sabine Moisan

In this example, the premisses cover all the possibilities of values for in_image.gradient.
Such a completeness is suitable, though not yet enforced by the parser.

7.1.6 Initialisation Criteria

These criteria are composed of rules that will be used by the engine to initialise parameter
values before the first execution/decomposition of an operator. They store the knowledge
of an operator on how to initialise its own parameters. That is why they are attached to
operators. They provide the expert a more sophisticated and flexible way to perform initial-
isation of parameters than the default value mechanisms (which are often “magic numbers”
given by experienced experts/users of programs). However, they are not compulsory if all
parameters have got a default value. Initialisation rules can perform some computation and
several rules may chain together in order to decide which value to assign depending on data,
user’s requirements, etc.

Parameters may be numeric as well as symbolic ones like metric in the example of the
orthogonalDecomp operator, page 93. Assuming that the input data analysisArea is now
of type MyImage, we can write the following rule to initialise this parameter:

Initialisation criteria

Rule { name init_metricl

If analysisArea.physical process == mri
Then metric := identity }

Here is another example, for the segml operator (see page 102) using a domain object
(of type Context (see page 96):

Rule { name init_ precision

comment "a spot in the image implies a precise computation"
Let ¢ a Context
If c.user _requirement == average ,
im_in.spot_ presence ——= awkward
Then precision := precise}

And finally, here follows an example of rule chaining, first reasoning with symbolic infor-
mation, and then translating the symbolic information to real numbers. An operator which
performs a thresholding by hysteresis needs the initialisation of two input parameters: a
high threshold and a low threshold. These thresholds are defined as numerical parameters.
The initialisation of these values is performed in two reasoning phases. In a first phase
only symbolical information is used. For example if the user only wants few details to be
extracted, the threshold should be high, as shown in the rule:

comment "few details implies high threshold"
If context.user _constraints.details == few
Then threshold := high

In a second reasoning phase the symbolic values are translated to concrete numbers, as

in the rule:

INRIA

YAKL and PEGASE+ Reference and User Manual 101

comment "average threshold implies 25 as heuristic value"
If threshold == average
Then heuristic _value := 25
This second phase of translation into numbers can be simply done by selecting a static
heuristic value (as shown in the previous rule) but also by dynamically computing a value
using a calculation method (e.g., probability computations based on the image histogram).

7.2 Complete the Base

In order to get a complete KB that can be executed by PEGASE+, some complementary
steps are necessary.

7.2.1 Import clauses

When the knowledge base begins to grow it is not possible (and not good programming) to
keep all information in one single file. A real knowledge base is usually splitted into several
*.yakl files. In this case, if for the description of some operator or type the expert needs
to refer to previously defined types or operators, he/she must first import their files (in a
similar way to the #include mechanism in C, except that you may write several names of
imported files on one line, but not on several lines: one new Import key word is necessary
at the beginning of each new line). The file names in the list of imported files should be
written without the .yakl extension.
Example :
Import deftypes primitivesl
Import primitives

These should be the first lines of a .yakl file, they mean that this file uses some el-
ements that are described in three other files: deftypes.yakl, primitivesl.yakl and
primitives2.yakl.

7.2.2 Defining a Functionality and a Request

Other important concepts in program supervision are functionalitie. Even if they are by
definition, less numerous in a knowledge base than operators, they are compulsory to get an
operational base.

A functionality represent an abstraction (without details peculiar to an individual imple-
mentation) of a processing function. Several operators can concretely realize one abstract
functionality. The alternative decomposition type often corresponds to a specialisation in
this way, and provides a way of grouping operators into semantical groups corresponding to
the common functionality they achieve. This is a natural way of expression for experts and
it allows levels of abstraction above specific operators.

The end-user has also to provide a request with specific input data, about a particular
problem. A request specifies the functionality to achieve along with some initial concrete

RR n° 5066

102 Sabine Moisan

input data. That constitute the user’s problem statement. At least one request is necessary
to trigger the reasoning. The program supervision engine can then more or less automatically
process the user’s request, using the knowledge base contents, without burdening the user
with technical processing problems.
For example, supposing that we have the imagel instance of MyImage defined page 96,
we can define a new functionality and a request:
Functionality {
name Segmentation
Achieved by segml
Input Data
Mylmage name im_in
comment "initial global image"
Output Data
MyImage name bin_im
comment "binary extracted image"
}
Request {
Segmentation name segmentation imagel
Attributes
im_in :=iml
}

An operator, like segml below, can then declare to achieve this functionality. It must
then have the same input and output arguments as its functionality (i.e. the same argument
names and same argument types, but it may also have additional ones, for instance some
parameters). NB: for the moment the names of the common arguments must be exactly
the same, such as im_in. A connection with a functionality is only necessary for those
operators that will be able to answer a user’s request. It is used by the program supervision
engine which tries to match the request and the operators in the knowledge base (see chapter
4).

Primitive Operator {

name segml
Functionality : segmentation
Input Data
Mylmage name im _in
comment "original image"
Input Parameters
Integer name precision

INRIA

YAKL and PEGASE+ Reference and User Manual 103

Remember:

e Define only functionalities that are relevant from the end-user’s point
of view (those that may lead to users’ requests)

e Operators with an attached functionality are entry points for the PS
system.

e These operators must conform to the types/names of arguments of
their functionalities.

See page 62 for details.

7.2.3 Defining a Knowledge Base

The expert must also provide in a separate file with a .kb extension (example: my_base.kb)
a representation of the contents of a knowledge base in program supervision. It refers to a
list of files which contain either the description of the knowledge base components (which
are .yakl files containing the descriptions of operators, rules, etc.), or code in C++ for
expert-defined methods and functions necessary in the application domain. These files are
assumed to be stored in the same directory (indicated by (optional) KB Path :). At a
given time, there is only one knowledge base (and one fact base containing domain object
and data instances) active in the system.
Kb { name IP
Complete Name "KB for satellite IP"
Authors "X Y Z"
KB Path "/usr/local/bases/IP"
Version 2.0
Root Node IPprocessing
List of Files ipl ip2
}I‘he root node, in hierarchical program supervision, as in PEGASE+, is the node which
is at the top of the (preferably unique) hierarchy of operators, but you may have several
roots in the general case, since there may be several partial hierarchies of operators in the
knowledge base.
The optional KB Path, if filled, must correspond to an absolute path.
The list of files correspond to all the .yakl file that have been defined (the .yakl
extension is assumed, e.g., here ip1 stands for ipl.yakl.
Note that there is no need to mention the file containing the KB definition itself (i.e.
the .kb file where the previous lines are written in) in the list of files, provided that this file
contains only that definition.

RR n° 5066

104 Sabine Moisan

Remember:

e A KB is described in a separate file with a .kb extension.

Be careful to write down the right path.

Update the file names (in case of changes of name, addition or deletion
of a file)

e Don’t indicate the .yakl extensions
e Choose a root node (even if it is artificial, PEGASE+ needs one).

See page 53 for details.

The expert may also write some code files, for instance .cc files in C++, that contain
the code of methods of types or of additional functions used in rules, in calculation parts,
etc.. These files will be linked with the base. They are not necessary at the beginning of a
base. The syntax is:

Kb { name IP

........ List of Files ipl ip2

Code Files ip.cc

7.3 Refine the Base

Some advanced features of YAKL can be used in a second step to refine criteria, composite
bodies, argument I-O relations, effects, etc. This section lists such features.

7.3.1 Optional Operators in Sequences

In sequential decomposition, some of the sub-operators may be optional, that is depending
on the data (usually), their execution in the sequence is possible but not always necessary.
They are indicated in the body of their composite parent operator inside brackets [], as in

Body
opl - [op2] - op3

An optional sub-operator may appear anywhere in a sequence (first or last place also).
The program supervision engine will decide dynamically whether to apply or not an optional
sub-operator. For that purpose, the expert must provide it with optionality rules. They are
attached to a composite operator with a sequential decomposition type and they describe
whether an optional sub-operator should be applied depending on the dynamic state of the
current data, on domain object contents, etc. There must be one set of rule for each optional
operator in a sequence. Optionality criteria appear after the body of the parent operator,
like the choice criteria. Here is an example:

INRIA

YAKL and PEGASE+ Reference and User Manual 105

Optional Criteria for op2
Rule { name opt_op2
If
param == 4,
image in.format == {2
Then use_optional operator op2

}

Note that since this rule is in the parent operator, param and image_in are input arguments
(parameter and data in the example) of the parent operator, not of the optional child!

An operator used as an optional sub-operator in a body must have the same number of
input data and of output data (extra data are allowed if they are at the end) in the same
order and of the same type. This is compulsory since when the operator is not executed,
because the optional criteria does not apply, the input data are directly passed to the output
data by the engine. This data flow is managed by the engine and must not be expressed in
the Flow part.

Remember:

¢ Optional operators must have the same number, order and types of
arguments in and out.

¢ No extra data flow to write.
¢ Optionality rules are located in the parent sequence operator.

See pages 68 and 73 for syntax details.

7.3.2 More on I-O Relations

By default output data description are empty, unless something has been done by rules or
in I-O Relations. In order to express that the output description of some argument is the
same as the description of an input one, the idea is first to do a global copy using an equal
sign = (ex: Outl = Inl). Note that this is of course only possible if the data have the same
type! Then you can assign (using :=) some attributes (only those which have to change) .

I-O relations are a way of expressing some semantics about what has been done by the
program on output data. (E.g., for a type derived from Image the I-O relations may express
that from an image of pixels as input an operator has produced as output an image of
segments, that the output image size has been reduced compared to the input, that the
noise has been removed, etc.).

RR n° 5066

106 Sabine Moisan

Remember:

e No transfer of information is done by default from input data to output
data descriptions.

e 1-O relations may express the semantics about the job of the operator.

See page 62 for syntax details.

7.3.3 More on Alternative Decompositions

It should be noted that alternative decompositions correspond to exclusive choices. If one
wants to execute both sub-operators in some cases, you have to define a more complex
architecture, described in figure 7.2:

in case 1 use_operator child1
Composite ||)
parent in case 2 use_operator child2
in case 3 use child3.1 AND child3.2
i.e. use child3

Composite
child3

"sequence”
Figure 7.2: Architecture to define non exclusive “or”. An abstract version of the choice rules
is indicated.

7.3.4 Effects

Effects are another way (along with semantical information in argument types and I-O
relations) to express what the represented program does on its output data. The effects
and (pre/post)conditions allow the program supervision engine to determine if an operator
is applicable in a state or which operator is suitable to reach a given goal. Contrary to the
I-O relations (where are expressed relations that depend on the inputs), effects impact on
the outputs only (it is of no use to modify inputs after their utilisation!).

Effects

out_image.shape situation := isolated disconnected

Like pre- and post-conditions effects are separated by commas. In this example, out_image

must be of a type that has an attribute named shape_situation of symbolic type itself,

INRIA

YAKL and PEGASE+ Reference and User Manual 107

and the symbolic value isolated_disconnected must be allowed for this attribute, i.e.
it belongs to its range, or there is no range (in this case the value is free, but the expert
must be cautious in using it somewhere else!). The effects assign values that can be checked
afterwards in preconditions or rule premisses, for instance. Let us assume that the attribute
out_image is connected to the attribute in_image of a (alternative) brother operator in a
sequence. In this brother operator the symbolic value isolated_disconnected may then
be tested, for example in a choice rule like:
Choice criteria
Rule { name choicel
If in_image. shape situation := isolated disconnected
Then use operator op_for isolated

}
7.3.5 Attribute Value from a File

When results are collected in a file they can be accessed in the Effects part, by the item
notation. The file name is either denoted directly or it may be computed by a method
returning a string. The place to search for the interesting information is indicated by a
number (an integer), which is the index of a word in the whole file or in a line (sequence
of words, terminated by a newline). The precise line to search in may be specified by any
significant word appearing in it (like xmin in the following example). It should be noted
that for the index computation delimiters (i.e. space tab ; : =) don’t count as words.

Also note that effects are executed even in simulation mode (so files containing the proper
information must exist).

Effects
ix := item 2 (Integer) in "file.r" xmin ,

iy 1= (1 + (ie.y_size / 2)) - (v / 2)
If the file file.r contains the line:
xmin = 3

x will be assigned the value 3, which is considered as the second word in the line containing
xmin (since = does not count). If the item cannot be found before the end of the line, the
engine stops with an error message.

The result is always a simple value (int, float or string) and the expert must mention
the type the result must be converted to (like (Integer) in the example) in order for the
engine to type the information extracted from the file.

Remember:
e “Cast” the extracted value, using (Integer) or (String) or (Float).
e Delimiters don’t count.

See page 65 for syntax details.

RR n° 5066

108 Sabine Moisan

7.3.6 Assessment Criteria

The assessment rules are the most difficult to define, they usually come late in the KB
development process. They apply on output data of an operator.

Assessment criteria

Rule {

name retry
If Outl.number >=1
Then assess _operator pb_retry repair

’}fhe “repair” symbol in the conclusion of the rule means that the result is too bad to
continue, and that the repair mechanism must be triggered. The attribute number must
have been defined in the type of the argument Outl and must have been filled either by a
rule, or by and I-O relation. The pb_retry symbol is given by the expert and constitutes
a “judgement” which associated by this rule to the current operator. This “judgement” can
be searched for by other rules later in the reasoning (usually repair rules that decide what
to do depending on the judgements). That is why the symbols used in assessment rules as
well as in repair rules must be consistent,

In assessment criteria, like in initialisation ones, there may be a chaining of rules which
conclude to a bad (or good) assessment. The assessment may also be left to the user, in
this case, the expert proposes a list of values and possibly a question, like in the following
example ("Regularity, number and size of the shape?"). The end-user will only have to select
one assessment in the list (round_regular_shape irregular_shape multiple too_small

.
Assessment criteria
Rule { name eval segmented im

comment "regularity criteria"
If true
Then display segmented im,
assess__data_by user segmented im
[round regular shape irregular shape multiple too small ...]
"Regularity, number and size of the shape?"
}
Rule { name eval segm morpho bin 1
If assess_data? segmented im round regular shape
Then assess_operator good continue
}
Rule { name eval _segm_morpho_bin_2
comment "quality is not so good"
If assess _data? segmented im irregular shape
Then assess_operator poor quality repair

INRIA

YAKL and PEGASE+ Reference and User Manual 109

Remember:

e No repair will be triggered without a bad assessment (i.e. “repair” in
an action of an assessment rule).

e The expert can leave the assessment to the end-user.
e The symbols used for assessments must be consistent in all rules
e Assessments are difficult at low-level, work bottom-up.

See pages 71 and 75 for syntax details.

7.3.7 Repair Strategy

Two kinds of rules are involved in the failure-handling or repair strategy: adjustment and
repair rules. The former are local to an operator and are triggered by a re_execute action,
while the latter are more global and used to propagate problems from the point (operator)
where they can be detected to the point (operator) where they can be solved. Repair criteria
express judgement propagation in a knowledge base for “reactive execution”.

Reparation rules (i.e. both repair and adjustment rules) are triggered only if some
assessment rule has concluded on the necessity of repairing. Repairing usually means first,
to backtrack to some previous state where the origin of the currently detected problem might
be (bad choice or bad parameter value) and second, to start a new line of reasoning with
different options (¢.e. new choice or new parameter value).

Backtracking is possible because PEGASE+ manages a state tree (or dag). States store
information about the successive situations during the reasoning of the KBS. They reflect
changes in data in particular via transitions that memorise each slot modification of objects.

A state tree (or dag, i.e. a tree without cycles) describes the successive states of a problem
solving process. Each state, except the root of the tree, has one or several ancestor(s) and
one or several successor(s), except for leaves which have no successors. Starting from the root
initial state the system expands it into its successors, each one being obtained by applying
a (set of) operator(s) that modify the fact base. Operators applied to go from one state
to another are selected with respect to their level of interest to achieve the targeted goal.
At anytime, there is only one current state. After or during reasoning it may be necessary
to backtrack to a previous state to avoid impasses or to inspect other states. A state may
be reversible or not depending if the transitions that led to it can or cannot be “undone”;
default is reversible.

Local Repair: Adjustment Criteria

A frequent local repair strategy is simply to re-execute the current operator with modified
parameter values. Such a re-execution follows a re_execute action like in:

RR n° 5066

110 Sabine Moisan

Repair criteria

Rule { name rex
If assess _operator? opl pb
Then re_execute

After that kind of rule, adjustment is trigerred. Note that, to be adjustable, a parameter
must have a range. Let us assume that file_in is of type MyFile, and param of type
Integer:

Adjustment criteria

Rule { name adjl

If file in.number ==
Then param := 3

Rule { name adj2
If file_in.number ==
Then param := 9

Then, if param is used in the calling syntax of its operator, like:
syntax program -option param endsyntax
the first call will generate program -option 3, while the second one will lead to program
-option 9.
Example of an adjustment rule referring to the current operator assessment (which has
been set in another adjustment rule, previously in the execution):
Adjustment criteria
Rule { name r_adjust
If
assess _operator? ambiguous
Then
decrease param decrease the parameter value of 1 (by default)

}

Assessment on arguments play an important role in the repair process. Here follows an-
other example of adjustment rules in image processing, referring to an argument assessment
and assigning the adjustment method of a parameter. In this example, after a primitive
extraction on stereo images, an evaluation rule can assess that the number of matched pairs
of primitives is insufficient; in such a case, it is possible to adjust the input parameters of the
corresponding operator stereo_match which are a threshold on the magnitude of the gra-
dient (thr_m), and a threshold on the orientation of the gradient (thr_o). Below are shown
two adjustment rules for this operator. The first one states that the adjustment method
for the parameter (thr-o) is a method by percentage. Associated methods are predefined
for integers (percent_integer) and for floats (percent_float). Note that the adjustment
methods demand the adjusted parameter to have a range defined! Otherwise no adjustment
is done.

INRIA

YAKL and PEGASE+ Reference and User Manual 111

Adjustment criteria
Rule { name radjust
If ...
Then adjustment method thr o percent float,
adjustment _step thr o := 0.3 }

The second rule states that if the number of matched pairs of primitives is insufficient,
the two parameters thr_m and thr-o have to be increased:
If assessed parameter? number primitives insufficient
Then increase thr m ,
increase thr o

Remember:
e One problem may lead to modify several parameters.

e Each problem propagation “chain” must end on a primitive operator
re-execution, after adjustment of some of its parameters.

e Don’t forget to give a range to parameters that may be adjusted.

See page 77 for syntax details.

Global Repair Criteria

In global repair rules the expert expresses information propagation, which means where a bad
evaluation information should be transmitted to. Actions in these rules are send_operator,
send_up, send_down. They allow the expert to express a strategy of repair and information
propagation in a complex hierarchy of operators. For instance, the expert can express that
the bad evaluation information has to be transmitted to a sub-operator (send_down), or
to the parent operator (send_up), or to any operator previously applied (send_operator).
Note that send_down can only be used in a composite operator which knows its children.

All these actions lead to some backtracking (see figure 7.3). Should backtrack occur, data
and domain object recover their previous values, but it is not the same for parameters, that
keep their current value (that is why several adjustments are possible). For instance, if in
state 2 an integer input data of Sonl is equal to 3, and if in state 4, it is equal to 6, when
the system backtracks to state 2, the value is 3 again.

RR n° 5066

112

Sabine Moisan

2) Repair : send_down . output 1) Assessment:
problem to Childl. - { Composite problem detected
o= Parent P on output=> repair
'l
.
l' ‘
Y - output
Composite |, Son2 Composite
Child1 %\ 3) Repair : Child3
ysend_down
+ problem to Child5

’
’ 4) Repair :
asses_operator Child5 problem
=>re_execute @
5) Adjustment : modify

some parameter value

Evolution of the plan:

output

State 1:plan=... P

P not yet decomposed

State 2 : plan = ... (P) Child1 Child2 Child3

decomposition of P

and so on...

State n : plan = ... (P) (Child1) ... (Child2) (Child3) Child4 Child5

decomposition & execution
of children 1 & 2
and decomposition of Child3

State n+1 plan = ... (P) (Child1) ...(Child2) (Child3) (Child4) (Child5)

execution of children 4 & 5
problem detected

Start a new line of reasoning

State 2 : plan = ... (P) Child1 Child2 Child3

bactrack to state 2 (where Child1
was not yet decomposed)

execution of new line continues

State m : plan = ... (P) (Child1)... (Child2) (Child3) Child4 Child5

re—execution
leading to a new state m

Figure 7.3: A “repair chain”. The operators indicated in parenthesis in a plan are executed

or decomposed at the current step of reasoning.

Repair criteria
Rule {
name rl

comment "If the output is ambiguous, raise problem to child S1"

If assess _operator? F ambiguous
Then send _down S1 output_ ambiguous }

INRIA

YAKL and PEGASE+ Reference and User Manual 113

This first rule is associated with the parent operator (P) it detects a problem and sends
down a name of problem to one of its children. The name of the problem is just a symbol
(preferably meaningful). The only constraint is that the same name must be used in all
rules referring to the same problem (i.e. use same names of problem in send-* and assess-*).
But a problem named e.g., “output__ambiguous” at one level may raise a problem named
differently (e.g., “ambiguity”) at another level (see below).

The same type of rule is used by S1:

Repair criteria

Rule {

name rdown

comment "If ambiguous, suspect S5"
If assess operator? S1 ambiguous
Then send _down S5 ambiguity }

This second rule propagates the problem diagnosis to another child operator S5, which
is suspected to be the origin of the problem. In this operator a repair rule triggers the
re-execution, and adjustment rules modify some of the values of parameter of S5, before its

re-execution.
Repair criteria

Rule {
name rex
If assess operator? S5 ambiguity
Then re_execute }

Assessment criteria
Rule {
name rass
If ...
Then increase param step 3

}

Remark: It is rather bad programming to use send_up if you can avoid it, because
it violates the encapsulation principle (i.e. an operator is a reusable black box). Using
send_up assumes that an operator knows that it has a parent. Moreover, if the operator
is used more than once (it has several parents) this implies that all its parents know how
to fix the problem. Instead, it is better to evaluate the results at the parent’s level and to
propagate the potential problems to children (a parent knows that it has children, there is
no encapsulation violation). It is often the case that the evaluation and the corresponding
send up are attached to the last operator of a sequence, the results of which are also the
results of the parent operator, so the evaluation can be done at the parent level.

RR n° 5066

114 Sabine Moisan

Remember:

¢ Be consistent in naming the problems in rules that raise them, and in
rules that catch or transmit them.

e Prefer top-down propagation (from a parent to its children)

See page 76 for syntax details.

7.3.8 More on Assessment

Assessment criteria not only allow to check properties of output of judgement of data or
operators, but also to check how many times an operator has been re-executed. For example,
nb_previous_assess return the number of times an operator has been re-executed due to a
given problem. Here is an example of how to use this action (see page 71, for other advanced
assessment actions). One parent with 2 children opl and op2, tries to repair twice the same
problem (by a re-execution of opl with different parameter values) but resigns after:
Assessment criteria
Rule {
name retryl
If Outl.size >=1,
nb_previous_assess opl pb <= 2
Then assess_operator pb repair
}
Rule {
name retry2
If Outl.size >=1,
nb_previous assess opl pb > 2
Then printf ("No solution, stop");

7.3.9 Parameter Flow

A “Parameter Flow” section may come after the Flow part. It allows a parent to enforce
the values of parameters of its children.
Parameter Flow
erosion.extension := ".det"
For the moment, only assignments to fixed values (like in the example) are allowed, be-
cause a lot of problems are still open, e.g., “Should the values of parent and child parameters
be shared after such assignments?”

INRIA

YAKL and PEGASE+ Reference and User Manual 115

7.3.10 Methods for Expert Types

The expert may also redefine methods (for instance display is defined for Image and may
be redefined in sub-types), or define new ones (compute in the following example). In the
type description only the method signature is needed. The code itself has to be written in
the engine language (C++ or Lisp) in so-called “code files” (see page 104).
Argument Type {
name Mylmage
Subtype Of Image
Attributes
Methods void display ()
Integer compute()
}

For the moment, only methods with no argument are accepted. No argument means no
other argument than the implicit one i.e. the instance on which the method applies (an
instance of MyImage for the method display in the example).

RR n° 5066

116 Sabine Moisan

INRIA

YAKL and PEGASE+ Reference and User Manual 117

Chapter 8

Detailed Example of a Simple
Knowledge Base

As an example, this chapter describes the almost complete description of a simple
knowledge base, divided into several files (.yakl). The base corresponds to the processing
of satellite images which can be of two types (either Spot or Landsat).

Remember:
¢ Define as many .yakl files as necessary; they may “import” each other.

¢ Describe once your KB (in a separate .kb file),

Describe at least one Functionality,

Associate the functionality with at least one operator -in both directions (a
Functionality achieves some operator(s) and an Operator has an attached Func-
tionality).

8.1 KB definition

First, a file named kb-cocktail.kb contains the knowledge base description alone:

Kb {
name cocktail
Complete Name "Satellite images Image Processing"
Authors "X Y"

RR n° 5066

118 Sabine Moisan

Kb Path " /usr/local/lama/bases/Cocktail" "
Version 2.0

Root Node cocktail

List of Files types prim comp req

The list of files contains the names of the .yakl file that constitute the KB, without the
extension. These files are described in the following.

8.2 Type and Domain Object Definitions

Second, in a file named types.yakl are the argument types and domain objects:

Argument Type {
name Spot
Subtype Of Image
Attributes
String name path # overriding path attribute
default " /usr/local/Tests/SPOT/"
String name extension # overriding extension attribute
default ".spot"
Methods Void display()

}

Object Type {
name Context
Attributes
Integer name Nb_spectres used
default 3

}

Object Instance {
Context name context
}

Argument Instance {
Spot name imagel
Attributes
basename := "spotl"
}

And the same for 2 other instances: image2 and image3

The Spot type is defined by the expert. It will be used for some operator’s arguments.
Its instances imagel. .3 will be used in a request.

INRIA

YAKL and PEGASE+ Reference and User Manual

119

8.3 Operators

A prim.yakl file gathers the descriptions of the primitive operators. It imports the types.yakl

file, because the Spot type is necessary for typing some data arguments.

Import types
Primitive Operator{
name Varimax
Characteristics threshold hysteresis
Input Data
Spot name xs1
Spot name xs2
Spot name xs3
Input Parameters
Integer name list
default 0
range [0 2]
Float name w
range [0.0 2.0]
default 0.0
Output Data
Image name factl
I-O relations
factl.path := xsl.path ,
factl.basename — xsl.basename,
factl.extension :=".fact1"

Preconditions
valid xs1 ,
valid xs2,
valid xs3
Postconditions
valid factl,

Assessment criteria
Rule {

name evall

If true

Then

use of Spot type, exrpert-defined

for output image, versus input one
it is at the same place

it has the same basename

but a different extension

assess_data_by user factl [incorrect correct]

}
Rule {

RR n° 5066

only the user can do that

120 Sabine Moisan

name eval2
If assess data? factl incorrect
Then assess operator by user [bad ok] [repair continue]
}
Rule {
name eval3
If assess_data? factl correct
Then assess_operator ok continue no problem

}

Initialization criteria
Rule {
name rinitl
If true
Then w:= 2.0
}
Rule {
name rinit2
If true
Then list <- [01 2]
¥
Adjustment criteria
Rule {
name radjustlhafq3XS
If true
Then increase w ,
increase list step 2

Call
language shell
syntax Varimax -XS1 xsl.get filename() -XS2 xs2.get _filename()
-XS3 xs3.get_filename() -list list -w w
endsyntax
type real

Note: If xs1 corresponds to a file named F1.spot, xs2 to a file named F2.spot, xs3 to
a file named F3.spot, list equals 1, and w equals 0.5, then the calling sysntax will generate
the following command:
Varimax -XS1 Fl.spot -XS2 F2.spot -XS3 F3.spot -list 1 -w 0.5

All the primitive operators are described in the same way.

Then, a comp.yakl file corresponds to composite operators. One of them is the entry
point to the KB: spot_operator. It is the only one (in this base) which is associated with

INRIA

YAKL and PEGASE+ Reference and User Manual 121

a functionality. Its abstract functionality Spot_processing is described in the same file,
because they must know each other. It imports the types.yakl and prim files, because it

uses the Spot type in argument description and primitive operators in composite operators’
bodies.

Import types prim
Functionality {

name Spot_ processing
Achieved by by spot_ operator
Input Data

Spot name xsl

Spot name xs2

Spot name xs3
Output Data

Image name imgl

Image name img2

}

Composite Operator {
name PointsChoice
Input Data
Image name histo
Output Data
File name out
Preconditions
valid histo
Postconditions
valid out
Body
Triangulation | RectConvPtIn
Choice criteria
Rule {
name Choice3Points
Let ¢ a Context
If c.Nb_spectrum == 3
Then use operator Triangulation
}
Rule {
name Choice4Points
Let ¢ a Context
If c.Nb_spectrum ==
Then use_operator RectConvPtIn

}

RR n° 5066

122

Sabine Moisan

Rule {

name Choice5Points

Let ¢ a Context

If c.Nb_spectrum ==

Then {{printf("Not yet implemented ");}}

}

Distribution
PointsChoice.histo / Triangulation.histo
PointsChoice.out / Triangulation.io
PointsChoice.histo / RectConvPtIn.histo
PointsChoice.out / RectConvPtIn.out

Composite Operator {
name rotation
Input Data
Spot name xsl
Spot name xs2
Spot name xs3
Output Data
Image name factl ol
Image name fact2 ol
Image name fact3
Image name frq
Precanditions
Postconditions

Body Varimax - Octet
Distribution
rotation.xsl / Varimax.xsl

Flow
Varimax.factl / Octet.factl

}

Composite Operator {

name spot__operator

comment "highest level operator for Spot images"
Functionality Spot_processing Entry point for requests
Input Data

Spot name xsl

INRIA

YAKL and PEGASE+ Reference and User Manual 123

Spot name xs2

Spot name xs3
Output Data

Image name imgl

Image name img2

Preconditions
Postconditions
Body
rotation - HistoGris - Triangulation - LocalSpectr - DiagTri2D -
Melang2DClassEntrop
Distribution

PointsChoice.histo / Triangulation.histo

PointsChoice.out / Triangulation.io

spot_ operator.xsl / rotation.xsl

Spo__operator.xs2 / rotation.xs2

spot__operator.xs3 / rotation.xs3

spot_operator.imgl / Melang2DClassEntrop.imgl

spot_operator.img2 / Melang2DClassEntrop.img2
Flow

rotation.factl ol / HistoGris.imgl

8.4 Request

Finally, the req.yak1 file contains a request referring to the Spot_processing functionality.
The request uses the previously defined instances imagel. .3 as attribute values. It imports
the types.yakl file because it is where these instances of Spot images are declared and the
prim.yakl file, because it is where the functionality is declared.

Import types prim
Request {

Spot_processing name RSpot
Attributes

xsl := imagel

xs2 := image2

xs3 := image3

RR n° 5066

124 Sabine Moisan

INRIA

YAKL and PEGASE+ Reference and User Manual 125

Chapter 9

Graphic Interface

GIP SE (Graphic Interface for Program Supervision Engines) is a graphic interface
for manipulating and executing knowledge bases in program supervision.

This document is a guide to the GIPSE interface. It addresses mostly experts either
building a new knowledge base, or modifying/auditing an existing one through visualisation.
All examples shown come from the Progal knowledge base. Figure 9.1 is a picture of GIPSE’s
main window with the Progal knowledge base loaded.

9.1 General Overview of GIPSE

This section gives a brief description of GIPSE and its utilization. All features are fully
developped in the following sections.

9.1.1 On Line Help

Located on the upper righthand corner of the main window, the help button (see figure 9.2)
gives online help on commands. To get information on a command, click the help button,
then click the command itself. For example, clicking the help button and then the zoom
button pops up a help window that gives information on the zoom command. (see figure
9.3).

RR n° 5066

126 Sabine Moisan

Figure 9.1: GIPSE’s main window

Figure 9.2: Help button

INRIA

YAKL and PEGASE+ Reference and User Manual 127

=< Zoom on Selection »=> command
Function :

Pooms a specific rectangular area of the graphic
KE or the execution tree.

Description :

To select a paicular rectangle area press down
of the rmouse and drag it further. Then active
the <=Zoom on Selection= commmand.

Four consecutive zooms is the maximum.

z oK

Figure 9.3: On the left, zoom button, on the right, help window for the zoom command

RR n° 5066

128 Sabine Moisan

9.1.2 Opening a Knowledge Base

Knowledge bases are organized in .yakl files located in the directory wearing the knowledge
base name. Furthermore, some important information is stored in .save files used by the
GUI YAKL files contain the expert knowledge while .save files are automatically generated
from .yakl files. For example the directory KB-PROGAL contains all .save and .yakl files
storing the Progal knowledge base.

B &5 kb
-] KB-CERVE&U
(] KB-GRIFT
B E-FROGAL

L] KB-SAGA
Figure 9.4: Root kb directory with knowledge bases sub-directories

To open a knowledge base, click the Open command in the File menu on the menu bar
(see figure 9.5).

File| Show
Qpen
New
Modify
Save As
Save

File Show Operator Type Conf Engine About Exit

Figure 9.5: The Menu Bar (left) and the File Menu (right)

A file browser opens up showing the content of the knowledge base root directory (see
figure 9.6).

Select a knowledge base by clicking on its name, then click the Update button to get
a list of its files. One of the .save file has the same name in lower case characters as its
containing directory; this file is the ROOT FILE for the knowledge base. Click OK to open
the corresponding knowledge base. A graphical representation of the knowledge base shows
up in the central Knowledge Base tab of the main window. Also knowledge base’s name
appears in the area so labeled in the main window(9.1). See below for graph vs.tree options.

For example, selecting KB-PROGAL as sub-directory then kb-progal.save as root file
opens the Progal knowledge base in the main window.

INRIA

YAKL and PEGASE+ Reference and User Manual 129

~ S

Enter path o folder name:

| Audyre/Qfoion/maisansk B—F’_ROG&TL.E ¥

Filter Files

Rk isoler-ohjet.yakl =

Folders |Kb-progal yakl
limites-okjet. save

limites—objet yak|
localisation—okjet. save |
localisation—objet.yakl

localisation—precise—du—bulbe. save

Images
P

Enterfile name:

‘ kh~progal. save

oK Upriate Carcel |

Figure 9.6: File browser for opening a knowledge base

9.1.3 Visualisation of a Knowledge Base : tree vs. graph

A knowledge base can be viewed as an operator’s graph showing shared nodes. Labeled
colored nodes are operators; colored links represent separate relations of composite operators.
Red rectangular nodes note composite operators while green oval ones represent primitives
(see figure 9.7).

Figure 9.7: Composite operators and their sons

Links are of three types: sequential (black), choice (magenta) and optional (doted blue).

RR n° 5066

130 Sabine Moisan

A knowledge base can also be viewed as a tree which is easier for the human eye to
follow.(see figure 9.8).

A small black diamond next to the rectangle representing an operator indicates it has
sons ; an operator with more than one level of sons heads a list of their names. Use the
Graph-Tree command in the Show menu to switch from tree to graph and vice versa.

SEEICETT e

o Ted iy
isols_zdne_info mi}—m&' m‘ﬁm amct_‘mm:run superphsition
i e

]
T
eozilloge Mo conllnge histo dutach_c iter st DEnCele mrecembler info TeOUD ils s ctin
= 'Cm_ ®

olimin_taches_fond

aloul higogrmme hi_’sthgﬁ etret_mwe_irtemme *-‘ setmct_mme
sk : IE
// II
codnge_dlet_contre et Sp_irteme emct_;np*/ e‘:mcr.-_;tl_\P_mm:
e e v A
extnct_reg irteTsection
coloal cerpe irderre ..:‘,_n
B
aﬂ;fm elimin_tofhes_fomd m_iim
5 e
-—____—"-'—-)f—)
N
xmet_np_f e oﬁnslinx_fmﬂ

Figure 9.8: Progal knowledge base represented as a tree (part of)

9.1.4 Executing a Request

A request can only be executed on a fully loaded base. Use the Select Request in the Engine
menu to do that. A window pops up allowing either selection of a request or construction
of one (which is detailed later).

Debug Level and Type of Execution

Debug level is set at 0 unless expert changes it by clicking the appropriate buttons. Choices
are :

INRIA

YAKL and PEGASE+ Reference and User Manual 131

e Level 0 : running mode with no log
e Level 1 : running mode with some log
e Level 2 : running mode with full log

e Level 3 : running mode with full log and display of rules’ YAKL code

Figures 9.9, 9.10 and 9.11 show the three mobile windows associated with an execution.

The expert can also choose a step by step running mode by activating the “yes” option
on the button “step by step”. When all choices have been completed, start the execution of
the request by clicking the Go button.

On levels 0 and 1, the Continue and Stop buttons in the Control panel are disabled. The
panel’s color is red. A primitive operator in the execution plan can be selected at any time
for complementary information using the Info button.

On levels 2 and 3, the Continue and Stop buttons in the Control panel are enabled when
the colored panel turns green. Use the Continue button to get to the next execution step.

As soon as execution starts, a new window pops up on which the generated solution plan
will be dynamically displayed. Depending on the debug level, a log window can also pop
up. Finally, the Execution Tree will be dynamically constructed under the Ezecution Tree
tab of the main window.

The engine communicates with the interface via dialog boxes that allow the expert to
feed it information while the execution is taking place.

— = 4] O X
- Goals — -|rldentification———— |- Objects -
Request
GoalfFunci
rInstantiation- T
|
=if
Requests |

Execution Oplions

Debug level Step

|I] v| |_vas v|
| Go || Cancel |
I

Figure 9.9: Selecting a request

RR n° 5066

132

Sabine Moisan

O X
o_imitinli=mtion o_mas :
—
z 8
Control
Stop

Operatar ifo

Info b
J 1] [¥]

— 3k

-General Lag
EBegin operator: o_initialisation Primitive
Initialization: o_initialisation

Activate rule: o_initialisation__r_init_init1

Rule: o_initialisation__r_init_init? is not applicable
Activate rule: o_initialisation__r_init_init2

Rulg: o_initialisation__r_init_init2 is not applicable
Test preconditions: o_initialisation True

Executing: m $PROGALHOMESImagesig 3.0 param

Figure 9.10: Generated solution

-Execufion Lag

rRule Lag

m $FROGALHOME/Images/gS53.gparam

o_initialisation__r_init_init1
o_initialization__r_init_init3

Figure 9.11: Execution logs of trace, if debug level > 0

INRIA

YAKL and PEGASE+ Reference and User Manual 133

Figure 9.12 shows the resulting Execution Tree.

o_chaine_nstro
TindHantion Fellipses
o_intinliestion, 0 dealewliet oo L il prremetres oElobee: nlol_peramkgiresScombours R e
- & e corutmaction) comtors e
k3 oy
o _locnlisntion oljet oojsol_effectime
apretejtenent o_cabaul senile hie weltwetion zore_de TS-smlbse detection mme com g cnloul_cerdre fmage_originale
thilles [moge O_mefthen,_ imnge basse_resohiion
y e .
| H““‘ﬂ-u_h_%_
| e

Figure 9.12: Execution Tree

9.1.5 Exiting GIPSE

To exit GIPSE click the FEzit button on the right vertical bar (see figure 9.13) or use the
Ezit command in the File menu.

9.2 Visualisation Tools

9.2.1 Manipulating the Knowledge Base Graph
GIPSE provides tools for manipulating the knowledge base graph.

RR n° 5066

134 Sabine Moisan

@

Figure 9.13: Exit button

Select and Move

Selecting an operator — with the left mouse button — turns its rectangle to grey and enables
all commands relevant to this operator like Show Descriptor in the Operator menu. Selecting
a link — with the left mouse button — turns its line to green which may help its visualisation.

Since a complex graph can be difficult to read, the expert may want to use the center
mouse button to move operators around : select, press and drag, all with the middle button
of the mouse! In order to go back to the initial display, use the Repaint command in the
Show menu or click the repaint button on the right vertical button bar. See Figure (9.14).

.

Figure 9.14: Repaint button

Zooming, Unzooming

Commands connected to zooming are in the left vertical buttons bar (see figure 9.15) as well
as in Show menu.

The Zoom command (left bar —see figure 9.3— or in Show menu) zooms the graph. The
maximum number of consecutive zooms is 4. The Unzoom command (left bar —see figure
9.15— or Show menu) undoes what the Zoom command does.

INRIA

YAKL and PEGASE+ Reference and User Manual 135

@ “Clear Display”’button
7 “Zoom” button
'Q “Zoom on Selection” button

“Unzoom” button

“Normal Size” button

Figure 9.15: Left vertical buttons bar

Point to an area for “zooming on selection” by drawing a perimeter around the chosen
area with the right mouse button: a rectangle shows up dynamically. (left bar —see figure
9.15- or Show menu).

In order to retrieve the original size after zooming several times without using the “Un-
zoom” command, use the Normal Size command (left bar —see figure 9.15— or Show menu)

When working on a complex graph, separate operators along the X or Y axis by activating
the Increase X Spacing-Decrease X Spacing and Increase Y Spacing-Decrease Y Spacing
commands in the Show menu.

Graph Versus Tree

See also section 9.1.3
Links between sequential operators and their sons are displayed as forks (see figure 9.16).

9.2.2 Getting Information on Operators

The Operator menu has all commands relevant to operators.

RR n° 5066

136 Sabine Moisan

o_detection_pone_gralaxie

o_nmwiphli=
o_calml fenil mmls o_nmls comstmct chaine contour ‘:‘_.i'ﬂe
= . - e
T &

Figure 9.16: Sequential fork link tree representation

Click the Find command in the operator’s menu or the Find button of the right vertical
bar to locate an operator in the graph. (see figure 9.17).

=7

Figure 9.17: Find button

A dialog window pops up: enter the desired operator’s name. If found, the operator will
be centered as best as possible in the window and its rectangle highlighted in grey. On a
selected operator, the expert may obtain additional data by selecting “Show Descriptor”. A
window opens up with fives tabs labelled Input, Output, Parameters, Rules and Yakl (see
figures 9.18, 9.19, 9.20).

e The Input tab has a list of the operator’s input data and the Output tab a list of
the operator’s output data. The name of the operator is shown at the bottom of the
window and every variable can be selected in order to get its type. Clicking the Type
button pops up a window that give information on the variables’ types (see figure
9.21).

The other two tabs show a button bar (see figure 9.22) related to data flow visualisa-
tion.

A data flow is a link between operator’s data. For example an output generated by
an operator can become the input of the next operator.

GIPSE is able to display these data flows by drawing an arrow between the two sets
of data. See figure 9.23 for an example of data flow.

INRIA

YAKL and PEGASE+ Reference and User Manual 137

0 X O X
- ‘Descripiion —— = ‘Descripiion ————
nome [N || | Name
i saing i
Tyoe | e Ty A
=aire3
Show Type Show Type
rData Flow—— r Data Flow
‘Operataor _ Close ‘Dperator _ Close
Figure 9.18: Input and Output tabs of Show Descriptor Window
FIET O X
‘Descripiion———— ‘Descripiion
ome [name [
Tvoe (IR
Show Type
Tvve |
‘Operataor _ Close ‘Dperator _ Close

Figure 9.19: Parameters and Rules tabs of Show Descriptor Window

Any operator’s data (input or output) shows necessarily some flow since it comes from
one or more operator(s) and goes to one or more other operator(s), brother(s), son(s)
or father(s) of the initial one(s).

Select data (input or output) to visualize :

— the whole flow going through by clicking the Whole Flow button (see figure 9.24)

— the flow that go to other operator(s) by clicking the Go To button (see figure
9.25)

— the flow that come from other operator(s) by clicking the Come from button (see
figure 9.26)

RR n° 5066

138

Sabine Moisan

Float name sh =
Float name sairei
Float name sairg2
Float name saire3

Freconditions
walid is

Fostconditions
walid sm,
walid sh,

salid smirmd

S Glose

4]

Figure 9.20: Yakl tab of Show Descriptor window

I Attributes—————— Methods
ix_sample_step display

y_sample_step
Version_fomat

Description

Figure 9.21: Domain types

-

mc@.-@:}\

Figure 9.22: The Data Flow bar

In the last two cases, when flow goes or comes from more than one operator, select
one of those operators before clicking again the button to get the flow on this path.
Otherwise, GIPSE continues showing the flow from the last displayed arrow flow.

Use the Clear Data Flow command in the Operator menu or the Clear Data Flow
button (see figure 9.27) to remove data flows from the graph.

INRIA

YAKL and PEGASE+ Reference and User Manual 139

o_pre_trhitement
e

G _,iEl,age_h asse_resolition

o_pars \:’g'q
can L=

Figure 9.23: Example of data flow

F 3

+

w

Figure 9.24: Whole Flow button

“ad

Figure 9.25: Go To button

| g

Figure 9.26: Come From button

A

Figure 9.27: Clean button

e The Parameters tab shows a list of the operator’s parameters, if any. As for the Input
and QOutput tabs, their types are shown when selected in the list.

e The Rules tab shows a list of the operator’s rules. As explained earlier, type is shown
for the rule selected (types are I (Initialisation), A(Adjustment), C (Choice), R (Re-
pair) or E (Evaluation)).

RR n° 5066

140 Sabine Moisan

e The Yaukl tab shows YAKL code that describes the operator’s behavior. Every time
you select an item from the lists in the first four tabs (Input, Output, Parameters or
Rules) the Yakl tab shows the corresponding YAKL code.

To get a quick view of the input/output of an operator, use the Display I/0 command
in the Operator menu. Input and output are directly displayed on the graph, input to the
left, output to the right (see figure 9.28). Use the Hide I/O command to undo the Display

I/0 command.
ta)]lilmage

f
f

= \\?&’:

i taille st
taille v

Figure 9.28: Displaying input/output on both sides of an operator

To get a quick view of the type of rules for an operator, use the Display Rules command.
A string composed of 'T’; A’ ’C’, 'R, and ’E’ characters will show up below the operator
(see figure 9.29). For example an operator which has rule(s) typed '’ and 'C’ will get the I
C string below it. Use the Hide Rules command to undo the Display Rules command.

construct_chaine fontour3

e

Figure 9.29: Displaying rule types below an operator

9.2.3 Data Types

Data types are of two kinds:
o built-in, corresponding to predefined types (integer, float, string,...)
e domain types, constructed by the expert.

GIPSE is able to display and load all types.
All commands that are related to types are located in the Type menu.

9.2.4 Displaying Types

Use the Show item in the Type menu to display types. This command yields Domain and
Built In commands. Select Domain to get information about domain types, Built In for
built-in types.

INRIA

YAKL and PEGASE+ Reference and User Manual 141

A window pops up that display types (see figure 9.21). Every type has its own tab where
it is displayed. Methods and attributs are listed. Select an attribut to get its type.

9.2.5 Loading a Type

Types, like operators, are described in .yak1 files. Load a domain type by using the Load-
Domain command in the Type menu. Just select a .save file and click OK. The domain types
stored in that file are loaded.

Note that selecting the root file of the knowledge base loads all domain types related to
it.

Using the Load-Built In command loads only the YAKL built-in types.

Finally, unload all types by using the Clear command.

9.3 Creating and Modifying a Knowledge Base

GIPSE allows the expert to graphically create a new knowledge base or to modify an existing
one.

The tool bar shown figure 9.30 is specifically dedicated to these tasks.

To create a new knowledge base, the expert must have already loaded types. When so,
use the New command in the File menu.

To modify an existing knowledge base, use the Modify command in the File menu which
enables the New-Modify bar.

Then use the New-Modify bar to do the job.

)t Y

Figure 9.30: The New Modify knowledge base bar

NEER

9.3.1 The New-Modify Bar

A complete description of every button in the bar follows.

e To create and place a new composite operator:

First press the left mouse button where the new primitive operator is to be displayed
then click the Composite button (see figure 9.31.

B

Figure 9.31: Composite button

RR n° 5066

142 Sabine Moisan

A dialog box pops up to enter information on the new operator (see figure 9.32).

First give the operator’s name then indicate what type of composite it is (sequence
or choice) (see figure 9.32).

el G {ER
& tor (IHEOEE ,I,‘,, = ST
[Ueotbeladlll | o (isntavd achert b | B ASLEE
[Operator Name
Name new_operator

Type
|@: Sequence () Choice

‘ Set Cancel

Figure 9.32: Dialog window to set a composite operator

Use the Input tab to set input for the operator (see figure 9.33):

— Enter input’s name in the text box

— Choose Built In or Domain type via the radio buttons on the Choose panel then
use the proper checkbox of the Types panel.

— Click the Add button (see figure 9.35) to add that input to the operator
— Use the Remove button (see figure 9.36) to remove a selected input

‘® Built In) Domain

Types
Builtin

Integer v '

—|Domain

(& [@ |

Figure 9.33: Dialog window to set an operator (Input tab)

INRIA

YAKL and PEGASE+ Reference and User Manual 143

0o ox
S |Paremeters | Rutes |
rList e
Name M

.Rule'sT]{De
©1 DA®BCORDE

rYakl code

Figure 9.34: Dialog window to set an operator (Rules tab)

-

Figure 9.35: Add button

(&

Figure 9.36: Cut button

In the same or a similar manner, under Output/Parameters/Rules tab, enter output
and parameters to the operator. The Rules tab is shown on figure 9.34.

Clicking the Set button on this dialog box upon completion.
The composite operator is placed on the graph at the desired location.
e To create and place a new primitive operator, proceed as for a composite operator,

clicking the Primitive bar button (see figure 9.37). There is no type to set (sequence,
choice) for a primitive operator.

B

Figure 9.37: Primitive button
e To modify an operator, select it first then click the Modify Node button (see figure

9.38).
A dialog box pops up allowing modification. Click the Set button upon completion.

RR n° 5066

144

Sabine Moisan

4

Figure 9.38: Modify Node button

e To remove a selected operator, select it first then click the Cut Node button (see figure

9.39).

Figure 9.39: Cut Node button

To remove a sub tree, first select the root operator of its sub-tree then click the Cut
Tree button (see figure 9.40).

A
e i

Figure 9.40: Cut Tree button

To create a link between two operators:

First select with the left mouse button the son operator then, holding the button down,
drag the mouse towards the new father and release the button upon reaching it. A
line is drawn between the son and its father. Click the Link button (see figure 9.41).
Note that the son’s links to its brothers are taken into account.

AN

Figure 9.41: Link button

To create an optional link between two operators:

The procedure is the same as above using this time the Optional Link button (see figure
9.42) instead of the Link one. An optional link instead of a regular one is created.

Figure 9.42: Optional Link button

INRIA

YAKL and PEGASE+ Reference and User Manual 145

e To remove a link:

Select a link then click the Remove Link button (see figure 9.43).

P

Figure 9.43: Cut Link button

e To create data flows between two operators:

First press the left mouse button while pointing on the first operator then drag the
mouse towards the second one and release the button when reaching it. A line is drawn
automatically between the two operators. Click the Manage Data Flow button (see
figure 9.44), a dialog box pops up (see figure 9.45) allowing the expert to create/remove
data flows.

To create a data flow, simply select the two sets of data from the left panel then press
the Add button (see figure 9.35). To remove a data flow, select it and click the Remove
button (see figure 9.36) on the right panel.

Press the Set button upon completion.

N

Figure 9.44: Manage Data Flow button

et Gip= 1.0 : Gipse |, =1
Create Data Flow 1 rRemove Data Flow 1
Outpul of o_his_4 - Input of o_his_3 Data Flow
is ie o_his_d4 isfo_his_3.ie

¢

| Set || Cancel |

Figure 9.45: Managing Data Flow

e To update the graph after modifications, click the Draw button (see figure 9.46).

RR n° 5066

146 Sabine Moisan

iR

Figure 9.46: Draw button

9.3.2 Saving a Knowledge Base

A knowledge base is originally distributed in several .save files. GIPSE saves a knowledge
base in a unique .save file. To save a new or modified knowledge base, use the Save or Save
As command in the File menu. Save As allows the expert, via a files browser, to choose the
file’s name while Save uses the last chosen file.
Thus use first Save As then Save to update modification on the same knowledge base.
Note that the saving process stores not only the operators in the same .save file but also
domain types related to the knowledge base.

9.3.3 Creating or Modifying a Knowledge Base Type and Saving
It

GIPSE allows the expert to create and modify all domain types. This is done using the
Create and Modify command in the Type menu.

The Modify command is available only if types have been loaded.

When using the Modify command, a dialog window pops up that gives a list of domain
types (see figure 9.47).

e Gip - 0O %
Choose Type 1
Type
INRI -
INRI
Dzwv
| Ok || Cancel ‘

Figure 9.47: List of domain types
Select in that list the type to modify then click the OK button.

Then in both cases (modify or create) a dialog window pops up to access type information
(see figure 9.48).

INRIA

YAKL and PEGASE+ Reference and User Manual

147

Type Name

wame []

Super Type

INRI |

=R

~Super Type —

| Add || Save || Canl:el‘

Figure 9.48: Creating a type

Use the Attributes and Methods tabs to set attributes and methods to the type. These
dialog tabs work the same as the ones for setting input, output, parameters and rules for an

operator (see figures 9.49, 9.50)

Attributs | Mei

List

Name -

r Choose

/@ Builtin () Doma

rTypes—
|Builtin

Integer ~|

|Domain

[INRI -

@

Neme |

in

| Add || Save || Cancel ‘

Figure 9.49: Setting attributes to a type

e When modifying a type, click Set to save modifications.

e When creating a new type, click the Add or Save button upon completion. In both
cases, a file browser pops up so that the expert selects a .save file for saving. In the
Add case, the type will be added to the file. In the Save case the file will be overwritten

by the type.

RR n° 5066

148 Sabine Moisan

rName

N

Choose
|® Builtin) Domain

Types
|Builtin

= \ ﬁ.:::f'"

Add || Save || Cancel ‘

Figure 9.50: Setting methods to a type

9.4 Adding text and arrow on your Knowledge Base

To include in a document a Knowledge Base’s graph or its Execution Tree, use any grab
tool on your operating system. On Solaris, for example use snapshot.

To write personal annotations or draw arrows on a knowledge base’s graph or on an
executing tree use the graphic features bar (see figure 9.51).

Of[]lad 5

Figure 9.51: The Graphic Features bar

9.4.1 The Graphic Features Bar

A complete description of the function of every button in the bar follows. A graphic feature
is here either arrow or text.

Abs

Figure 9.52: Text button

e To write:

First click the Text button (see figure 9.52) then click the right mouse button where
the text is wanted. A dialog box opens up: enter your text! It will be written at the
desired place.

INRIA

YAKL and PEGASE+ Reference and User Manual 149

L3

Figure 9.53: Arrow button

e To draw an arrow:

First select the Arrow button (see figure 9.53) then press the right mouse button at
the origin of the desired arrow. Drag the mouse to construct it. Release the right
mouse button to end your arrow.

Figure 9.54: Selection button

e To select a graphic feature, first click the Select button (see figure 9.54) then press the
left mouse button next to the graphic feature you want to select. It will be surrounded

by a dotted rectangle.

Figure 9.55: Cut button

e To remove a selected graphic feature, first select it then click the Cut button (see figure

9.55).
Z

Figure 9.56: Clear all button

e To remove all graphic features:

Simply click the Clear Features button (see figure 9.56).

9.4.2 Moving Graphic Features Around

As operators, all graphic features can be moved around by the expert. To do so, use the
center mouse button. Click on a graphic feature, hold the center mouse button down while
dragging it.

RR n° 5066

150 Sabine Moisan

9.5 Execution

GIPSE is linked to a program supervision engine that allows the expert to execute requests on
a loaded knowledge base. When a request has been selected, the engine starts the execution.
GIPSE displays dynamically the generated solution plan, logs information generated by the
engine and draws the Execution Tree while being constructed by the engine.

9.5.1 Selection of a Request

To select a request use the Select Request command in the Engine menu. A dialog window
opens up listing pre-defined knowledge base requests in the Requests panel (see figure 9.9).
Select one and click the “Go” button to execute it.
Create your own request following the step-by-step process described below:

e First select a functionality in the Functionality panel. The Instantiation panel is filled
up by the attached functionality and its attributes.

e For at least one attribute:
— Select an attribute in the Instantiation panel. The Objects panel is filled up by
all objects in the knowledge base belonging to the type of the attribute.
— Select an object in the Objects panel.
then click the Go button.

After clicking Go, a window shows up on which a graphic representation of the dynami-
cally generated execution plan is displayed (see figure 9.10).

9.5.2 Generated Solution Plan

The execution plan is dynamically shown, while constructed by the engine, in the Execution
Plan window.

This window has a left panel for execution management and a right panel where the
execution plan is shown (see figure 9.10).

Asking Information About Data Values

When an operator is selected, get input’s and output’s current values by clicking the Info
button. A dialog window pops up (see figure 9.57) with a list of operator’s typed input and
output. Select one of them then click the Get button to receive value information from the
engine (see figure 9.58).

INRIA

YAKL and PEGASE+ Reference and User Manual 151

IO for o_initialisation |
Input Output |
e IMRI !Egparam:File
Get Get
Cancel

Figure 9.57: Asking information on data values
.l Messag = | [

_ ﬁf Value of o_initialisation_o_initialisation

oK

Figure 9.58: Getting information on data values

Backtracking

During execution the engine may backtrack when a problem (i.e. bad result evaluation) has
been detected.

Each backtrack yields a new level in the dynamically constructed execution plan. Same
level operators are all of the same color.

Three colors are provided to differentiate levels : by default green, pink and cyan.

Since an operator can be used several times at execution, it gets a unique state number
each time it is used. The state number is drawn below the primitive operator in the execution
plan. The list of successive state numbers is drawn below the operators in the Execution
Tree (see figure 9.59).

9.5.3 Modification of the Knowledge Base During Execution

During execution, the operators currently processed by the engine are highlighted. When
used once they are colored in a first level flag color. Then when used again, they turn a

RR n° 5066

152 Sabine Moisan

Figure 9.59: Operator’s state numbers when backtracking

second level flag color. This helps identify operators that have been used a lot by the engine
during execution.

9.5.4 The Dynamic Execution Tree

Highlights and flag colors are used the same way in the Execution Tree.

Each state number has the color of the corresponding backtrack level.

Moreover, an operator that has been used a number of times gets the same number of
colored cards lying behind it (see figure 9.59).

9.5.5 Execution Logs

A log window is popped up at debug level greater than 0 (see figure 9.11). It is divided in
three panels General Log, Execution Log and Rule Log.

The first one accumulates all logs coming from the engine. The second one shows only
execution orders while the third one displays applied rules.

The last two have a Save button that allows the expert to save their contents in an ascii
file.

9.5.6 Communication Interface Engine

At the end of the execution the engine asks the expert for the execution of a new request.
In the case of a negative answer, a confirming message appears.

9.6 Customize your Interface

GIPSE allows the expert to change for her/his convenience a number of graphic attributes
such as colors, shapes, size of operators.

Upon completion of changes, the expert may save them in a configuration file that can
be reapplied.

Use the View command in the Show menu or the View button on the right vertical
buttons bar (see previous figure 9.14) to access display customization.

INRIA

YAKL and PEGASE+ Reference and User Manual 153

9.6.1 Knowledge Base Display Customization

The Knowledge Base tab must be selected to customize the knowledge base.
After using the View command a dialog window pops up. This window has four tabs,
each customizing a few features.

Primitive, Composite Operators

Use the first two tabs (see figure 9.61) to customize the look of an operator. Change its size
with two sliders, its color (use the Color combo box or the New Color button) and its shape
(use the Shape combo box).

Clicking the New Color button pops up a dialog window that allows creation of color by
using three sliders (red, green, blue) (see figure 9.60). Simply click OK upon completion to
go back to the view window.

oK | Close |

Figure 9.60: Setting a new color

After completing changes, click the Apply button. Changes are immediately taken into
account.
Links

Use the Link tab (see figure 9.62) to change the look of the links. First choose the type of
link using the Type radio buttons panel. Change the color of either regular links (sequential),
choice or optional. Then use the Color combo box to choose the color.

RR n° 5066

154

Sabine Moisan

Primitive

Color

= Vidth i [
Blaok > 10 20 30 40 50
Mew Color

—_w
Heighit SRS \ !
5 10 15 20 25 30
Shape
Rectangle

| Apply || Close

Figure 9.61: Primitive tab

After completing changes, click the Apply button. Changes are immediately taken into

account.

& Regular) Choice () Optional

-Colar

Color

black -

Apply || Close

Figure 9.62: Link tab

Knowledge Base Colors

Use the Colors tab (see figure 9.63) to change colors. Change the color of selection for
primitive operators, composite operators and links using the Selection Colors combo boxes.

Using the Node Info Colors combo boxes, change the color of the operator’s labels, the
input-output written next to an operator, the rule string written below and the data flow

arrow.

After completing changes, click the Apply button. Changes are immediately taken into

account.

INRIA

YAKL and PEGASE+ Reference and User Manual

155

'Colors'|
rSelection Calors

Primitive. Compositelink
|gray | gray

~ [[green v||

T Node Info Colars

|Label Rule {f{e]
|black v |blue |mag. v|blue ~]|

Data Flow

Apply || Close

Figure 9.63: Colors tab

9.6.2 Execution Display Customization

Select the Execution Tree tab to customize the execution display.

After using the View command a dialog window pops up (see figure 9.64).

— =

Highlight Calars

Primitive

Composite

yellow

w || yellow

Flag Colors

First Lewvel

Second Level

cyan

w || blue

Backirack Colors

First Level Second Level Third Level Card
green w || pink w | cyan w || lightGray W
Apply " Close |

Figure 9.64: Execution view dialog

Only colors are customizable for the execution process.
The dialog window has three combo boxes panels for modifying highlight colors, flag

colors and backtrack colors.

When the execution is running, the operator currently used by the engine (for expansion
or execution) is highlighted in the knowledge base’s graph and in the Execution Tree. Change
this highlighting color for primitive or/and composite operators by using the appropiate

combo boxes.

RR n° 5066

156 Sabine Moisan

An operator used once by the engine turns a first level flag color ; then when used again,
a second level flag color. Both in the knowledge base’s graph and in the Execution Tree.
Change these colors by using the appropiate combo boxes.

The engine may backtrack when looking for a solution. Each backtrack yields a new
level in the dynamically constructed execution plan.

Three colors are provided (first level, second level, third level colors) that are successively
used to color the operators of differents levels. Use the appropriate combo boxes to change
these colors.

In the Execution Tree, an operator visited several times by the engine has cards drawn
behind it. The card color can also be changed using the appropiate combo box.

To validate these changes, click the Apply button.

9.6.3 Saving a Display Configuration

After completing changes, save them in a configuration file. Use the Save As or Save
command in the Conf menu to do so.

Use the Open command to reopen this configuration file.

Note that changed spacing between operators (Increase X Spacing, Increase Y Spacing
commands) is also saved in the configuration file.

9.6.4 Opening a Display Configuration

To display a knowledge base according to a configuration file when loading, open the con-
figuration file using the Open command then open the knowledge base.

When a base is already opened, apply a configuration file by loading it and using the
Repaint command.

9.6.5 Coming Back to the System Default Display
Use the Init then Repaint commands to go back to the GIPSE default display.

INRIA

YAKL and PEGASE+ Reference and User Manual 157

Chapter 10

Practice

10.1 Installation

Copy the installation CD-Rom contents in a new (empty) directory and change to this
directory.

Now in your current directory you get an install.sh script, a confverif.sh script, a
Makefile and a tar compressed file for PEGASE+ installation pegase.tar.Z.

First, chose an installation directory (say /usr/local/Pegase), where you have the
right to write (or have the job done by your favorite superuser) and where all the users of
PEGASE+ can read from.

Then run install.sh with your installation directory as argument:

> install.sh /usr/local/Pegase

The scripts execute and first check your configuration, i.e. the version of your C++
compiler, of the librairies, of Java (if you get the GUI), of the make utility, etc. If the
configuration is not correct the installation stops. Otherwise the scripts go on. They may
create the installation directory if it does not exist (and if it is possible). Finally, the
pegase.tar.Z is automatically uncompressed in the installation directory and you’ll obtain
the following organisation:

One file:

e a yakl.el file for the emacs yakl mode
Several directories:

e 1ib directory, which contains libraries:

RR n° 5066

158

Sabine Moisan

— the PEGASE+ engine library (1ibpegase.a and/or libpegase.so)
— the support library (1ibBlockssupport.a and/or .so)
— the . jar file for the graphic interface (optional).

bin directory, which contains binary files:

— the executable parser (static and/or dynamic version), to parse .yakl files and
to generate C++ files.

include directory, which contains all the necessary .h files in order to link a KB and
the engine library (plus some .cc files necessary for template classes).

Doc directory (optional), which contains this documentation.
some usefull scripts (.sh).
Example directory, which contains a KB example and utilities

— a Makefile
— the launch.sh script to launch a KB execution with the GUI.

— some .yakl example files.

The Makefile and sort-yakl.sh script should be copied each time you want to create
your own KB (and launch.sh if you use the GUI). Don’t remove or modify them!

You can now browse the the Example directory and try (g)make in it

> cd /usr/local/Pegase/Example
> make

And finally execute the resulting executable KBS (XXX) to see the example run.

> XXX

10.2 New KBS Creation

Create one of your own directory and name it about the name of the KB application you want
to develop. In this directory, copy the Makefile and sort-yakl.sh script (and launch.sh
script if you use the GUI) from the Example directory.

Create your own .kb and .yakl files, following the indications of chapter 2, and parse

them (see below).

INRIA

YAKL and PEGASE+ Reference and User Manual 159

10.3 Use of the Parser

10.3.1 Emacs Mode

The emacs mode provides, by means of help menus, some facilities to write Yakl files. Tt
can be obtained by modifying your .emacs file. Either you already have in your .emacs file
a modification of auto-mode-alist variable, e.g.:

(setq auto-mode-alist

(append 7’ (

; Lisp and Lisp dialects modes

("\\.11" . lisp-mode)

; TeX and LaTeX related modes

("\\.tex$" . extended-LaTeX-mode)
) auto-mode-alist
))

In this case you just insert the 2 lines for yakl:

(setq auto-mode-alist

(append ’(
; Lisp and Lisp dialects modes
("\\.118" . lisp-mode)
; TeX and LaTeX related modes
("\\.tex$" . extended-LaTeX-mode)
; Yakl mode
"\ .yak1l" . yakl-mode)
("\\.kb" . yakl-mode)
) auto-mode-alist
))

Or you add the modification of auto-mode-alist:

(setq auto-mode-alist

(append 7’ (
; Yakl mode
("\\.yak1l" . yakl-mode)
("\\ .kb" . yakl-mode)
) auto-mode-alist
))
And also:

(autoload ’yakl-mode
"/usr/common/Yakl/Emacs/yakl.el"
"Yet Another Knowledge base Language" nil nil)

RR n° 5066

160 Sabine Moisan

where yakl.el is the yakl mode file provided in the package (with the parser, etc.) that
has to be stored in a common directory e.g., here in /usr/common/Yakl/Emacs/yakl.el.
This has to be done once.

Afterwards, each time you call emacs on a .yakl file, a new menu, named "Language",
appears in your menu bar. Calling its sub-menus will ask you questions to fill syntax patterns
for the different parts of a YAKL description of a knowledge base.

10.3.2 Parsing a file

In your KB directory, the command: parser file.yakl if it succeeds, generates several files:
file.save, file.h, file.cc, mainfile.cc, mainfile_aux.cc.

If the parsing does not success, you may get two types of warning messages(***Warning
and *Warning) three stars warnings are more “dangerous” than one star ones, i.e. they will
more probably lead to errors that prevent from executing the KBS. The -w option to the
parser command inhibits “one star” warnings.

If you use emacs, the error messages during parsing are printed in your compilation buffer
and a click on an error line will display the error line in its .yakl file.

At the beginning it could be more convenient to parse files individually. Afterwards, the
Makefile will do the job. Note that the automatic parsing implemented in the Makefile
parses all the .yakl files that are presnet in your KB directory, beeing they indicated in
the .kb file or not.

10.4 KBS Use

Once all files have been parsed execute make in your KB directory.

The command make triggers the Makefile and automatically launches when necessary
(i-e. when files have been modified) parsing, compilation, etc. The generated executable KBS
is named XXX by default, you can rename it by editiong and modifying the corresponding
line in the Makefile.

Some options of PEGASE+ are known by the generated executable KBS:

e -d x (x= debug level)
e -r x (x= request number)
e -t (trace)

e -s (simulation mode)

-g (GUI interface on)

INRIA

YAKL and PEGASE+ Reference and User Manual 161

10.4.1 Debug modes

Before the execution of a KBS the user is asked to choose a debug level. Each level provides
different kinds of informations about what is happening, in the form of traces or messages.
Below are detailed the possible levels.

e Level 0 provides no information, except fatal errors that stop the reasoning.

e Level 1 displays the execution plan, the beginning and end of execution or decomposi-
tion of operators, the calling syntax of primitive operators, the names of the executed
rules, the results of the execution of pre/post conditions and effects. It also traces the
execution of initialisation, assessment, repair and adjustment criteria.

e In addition, level 2 performs a step by step execution, and gives more details about
rules that have been rejected, steps of repair mechanism and applicability of optional
operators.

e Level 3 is similar to level 2, but the text of the applied rules is displayed in the GUI.

RR n° 5066

162 Sabine Moisan

INRIA

YAKL and PEGASE+ Reference and User Manual 163
Contents

I Reference Manual 5

1 The Program Supervision Problem 7

1.1 Motivations L. e e e e 7

1.2 Analysis of the Program Supervision Activity 8

1.2.1 Users of a Program Supervision System 9

1.2.2 Our Approach to Program Supervision 10

1.23 The LamMaA Platform 11

1.24 Formal Definition 12

1.3 Knowledge-Based Techniques for Program Supervision 13

1.4 Knowledge-Based Program Supervision System 14

2 Program Supervision Model 17

2.1 Proposed Knowledge Model in Program Supervision 17

2.1.1 Model Ontology Summary v vttt 17

2.1.2 Supervision Operators o e 19

2.1.3 Arguments e e e 21

2.1.4 Criterla e 21

2.1.5 Data and Domain Objects, 23

2.1.6 Functionalities and Requests, 23

2.1.7 Interrelations of Concepts L. 24

2.2 Model of Problem-Solving Mechanism 25

2.2.1 Formalisation L e 28

3 Introduction to the YAKL Language 29

3.1 Elements of the Language 29

3.1.1 Operators and Arguments 0oL 30

3.1.2 Criteria 32

3.2 Useofthe Language 33

RR n° 5066

164 Sabine Moisan
4 Inside PEGASE+ 35
4.1 Components of a PEGASE+ KBSo oL 35
411 Engine 35

412 Knowledge Base 36

413 TheFactBase 38

4.1.4 Connection with real Programs 39

4.2 The PEGASE+ PS Engine 39
421 MainLoop e 39

4.2.2 Identification Phase 40

4.2.3 Construction Phase L. 42

4.2.4 Execution Phase o 43

425 Evaluation Phase Lo 44

426 Repair Phase 45

4277 Error Messages oo e 47

II User’s Manual 49
5 Yakl Grammar 51
5.1 Start e e e e e 52
5.2 Global KB Description e e 53
53 RegularFiles 54
5.3.1 Importedfiles L 54

5.3.2 External Declarations 54

5.3.3 Definition of Argument Types and Instances 55

5.3.4 Definition of Domain Types and Objects 60

5.3.5 Definition of Functionalities and Requests 62

5.3.6 Definition of Supervision Operators 64

6 Methodology of Knowledge Base Development with PEGASE+ and YAKL 79
6.1 First, Define Sub-Problems 79
6.2 Second, Add Strategic Criteria 81
6.3 Complete and Refinethe Base 81
6.4 Guidelines L e e e 82
6.5 Validation Facilities L 84
6.6 Requirements for Using Program Supervision Techniques. 84
6.6.1 Program properties. L e 84

6.6.2 Argument propertieso 85

6.6.3 Composite operator properties 85

6.6.4 Criteria properties L oL 85

6.7 Summary e e e e 85

INRIA

YAKL and PEGASE+ Reference and User Manual 165
7 Example of Knowledge Base Development 87
7.1 Starting a new Knowledge Base oo, 87
7.1.1 Defining a Primitive Supervision Operator 88
7.1.2 Defining a Composite Supervision Operator 91
7.1.3 Defining Types o e 94
7.1.4 Add Strategic Criteria 98
7.1.5 Choice Criteria o0 e 98
7.1.6 Initialisation Criteria Lo . 100

7.2 Complete the Base e 101
7.2.1 Importclauses 101
7.2.2 Defining a Functionality and a Request 101
7.2.3 Defining a Knowledge Base 103

7.3 RefinetheBase 104
7.3.1 Optional Operators in Sequences 104
7.3.2 Moreon I-O Relations L ... 105
7.3.3 More on Alternative Decompositions 106
734 Effectso 106
7.3.5 Attribute Value from a File 000 107
7.3.6 Assessment Criteria o oo 108
7.3.7 Repair Strategyo 109
7.3.8 Moreon Assessment o 114
7.3.9 Parameter Flow 0. 114
7.3.10 Methods for Expert Types. oo oo 115

8 Detailed Example of a Simple Knowledge Base 117
81 KB definition e 117
8.2 Type and Domain Object Definitions 118
8.3 Operators o e e e e e 119
8.4 Requesto 123
9 Graphic Interface 125
9.1 General Overview of GIPSE 125
9.1.1 OnLineHelp 125
9.1.2 Opening a Knowledge Base 128
9.1.3 Visualisation of a Knowledge Base : tree vs. graph 129
9.14 ExecutingaRequest o L. 130
9.1.5 Exiting GIPSE 133

9.2 Visualisation Tools 133
9.2.1 Manipulating the Knowledge Base Graph 133
9.2.2 Getting Information on Operators 135
9.23 DataTypes o o e 140
9.24 Displaying Types e 140
9.25 Loadinga Type. i it it 141

RR n° 5066

166 Sabine Moisan
9.3 Creating and Modifying a Knowledge Base 141
9.3.1 The New-Modify Bar 141
9.3.2 Saving a KnowledgeBase, 146
9.3.3 Creating or Modifying a Knowledge Base Type and Saving It 146

9.4 Adding text and arrow on your Knowledge Base 148
9.4.1 The Graphic Features Bar 148
9.4.2 Moving Graphic Features Around, 149

9.5 Execution 150
9.5.1 Selectionof aRequest 150
9.5.2 Generated Solution Plan 0., 150
9.5.3 Modification of the Knowledge Base During Execution 151
9.5.4 The Dynamic Execution Tree 152
9.5.5 Execution Logs L. 152
9.5.6 Communication Interface Engine 152

9.6 Customize your Interface 152
9.6.1 Knowledge Base Display Customization 153
9.6.2 Execution Display Customization 155
9.6.3 Saving a Display Configuration 156
9.6.4 Opening a Display Configuration 156
9.6.5 Coming Back to the System Default Display 156

10 Practice 157
10.1 Installation L e 157
10.2 New KBS Creation 0 it 158
10.3 Useof the Parser e 159
10.3.1 Emacs Mode 159
10.3.2 Parsingafile 160

104 KBS USE. . . v v v it e e e e e e e e 160
10.4.1 Debugmodes 161

A YAKL Semantics 171
A1 Syntactic Domains 171
A.2 Semantic Domains e 172
A3 Semantic Function 173
A.3.1 Alternative and Sequenceo 173
A3.2 DetailsonRepair oL o 174

B YAKL Parser Error Messages 175
B.1 YAKL Verification 175
B.1.1 General Verifications 175
B.1.2 Verifications on Operators, Functionalities, etc. 175
B.1.3 Verificationson Rules oL 176

B.2 Error and Warning Messages oo 177

INRIA

YAKL and PEGASE+ Reference and User Manual 167

B.2.1 Error Messages 178
B.2.2 Three Star Warnings oo 185
B.2.3 One Star Warnings L 186

RR n° 5066

168

Sabine Moisan

Index

Achieved by, 63
Adjustment criteria, 78
Assessment criteria, 76
Body, 69

Call, 67

Composite Operator, 69
Functionality, 63
Initialization criteria, 75
Input Data, 63

Object Type, 61
Output Data, 63
Primitive Operator, 67
Repair criteria, 77
Request, 63

Achieved by, 102
Adjustment criteria, 110
Argument Type, 95
Argument Instance, 59
Argument Type, 55
Assessment criteria, 108, 114
Attributes, 56

Authors, 53

Body, 92

Call, 90

Characteristics, 64, 88
Choice criteria, 99
Choice criteria, 68
Code Files, 53
Composite Operator, 91
Distribution, 68, 92
Effects, 64, 106, 107
Extern, 55

Flow, 68, 92

Functionality, 102

[-O Relations, 105

[-O relations, 62, 89
Import, 54, 101
Initialisation criteria, 100
Input Data, 88

Input Parameters, 88
KB Path, 53

List of Files, 53
Methods, 56, 115
Object Instance, 61, 97
Object Type, 96
Optional criteria for, 68, 105
Output Data, 88
Override, 56
Parameter Flow, 114
Postconditions, 64
Preconditions, 64, 89
Repair criteria, 110
Root Node, 53

Set of, 57

Subtype Of, 55
calculation, 58

item, 58, 65, 107
re_execute, 109

send down, 111

send operator, 111
send up, 111, 113
valid, 65, 71

action

rule, 98
adjustment criteria, 77
adjustment method, 77, 110

INRIA

YAKL and PEGASE+ Reference and User Manual 169

adjustment rule, 109, 110 rule, 33
adjustment step, 78 default value, 55
alternative decomposition, 91, 93, 106 default value, 57
argument, 18, 21 domain object, 18, 23, 38, 60, 118
argument instance, 96 domain object instance, 97
argument type, 55, 94, 96, 118 domain type, 60, 96
assessment conditions, 71
assessment criteria, 75, 114 effects, 19, 106
assessment rule, 108 end-user, 9
assessment rule actions, 75 engine, 14
author, 88 main loop, 39
Pegase+, 35, 39
back choice, 46 rule, 37
backtracking, 109, 111 engine algorithm
BNF, 171 Pegase+, 39
BNF(Bacchus Naur Form), 51 evaluation phase
body, 91 engine, 25, 44
execution, 66
calculation, 101 execution phase
characteristics, 19, 88 engine, 25, 43
choice criteria, 73, 98 expert, 8, 9, 87
choice rules, 73
code file, 104 facet, 37
code in rules, 72 fact base, 23, 38
collection, 57 frame, 36
composite operator, 19, 68, 91, 120 functionality, 18, 19, 23, 62, 101
conclusion
rule, 33 identification phase
construction phase engine, 25, 40
engine, 25, 42 import clause, 101
criteria, 19, 21, 28, 98 initialisation criteria, 74, 100
adjustment, 22 initialisation rule actions, 74
assessment, 22)
choice, 22 judgement, 71, 75

initialisation , 22

optionality, 22 KB path, 103

knowledge base, 15, 36, 53, 103, 117

repair, 22 knowledge-based system, 10
daemon, 37, 56, 58 Lama, 11
data, 18, 21, 89 line '
data flow, 91, 93 item. 66
data instance, 38 '
declarations main loop

RR n° 5066

170

Sabine Moisan

engine, 39
Matlab, 66
method, 94, 103, 115
adjustment, 46

operator, 18, 19, 64
optional criteria, 73
optional operator, 104
optional rule actions, 73
optionality criteria, 104
output data, 89

parallel decomposition, 91
parameter, 21, 89
parameter flow, 69
Pegase+, 35

engine, 39
plan, 18, 39
planning, 39
postconditions, 19
precondition, 89
preconditions, 19
predefined type, 55, 89
premise

rule, 33, 98
Primitive Operator, 88

primitive operator, 19, 66, 88, 119

program supervision, 8

range, 46, 55, 58, 77, 89, 107, 110

re execute, 46
real execution, 90
repair criteria, 76
repair phase

engine, 26, 45
repair rule, 109, 111
repair rule actions, 76
request, 18, 23, 63, 101, 123
root node, 53, 103
rule, 32, 70

engine, 33
rule actions, 72
rule base, 37, 98

rule premise, 71

send _down, 45
send _operator, 46
send _up, 45
sequence decomposition, 91, 92
simulation execution, 90
slot, 37
state tree, 38, 109
syntax, 90
call, 66, 90

validation, 84
verifications, 175

INRIA

YAKL and PEGASE+ Reference and User Manual 171

Appendix A

YAKL Semantics

The denotational semantics of YAKL is presented in this appendix (its syntax has been
presented in chapter 5). The semantics has been formalized for PEGASE+ use. Indeed,
it should be noted that the same syntax may correspond to different interpretations. In
our case, the process that interprets the language is in fact the engine, thus one semantics
—corresponding to one interpretation— corresponds to one particular engine.

This semantics should cover all aspects of program supervision, that is execution of
operators and of their attached criteria.

A.1 Syntactic Domains

Denotational semantics gives a meaning to the execution of YAKL supervision operators.
Here, we focus on the meaning of operator execution called computations. First, we define
the language of such computations in BNF short form (* denotes a repetition, () optional
parts, and <> a pair):

computation< operator, Ropname > a computation = an op. + its reparation)
operator : ident a primitive op. is referred to by its name
| || (computation (, computation)* alternative composite
| computation ; computation sequence composite
opname : ident

The computation of an operator is basically the pair composed of the operator and its
attached reparation, because

The set of computations is noted Computation.

RR n° 5066

172 Sabine Moisan

A.2 Semantic Domains

Let € be the set of supervision operators available in a particualr application. € is composed
of primitive and composite operators. Let Vars be the set of variables (instances of classes)
manipulated by operators and Values the set of all possible values for the variables. We
consider that operators are executed in an environment, composed of variables and their
current and past values (it is necessary to store past valuations for backtracking during
reparation). At a given instant the supervision knowledge-based system is running and one
operator is being executed in the environment created by the previous operator executions
(or by the intial data given by the user’s request). We denote £ the environment, simply
viewed as a stack. It is labelled by the name of the current operator and it contains all
the valuations of variables: [— X] x £ with ¥ the set of all valuation functions (X: |
Vars — Values,|; we denote o € ¥ a valuation function: Vars — Values, .

In order to indicate the place (in the environment stack) to go after an execution step, we
introduce Cont a continuation Cont : [£ — £]; ¢ € Cont denotes a particular continuation
function, ¢ : £ — €£.

Each supervision operator is labeled (Vw € Q,l, is the corresponding label, i.e. the
name of the operator) and has an attached (possibly empty) reparation (R,) which may
be either a local adjustment A, or a global problem transmission 7. Moreover, w has an
initialisation function denoted Z,,.

We define two usual functions to handle environments: put to add an element (label
and valuation) to the environment and get, to get an element from the environment; in the
sequel, ¢ stands for the current continuation and p for the current environment:
put : EXQAX T — &
put(p,w,o) = p X (l,,0), where x means addition on the environment stack of a new pair
(label,valuation)

get : EXN—-E
get(p,w) = if p=p’ x (I,,0) then p else get(p',w)
For each operator w, its attached common criteria are interpreted as follows:
T,: Y¥—=X
A,: X=X
We denote |w| the result of the effective execution of the supervision operator (e.g.,
execution of the program for a primitive one).
w: ¥—=X
For simplicity reasons we also define E, a function which combines the execution of an
operator and the check whether the result has to be repaired (based on assessment criteria).
E: Q — & — Bool (true means the result is correct, false, that the result is not and the
operator must be repaired).
In the sequel, E, will denote E(w).

INRIA

YAKL and PEGASE+ Reference and User Manual 173

A.3 Semantic Function

We define a semantic function []: Computation — Cont — & — EU{error}
In addition, we define a complementary semantic function to interpret the repair criteria:
R[]: Computation — Cont — & — EU{error}

The following holds for any type of operator (primitives or composite), here R,, represents
indifferently either A, or 7,. o represents the current valuation at a given instant, in the
current environment (the one at the “top” of the environment stack).

[<w, R, >]¢p =

if (E, (put(p,w,L,(0)) == true) then ¢p[(l,, |w|(0))/(l,)]

else R[< w, R, >]¢p

Which means: if the result of w is correct after its computation in the environment
modified by the application of the initialisation criteria of w (which leads to a new valuation),
then use the continuation ¢ in an environment which is p where (I,,,0) has been replaced
by (l,,|w|(c)) (the same label, but a different valuation resulting from the execution of
w). Else, in the case when reparation is necessary, interpret the repair criteria whith the
complementary semantic function R[] (see below).

This corresponds to the PEGASE+ problem-solving mechanism: first apply initialisation
criteria, execute the operator (decompose it if composite), then assess the results, and repair
if necessary, using the repair criteria.

A.3.1 Alternative and Sequence

Concerning composite operators, we denote w| an alternative decomposition and w; a se-
quential one.

Alternative operators have an attached choice criteria denoted by C., which selects one
sub-operator (Cy,: Q" — Q):

[[< w|(< w17Rl >y s < wn7RTL >)7Rw‘ >]]¢p -
[< wi, Ry >{[< w), Ry, > op]}p, where w; = Cy, (Wi, -y Wn)-

The execution of an alternative operator is the execution of the selected sub operators
followed by the execution of the reparation of the main operator. The equation tells that
the meaning of an alternative operator is the meaning of its selected sub operators with the
meaning of the repair criteria of the operator as continuation.

Sequences are treated as binary operations. An optionality partial function O is attached
to each sequential operator. It corresponds to the optionality criteria of the operator; it does
nothing for non optional sub-operators, otherwise, it decides, depending on the current en-
vironment, if the currently examined sub-operator in the sequence must be executed or not.

RR n° 5066

174 Sabine Moisan

O0: Qg — AxE - QU {NOP}.
Qseq is the set of sequential operators, NOP stands for the cases when the optionality cri-
teria decides to skip a sub-operator (not to execute it).
O(w,) is denoted O,,
[< w,(< w1, Ry >, < wy, Ry >), R, >]ép =
[< O, (1), Rt >] {[< Ou(w2), B2 >] {[< w, R, >160}0}
[<NOP,R >]¢p = ¢p ¥ R.

A.3.2 Details on Repair

More specifically, the semantic equations of the complementary semantic function to inter-
pret the repair criteria R[] decompose into two cases, depending whether the reparation
corresponds to an adjustment (R, = A,) or to a global problem transmission (R, = 7,,).
Adjustment
Rl[< w, As >]¢p =
if (E, (p)) == true then ¢p[(lu, |w|(0))/(lu,0)] else [< w, Ay >]p[(lw, Au(0))/(lw,)]
If, after execution in environment p, the operator needs not to be repaired, then use the
continuation ¢ in an environment which is p where (l,,, o) has been replaced by (I, |w|(c))
(the same label, but a different valuation resulting from the execution of w with initial
o). Else re-execute the same operator, with a different environment as modified by the
A, function (p in which (I,,,0) has been replaced by (I, .A.(c))), which corresponds to
applying adjustment criteria before re-executing an operator in PEGASE+.
Problem Transmission
7?’[[< w, 7:.’<U.)i,Ri> >]]¢p =
if get(p,w;) = 0 then error else [< w;, R; >]¢ get(p,w:)

If the operator to which the problem is to be transmitted (w;) does not exist in the
current environment (i.e. it has not been executed in the past by the system), raise an error,
else execute the w; operator, in the environment as it was just before the computation of
Ws.

INRIA

YAKL and PEGASE+ Reference and User Manual 175

Appendix B

YAKL Parser Error Messages

B.1 YAKL Verification

YAKL is intended to provide a rather strict framework that avoids most programming bugs
and errors in the generated executable code of the knowledge base (which will be linked with
the engine to constitute a program supervision KBS). During the parsing of a knowledge
base, some verifications are done. First, the parser enforces the YAKL syntax, as described
in this chapter, and second, some more semantical checks are performed. Here is a list of the
syntactic and semantic verifications that are done during the parsing of a knowledge base,
they produce either errors which stops the parsing or warning messages that may be fixed
later. But, except for specific purposes, warning messages in a knowledge base imply that
there will be an execution error!

B.1.1 General Verifications

e Verifications that (imported) files exist
e Type checking in assignments,

e Type compatibility between argument value type and default value or range,

B.1.2 Verifications on Operators, Functionalities, etc.

¢ Compatibility of arguments of functionalities (in number and type) with the arguments
of the different operators that can be used to achieve them.

RR n° 5066

176 Sabine Moisan

— The number of input and output arguments of an operator must be greater or
equal than the number of input and output arguments of its functionality.

— and their types must be the same (or a subtype in operators)

e Check arguments of optional operators in a sequence, which must have the same num-
ber and type of input and output arguments.

e Data flows verifications:

— Completeness verification of data flows i.e. all data of both a father operator
and its sons should be involved in a data flow (distribution or flow), all father
operator input are used by at least one sub-operator, all father operator output
data receives a value from a sub-operator output, etc.

— Mode (in/out) and type compatibility checking in distribution and flow.

B.1.3 Verifications on Rules

e Actions in the preconditions part are not allowed, and nor conditions in the actions
part.

Depending on the type of the rules (choice, evaluation, ...) the vocabulary allowed in
its premise or actions are different (according to the syntax described in this chapter).

Rules related to an operator may only refer to attributes of this operator or sub-
operators, or to a (global) domain object. For instance, choice actions should only
make reference to a sub-operator, evaluation rules should assess either the operator
itself or one of its arguments, or one of its sub-operators;

Any referenced object (data, domain object, operator, etc.) must exist, and any
referenced attribute must exist and belong to the indicated object.

The rules in a rule base that are intended for a specific purpose (choice, evaluation,
initialisation or adjustment), must fulfil their purpose, e.g.,

— Any parameter must have at least one initialisation rule when a default value has
not been supplied; Otherwise it may produce an execution error.

— Choice criteria have to activate all the different sub-operators of an alternative
decomposition, under mutually exclusive conditions;

— Adjustment criteria have to provide means of adjusting all parameters. (Not yet
checked by current parser)

— When repairing, the set of rules that propagate the problems must conform a com-
plete path from the operator which generates the problem to the faulty operator.
(Not yet checked by current parser)

INRIA

YAKL and PEGASE+ Reference and User Manual 177

e Some rule bases have complementary roles, for instance:

— The set of of premises of adjustment rules must be consistent with the set of con-
clusions of evaluation rules (consistent naming of judgements). (Not yet checked
by current parser)

— The same thing must hold for reparation rules i.e. the naming of problems along
this path must be consistent. (Not yet checked by current parser)

Other verifications may concern the completeness of the knowledge, for instance, operator
hierarchies must have primitive operators as leaves.

B.2 Error and Warning Messages

Following the principles decribed in the previous sections, error or warning messages are
displayed to users, in case they do not follow the expected syntax and semantics. These
messages are listed in alphabetical order and explained in the following tables, using the
same notation conventions as in the chapter about YAKL grammar (chapter 5).

RR n° 5066

178 Sabine Moisan

B.2.1 Error Messages
A

"Already defined argument in current operator/functionality” IDENT

Attempt to create a new argument, named IDENT attached to an operator (or a
functionality), but IDENT has already been used to name another argument in the
same operator /functionality, hence a name clash

"Already defined argument instance” IDENT

Attempt to create a new argument instance, named IDENT, but IDENT has already
been used to name another argument instance, hence a name clash

"Already defined attribute in current type"” IDENT

Attempt to create a new attribute, named IDENT attached to an expert type, but
IDENT has already been used to name another attribute in the same type, hence
a name clash

"Already defined attribute (no override for a set)" IDENT

Attempt to override an attribute of type collection (defined as Set of..)

"Already defined name” IDENT

Attempt to give a name (to an operator, a functionality, etc.) that has been already
used for the same sort of element.

"Already defined rule in current operator” IDENT

Attempt to create a new rule, named IDENT attached to an operator, but
IDENT has already been used to name another rule in the same operator,
hence a name clash (it is possible to have the same names only for rules
belonging to 2 different operators).

"Already defined object instance” IDENT

Attempt to create a new domain object instance, named IDENT, but IDENT has already
been used to name another object instance, hence a name clash.

"Already defined type" IDENT

Attempt to define a new argument or object type the name of which has been already
defined.

"Argument has not the expected mode” IDENT (expected input/output mode)

In pre (resp. post) conditions, involved arguments must be input (resp. output) ones.

You cannot test output data before execution (in pre-conditions), because

they do not have values yet, and normally input data do not change during execution, so testing
them is useless in post conditions. The expected input or output mode is indicated into parentheses.

For "Already defined ..." messages, the solution is to check your previous definitions, to
find the homonym, decide which element should use this name and chose another one for
the other.

INRIA

YAKL and PEGASE+ Reference and User Manual 179

C

"Cannot access an element in non-collection” IDENT

In an assignmemt, the notation ID(X), where X is an integer, should refer to the X** element
of a collection, but identifier IDENT does not correspond to a collection.

"Cannot print a collection as a whole” IDENT

To transform the syntax of a primitive operator into a correct command line, everyelement in the

syntax must be "printable" i.e. of simple type, that can be accepted by the Unix shell, for instance.

If there is a composite identifier in the syntax with one of its sub-identifiers (IDENT)

corresponding to a collection, and if no index is provided (using the notation IDENT(X), where X is an integer),
the whole collection is refered, and there is no standard means to print a collection.

"Choice criteria not allowed if no choice in body"

Attempt to use a choice criteria in a non choice composite operator.

"Composite identifiers not allowed in distribution” COMIDENT

Attempt to use a full composite identifier in a distribution flow (only the name of an operator
followed by the name of one of its arguments is allowed).

"Composite identifiers not allowed in flows" COMIDENT

The same holds for data flows among children.

"Current object has no attribute named" IDENT

In a composed identifier, if the first sub-identifier refers to an object, attempt to reference
an attribute name (IDENT) that does not belong to the object.

"Current operator does not decompose into" IDENT

In a distribution flow only the sub-operators of the current one (the parent) are allowed on the
left side of the slash.

"Current operator has no argument named"” IDENT

Attempt to reference, in a flow, an argument name (IDENT) that does not belong
to the current operator.

"Current request has no attribute named” IDENT

In a request assignement, attempt to reference an attribute name (IDENT) that does not belong
to the current request.

D

"Data field not assigned” IDENT

In a request definition check if all input data are assigned a value, i.e. if all fields of the

corresponding functionality are filled.

"Data not allowed in parameter flows" IDENT

Data (as IDENT) are not allowed in parameter flows, use data flows instead.

"Default out of range" value

The value given as default for an attribute is out the given range (only checked for simple types: string,
integer, float), so be carefull for other types!

RR n° 5066

180 Sabine Moisan

£

"Error in code" CODE
Use of a piece of code (CODE) that is not syntactically correct (in C++).
Note that parsing in the code parts is very simple and other problems may occur at run-time.

F

"File not previously saved?: "IDENT

The file (named IDENT) to restore cannot be found, as if it has not been saved before
(the corresponding .save file does not exist).

"Functionality not achieved by this operator" IDENT

When checking if a functionality is achieved by an operator, IDENT refers to an operator declared
by the functionality as achieving it, but which has no corresponding Functionality declaration.

A

"Illegal path" STRING

The file path (STRING) given in KB descrition does not correspond to a legal path
on the current machine.

"Impossible reference from" IDENT

In a composite identifier of the form "id;.ids.ids. ...", one ofthe first identifiers (IDENT)
is of a "terminal" type (with no attributes) so it is impossible to have a dot after it.
Composite identifiers are reserved for structured objects.

"Incompatible in/out argument types for optional” IDENT

An optional sub-operator (named IDENT) of the current one should allow to
"shortcut" it, i.e., if it does not apply, that is its input and output arguments
should be in the same order and of the same type, to let input be passed unchanged
to output for next operators in the sequence.

"Incompatible modes (In/Out) in flow between " opl.argl and op2.arg2

Mode clash in a data or a parameter flow: attempt to match two arguments of different operators
that do not have compatible modes (argl must be an output data and arg2 an input data).

"Mncompatible type/mode for functionality and operator argument" IDENT

When an operator claims to achieve a functionality it should have the same arguments,
in the same order, and with the same types as its functionality. IDENT is an argument
of the operator that has not the same type or mode (in/out) as in the corresponding functionality.

"Incompatible type, expected type:" IDENT

In assignments the right value and the left variable must have the same type (named IDENT)
(type here is known, thus it is expected as the type of the left variable).

"Incompatible type with overriden attribute in supertype:" IDENT

In case of type hierarchy, you cannot change the type (named IDENT) of an overriden attribute.
Note: for the moment only the if needed daemon can be modified in an overridden
attribute.

INRIA

YAKL and PEGASE+ Reference and User Manual 181

"Incompatible types in flow between " opl.attl "and” op2.att2

Type clash in a data flow: attempt to match two attributes of different operators (attl of opl
and att2 of op2) that do not have the same type.

"Invalid name, could collapse with language key-words” IDENT

IDENT is a symbol corresponding to a key-word of the underlying programming language (C++)
or to a YAKL key word; avoid using such identifiers.

"Invalid reference” IDENT

In a composite identifier of the form "id;.ids.ids. ...", one of the id; (IDENT)
cannot be referenced (for the 1st this means: it is not an attribute of current
operator, nor a declared variable name in a rule, nor a domain object; for the other
ones this means: they are not attributes or method names of their previous
identifier in the composite,...).

"Invalid reference: " IDENT1 " is not an attribute/method of type " IDENT2

In the left part of an IO relation, or of an effect, a composite identifier involves an
invalid sub-identifier (IDENT1) which is not a correct access for the type of IDENT?2.

RR n° 5066

182 Sabine Moisan

N

"No affectation in distribution: " expression

Attempt to assign an expression to an attribute of operator in a distribution flow
(from parent to children).

"Non printable type in script” IDENT

To transform the syntax of a primitive operator into a correct command line, every
element in the syntax must be "printable" i.e. of simple type, that can be accepted
by the Unix shell, for instance. Here, IDENT type is not printable in this sense.

"Not an argument of current operator” IDENT

Attempt to use an identifier as the name of an argument of the current operator while
it is not (e.g. in a pre/post condition, in a rule, in effects, etc.).

"Not a child of current operator” IDENT

In a data flow among operators only the sub-operators of the current operator can appear.

"Not a collection attribute” IDENT

IDENT does not corresponds to the name of a collection attribute of a type.
Attempt to use an argument as if it was a collection (i.e., initialise it with a set of values
or with an empty collection (nil),) while it was not declared as a collection (Set of..).

"Not an input data of the current operator” IDENT

In an IO relation the right part must be (part of) an input data of the current operator,
IDENT is not.

"Not an optional sub-operator of current” IDENT

Attempt to use a name (IDENT)as the name of an optional sub-operator of current operator,
but this name does not correspond to a declared optional sub-operator.

"Not an output data of the current operator” IDENT

The identifier (IDENT) should correspond to an output data of the current operator(e.g., in an
I-O relation).

"Not a parameter" IDENT

Attempt to use (e.g., in a parameter flow) a name of a non-parameter argument.

"Not a parameter/in data of current operator” IDENT

Attempt to use in a rule a name as if it was the one of a parameter or of an input data
of current operator, while it is not (e.g., assign it by "init_child _parameter" ...)

"Not o parameter of current operator” IDENT

Attempt to use (in a rule) a name (IDENT) as if it was the one of a parameter of current
operator, while it is not.

"Not the operator of current criteria” IDENT

In a rule the name (IDENT) used after the use_optional operator command is not the name of the
operator indicated in the ”Optional Criteria for...” header.

"Nothing in calling syntax!"

The calling syntax of an operator must not be empty.

INRIA

YAKL and PEGASE+ Reference and User Manual 183

M

"Mismatched argument with achieved functionality” IDENT
When an operator claims to achieve a functionality it should have the same names for

for arguments as its functionality. IDENT is an argument of the operator that does not
exist in the corresponding functionality.

O

"Operator is not the current one” IDENT

In a distribution flow the operator on the left part of the slash should be the current

one (the parent); children are on the right side.

"Optional criteria useless if no optional in body"

Attempt to use a optional criteria in a composite operator with no optional sub-operator.
"Overriding an unknown attribute in supertype(s):" IDENT

In case of type hierarchy, you cannot declare as overriden an attribute that does not
belong to (one of) the supertype(s) Note: for the moment only the if needed daemon
can be modified in an overridden attribute.

"Owner’s type does not match current definition” IDENT

Attempt to assign an operator (named IDENT) as the owner of a rule while not in the definition
of this operator.

P

"Parameters not allowed in data flows " opl.attl and op2.att2

Attempt to use a parameter in a data flow (use Parameter Flow, or init child parameter instead).

R

"Restoration failed (check for incompatible formats?)"”

It was impossible to restore an imported file, it may be due to changes in internal

saving format. Try to parse your whole KB again.

"Root operator not defined, will lead to EXECUTION ERROR"IDENT

The root operator(named IDENT), as decared in the KB description has not been defined

in any of the .yakl KB files, the engine will be unable to work on this incomplete KB!

"Rule parse error before" $

It is the standard rule error message, when the parser totally fails. It may be due to a forgotten
comma, (between premisses or actions), or to a misuse of names of operator arguments, etc.

S

"Should return a String” IDENT

File names or searched elements in items are usually indicated by plain strings, but instead
you can use: the value of some argument (thus this value (IDENT) must be of type String)
or the return value of a method (thus the method (named IDENT) must return a String).

RR n° 5066

184 Sabine Moisan

T

"Type mismatch between value and attribute” IDENT

In an assignement the left and right part types must be compatible. In particular if the
left part (IDENT) corresponds to a collection attribute, the right part must be a set of
values and vice versa. In a request a missing value for an argument also leads to this error.
"Type of collection element should be printable” IDENT

To transform the syntax of a primitive operator into a correct command line, everyelement
in the syntax must be "printable". The collection element refered to by IDENT has not

a simple type that can be accepted by the Unix shell, for instance.

U

"Undefined object” IDENT

Attempt to intialise a collection with an object name (IDENT) that has not been defined yet.
If you want a string use ‘.

"Undefined operator argument” IDENT

Attempt to reference, in a data flow, an argument name (IDENT) that does not belong
to the corresponding (sub-)operator.

"Undefined operator" IDENT

In a data flow among operators an undefined operator name (IDENT) appears.

"Undefined functionality” IDENT

When checking if a functionality is achieved by an operator, IDENT refers to an
undefined functionality.

"Undefined supertype” IDENT

Attempt to define a sub type (argument or object type) of a non existing super type (IDENT).

"Undefined type" IDENT

Attempt to assign an unknown type (IDENT) to a variable in a rule or to an argument of an operator, etc.

"Undefined functionality” IDENT

Attempt to instantiate a request from an undefined functionality

"Undefined operator" IDENT

Attempt to use in a rule an operator name (IDENT) which is unknown (neither the current one
nor an already defined one) e.g. to assess an operator, to favor an operator (use operator, ...).

"Undefined operator or functionality” IDENT

Attempt to add an undefined operator (or functionality) (named IDENT) as a child of a composite operator.

"Unknown file" IDENT

In checking the existence of files declared in a KB, the name IDENT does not correspond
to an existing file.

The diagnosis for most "Undefined ..." messages may be that the import clause of the file

containing the needed definition is missing, check that point.

INRIA

YAKL and PEGASE+ Reference and User Manual 185

B.2.2 Three Star Warnings

Three stars warnings are more “dangerous” than one star ones, i.e. they will more probably
lead to errors that prevent from executing the KBS, but they can be accepted in an inter-
mediate state of the KB development.

***% Warning: Undefined functionality” IDENT

Attempt to create a functionality instance (a request) from an undefined functionality (IDENT)
(supposed to be not yet defined, but should be soon!).

n*¥** Warning: No data flow/distribution for argument "IDENT " of operator " IDENT

An argument (named IDENT) of a (sub)operator does not appear in a data flow or a distribution flow,
so this means its value is not used outside the operator. Is it on purpose?

"*¥*¥* Warning: Parameter "IDENT " has no default nor initialisation rule.”

A parameter of the current operator has no means to initialise its value. You should write
some initialisation rule or default value otherwise at execution there will be a problem.

n¥*¥¥ Warning: repair without assessment, may never be active.”

A repair criteria has been defined but no assessment one, hence the assessment process will never
occur and the repair rules will never be triggered; remove the repair criteria or add an assessment one.

n*** Warning: Undefined operator/functionality” IDENT

Attempt to send an unknown problem (named IDENT) in a rule to an operator (or functionality)
(supposed to be not yet defined, but should be soon!)

M*** Warning: Modification of input data:" IDENT

In a rule, assignement of an input data: input data are given —by definition— and are
not supposed to be modified. Shouldn’t IDENT be a parameter?

RR n° 5066

186 Sabine Moisan

B.2.3 One Star Warnings

They are real warning, in the sense that their presence will not prevent the KBS execution,
but they may correspond to an oversight.

"* Warning: argument(s) not in calling syntaz" list of IDENTSs

In the calling syntax of an operator, the listed arguments of this operator do not appear,
which may be correct but may also be a mistake.

"* Warning: avoid parameters in data flows " IDENT

Parameters (like IDENT) should appear in Parameter flow, or be used by init _child parameter
in rules.

"* Warning: Don’t forget to define method: " IDENT1:IDENT2 ()... and to include file " file.h

When the expert declares a method (IDENT2)attached to a type (IDENT1) in the KB, the body of
this method must be written somewhere (in a .cc file for instance), this is a reminder for the expert.
Moreover, including the current file interface (file.h) is necessary to have access to

the type definition when the KB will be compiled.

"* Warning: 10 relations ignored in composite operator for" IDENT

Output arguments (like IDENT) of composite operator do not have IO relations (they are
obtained from lower levels, where primitive operators do have some). They will be ignored.

" Warning: missing 10 relations in terminal operator for" IDENT

Output arguments (like IDENT) of a terminal operator are supposed to have IO relations, to
indicate how they "derive" from input ones.

"* Warning: uneffective left part of effect. Not an output data of the current operator:" IDENT

Effects only apply on output data, since IDENT does not correspond to an output data of the
of the current operator, these effects will be ignored for future processing.

INRIA

YAKL and PEGASE+ Reference and User Manual 187

Bibliography

[CAM*+97]

[CMMOY8]

[MMMYV96]

[Moi98]

[SMV+99]

[TMC99]

[vdE96]

[vdEvHT95]

RR n° 5066

M. Crubézy, F. Aubry, S. Moisan, V. Chameroy, M. Thonnat, and R. di Paola.
Managing Complex Processing of Medical Image Sequences by Program Su-
pervision Techniques. In SPIE International Symposium on Medical Imaging,
Newport Beach, California USA., February 1997.

M. Crubezy, M. Marcos, and S. Moisan. Experiments in Building Program
Supervision Engines from Reusable Components. In 8th European Conference
on Artificial Intelligence-ECAI98. Workshop on Applications of Ontologies and
Problem-Solving Methods., August 1998.

S. Mathieu-Marni, S. Moisan, and R. Vincent. A Knowledge-Based Sys-
tem for the Determination of Land Cover Mixing and the Classification of

Multi-Spectral Satellite Imagery. International Journal of Remote Sensing,
17(8):1483-1492, May 1996.

S. Moisan. Une plate-forme pour une programmation par composants de sys-
temes a base de connaissances. Habilitation & diriger les recherches, Université
de Nice, April 1998.

C. Shekhar, S. Moisan, R. Vincent, P. Burlina, and R. Chellappa. Knowledge-
based control of vision systems. Image and Vision Computing, 17(8):667—683,
May 1999.

M. Thonnat, S. Moisan, and M. Crubézy. Experience in Integrating Image Pro-
cessing Programs. In Internatianal Conference on Computer Vision Systems,
Las Palmas, Canary Islands, January 1999.

J.van den Elst. Modélisation de Connaissances pour le Pilotage de Programmes
de Traitement d’Images. Thése, université de Nice-Sophia Antipolis, octobre
1996.

J. van den Elst, F. van Harmelen, and M. Thonnat. Modelling Software Com-
ponents for Reuse. In Seventh International Conference on Software Engineer-
ing and Knowledge Engineering, pages 350-357. Knowledge Systems Institute,
June 1995.

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbhonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

